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ABSTRACT

Computing the Fréchet distance between two polygonal curves takes roughly quadratic

time. In this paper, we show that for a special class of curves the Fréchet distance
computations become easier. Let P and Q be two polygonal curves in Rd with n and m

vertices, respectively. We prove four results for the case when all edges of both curves

are long compared to the Fréchet distance between them: (1) a linear-time algorithm
for deciding the Fréchet distance between two curves, (2) an algorithm that computes

the Fréchet distance in O((n+m) log(n+m)) time, (3) a linear-time
√
d-approximation

algorithm, and (4) a data structure that supports O(m log2 n)-time decision queries,

where m is the number of vertices of the query curve and n the number of vertices of

the preprocessed curve.

Keywords: The Fréchet distance, Approximation algorithm, Data structure.

1. Introduction

Measuring the similarity between two curves is an important problem that has

applications in many areas, e.g., in morphing,3 movement analysis,4 handwriting

recognition5 and protein structure alignment.6 Fréchet distance is one of the most
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popular similarity measures which has received considerable attentions in recent

years. It is intuitively the minimum length of the leash that connects a man and

dog walking across the curves without going backward. The classical algorithm

for computing the Fréchet distance between curves with total complexity n runs

in O(n2 log n) time.7 The major goal of this paper is to focus on computing the

Fréchet distance for a reasonable special class of curves in significantly faster than

quadratic time.

1.1. Related Work

Buchin et al.8 gave an Ω(n log n) lower bound for computing the Fréchet distance.

Then Bringmann9 showed that, assuming the Strong Exponential Time Hypothesis,

the Fréchet distance cannot be computed in strongly subquadratic time, i.e., in

time O(n2−ε) for any ε > 0. For the discrete Fréchet distance, which considers

only distances between the vertices, Agarwal et al.10 gave an algorithm with a

(mildly) subquadratic running time of O(n2 log logn
logn ). Buchin et al.11 showed that the

continuous Fréchet distance can be computed in O(n2
√

log n(log logn)3/2) expected

time. Bringmann and Mulzer12 gave an O(n2/φ+n log n)-time algorithm to compute

a φ-approximation of the discrete Fréchet distance for any integer 1 ≤ φ ≤ n.

Therefore, an nε-approximation, for any ε > 0, can be computed in (strongly)

subquadratic time.

For the continuous Fréchet distance, there are also a few subquadratic algorithms

known for restricted classes of curves such as κ-bounded, backbone and c-packed

curves. Alt et al.13 considered κ-bounded curves and they gave an O(n log n) time

algorithm to (κ + 1)-approximate the Fréchet distance. A curve P is κ-bounded if

for any two points x, y ∈ P , the union of the balls with radii r centered at x and

y contains the whole P [x, y] where r is equal to (κ/2) times the Euclidean distance

between x and y. For any ε > 0, Aronov et al.14 provided a near-linear time (1 + ε)-

approximation algorithm for the discrete Fréchet distance for so-called backbone

curves that have essentially constant edge length and require a minimum distance

between non-consecutive vertices. For c-packed curves a (1 + ε)-approximation can

be computed in O(cn/ε+ cn log n) time.15 A curve is c-packed if for any ball B, the

length of the portion of P contained in B is at most c times the diameter of B.

1.2. Our Contribution

In this paper, we study a new class of curves, namely curves with long edges, and

we show that for these curves the Fréchet distance can be computed significantly

faster than quadratic time. In a particular application, one might be interested in

detecting groups of different movement patterns in migratory birds that fly very

long distances. As shown in Fig. 1, different flyways are comparatively straight and

the trajectory data of individual birds usually consists of only one GPS sample

per day in order to conserve battery power. Infrequent sampling and the straight
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flyways therefore result in curves with long edges, and it is desirable to compare

the routes of different animals in order to identify common flyways.

Fig. 1. There are four typical flyways across the US. Clustering the trajectories by similarity

between them allows us to detect the most common movement pattern.16

We consider the decision, optimization, approximation and data structure prob-

lems for the Fréchet distance between two polygonal curves P and Q in Rd with

n and m vertices, respectively, all for the case where all edges of both curves are

long compared to the Fréchet distance between them. In Section 3 we present a

greedy linear-time algorithm for deciding whether the Fréchet distance is at most

ε, as long as all edges in P are longer than 2ε and edges in Q are longer than

(1 +
√
d)ε. In Section 4 we give an algorithm for computing the Fréchet distance

in O((n + m) log(n + m)) time and a linear-time algorithm for approximating the

Fréchet distance up to a factor of
√
d. In Section 5 we present a data structure that

decides whether the Fréchet distance between a preprocessed curve P and a query

curve Q is at most ε or not, in O(m log2 n) query time using O(n log n) space and

preprocessing time.

2. Preliminaries

In this section we provide notations and definitions that will be required in the

next sections. Let P : [1, n] → Rd and Q : [1,m] → Rd be two polygonal curves

with vertices p1, . . . , pn and q1, . . . , qm, respectively. We treat a polygonal curve as a

continuous map P : [1, n]→ Rd where P (i) = pi for an integer i, and the i-th edge

is linearly parametrized as P (i+λ) = (1−λ)pi+λpi+1, for integer i and 0 < λ < 1.

A re-parametrization σ : [0, 1] → [1, n] of P is any continuous, non-decreasing

function such that σ(0) = 1 and σ(1) = n. We denote a re-parametrization of Q by

θ : [0, 1] → [1,m]. We denote the length of the shortest edge in P and the length

of the shortest edge in Q by lP and lQ, respectively. For two points x, y ∈ Rd, let

‖x− y‖ denote the Euclidean distance between the points and xy the straight line
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segment connecting x to y. The Euclidean distance between x ∈ Rd and an edge

e : [1, 2] → Rd is denoted as ‖x, e‖ = min1≤t≤2 ‖x − e(t)‖. For 1 ≤ a ≤ b ≤ n,

P [a, b] denotes the subcurve of P starting in P (a) and ending in P (b). Let ε > 0

be a real number. Consider an edge e : [1, 2] → Rd of length ‖e‖ > 2ε whose

endpoints are e1 and e2. The direction vector of e is the vector from e1 to e2. Now

let B(p, ε) = {x ∈ Rd | ‖p − x‖ ≤ ε} be the ball with radius ε that is centered at

a point p. The cylinder C(e, ε) is the set of points in Rd within distance ε from

e, i.e., C(e, ε) = ∪x∈eB(x, ε). We say P is (e, ε)-monotone if (1) p1 ∈ B(e1, ε)

and pn ∈ B(e2, ε), (2) P ⊆ C(e, ε), and (3) P is monotone with respect to the

line supporting e. A curve is monotone with respect to a line l if it intersects any

hyperplane perpendicular to l in at most one component.

2.1. Fréchet Distance and Free-Space Diagram

To compute the Fréchet distance between P and Q, Alt and Godau7 introduced

the notion of free-space diagram. For any ε > 0, we denote the free-space diagram

between P and Q by FSD≤ε(P,Q). This diagram has the domain [1, n] × [1,m]

and it consists of (n − 1) × (m − 1) cells, where each point (s, t) in the diagram

corresponds to two points P (s) and Q(t). A point (s, t) in FSD≤ε(P,Q) is called

free if ‖P (s) − Q(t)‖ ≤ ε and blocked, otherwise. The union of all free points is

referred to as the free space. A monotone matching between P and Q is a pair of

re-parameterizations (σ, θ) corresponding to an xy-monotone path from (1, 1) to

(n,m) within the free space in FSD≤ε(P,Q). The Fréchet distance between two
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Fig. 2. Two curves P,Q and ε > 0 on the left, and the free space diagram FSD≤ε(P,Q) on the

right showing free space in white and blocked space in gray. A reachable path is shown in green.

The point (s, t) lies in free space. There is a quadratic number of cells containing free space as
well as a quadratic number of cells containing blocked space in FSD≤ε(P,Q) and all of them may

need to be checked to decide reachability for (n,m). Note that both P and Q contain short edges
as well as long edges compared to ε.
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curves is defined as δF (P,Q) = inf(σ,θ) max0≤t≤1 ‖P (σ(t))−Q(θ(t))‖, where (σ, θ)

is a monotone matching and max0≤t≤1 ‖P (σ(t))−Q(θ(t))‖ is called the width of the

matching. A monotone matching realizing δF (P,Q) is called a Fréchet matching.

A point (s, t) is reachable if there exists a Fréchet matching from (1, 1) to (s, t)

in FSD≤ε(P,Q). A Fréchet matching in FSD≤ε(P,Q) from (1, 1) to (s, t) is also

called a reachable path for (s, t) (see Fig. 2). Alt and Godau7 compute a reachable

path by propagating reachable points across free space cell boundaries in a dynamic

programming manner, which requires the exploration of the entire FSD≤ε(P,Q)

and takes O(mn) time.

2.2. The Main Idea

We set out to provide faster algorithms for the Fréchet distance using implicit struc-

tural properties of the free-space diagram of curves with long edges. These properties

allow us to develop greedy algorithms that construct valid re-parameterizations by

repeatedly computing a maximally reachable subcurve on one of the curves. Like

the greedy algorithm proposed by Bringmann and Mulzer,12 we compute prefix sub-

curves that have a valid Fréchet distance. However, while the approximation ratio

of their greedy algorithm is exponential, the approximation ratio of the algorithm

we present in Section 4.2 is constant, because we can take advantage of the curves

having long edges. Our assumption on edge lengths is more general than backbone

curves, since we do not require that non-consecutive vertices be far away from each

other and we do not require any upper bound on the length of the edges.

