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ABSTRACT

Computing the Fréchet distance between two polygonal curves takes roughly quadratic
time. In this paper, we show that for a special class of curves the Fréchet distance
computations become easier. Let P and Q be two polygonal curves in R with n and m
vertices, respectively. We prove four results for the case when all edges of both curves
are long compared to the Fréchet distance between them: (1) a linear-time algorithm
for deciding the Fréchet distance between two curves, (2) an algorithm that computes
the Fréchet distance in O((n +m) log(n 4 m)) time, (3) a linear-time v/d-approximation
algorithm, and (4) a data structure that supports O(mlog? n)-time decision queries,
where m is the number of vertices of the query curve and n the number of vertices of
the preprocessed curve.

Keywords: The Fréchet distance, Approximation algorithm, Data structure.

1. Introduction

Measuring the similarity between two curves is an important problem that has
applications in many areas, e.g., in morphing,> movement analysis,* handwriting
recognition® and protein structure alignment.® Fréchet distance is one of the most
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popular similarity measures which has received considerable attentions in recent
years. It is intuitively the minimum length of the leash that connects a man and
dog walking across the curves without going backward. The classical algorithm
for computing the Fréchet distance between curves with total complexity n runs
in O(n?logn) time.” The major goal of this paper is to focus on computing the
Fréchet distance for a reasonable special class of curves in significantly faster than
quadratic time.

1.1. Related Work

Buchin et al.® gave an ©(nlogn) lower bound for computing the Fréchet distance.
Then Bringmann® showed that, assuming the Strong Exponential Time Hypothesis,
the Fréchet distance cannot be computed in strongly subquadratic time, i.e., in
time O(n?7¢) for any € > 0. For the discrete Fréchet distance, which considers
only distances between the vertices, Agarwal et al.!? gave an algorithm with a
(mildly) subquadratic running time of O(n”’ﬁ)l%). Buchin et al.!! showed that the
continuous Fréchet distance can be computed in O(n?y/log n(loglogn)®/?) expected
time. Bringmann and Mulzer'? gave an O(n?/¢+n log n)-time algorithm to compute
a ¢-approximation of the discrete Fréchet distance for any integer 1 < ¢ < n.
Therefore, an n-approximation, for any € > 0, can be computed in (strongly)
subquadratic time.

For the continuous Fréchet distance, there are also a few subquadratic algorithms
known for restricted classes of curves such as x-bounded, backbone and c-packed
curves. Alt et al.'3 considered k-bounded curves and they gave an O(nlogn) time
algorithm to (k + 1)-approximate the Fréchet distance. A curve P is k-bounded if
for any two points x,y € P, the union of the balls with radii r centered at z and
y contains the whole P[z,y] where r is equal to (x/2) times the Euclidean distance
between z and y. For any € > 0, Aronov et al.'* provided a near-linear time (1 +¢)-
approximation algorithm for the discrete Fréchet distance for so-called backbone
curves that have essentially constant edge length and require a minimum distance
between non-consecutive vertices. For ¢-packed curves a (1 + €)-approximation can
be computed in O(cn/e+ cnlogn) time.'5 A curve is c-packed if for any ball B, the
length of the portion of P contained in B is at most ¢ times the diameter of B.

1.2. Our Contribution

In this paper, we study a new class of curves, namely curves with long edges, and
we show that for these curves the Fréchet distance can be computed significantly
faster than quadratic time. In a particular application, one might be interested in
detecting groups of different movement patterns in migratory birds that fly very
long distances. As shown in Fig. 1, different flyways are comparatively straight and
the trajectory data of individual birds usually consists of only one GPS sample
per day in order to conserve battery power. Infrequent sampling and the straight
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flyways therefore result in curves with long edges, and it is desirable to compare
the routes of different animals in order to identify common flyways.

North American Migration Flyways
(with Principal Routes)

Fig. 1. There are four typical flyways across the US. Clustering the trajectories by similarity
between them allows us to detect the most common movement pattern.'6

We consider the decision, optimization, approximation and data structure prob-
lems for the Fréchet distance between two polygonal curves P and @ in R? with
n and m vertices, respectively, all for the case where all edges of both curves are
long compared to the Fréchet distance between them. In Section 3 we present a
greedy linear-time algorithm for deciding whether the Fréchet distance is at most
e, as long as all edges in P are longer than 2¢ and edges in @ are longer than
(1+ \/&)5 In Section 4 we give an algorithm for computing the Fréchet distance
in O((n 4+ m)log(n + m)) time and a linear-time algorithm for approximating the
Fréchet distance up to a factor of v/d. In Section 5 we present a data structure that
decides whether the Fréchet distance between a preprocessed curve P and a query
curve Q is at most ¢ or not, in O(mlog®n) query time using O(nlogn) space and
preprocessing time.

2. Preliminaries

In this section we provide notations and definitions that will be required in the
next sections. Let P : [1,n] — R? and Q : [I,m] — R? be two polygonal curves
with vertices p1,...,p, and q1, .. ., gm, respectively. We treat a polygonal curve as a
continuous map P : [1,n] — RY where P(i) = p; for an integer i, and the i-th edge
is linearly parametrized as P(i+A) = (1 — A)p; + Ap;+1, for integer i and 0 < A < 1.
A re-parametrization o : [0,1] — [1,n] of P is any continuous, non-decreasing
function such that ¢(0) = 1 and o(1) = n. We denote a re-parametrization of @ by
6 :[0,1] — [1,m]. We denote the length of the shortest edge in P and the length
of the shortest edge in @) by lp and lg, respectively. For two points z,y € R?, let
|z — y|| denote the Euclidean distance between the points and Zy the straight line
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segment connecting 2 to 3. The Euclidean distance between z € R? and an edge
e : [1,2] — R? is denoted as ||z,e| = minj<i<a ||z —e(t)]. For 1 < a < b < n,
Pla,b] denotes the subcurve of P starting in P(a) and ending in P(b). Let £ > 0
be a real number. Consider an edge e : [1,2] — R? of length |le|]| > 2¢ whose
endpoints are e; and es. The direction vector of e is the vector from e; to es. Now
let B(p,e) = {x € R? | |[p— z|| < &} be the ball with radius ¢ that is centered at
a point p. The cylinder C(e,¢) is the set of points in R? within distance ¢ from
e, i.e., C(e,e) = UgeeB(x,e). We say P is (e,e)-monotone if (1) p1 € B(ey,e)
and p, € B(es,¢), (2) P C C(e,¢), and (3) P is monotone with respect to the
line supporting e. A curve is monotone with respect to a line [ if it intersects any
hyperplane perpendicular to [ in at most one component.

2.1. Fréchet Distance and Free-Space Diagram

To compute the Fréchet distance between P and , Alt and Godau” introduced
the notion of free-space diagram. For any € > 0, we denote the free-space diagram
between P and @ by FSD<.(P,Q). This diagram has the domain [1,n] x [1,m]
and it consists of (n — 1) x (m — 1) cells, where each point (s,t) in the diagram
corresponds to two points P(s) and Q(t). A point (s,t) in FSD<.(P,Q) is called
free if ||P(s) — Q(¢t)|| < e and blocked, otherwise. The union of all free points is
referred to as the free space. A monotone matching between P and @ is a pair of
re-parameterizations (o, 6) corresponding to an zy-monotone path from (1,1) to
(n,m) within the free space in FSD<.(P, Q). The Fréchet distance between two
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Fig. 2. Two curves P,Q and € > 0 on the left, and the free space diagram FSD<.(P,Q) on the
right showing free space in white and blocked space in gray. A reachable path is shown in green.
The point (s,t) lies in free space. There is a quadratic number of cells containing free space as
well as a quadratic number of cells containing blocked space in FSD <. (P, Q) and all of them may
need to be checked to decide reachability for (n, m). Note that both P and @ contain short edges
as well as long edges compared to €.
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curves is defined as 0p (P, Q) = inf(, gy maxo<i<1 [|[P(o(t)) — Q(O(t))||, where (o,0)
is a monotone matching and maxo<;<1 || P(c(t)) —Q(6(¢))]| is called the width of the
matching. A monotone matching realizing ér (P, Q) is called a Fréchet matching.
A point (s,t) is reachable if there exists a Fréchet matching from (1,1) to (s,t)
in FSD<.(P, Q). A Fréchet matching in FSD<.(P,Q) from (1,1) to (s,t) is also
called a reachable path for (s,t) (see Fig. 2). Alt and Godau” compute a reachable
path by propagating reachable points across free space cell boundaries in a dynamic
programming manner, which requires the exploration of the entire FSD<.(P, Q)
and takes O(mn) time.