The free space diagram for curves with long edges is simpler, and intuitively

seems to have fewer reachable paths (see Fig. 3). In the remainder of this paper we

show that indeed we can exploit this simpler structure to compute reachable paths

in a simple greedy manner which results in runtimes that are significantly faster

than quadratic.

3. A Greedy Decision Algorithm

In this section we give a linear time algorithm for deciding whether the Fréchet

distance between two polygonal curves P and Q in Rd with relatively long edges is

at most ε. In Section 3.1, we first prove a structural property for the case that each

edge in P is longer than 2ε and Q is a single segment. Afterwards in Section 3.2,

we consider the extension to the case that P and Q are two polygonal curves and

we show some extended structural property of free space induced by two curves

with long edges. In Section 3.3, we present our greedy algorithm, which is based

on computing longest reachable prefixes in P with respect to each segment in Q.

We consider three different variants of edge lengths assumption when lP > 2ε and

lQ > (1 +
√
d)ε (Section 3.3.1), lP ≥ 2ε and lQ ≥ (1 +

√
d)ε (Section 3.3.2), and

lP > 0 and lQ > 4ε (Section 3.3.3). In Section 3.4, we provide a critical example

for which our greedy algorithm fails when the assumption on the edge lengths does

not hold.



April 20, 2019 22:48 WSPC/Guidelines ijcga˙main

6 Gudmundsson, Mirzanezhad, Mohades and Wenk

ε

p1
q1

1

p2

p3
p4

p5
p6

q7

q6

q5

q4

q3
q2

2

3

4

5

6

7

Q

P

1 2 3 4 5 6
P

Q

Fig. 3. FSD≤ε(P,Q) for curves with long edges results in fewer reachable paths for (n,m). Consider

the vertical free intervals (shown in purple) in the first row of the free space diagram. Since lP > 2ε,
no consecutive purple intervals intersect which is a property we exploit. One can use such a property

to find a reachable path without needing to check the entire free space diagram.

3.1. A Simple Fréchet Matching for a Single Segment

In this section we start by introducing the crucial notion of orthogonal matching

between a polygonal curve P and a single line segment e. An orthogonal matching

projects each point from P to its closest point on e. In particular, it maps vertices

of P either orthogonally to the segment e or directly to the endpoints of e.

Definition 1 (Orthogonal Matching). Let ε > 0, P : [1, n]→ Rd be a polygonal

curve, and e : [1, 2] → Rd be a line segment. A Fréchet matching (σ, θ) realizing

δF (P, e) ≤ ε is called an orthogonal matching of width at most ε if σ(t) = 1 for

t ∈ [0, a], ‖P (σ(t)) − e(θ(t))‖ = ‖P (σ(t)), e‖ ≤ ε for t ∈ (a, b), and σ(t) = n for

t ∈ [b, 1] for some 0 ≤ a ≤ b ≤ 1; see Fig. 4(a).

Now we state a key lemma that demonstrates that if P has long edges, then the

orthogonal matching of width at most ε between P a segment e exists if and only

if δF (P, e) ≤ ε, and this is equivalent to P being (e, ε)-monotone.

Lemma 1 (Orthogonal Matching and Monotonicity). Let ε > 0, P : [1, n]→
Rd be a polygonal curve and e : [1, 2]→ Rd be a line segment. Consider the following

statements:

(1) δF (P, e) ≤ ε,
(2) P is (e, ε)-monotone,

(3) P and e admit an orthogonal matching of width at most ε.

In general, (2) ⇔ (3) and (3) ⇒ (1). In addition, if lP > 2ε then (1) ⇒ (2), i.e.,

all three statements are equivalent.
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Fig. 4. (a) In this example P is (e, ε)-monotone and the green arrows indicate an orthogonal
matching between P and e. (b) An illustration of the case H∩ e 6= ∅ in the proof of (1) ⇒ (2) in

Lemma 1. Note that the consecutive purple intervals Ii and Ii+1 do not intersect because lP > 2ε.

Proof. We immediately have (3)⇒ (1) by Definition 1. To prove (2)⇒ (3), assume

P is (e, ε)-monotone. We can construct an orthogonal matching by mapping each pi
to its nearest neighbor e(1 + ti) on e, with 0 ≤ ti−1 ≤ ti ≤ 1. We set σ(ti) = i and

θ(ti) = 1 + ti for all i = 1, . . . , n, and we set a = t1, b = tn, σ(t) = 1 for t ∈ [0, a],

σ(t) = n for t ∈ [b, 1], and θ(0) = 1 and θ(1) = 2. The matching (σ, θ) is obtained

by linearly interpolating between these values. The function σ(t) is monotone by

construction, and θ(t) is monotone because P is monotone with respect to the line

supporting e. And all distances ‖P (σ(t))−e(θ(t))‖ ≤ ε because P is (e, ε)-monotone.

Thus (σ, θ) is an orthogonal matching of width at most ε. To prove (3) ⇒ (2), let

(σ, θ) be an orthogonal matching of width at most ε. Then clearly p1 ∈ B(e1, ε),

pn ∈ B(e2, ε), and P ⊆ C(e, ε). Let t1, . . . , tn be such that P (σ(ti)) = pi for

i = 1, . . . , n. Since (σ, θ) is a (monotone) Fréchet matching, θ(t1), . . . , θ(tn) is a

monotone increasing sequence. And since (σ, θ) is orthogonal, the line segments

piθ(ti) are all monotone to the line ` supporting e. Therefore, P is monotone with

respect to ` and thus P is (e, ε)-monotone.

Now assume lP > 2ε. In order to prove (1) ⇒ (2), if δF (P, e) ≤ ε then clearly

p1 ∈ B(e1, ε), pn ∈ B(e2, ε), and P ⊆ C(e, ε). It remains to show that P is monotone

with respect to the line ` supporting e. For all i = 1, . . . , n, define Ii = B(pi, ε)∩e =

e[ai, bi]. Because lP > 2ε, we know that Ii ∩ Ii+1 = ∅. Let (σ, θ) be a monotone

matching realizing δF (P, e) ≤ ε. For the sake of contradiction assume there exists

a hyperplane H perpendicular to ` such that P intersects H in at least two points

P (x) and P (y), where x < y. Let pi be the last vertex along P [x, y], and recall that

e1 and e2 are the two vertices of e. First assume that H∩ e 6= ∅. Then pi lies on the

e2-side of H and pi+1 lies on the e1-side of H. Therefore, because Ii ∩ Ii+1 = ∅, we
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know that ai > bi+1. Let ti, ti+1 ∈ [0, 1] be two values such that pi = P (σ(ti)) and

pi+1 = P (σ(ti+1)), where ti < ti+1. From σ(ti) ≥ ai and σ(ti+1) ≤ bi+1, we know

that σ(ti) > σ(ti+1), which violates the monotonicity of (σ, θ), see Fig. 4(b). Now

consider the case that H∩e = ∅. Then pi lies on one side of H, and e lies entirely on

the other side. If H ∩ B(e1, ε) 6= ∅, then we know that P [1, y] ⊆ B(e1, ε). But this

is not possible since all edges of P are longer than 2ε. The same argument holds if

H ∩B(e2, ε) 6= ∅.

In fact Lemma 1 shows that for a curve P with long edges, the Fréchet distance to

a line segment e is determined by examining whether P is (e, ε)-monotone or not.

3.2. A Simple Fréchet Matching for More than One Segment

In this section, we extend the matching between a curve P and a single line-segment

e to a matching between two curves P and Q.

Definition 2 (Longest ε-Prefix). Let ε > 0, P : [1, n] → Rd be a polygo-

nal curve, and e : [1, 2] → Rd be a line segment. Define γ = max{ t | 1 ≤ t ≤
n and δF (P [1, t], e) ≤ ε}. We call P [1, γ] the longest ε-prefix of P with respect to e.

We now use the longest ε-prefix to define an extension of the matching intro-

duced in Definition 1. Definition 2 is the basis of our greedy algorithm (Algorithm 1)

which is presented in the next section. We show that if there exists a matching be-

tween two curves, then one can necessarily cut it into m− 1 orthogonal matchings

between each segment in Q and the corresponding longest ε-prefix. Before we reach

this property, we need the following technical lemma:

Lemma 2 ((
√
dε)-Ball). Let ε > 0 and let P : [1, n] → Rd be a polygonal curve

such that lP > 2ε. Let e : [1, 2] → Rd where ‖e‖ > 2ε. Assume that P [1, γ] is the

longest ε-prefix of P with respect to e, and let α be a parameter such that P (α) is

the first point along P that intersects B(e2, ε). Then P [α, γ] ⊆ B(e2,
√
dε).

Proof. By assumption ‖e‖ > 2ε, we know that B(e1, ε)∩B(e2, ε) = ∅, thus α exists.

Notice that P [α, γ] ⊆ C(e, ε). Let H be the hyperplane that is intersecting and

perpendicular to e and is tangent to B(e2, ε). Hence H splits P [1, γ] into two parts,

the part on the e1-side and the part that on the e2-side. Let P (x) be the last vertex

before P (γ) along P . By Definition 2, δF (P [1, γ], e) ≤ ε, and (1) if P (x) ∈ B(e2, ε),

then Lemma 1 implies that P [1, x] is (e, ε)-monotone. Thus P [α, γ] must lie on

the e2-side of H2, and in particular inside the cube enclosing B(e2, ε), see Fig. 5.

Therefore the maximum possible distance between any point in P [α, γ] and e2 is√
dε. (2) If P (x) /∈ B(e2, ε), we first show that P [1, x] is monotone with respect to

the line supporting e and then we use the similar argument as in (1) to imply the

maximum possible distance between any point in P [α, γ] and e2 is
√
dε. Now let

(σ, θ) be a Fréchet matching between P [1, γ] and e. For the sake of contradiction

assume there exists an edge P [i, i + 1] such that the angle between the direction
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vectors of P [i, i + 1] and e is greater than π/2 with i < x. Let ti, ti+1 ∈ [0, 1] be

two real values with ti < ti+1 such that σ(ti) = i and σ(ti+1) = i + 1 and let

Ii = B(pi, ε) ∩ e = e[ai, bi] and Ii+1 = B(pi+1, ε) ∩ e = e[ai+1, bi+1]. Now from

B(pi, ε) ∩ B(pi+1, ε) = ∅ follows that Ii ∩ Ii+1 = ∅. Note that the angle between

the direction vectors of P [i, i + 1] and e is greater than π/2 which indicates that

bi+1 < ai. Therefore ai+1 ≤ θ(ti+1) ≤ bi+1 < ai ≤ θ(ti) ≤ bi. Now three following

cases are expected: (i) if i+1 < α, then γ does not exist since (σ, θ) is not monotone

and this would be a contradiction. Therefore P [1, x] is monotone with respect to

the line supporting e. (ii) If α < i ≤ x, then γ < x since i < γ < i + 1 which

is a contradiction with γ > x. Hence P [1, x] is monotone with respect to the line

supporting e. (iii) if i = x ≤ α, then P [α, γ] is only a subsegment of P [i, i+ 1] and

trivially lies within B(e2, ε). This completes the proof.

e1

e2

P (x)p1

H

ε

P (γ)

P (α)

P

e

Fig. 5. The farthest point in P [α, γ] from e2 must lie inside the cube enclosing B(e2, ε).

Lemma 3 ((3ε)-Ball). Let ε > 0 and let P : [1, n] → Rd be a polygonal curve.

Let e : [1, 2]→ Rd where ‖e‖ > 2ε. Assume that P [1, γ] is the longest ε-prefix of P

with respect to e and P (α) is the first point along P that intersects B(e2, ε). Then

P [α, γ] ⊆ B(e2, 3ε).

Proof. Although the proof of Lemma 11 in Gudmundsson and Smid17 is similar, we

describe a slight modification of the proof that is necessary for our setting. Suppose

(σ, θ) is a Fréchet matching realizing δF (P [1, γ], e) ≤ ε. Let x ∈ [α, γ] such that

P (x) is the farthest point to e2. We need to show that ‖P (x) − e2‖ ≤ 3ε which

implies P [α, γ] ⊆ B(e2, 3ε). Let tα, tγ ∈ [0, 1] be two values such that α = σ(tα)

and γ = σ(tγ). Note that there exists some tx ∈ [tα, tγ ] such that x = σ(tx). By the

triangle inequality we have:

‖P (x)− e2‖ ≤ ‖P (x)− e(θ(tx))‖+ ‖e(θ(tx))− e2‖ ≤ ε+ ‖e(θ(tx))− e2‖.

Note that tx > tα and we can have ‖e(θ(tx))− e2‖ ≤ ‖e(θ(tα))− e2‖, hence:

‖P (x)− e2‖ ≤ ε+ ‖e(θ(tα))− e2‖.

By applying the triangle inequality once more we have:

‖P (x)− e2‖ ≤ ε+ ‖e(θ(tα))− P (α)‖+ ‖P (α)− e2‖ ≤ 3ε.
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Now we show that if δF (P,Q) ≤ ε, then the two polygonal curves P and Q admit

a piecewise orthogonal matching, which can be obtained by computing longest ε-

prefixes of P with respect to each segment of Q. This lemma is the foundation of

our greedy algorithm (Algorithm 1).

ε

P (γ)

P (α)

P

Q

σ(tγ) = γσ(t2)

2

q1

q2

q3

1
1

3

σ(t3)

θ(tγ)

P

Q

p1

pn

Fig. 6. Given an arbitrary matching (the concatenation of the light and dark green reachable

paths), the orthogonal matching (the brown reachable path) between P [1, γ] and Q[1, 2] exists.
We construct a matching realizing δF (P [γ, n], Q[2,m]) ≤ ε as the concatenation of the pink and

the dark green reachable paths.

Lemma 4 (Cutting Lemma). Let ε > 0, and let P : [1, n] → Rd and Q :

[1,m] → Rd be two polygonal curves such that lP > 2ε and lQ > (1 +
√
d)ε. If

δF (P,Q) ≤ ε, then P [1, γ] as the longest ε-prefix of P with respect to Q[1, 2] exists,

δF (P [1, γ], Q[1, 2]) ≤ ε and δF (P [γ, n], Q[2,m]) ≤ ε.

Proof. Let (σ, θ) be any Fréchet matching realizing δF (P,Q) ≤ ε. This corresponds

to a reachable path, which is shown as the concatenation of the light and dark

green paths in the example in Fig. 6. Let t2 ∈ [0, 1] be the largest value such that

Q(θ(t2)) = q2, hence δF (P [1, σ(t2)], Q[1, 2]) ≤ ε. By Definition 2, γ exists with γ ≥
σ(t2), and δF (P [1, γ], Q[1, 2]) ≤ ε. See the brown reachable path corresponding to

the orthogonal matching realizing δF (P [1, γ], Q[1, 2]) ≤ ε in Fig. 6. In the remainder

of this proof we construct a matching to prove that δF (P [γ, n], Q[2,m]) ≤ ε (the

concatenation of the pink and dark green paths).

Let tγ ∈ [0, 1] be the largest value such that P (σ(tγ)) = P (γ). By Lemma 2,

P [σ(t2), γ] ⊆ B(q2,
√
dε). Now let t3 ∈ [0, 1] be the smallest value such that

Q(θ(t3)) = q3. We have ‖q2 − q3‖ > (1 +
√
d)ε, therefore B(q2,

√
dε) ∩B(q3, ε) = ∅

and thus (σ, θ) cannot match q3 to any point in P [σ(t2), γ]. Therefore, σ(t2) ≤ γ =

σ(tγ) < σ(t3), and correspondingly θ(t2) ≤ θ(tγ) < θ(t3).

Now we construct a new matching (σ̄, θ̄) realizing δF (P [γ, n], Q[2,m]) ≤ ε as

follows: σ̄(t) = σ(t) and θ̄(t) = θ(t) for all tγ ≤ t ≤ 1 (dark green reachable path).

On the other hand, since ‖P (γ)− q2‖ ≤ ε (pink point) and ‖P (γ)−Q(θ(tγ))‖ ≤ ε
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(dark green point), we know that Q[2, θ(tγ)] ⊆ B(P (γ), ε), i.e., the pink vertical

segment is free. We set, σ̄(t) = γ and θ̄(t) =
tγ−t
tγ
· 2 + t

tγ
· θ(tγ) for all t2 ≤ t ≤ tγ

(pink reachable path). Therefore, we have δF (P [γ, n], Q[2,m]) ≤ ε, which completes

the proof.

Now since by Lemma 4 we have δF (P [1, γ], Q[1, 2]) ≤ ε, Lemma 1 implies that

the matching between P [1, γ] and Q[1, 2] is orthogonal. Let P (x) be the last vertex

of P [1, γ] and let Q(x′) be its closest point on Q[1, 2], for some x < γ and x′ ≤ 2.

Note that if ‖P (γ)−P (x)‖ is shorter than 2ε, we can adjust the orthogonal matching

by simply mapping all points on P [x, γ] to Q[x′, 2]. In addition, if P and Q have

long edges then the free-space diagram is simpler than in the general case, since the

entire vertical space (the pink segment in Fig. 6) between the two points (γ, 2) and

(γ, θ(tγ)) has to be free and cannot contain any blocked points.

3.3. The Decision Algorithm

In this section we present a linear time decision algorithm using the properties

provided in Section 3.1 and Section 3.2. In Section 3.3.1 we consider the case that

lP > 2ε and lQ > (1 +
√
d)ε. In Section 3.3.2 we show that this approach can be

generalized to the case that lP ≥ 2ε and lQ ≥ (1 +
√
d)ε, and in Section 3.3.3 we

generalize the approach to the case that there is only an edge length assumption

on Q.

3.3.1. Long Edges with lP > 2ε and lQ > (1 +
√
d)ε

At the heart of our decision algorithm is the greedy algorithm presented in Algo-

rithm 1. The input to this DecisionAlgorithm are two polygonal curves P and

Q, and ε > 0. The algorithm assumes that P and Q have long edges. In each itera-

tion the function LongestEpsilonPrefix returns γ, where P [s, γ] is the longest

ε-prefix of P [s, n] with respect toQ[i−1, i], if it exists. Here, s is the parameter where

P (s) is the endpoint of the previous longest ε-prefix with respect to Q[i− 2, i− 1].