2.2. The Main Idea

We set out to provide faster algorithms for the Fréchet distance using implicit struc-
tural properties of the free-space diagram of curves with long edges. These properties
allow us to develop greedy algorithms that construct valid re-parameterizations by
repeatedly computing a maximally reachable subcurve on one of the curves. Like
the greedy algorithm proposed by Bringmann and Mulzer,'? we compute prefix sub-
curves that have a valid Fréchet distance. However, while the approximation ratio
of their greedy algorithm is exponential, the approximation ratio of the algorithm
we present in Section 4.2 is constant, because we can take advantage of the curves
having long edges. Our assumption on edge lengths is more general than backbone
curves, since we do not require that non-consecutive vertices be far away from each
other and we do not require any upper bound on the length of the edges.

The free space diagram for curves with long edges is simpler, and intuitively
seems to have fewer reachable paths (see Fig. 3). In the remainder of this paper we
show that indeed we can exploit this simpler structure to compute reachable paths
in a simple greedy manner which results in runtimes that are significantly faster
than quadratic.

3. A Greedy Decision Algorithm

In this section we give a linear time algorithm for deciding whether the Fréchet
distance between two polygonal curves P and @ in R? with relatively long edges is
at most . In Section 3.1, we first prove a structural property for the case that each
edge in P is longer than 2¢ and @ is a single segment. Afterwards in Section 3.2,
we consider the extension to the case that P and @) are two polygonal curves and
we show some extended structural property of free space induced by two curves
with long edges. In Section 3.3, we present our greedy algorithm, which is based
on computing longest reachable prefixes in P with respect to each segment in Q.
We consider three different variants of edge lengths assumption when lp > 2¢ and
lg > (14 Vd)e (Section 3.3.1), lp > 2¢ and lg > (1 + v/d)e (Section 3.3.2), and
Ip > 0 and lg > 4e (Section 3.3.3). In Section 3.4, we provide a critical example
for which our greedy algorithm fails when the assumption on the edge lengths does
not hold.
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Fig. 3. FSD<. (P, Q) for curves with long edges results in fewer reachable paths for (n, m). Consider
the vertical free intervals (shown in purple) in the first row of the free space diagram. Since lp > 2e,
no consecutive purple intervals intersect which is a property we exploit. One can use such a property
to find a reachable path without needing to check the entire free space diagram.

3.1. A Swmple Fréchet Matching for a Single Segment

In this section we start by introducing the crucial notion of orthogonal matching
between a polygonal curve P and a single line segment e. An orthogonal matching
projects each point from P to its closest point on e. In particular, it maps vertices
of P either orthogonally to the segment e or directly to the endpoints of e.

Definition 1 (Orthogonal Matching). Let ¢ > 0, P : [1,n] — R? be a polygonal
curve, and e : [1,2] — R? be a line segment. A Fréchet matching (o, ) realizing
0rp(P,e) < e is called an orthogonal matching of width at most € if o(t) = 1 for

€ [0,a], ||P(a(t)) —e(0@)|| = [|P(c(t)),e]| < e for t € (a,b), and o(t) = n for
t € [b,1] for some 0 < a < b < 1; see Fig. 4(a).