At any time in the algorithm, if γ = null, this means that the corresponding longest

ε-prefix does not exist and then “No” is returned. Otherwise, the next edge of Q is

processed. This continues iteratively until all edges have been processed, or γi does

not exist for some i = 2, · · · ,m.

The LongestEpsilonPrefix(P [γi−1, n], Q[i − 1, i], ε) procedure is imple-

mented as follows: We use Alt and Godau’s7 dynamic programming algorithm to

compute the reachability information in FSD≤ε(P [γi−1, n], Q[i− 1, i]), which com-

putes all (s, t) for which δF (P [γi−1, s], Q[i− 1, t]) ≤ ε. This takes linear time in the

complexity of P [γi−1, n] since Q[i−1, i] is a single segment. Then γi is the largest s

for which δF (P [γi−1, s], Q[i− 1, i]) ≤ ε. Note that P (s) has to lie on the boundary

of B(qi, ε). If no such s exists then γi = null. We now prove the correctness of our

decision algorithm.
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Algorithm 1: Decide whether δF (P,Q) ≤ ε

1 DecisionAlgorithm(P [1, n], Q[1,m], ε)

2 // Assumes lP > 2ε and lQ > (1 +
√
d)ε

3 γ1 ← 1

4 for i← 2 to m do

5 γi ←LongestEpsilonPrefix(P [γi−1, n], Q[i− 1, i], ε)

6 if γ = null then return “No”

7 s← γ

8 if γ < n then return “No”

9 return “Yes”

Theorem 1 (Correctness). Let ε > 0, and let P : [1, n] → Rd and Q :

[1,m] → Rd be two polygonal curves such that lP > 2ε and lQ > (1 +
√
d)ε. Then

DecisionAlgorithm(P,Q, ε) returns “Yes” if and only if δF (P,Q) ≤ ε.

Proof. If the algorithm returns “Yes” then the sequence {(qi, γi)} for all i =

1, . . . ,m with γ1 = 1 and γm = n describes a monotone matching that realizes

δF (P,Q) ≤ ε.
If δF (P,Q) ≤ ε, then we prove by induction on i that the algorithm returns

“Yes”, i.e., all longest ε-prefixes (P [1, γ2], P [γ2, γ3], . . . , P [γm−1, γm]) of P with re-

spect to the corresponding segments of Q exist. For i = 2, following Lemma 4,

γ2 exists and can be found by the algorithm. For any i > 2, the algorithm has

determined γ2, . . . , γi−1 already and by Lemma 4, δF (P [γi−1, n], Q[i − 1,m]) ≤ ε.

Another application of Lemma 4 yields that δF (P [γi−1, γi], Q[i − 1, i]) ≤ ε and

δF (P [γi, n], Q[i,m]) ≤ ε.
In the case that i = m− 1 it remains to prove that γi+1 = γm = n. For the sake

of contradiction, assume γm < n. Since P [γm−1, γm] is the longest ε-prefix, there is

no other γ′m ∈ (γm, n] such that δF (P [γm−1, γ
′
m], Q[m − 1,m]) ≤ ε. Consequently,

δF (P [γm−1, γ
′
m], Q[m − 1,m]) > ε and therefore δF (P [γm−1, n], Q[m − 1,m]) > ε.

Applying the contrapositive of Lemma 4 to P [γm−1, n] and Q[m − 1,m] yields

δF (P,Q) > ε, which is a contradiction. Therefore γm = n and the algorithm returns

“Yes” as claimed.

Observation 2 (Piecewise Orthogonal Matching). If δF (P,Q) ≤ ε, then the

sequence {γ1, γ2, . . . , γn} computed by Algorithm 1 induces a Fréchet matching that

maps P (γi) to qi, and therefore δF (P,Q) ≤ ε for all i = 2, . . . ,m. Lemma 1 implies

that the matching between P [γi−1, γi] and Q[i− 1, i] is orthogonal.

We summarize this section with the following theorem:

Theorem 3 (Runtime). Let ε > 0, and let P : [1, n] → Rd and Q : [1,m] → Rd
be two polygonal curves such that lP > 2ε and lQ > (1 +

√
d)ε. Then there exists
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qi−1
qiQ

P (γi)

pj

pj+1

qi−1

qi

Q

P (γi)

qi+1

(a) (b)

pj

P (γi−1)

P (γi−1)

Fig. 7. Two examples of matchings between P [γi−1, γi] and Q[i − 1, i] that are not (piecewise)

orthogonal. Matchings are indicated with green arrows. All balls have radius ε. (a) An example
where lP = ‖pj+1 − pj‖ = 2ε and γi exists, but the induced Fréchet matching is not orthogonal.

(b) An example where ‖qi+1 − qi‖ = (1 +
√
d)ε and B(qi+1, ε) ∩ B(qi,

√
dε) ∩ P = pj . Although

γi exists, a matching that is not piecewise orthogonal of width exactly ε exists.

a greedy decision algorithm, Algorithm 1, that can determine whether δF (P,Q) ≤ ε
in O(n+m) time.

Proof. The number of vertices in P [γi−1, γi] is at most dγi−γi−1e+1. The algorithm

greedily finds the longest ε-prefix per edge Q[i− 1, i] by calling LongestEpsilon-

Prefix(P [s, n], Q[i− 1, i], ε) in O(dγi − γi−1e+ 1) time. The for-loop iterates over

m − 1 edges, thus the runtime is
∑m
i=2(dγi − γi−1e + 1) <

∑m
i=2(γi − γi−1 + 2) =

γm − γ1 + 2(m− 1) = n− 1 + 2m− 2 = O(n+m).

3.3.2. Long Edges with lP ≥ 2ε and lQ ≥ (1 +
√
d)ε

We now consider the slightly more general case that lP ≥ 2ε and lQ ≥ (1 +
√
d)ε.

The optimization algorithm presented in Section 4.1 makes use of this case. Clearly,

if lP > 2ε and lQ > (1 +
√
d)ε then Theorem 1 applies as usual. If lP = 2ε or

lQ = (1 +
√
d)ε then Algorithm 1 can still be run, however the Fréchet matching

induced by the γi is not necessarily a piecewise orthogonal matching anymore, which

means Observation 2 may not hold, see Fig. 7. However, we can still prove a slightly

modified correctness theorem.

Theorem 4. Let ε > 0, and lP ≥ 2ε and lQ ≥ (1 +
√
d)ε. If

DecisionAlgorithm(P,Q, ε) returns “Yes” then δF (P,Q) ≤ ε. If it returns “No”

then δF (P,Q) ≥ ε.

Proof. Let ε∗ = δF (P,Q). If lP > 2ε and lQ > (1 +
√
d)ε then Theorem 1 applies

as usual. So, assume lP = 2ε or lQ = (1 +
√
d)ε. If the algorithm returns “Yes”,

then we know that δF (P [γi−1, γi], Q[i−1, i]) ≤ ε0 for all i = 2, . . . ,m, and therefore

ε∗ ≤ ε.
In the remainder of this proof we show the contrapositive of the second part:
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If ε∗ = δF (P,Q) < ε then DecisionAlgorithm(P,Q, ε) returns “Yes”. So, as-

sume ε∗ < ε. Then, by Theorem 1, DecisionAlgorithm(P,Q, ε∗) returns “Yes”,

which means that all γ∗i = LongestEpsilonPrefix(P [γ∗i−1, n], Q[i − 1, i], ε∗)

exist for all i = 2, . . . ,m, and γ∗1 = 1. We prove by induction that all γi =

LongestEpsilonPrefix(P [γi−1, n], Q[i−1, i], ε) exist as well. The inductive base

is trivial to show since γ1 = γ∗1 = 1. Now as an inductive hypothesis let i > 1

be the largest integer value for which γi−1 exists and is computed. In the fol-

lowing we show that γi = LongestEpsilonPrefix(P [γi−1, n], Q[i − 1, i], ε) ex-

ists and can be computed. Let P (x) be the first point along P [γ∗i , n] on the

boundary of B(qi, ε). We have γ∗i−1 < γi−1 < γ∗i < x, where the first inequal-

ity follows from B(qi−1, ε
∗) ⊂ B(qi−1, ε), and the second inequality follows from

B(qi−1, ε) ∩ B(qi, ε
∗) = ∅ because lQ > 2ε. Now let (σ, θ) be the Fréchet matching

realizing δF (P [γ∗i−1, γ
∗
i ], Q[i − 1, i]) ≤ ε∗, and let t ∈ [0, 1] such that σ(t) = γi−1.

Then from γ∗i−1 < γi−1 < γ∗i follows that i − 1 ≤ θ(t) ≤ i. We can therefore

construct a piecewise re-parameterization for P [γi−1, x] and Q[i−1, i] which yields:

δF (P [γi−1, x], Q[i− 1, i]) ≤ max{ δF
(
P (γi−1), Q[i− 1, θ(t)]

)
,

δF
(
P [γi−1, γ

∗
i ], Q[θ(t), i]

)
, δF

(
P [γ∗i , x], qi

)
} ≤ ε.