Now we state a key lemma that demonstrates that if P has long edges, then the
orthogonal matching of width at most € between P a segment e exists if and only
if 0p(P,e) < g, and this is equivalent to P being (e, £)-monotone.

Lemma 1 (Orthogonal Matching and Monotonicity). Lete >0, P: [1,n] —
R? be a polygonal curve and e : [1,2] — R be a line segment. Consider the following
statements:

(1) 8u(Pe) <,
(2) P is (e,e)-monotone,
(8) P and e admit an orthogonal matching of width at most ¢.
In general, (2) < (3) and (3) = (1). In addition, if Ip > 2¢ then (1) = (2), i.e.,
all three statements are equivalent.
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Fig. 4. (a) In this example P is (e,e)-monotone and the green arrows indicate an orthogonal
matching between P and e. (b) An illustration of the case H Ne # @ in the proof of (1) = (2) in
Lemma 1. Note that the consecutive purple intervals I; and ;11 do not intersect because [p > 2¢.

Proof. We immediately have (3) = (1) by Definition 1. To prove (2) = (3), assume
P is (e, e)-monotone. We can construct an orthogonal matching by mapping each p;
to its nearest neighbor e(1 +¢;) on e, with 0 < ¢;_1 <t; < 1. We set o(¢;) = ¢ and
O(t;)=1+t;foralli=1,...,n, and we set a = t1, b=t,, o(t) =1 for ¢t € [0, q],
o(t) =n for t € [b,1], and #(0) = 1 and #(1) = 2. The matching (o, 0) is obtained
by linearly interpolating between these values. The function o (t) is monotone by
construction, and 6(t) is monotone because P is monotone with respect to the line
supporting e. And all distances || P(o(t))—e(0(t))|| < € because P is (e, €)-monotone.
Thus (o, 6) is an orthogonal matching of width at most . To prove (3) = (2), let
(0,6) be an orthogonal matching of width at most e. Then clearly p; € B(ey,e¢),
pn € Bles,e), and P C C(e,e). Let ty,...,t, be such that P(o(t;)) = p; for
i =1,...,n. Since (c,0) is a (monotone) Fréchet matching, 6(¢t1),...,0(t,) is a
monotone increasing sequence. And since (o, 6) is orthogonal, the line segments
piB(t;) are all monotone to the line ¢ supporting e. Therefore, P is monotone with
respect to £ and thus P is (e, )-monotone.

Now assume [p > 2¢. In order to prove (1) = (2), if dp(P,e) < € then clearly
p1 € Ble1,€), pn € B(ea,e),and P C C(e, ¢). It remains to show that P is monotone
with respect to the line ¢ supporting e. For alli = 1, ..., n, define I; = B(p;,e)Ne =
ela;, b;]. Because lp > 2¢, we know that I; N I;11 = 0. Let (0,6) be a monotone
matching realizing dp(P,e) < e. For the sake of contradiction assume there exists
a hyperplane H perpendicular to £ such that P intersects H in at least two points
P(z) and P(y), where x < y. Let p; be the last vertex along P[x,y], and recall that
e1 and ey are the two vertices of e. First assume that H Ne # (). Then p; lies on the
es-side of H and p;y1 lies on the e;-side of H. Therefore, because I; N I; 11 = (), we
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know that a; > b;11. Let ;,t;41 € [0, 1] be two values such that p; = P(o(¢;)) and
pit1 = P(o(tiy1)), where t; < t;11. From o(t;) > a; and o(t;+1) < biy1, we know
that o(t;) > o(t;y+1), which violates the monotonicity of (o, 6), see Fig. 4(b). Now
consider the case that HNe = (). Then p; lies on one side of H, and e lies entirely on
the other side. If H N B(e1, ) # 0, then we know that P[1,y] C B(e1,¢). But this
is not possible since all edges of P are longer than 2. The same argument holds if
H N Bles,e) # 0. O

In fact Lemma 1 shows that for a curve P with long edges, the Fréchet distance to
a line segment e is determined by examining whether P is (e,&)-monotone or not.