Since γi ≥ x, this implies that all γi exist for all i = 2, . . . ,m. Note that

the procedure LongestEpsilonPrefix(P [γi−1, n], Q[i − 1, i]) can compute γi by

finding the reachable path for (γi, i) across FSD≤ε(P [γi−1, n], Q[i−1, i]). Therefore

DecisionAlgorithm(P,Q, ε) returns “Yes”.

3.3.3. Long Edges with lQ > 4ε

Our algorithm also can be applied to the case that one curve has arbitrary edge

lengths and the other curve has edge lengths greater than 4ε.

Theorem 5 (Single Curve with Long Edges). Let ε > 0, and let P : [1, n]→
Rd and Q : [1,m]→ Rd be two polygonal curves such that lP > 0 and lQ > 4ε. Then

there exists a greedy decision algorithm, Algorithm 1, that can determine whether

δF (P,Q) ≤ ε or δF (P,Q) > ε in O(n+m) time.

Proof. In the proof of Lemma 4, we can replace Lemma 2 with Lemma 3, and

realize that Lemma 4 also holds for the case lP > 0 and lQ > 4ε. The rest follows

from Theorem 1 and Theorem 3.

3.4. Necessity of the Assumption

As we have seen so far, Algorithm 1 greedily constructs a feasible Fréchet matching

by linearly walking on curve P to find all longest ε-prefixes on it with respect to the

corresponding edges of Q. Unfortunately, this property is not always true for curves

with short edges. In general, there can be a quadratic number of blocked regions

in the free space diagram of two curves; see Fig. 8 as an example of two curves in
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R2 that have edges of length exactly equal 2ε except for some edges with lengths in

[2ε, (1+
√

2)ε]. This example demonstrates that our simple greedy construction of a

Fréchet matching is unlikely to work if the edges are shorter than the assumptions

we made. It also shows that our greedy construction does not work if both curves

have edge lengths of at least 2ε.

1.85ε

ε

0.775ε
γ2

λ2

p1, p3, p7 p6

p2, p4
p5

q1, q7
q3

q2

q4, q6

q5
P

Q

1.9ε

P

Q

Fig. 8. An example in which the greedy algorithm fails to realize the Fréchet matching highlighted

in green. Here, P [1, γ2] is the longest ε-prefix in P with respect to Q[1, 2], as illustrated by the red
reachable path. Also Q[1, λ2] is the longest ε-prefix in Q with respect to P [1, 2] as illustrated by

the blue reachable path. Every edge is 2ε long, except for the edges Q[1, 2] and Q[2, 3] that have

lengths 2.02ε and 2.005ε, respectively. The latter values are still in the range [2ε, (1 +
√

2)ε].

4. Optimization and Approximation

In this section, we present two algorithms for computing and approximating

the Fréchet distance between two curves with long edges, respectively. First we

give an exact algorithm which runs in O((n+m) log(n+m)) time. Afterwards, we

present a linear time algorithm which is similar to the greedy decision algorithm,

but it uses the notion of minimum prefix to approximate the Fréchet distance.

4.1. Optimization

The main idea of our algorithm is that we compute critical values of the Fréchet

distance between two curves and then perform binary search on these to find the

optimal value acquired by the decision algorithm. In general, there are a cubic num-

ber of critical values, which are candidate values for the Fréchet distance between

two polygonal curves. These critical values are those ε for which p1 ∈ B(q1, ε) or

pn ∈ B(qm, ε), or when decreasing ε slightly a free space interval disappears on
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the boundary of a free space cell or a monotone path in the free space becomes

non-monotone. See Alt and Godau7 for more details on critical values. In our case

we can show that it suffices to consider only a linear number of critical values,

because the assumption on the edge lengths of the curves implies that a piecewise

orthogonal matching exists, which reduces the number of possible critical values.

Our optimization algorithm consists of the following four steps:

(1) Run DecisionAlgorithm(P,Q, ε0) with ε0 = min{lP /2, lQ/(1 +
√
d)}

and store all γi = LongestEpsilonPrefix(P [γi−1, n], Q[i − 1, i], ε0) for

all i = 2, . . . ,m. Only proceed if DecisionAlgorithm(P,Q, ε0) returns

“Yes”.

(2) If P [γi−1, γi] is not (Q[i − 1, i], ε0)-monotone for some i = 2, . . . ,m then

return δF (P,Q) = ε0.

(3) Compute C := ∪mi=2Ci ∪ {ε0}, where Ci is the set of all critical values for

P [αi−1, γi] and Q[i − 1, i]. Here, P (αi) is the first point along P [γi−1, n]

that intersects B(qi, ε0) and α1 = 1.

(4) Sort C and perform binary search on C using DecisionAlgorithm(P,Q, ·)
to find δF (P,Q).

In step (1) we set ε0 = min{lP /2, lQ/(1 +
√
d)}. This means that lP ≥ 2ε0 and

lQ ≥ (1+
√
d)ε0. Step (2) handles the case that the matching induced by the γi may

not be a piecewise orthogonal matching. But once the algorithm proceeds to step (3),

there exists a piecewise orthogonal matching between P and Q. This restricts the set

of critical values we have to consider in step (3) as follows: Let ε∗ ≤ ε0 and assume

ε∗ = δF (P,Q). Let γ∗i = LongestEpsilonPrefix(P [γ∗i−1, n], Q[i − 1, i], ε∗), for

i = 2, . . . ,m, and let P (α∗i ) be the first intersection point between P [γ∗i−1, n] and

B(qi, ε
∗), and α∗1 = γ∗1 = 1. From B(qi, ε

∗) ⊆ B(qi, ε0) follows that αi ≤ α∗i ≤
γ∗i ≤ γi. And since γi−1 ≤ γi, we know that P [γ∗i−1, γ

∗
i ] ⊆ P [αi−1, γi]. We thus have

observed the following, see Fig. 9:

Observation 6. Let ε∗ ≤ ε0. For all i = 2, . . . ,m:

(1) αi ≤ α∗i ≤ γ∗i ≤ γi, (2) P [γ∗i−1, γ
∗
i ] ⊆ P [αi−1, γi].

Therefore all critical values for P [γ∗i−1, γ
∗
i ] and Q[i− 1, i] must be contained in

the set Ci which are the critical values for P [αi−1, γi] and Q[i−1, i], and the binary

search in step (4) will identify ε∗.

Lemma 5 (Correctness). Let ε0 = min{lP /2, lQ/(1+
√
d)} and let ε∗ = δF (P,Q).

If in step (1) of the optimization algorithm DecisionAlgorithm(P,Q, ε0) returns

“Yes”, then the optimization algorithm returns ε∗ and ε∗ ≤ ε0. Otherwise ε∗ ≥ ε0.

Proof. If DecisionAlgorithm(P,Q, ε0) returns “No” then Theorem 4 implies

that δF (P,Q) = ε∗ ≥ ε0. Now suppose, for the remainder of this proof, that

DecisionAlgorithm(P,Q, ε0) returns “Yes”. Then we know that all γi exist and

δF (P [γi−1, γi], Q[i − 1, i]) ≤ ε0 for all i = 2, . . . ,m, and therefore ε∗ ≤ ε0, see also
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Theorem 4. This implies that ε0 is an upper bound on all critical values in C. It

remains to show that the optimization algorithm returns ε∗.

If in step (2) there is an i = 2, . . . ,m such that P [γi−1, γi] is not (Q[i− 1, i], ε)-

monotone, then there must exist an edge P [j, j + 1], for γi−1 ≤ j < γi, such that

the angle between the direction vectors of P [j, j + 1] and Q[i− 1, i] is greater than

π/2. The length of all edges in P must be at least 2ε0. But for this edge, the only

way a (monotone) Fréchet matching between P [γi−1, γi] and Q[i − 1, i] of width

at most ε0 can exist is if ‖pj+1 − pj‖ = 2ε0 and both pj and pj+1 are matched

to x = B(pj , ε0) ∩ B(pj+1, ε0) ∩ Q[i − 1, i]. Therefore the width of such a Fréchet

matching is exactly ε0 and ε∗ = ε0.

It remains to show that if the algorithm passes step (2) it returns ε∗ at the end

of step (4). Since ε0 ∈ C and ε∗ ≤ ε0, the binary search will return ε∗ if ε∗ = ε0.

So assume now that ε∗ < ε0. Since the algorithm passes step (2), it follows from

Lemma 1 that the matching induced by the γi is indeed a piecewise orthogonal

matching of width less than ε0. From Observation 6 follows that all critical values

for P [γ∗i−1, γ
∗
i ] and Q[i − 1, i] must be contained in the set Ci of all critical values

for P [αi−1, γi] and Q[i−1, i]. Thus, ε∗ ∈ C = ∪mi=2Ci, and the binary search in step

(4) returns ε∗.

Computing The Critical Values: A piecewise orthogonal matching of width ε∗

between P and Q is comprised of orthogonal matchings between P [γ∗i−1, γ
∗
i ] and

Q[i−1, i] for all i = 2, . . . ,m. The piecewise orthogonal matching may map vertices

from P to Q[i − 1, i] either by an orthogonal projection or by mapping to the

endpoints qi−1, qi. And vertices qi may be mapped by on orthogonal projection to

P [αi, γi]. These mappings define point-to-point distances that are candidates for ε∗,

and thus critical values between P [γ∗i−1, γ
∗
i ] and Q[i−1, i] that we need to optimize

over. But since ε∗ is not known beforehand, we compute the superset Ci of critical

values between P [αi−1, γi] and Q[i − 1, i] as follows: Let H1 be the hyperplane

perpendicular to Q[i − 1, i] and tangent to B(qi−1, ε0) that intersects Q[i − 1, i].

Similarly, define H2 with respect to B(qi, ε0). For each pj ∈ P [αi−1, γi]: (1) If pj
lies between H1 and H2, then any orthogonal matching of width ε∗ maps pj to its

orthogonal projection on Q[i− 1, i]. We therefore add the distance ‖pj , Q[i− 1, i]‖
to Ci. (2) If pj lies on the qi−1-side of H1, then an orthogonal matching of width

ε∗ can map pj either to qi−1 or to its orthogonal projection on Q[i − 1, i]. In this

case we store both ‖pj , Q[i− 1, i]‖ and ‖pj − qi−1‖ in Ci. Similarly, if pj lies on the

qi-side of H2 then we store ‖pj , Q[i − 1, i]‖ and ‖pj − qi‖ in Ci. Finally, for each

edge e in P [αi, γi]: (3) we store ‖qi, e‖. See Fig. 9 for more illustration. We have the

following theorem:

Theorem 7 (Optimization). Let P : [1, n] → Rd and Q : [1,m] → Rd be two

polygonal curves. If δF (P,Q) < min{lP /2, lQ/(1 +
√
d)}, then δF (P,Q) can be com-

puted in O((n+m) log(n+m)) time.

Proof. By Lemma 5 we know that the optimization algorithm returns δF (P,Q)
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Fig. 9. Shown are two examples of orthogonal matchings between P [γ∗i−1, γ
∗
i ] and Q[i− 1, i], and

the associated critical values (point-to-point distances defined by the matching). The cylinders

C(Q[i−1, i], ε0) and C(Q[i−1, i], ε∗) are shown, where ε0 ≥ ε∗. (a) pj falls into case (2), when the

orthogonal matching maps pj either to qi (if pj lies inside B(qi, ε
∗)) or orthogonally to Q[i− 1, i]

(if pj lies outside B(qi, ε
∗)). (b) If an edge of P is tangent to B(qi, ε

∗), then case (3) occurs. Here,

the orthogonal matching has to map qi to an edge e in P [αi, γi].

correctly if δF (P,Q) is strictly less than min{lP /2, lQ/(1 +
√
d)}. It only remains

to prove the runtime of the algorithm. First we show that the number of critical

values is linear. For each segment Q[i− 1, i], there are three cases for critical values

contained in Ci: (1) There are at most dαi−γi−1e+1 values if vertex pj lies between

H1 and H2. This is an upper bound for the number of vertices in P [γi−1, αi]. (2)

There are at most 2(dγi−1 − αi−1e + 1) values if vertex pj lies on the qi−1-side of

H1, and similarly there are at most 2(dγi − αie+ 1) values if pj lies on the qi-side

of H2. (3) There are at most dγi − αie critical values for each edge e in P [αi, γi].

Overall, the total is: |Ci| ≤ (γi − αi) + (γi−1 − αi−1) + (γi − αi−1) + 11 < 2(γi −
αi−1)+11 = 2(γi−γi−1)+2(γi−1−αi−1)+11. The latter inequality follows because

αi−1 ≤ γi−1 ≤ αi ≤ γi, see Fig. 9. Note that
∑m
i=2(γi−γi−1) = γm−γ1 = n−1, and∑m

i=2(γi−1 − αi−1) < n, therefore, |C| =
∑m
i=2 |Ci| < 2(n− 1) + 2n+ 11(m− 1) =

O(n+m).

The optimization algorithm first runs Algorithm 1 in O(n+m) time, then com-

putes C in O(n+m) time, and finally sorts C in O((n+m) log(n+m)) time and

performs binary search on C using the decision algorithm in O((n+m) log(n+m))

time. Therefore, the total runtime is O((n+m) log(n+m)).

4.2. Approximation Algorithm

In this section we present a
√
d-approximation algorithm running in linear time.

As a counterpart to the notion of longest ε-prefix we now introduce the notion of

minimum prefix, which is the longest prefix of P with minimum Fréchet distance

to a line segment e.

Definition 3 (Minimum Prefix). Let P : [1, n]→ Rd be a polygonal curve and

e : [1, 2] → Rd be a segment. Define γ′ = max argmin1≤t≤n δF (P [1, t], e). We call

P [1, γ′] the minimum prefix of P with respect to e.
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Note that in the definition above, P (γ′) necessarily lies on the boundary of

B(e2, ε
′), where ε′ = min1≤t≤n δF (P [1, t], e). The approximation algorithm is pre-

sented in Algorithm 2. First, for an initial threshold ε0 = min{lP /(2
√
d), lQ/(2d)},

it runs DecisionAlgorithm(P,Q, ε0). The algorithm only continues if “Yes” gets

returned. This ensures that P and Q have long edges, with lP ≥ 2
√
dε > 2ε and

lQ ≥ 2dε > (1 +
√
d)ε. Then, similar to the decision algorithm, the approximation

algorithm greedily searches for longest ε-prefixes with respect to each segment of Q.

However, it updates the current value of ε in each step, by computing the minimum

prefix and its associated Fréchet distance to the portion of Q considered so far.

Algorithm 2: Approximate δF (P,Q)

1 ApproximationAlgorithm(P [1, n], Q[1,m])

2 ε0 ← min{lP /2
√
d, lQ/2d}

3 if DecisionAlgorithm(P,Q, ε0)= “No” then return “I don’t know”

4 (γ2, ε2)←MinimumPrefix(P [1, n], Q[1, 2])

5 ε← ε2
6 s← γ2
7 for i← 3 to m do

8 (γi, εi)←MinimumPrefix(P [s, n], Q[i− 1, i])

9 ε← max{ε, εi}
10 s← γi

11 if γm = n then

12 return ε

13 else

14 ε← max{ε, δF (P [γm, n], qm)}
15 return ε

Now we are ready to prove the correctness of Algorithm 2:

Lemma 6 (The Approximation). Let P = P [1, n] and Q = Q[1,m] be

two polygonal curves and let ε∗ = δF (P,Q). If ε∗ ≤ min{lP /2
√
d, lQ/2d} then

ApproximationAlgorithm(P,Q) returns a value between ε∗ and
√
dε∗. Other-

wise it returns “I don’t know”.

Proof. From Algorithm 2 we have that εi = δF (P [γi−1, γi], Q[i − 1, i]). We prove

by induction on i that εi ≤
√
dε∗. For i = 2, ε2 is being minimized and obviously

ε2 ≤ ε∗ <
√
dε∗. For any i > 2, there are two possible cases: either εi ≤ ε∗ or

εi > ε∗. In the former case, trivially εi <
√
dε∗. In the remainder of the proof

we consider the latter case that is εi > ε∗. We know from Theorem 1 that all

γ∗i = LongestEpsilonPrefix(P [γ∗i−1, n], Q[i−1, i], ε∗) for all i = 1, 2, . . . ,m exist.

And by inductive hypothesis we know that max{ε2, . . . , εi−1} ≤
√
dε∗.
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We also know from line 8 of Algorithm 2 that εi = δF (P [γi−1, γi], Q[i − 1, i])

and P [γi−1, γi] is the minimum prefix with respect to Q[i − 1, i]. For the sake of

contradiction we assume εi >
√
dε∗ > ε∗. We now distinguish two cases:

(a) If γi−1 < γ∗i−1, then by Lemma 2 we have δF (P [γi−1, γ
∗
i−1], qi−1) ≤

√
dε∗.

Also δF (P [γ∗i−1, γ
∗
i ], Q[i− 1, i]) ≤ ε∗, hence δF (P [γi−1, γ

∗
i ], Q[i− 1, i]) ≤

√
dε∗ < εi.

This contradicts the fact that P [γi−1, γi] is the minimum prefix of P [γi−1, n] with

respect to Q[i− 1, i], see Fig. 10(a).

(b) Now for the case that γ∗i−1 < γi−1, consider the matching (σ, θ) realizing

δF (P,Q) = ε∗. There exists some t ∈ [0, 1] such that γi−1 = σ(t). We can see

that Q(θ(t)) ∈ Q[i − 1, i] as follows: We know that B(qi−1, εi−1) ∩ B(qi, ε
∗) = ∅

since ‖qi−1 − qi‖ ≥ 2dε∗ > (1 +
√
d)ε∗ and εi−1 ≤

√
dε∗. This implies γi−1 < γ∗i

and therefore γ∗i−1 < γi−1 < γ∗i , and correspondingly i− 1 ≤ θ(t) ≤ i. By

inductive hypothesis we know that εi−1 = ‖qi−1 − P (γi−1)‖ ≤
√
dε∗, thus

Q[i− 1, θ(t)] ⊆ B(P (γi−1),
√
dε∗) which implies δF (P (γi−1), Q[i− 1, θ(t)]) ≤

√
dε∗.

Combining this with δF (P [γi−1, γ
∗
i ], Q[θ(t), i]) ≤ ε∗ from the optimal matching

yields δF (P [γi−1, γ
∗
i ], Q[i − 1, i]) ≤

√
dε∗ < εi. This contradicts that P [γi−1, γi] is

the minimum prefix of P [γi−1, n] with respect to Q[i− 1, i], see Fig. 10(b).

In the end, if γm < n = γ∗m, then Lemma 2 again implies δF (P [γm, n], qm) ≤√
dε∗ as claimed. The algorithm returns max{ε2, . . . , εm}. Since there has to be

some εj > ε∗, and we proved by induction that all εi ≤
√
dε∗, the algorithm returns

a value between ε∗ and
√
dε∗.

qi−1 qi qi−1 qi

P (γ∗
i−1)

P (γ∗
i ) P (γi)P (γi−1)

(a) (b)

Q(θ(t))

P (γi)
P (γ∗

i )P (γ∗
i−1)P (γi−1)

P
P

Q Q

Fig. 10. Illustration for the proof of Lemma 6 when εi > ε∗. (a) γi−1 < γ∗i−1 (b) γi−1 > γ∗i−1.

The MinimumPrefix Procedure: Given a polygonal curve P : [1, n] → Rd
and a segment e : [1, 2] → Rd, we implement MinimumPrefix(P, e), as described

in Algorithm 3, as follows: For every i = 1, . . . , n − 1, let ci be the distance

associated with a minimum prefix ending on the segment P [i, i + 1]. Formally,

ci = mint∈[i,i+1] δF (P [1, t], e). Algorithm 3 computes all the ci in a dynamic pro-

gramming fashion. The minimum of the ci is the desired ε, and the LongestEp-

silonPrefix computes the corresponding γ.

Before we can prove the correctness of Algorithm 3, we need the following tech-

nical lemma that states when ε is increased, the longest ε-prefix can only get longer.
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Algorithm 3: Compute MinimumPrefix(P [1, n], e[1, 2])

1 MinimumPrefix(P [1, n], e[1, 2])

2 c← ||p1 − e1||
3 ε′ ← min{lP /2, ‖e‖/2

√
d}

4 γ′ ← LongestEpsilonPrefix(P [1, n], e[1, 2], ε′)

5 for i← 1 to bγ′c do

6 ci ← max{c, ||e2, P [i, i+ 1]||}
7 c← max{c, ||pi+1, e[1, 2]||}
8 ε = min1≤i≤bγ′c ci
9 return (ε, LongestEpsilonPrefix(P [1, n], e[1, 2], ε))

Lemma 7 (Prefix monotonicity). Let P : [1, n] → Rd and Q : [1,m] → Rd
be two polygonal curves and ε > ε′ > 0. Let γ1 = γ′1 = 1 and for all

i = 2, . . . ,m let γi = LongestEpsilonPrefix(P [γi−1, n], Q[i − 1, i], ε) and

γ′i = LongestEpsilonPrefix(P [γ′i−1, n], Q[i − 1, i], ε′). Then γi < γ′i for all

i = 2, . . . ,m.

Proof. The proof is by the induction. For i = 2, we know that

δF (P [1, γ′2], Q[1, 2]) ≤ ε′ < ε. Let x be a parameter such that P (x) is the first

intersection point between P [γ′2, n] and the boundary of B(q2, ε), thus γ′2 < x.

Now observe that δF (P [γ′2, x], q2) ≤ ε. Combining δF (P [1, γ′2], Q[1, 2]) < ε and

δF (P [γ′2, x], q2) ≤ ε yields δF (P [1, x], Q[1, 2]) ≤ ε. Since γ2 is the longest ε-prefix

with respect to Q[1, 2], we have γ′2 < x ≤ γ2, and therefore γ′2 < γ2. Now for i > 2,

by the inductive hypothesis we have γ′i−1 < γi−1. It remains to show γ′i < γi. Con-

sider a matching (σ, θ) realizing δF (P [γ′i−1, γ
′
i], Q[i − 1, i]) ≤ ε′. Let t be the value

such that σ(t) = γi−1. Now we construct a new matching for P [γi−1, x], where

x is defined as in the inductive base, but with respect to B(qi, ε). We know that

δF (P (γi−1), Q[i − 1, θ(t)]) ≤ ε. Also we have δF (P [γi−1, γ
′
i], Q[θ(t), i]) ≤ ε′ < ε by

(σ, θ). Observe that δF (P [γ′i, x], qi) ≤ ε. Thus, δF (P [γi−1, x], Q[i − 1, i]) ≤ ε and

using a similar argument as in the inductive base we have γ′i < x ≤ γi, therefore

γ′i < γi.

Now we are ready to prove the correctness of Algorithm 3:

Lemma 8 (Correctness). Let e : [1, 2] → Rd be a line segment and let P :

[1, n′] → Rd be a polygonal curve monotone with respect to the line supporting e.

The distance returned by MinimumPrefix(P, e) is min1≤t≤n′ δF (P [1, t], e).

Proof. According to the algorithm:

ci = max{‖p1 − e1‖, max
1≤j≤i−1

‖pj+1, e‖, ‖e2, P [i, i+ 1]‖}.
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Since e[1, 2] is a segment and P [1, n′] is monotone with respect to the line supporting

e, it follows from Lemma 1 that for any i ≤ t ≤ i + 1 there exists an orthogonal

matching such that:

δF (P [1, t], e) = max{‖p1 − e1‖, max
1≤j≤i−1

‖pj+1, e‖, ‖P (t)− e2‖}

By taking the minimum on both sides, we get mini≤t≤i+1 δF (P [1, t], e) = max{‖p1−
e1‖,max1≤j≤i−1 ‖pj+1, e‖,mini≤t≤i+1 ‖P (t) − e2‖} = ci. It suffices to run the for-

loop until n′ = bγ′c, since by the assumption we only compute the minimum ε-prefix

P [1, γ] if its distance is at most ε′ (line 3 of Algorithm 3), and by Lemma 7 it follows

γ < γ′. Therefore, ε = min
bγ′c
i=1 ci = minn

′

i=1 ci = min1≤t≤n′ δF (P [1, t], e).

Theorem 8 (Runtime). Let P : [1, n] → Rd and Q : [1,m] → Rd be two polygo-

nal curves. If δF (P,Q) ≤ min{lP /(2
√
d), lQ/(2d)}, then Algorithm 2 approximates

δF (P,Q) in O(n+m) time within an approximation factor of
√
d.

Proof. Let ε∗ = δF (P,Q). The algorithm only proceeds past line 3 if

ε∗ ≤ ε0 = min{lP /2
√
d, lQ/2d} and DecisionAlgorithm(P,Q, ε0) returns

“Yes”. Now, let ε′ =
√
dε0, γ′1 = 1, and for all i = 2, . . . ,m let γ′i =

LongestEpsilonPrefix(P [γ′i−1, n], Q[i − 1, i], ε′). Note that by definition of ε′,

both curves have long edges, i.e., lP ≥ 2
√
dε0 > 2ε′ and lQ ≥ 2dε0 = 2

√
dε′ >

(1 +
√
d)ε′. From the proof of Lemma 6 we know that εi ≤

√
dε∗ ≤

√
dε0 = ε′

and since ‖qi−1 − qi‖ > 2
√
dε′, we have that B(qi−1, ε

′) ∩ B(qi, εi) = ∅. There-

fore, γ′i−1 < γi. Lemma 7 implies that γi ≤ γ′i due to εi ≤ ε′, therefore

γi−1 < γ′i−1 < γi < γ′i for all i = 2, . . . ,m.

The for-loop in Algorithm 2 hasm−2 iterations. In iteration i, the algorithm calls

MinimumPrefix(P [γi−1, γ
′
i], Q[i− 1, i]) in line 8. The for-loop in Algorithm 3 has

dγ′i− γi−1e+ 1 iterations, where dγ′i− γi−1e+ 1 is the upper bound for the number

of vertices in P [γi−1, γ
′
i]. Therefore, the runtime of Algorithm 2 is:

∑m
i=2(dγ′i −

γi−1e + 1) ≤
∑m
i=2(γ′i − γi−1 + 2) =

∑m
i=2(γ′i − γi) +

∑m
i=2(γi − γi−1) + 2(m − 1).

Since γ′i−1 ≤ γi, we have
∑m
i=2(γ′i − γi) ≤

∑m
i=2(γ′i − γ′i−1). Thus,

∑m
i=2(γ′i − γi) +∑m

i=2(γi − γi−1) + 2(m − 1) ≤
∑m
i=2(γ′i − γ′i−1) +

∑m
i=2(γi − γi−1) + 2(m − 1) =

γ′m − γ′1 + γm − γ1 + 2(m− 1) = 2(n− 1) + 2(n− 1) + 2(m− 1) = O(n+m).

5. Data Structure For Longest ε-Prefix Queries

In this section, we consider query variants of the setting in Section 3 for curves in

the plane. We wish to solve the following problem: Preprocess a polygonal curve

P : [1, n] → R2 into a data structure such that for any polygonal query curve

Q : [1,m]→ R2 and a positive ε < min{lP /2, lQ/(1+
√

2)} one can efficiently decide

whether δF (P,Q) ≤ ε. Note that throughout this section we assume, as before, that

P and Q have long edges, i.e., lP > 2ε and lQ > (1 +
√

2)ε. Our query algorithm
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is identical to Algorithm 1. However, the key idea for speeding up the query al-

gorithm is to efficiently compute LongestEpsilonPrefix(P [1, n], Q[1, 2], ε) for a

given query segment Q[1, 2] in sublinear time. Our algorithm to compute the longest

ε-prefix with respect to Q[1, 2] is shown in Algorithm 4. According to Lemma 1 if

δ(P [1, γ], Q[1, 2]) ≤ ε, then P [1, γ] is (Q[1, 2], ε)-monotone. This is equivalent to

computing the largest parameter 1 < t ≤ n such that the following conditions hold:

(1) p1 ∈ B(q1, ε) and P (t) ∈ B(q2, ε), (2) P [1, t] ⊆ C(Q[1, 2], ε), and (3) P [1, t] is

monotone with respect to line supporting Q[1, 2]. Note that the smallest value t

that violates either of the conditions above is a potential γ.

Algorithm 4: Compute LongestEpsilonPrefix(P [1, n], Q[1, 2], ε)

1 LongestEpsilonPrefix(P [1, n], Q[1, 2], ε)

2 if p1 /∈ B(q1, ε) then return ‘null’

3 λ← LongestMonotonePrefix(P [1, n], Q[1, 2])

4 α← FirstIntersection(P [1, λ], B(q2, ε))

5 if α = null then return ‘null’

6 β ← LastIntersection(P [1, λ], B(q2, ε))

7 r ← CylinderIntersection(P [1, λ], C(Q[1, 2], ε))

8 if r = null then return min(λ, β)

9 if r < α or λ < α then return ‘null’

10 if α < r < β or α < λ < β then return min(r, λ)

11 if r > β and λ > β then return β

Here, LongestMonotonePrefix returns λ, where P (λ) is the endpoint of

the longest subcurve of P [1, n] that starts in p1 and is monotone with respect

to the line supporting Q[1, 2]. FirstIntersection returns α, where P (α) is the

first intersection point between P [1, λ] and B(q2, ε). Similarly, LastIntersection

returns β, where P (β) is the last intersection point. CylinderIntersection finds

r where P (r) is the first point along P that intersects the boundary of C(Q[1, 2], ε).

Computing LongestMonotonePrefix: We store all the edges of P in the leaves

of a binary tree T ordered with respect to their indices. We call the subset of edges

stored in the leaves of the subtree rooted at a node v the canonical subset of v. A

set of nodes v1, · · · , vk in the subtree of v is called a set of canonical nodes of v if

their leaves sets are disjoint and the union of their leaves sets is the leaves of the

subtree of v. For each edge in P we consider its direction vector. Each internal node

v stores the pair of the minimum/maximum angles between the direction vector

and x-axis among all associated direction vectors stored in its canonical subset.

Once given a query angle Φ and a starting point p1, we retrieve O(log n) many

leftmost (starting with p1) canonical nodes of T whose leaves spans all edges in

P that satisfy the monotonicity condition, i.e., condition (3) as mentioned earlier,
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with respect to Φ. This can simply be done by recursively searching children of a

node v violating the monotonicity condition with respect to Φ. Once satisfying the

condition, we already have O(log n) internal nodes to report their leaves as P [1, λ].

Searching children and reporting nodes take O(log n) time altogether using O(n)

space and O(n log n) preprocessing time.

Computing FirstIntersection and LastIntersection: Let H be the hyper-

plane intersecting Q[1, 2] that is perpendicular to Q[1, 2] and is tangent to B(q2, ε).

Let H′ be the other hyperplane perpendicular to Q[1, 2] and tangent to B(q2, ε).

Since P [1, λ] is monotone with respect to the line supporting Q[1, 2], we know that

λ must lie on the q2-side of H. And P (α) ∈ P [1, λ] must be located on the first edge

intersecting H2. We start from p1 and perform an exponential search on the edges

of P [1, λ] to find the first edge that intersects H. Once the edge is found, we can find

P (α) in constant time since each edge of P is longer than 2ε which is the diameter

of B(q2, ε). Using the same method we can find P (β) ∈ P [1, λ], if we consider H′
instead of H. If λ is on the q2-side of H′, we perform the exponential search on

P [1, λ] to find P (β). If λ is on the q1-side of H′ then there is no P (β) ∈ P [1, λ] and

the algorithm does not require it. The whole process takes O(log n) time.

Computing CylinderIntersection: Similar to Gudmundsson and Smid,18 we

construct a balanced binary search tree storing the points p1, p2, . . . , pn in its leaves

(sorted by their indices). At each node of this tree, we store the convex hull of all

points stored in its subtree. Given a query range P [1, λ], we can retrieve O(log n)

many canonical nodes of the tree containing convex hulls whose leaves span the

whole range. For each convex hull we only need to compute extreme points with

respect to the direction vector of the edge Q[1, 2]. If all extreme points lie inside

C(Q[1, 2], ε), then r = null, otherwise we consider the first extreme point P (x) of

some convex hull which lies outside C(Q[1, 2], ε). Note that P [1, x] crosses one of

the two boundaries of C(Q[1, 2], ε). Performing exponential search on P [1, x] will

find the first point that lies outside the respective boundary of C(Q[1, 2], ε) for

which P (x) is obtained. This structure needs O(n log n) space and preproccessing

time and answers queries in O(log2 n) time. Plugging Algorithm 4 into the decision

algorithm (Algorithm 1), we obtain the following theorem:

Theorem 9 (General Curves). Let P : [1, n]→ R2 be a polygonal curve. A data

structure of O(n log n) size can be built in O(n log n) time such that for any query

curve Q : [1,m] → R2 and a positive constant ε < min(lP /2, lQ/(1 +
√

2)), it can

be decided in O(m log2 n) time whether δF (P,Q) ≤ ε.

Proof. The correctness of the query algorithm follows from Theorem 1. As we men-

tioned, the space and preprocessing time of the whole data structure is O(n log n).

Using Algorithm 4, the longest ε-prefix can be computed in O(log2 n) time per

segment, and hence the query algorithm runs in O(m log2 n) time.
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When P is an x-monotone curve, we can handle queries in a slightly faster

query time and also smaller space. In this case, we assume that ε is given at the

preprocessing stage. The x-monotonicity of P allows us to use a different data

structure for supporting the CylinderIntersection procedure, since the query

time and space of this structure dominates the cost of our entire data structure.

q1

q2
P (λ)

H1

H2

p1

r

r

P

Q

Fig. 11. Illustrating how combining the straight and circular line ray shooting queries can find the
first point along P [1, λ] that leaves C(Q[1, 2], ε).

We implement the CylinderIntersection procedure by performing two types

of ray shooting queries, straight and circular, along the boundary of C(Q[1, 2], ε).

It is easy to see that it suffices to perform at most two straight ray shooting queries

and four circular ray shooting queries since P is x-monotone. See Fig. 11 for an

illustration of the queries for the top part of the boundary of C(Q[1, 2], ε).

For straight ray shooting queries we use the data structure by Hershberger

and Suri.19 Given a simple polygon, their structure returns the first point on the

boundary of the polygon that is hit by a query ray ρ. It can be built in O(n log n)

time using O(n) space and answer queries in O(log n) time. However, to be able

to use this structure we need to reduce our problem to ray shooting in a simple

polygon. Let PH be the (unbounded) polygon bounded from below by P , from the

left by a vertical ray from p1 to ∞, and from the right by a vertical ray from pn to

∞. Similarly let PL be the (unbounded) polygon bounded from above by P , from

the left by a vertical ray from p1 to −∞, and from the right by a vertical ray from

pn to −∞. We build one data structure for PL and one for PH . For circular ray

shooting queries we use the data structure by Cheong et al.20 Consider a simple

polygon P with size n in the plane and let r > 0. For any circular query ray ρ

with center o, radius r, and start point s′, one can report in O(log n) query time

the first point on the boundary of P which is hit by ρ. Combining these structures

gives us the first point along P [1, λ] that leaves the cylinder, which completes the

implementation of CylinderIntersection. We have the following theorem:

Theorem 10 (x-Monotone Preprocessed Curve). Let ε > 0 and let P :

[1, n] → R2 be an x-monotone polygonal curve in R2 such that lP > 2ε. A lin-
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ear size data structure can be built in O(n log n) time such that for any polygonal

query curve Q : [1,m] → R2 with lQ > (1 +
√

2)ε, one can decide in O(m log n)

time whether δF (P,Q) ≤ ε.

6. Discussion and Future Work

In this paper we provided a linear time decision algorithm, an O((n+m) log(n+m))

time optimization algorithm, a linear time
√
d-approximation algorithm and a data

structure with O(m log2 n) query time for the Fréchet distance between curves that

have long edges. Our algorithms are simple greedy algorithms that run in any

constant dimension. In Section 3.4 we gave a critical example that justifies our

assumptions on the edge lengths.

We proposed several greedy algorithms. Our assumption on the edge lengths

allowed us to obtain a linear time constant-factor approximation algorithm for the

(continuous) Fréchet distance. On the other hand, Bringmann and Mulzer12 pre-

sented a greedy linear time exponential approximation algorithm for general curves

under the discrete Fréchet distance. An interesting future research direction would

be to develop a trade-off between the lengths of edges and the runtime, and in

general prove hardness in terms of the edge lengths.
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