3.2. A Simple Fréchet Matching for More than One Segment

In this section, we extend the matching between a curve P and a single line-segment
e to a matching between two curves P and Q.

Definition 2 (Longest e-Prefix). Let ¢ > 0, P : [I,n] — R be a polygo-
nal curve, and e : [1,2] — R be a line segment. Define v = max{t | 1 < t <
n and dp(P[1,t],e) < e}. We call P[1,~] the longest e-prefiz of P with respect to e.

We now use the longest e-prefix to define an extension of the matching intro-
duced in Definition 1. Definition 2 is the basis of our greedy algorithm (Algorithm 1)
which is presented in the next section. We show that if there exists a matching be-
tween two curves, then one can necessarily cut it into m — 1 orthogonal matchings
between each segment in () and the corresponding longest e-prefix. Before we reach
this property, we need the following technical lemma:

Lemma 2 ((V/de)-Ball). Let e > 0 and let P : [1,n] — R? be a polygonal curve
such that lp > 2¢. Let e : [1,2] — R? where |le|| > 2¢. Assume that P[1,7] is the
longest e-prefix of P with respect to e, and let o be a parameter such that P(a) is
the first point along P that intersects B(eg,e). Then Pla,~] C B(ea, Vde).

Proof. By assumption |le|| > 2¢, we know that B(ey,e)NB(ea,e) = 0, thus « exists.
Notice that Pla,v] C C(e,e). Let H be the hyperplane that is intersecting and
perpendicular to e and is tangent to B(es, ). Hence H splits P[1,] into two parts,
the part on the e;-side and the part that on the eg-side. Let P(x) be the last vertex
before P(v) along P. By Definition 2, §r(P[1,7],e) < ¢, and (1) if P(x) € B(es,¢),
then Lemma 1 implies that P[1,z] is (e,e)-monotone. Thus Pla, ] must lie on
the es-side of Ha, and in particular inside the cube enclosing B(eq, ), see Fig. 5.
Therefore the maximum possible distance between any point in Plo, ] and eq is
Vde. (2) If P(z) ¢ B(ea, ), we first show that P[1,x] is monotone with respect to
the line supporting e and then we use the similar argument as in (1) to imply the
maximum possible distance between any point in Pla,v] and ey is Vde. Now let
(0,0) be a Fréchet matching between P[1,7] and e. For the sake of contradiction
assume there exists an edge P[i,i + 1] such that the angle between the direction
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vectors of P[i,i + 1] and e is greater than 7/2 with ¢ < x. Let t;,t;41 € [0,1] be
two real values with t; < t;11 such that o(¢;) = ¢ and o(t;41) = ¢ + 1 and let
I; = B(pi,e) Ne = ela;,b;] and I;11 = B(pit1,€) Ne = elait1, biy1]. Now from
B(pi,e) N B(pit1,e) = 0 follows that I; N I;11; = 0. Note that the angle between
the direction vectors of P[i,7 + 1] and e is greater than /2 which indicates that
bi+1 < a;. Therefore aiy1 < H(ti_;,_l) < bi+1 <a; < Q(ti) < b;. Now three fOHOWiIlg
cases are expected: (i) if i+1 < «, then y does not exist since (o, #) is not monotone
and this would be a contradiction. Therefore P[1,z] is monotone with respect to
the line supporting e. (ii) If & < i < x, then v < x since i < v < 7 + 1 which
is a contradiction with v > z. Hence P[1,z] is monotone with respect to the line
supporting e. (iii) if i = < a, then P[w, ] is only a subsegment of P[i, i + 1] and
trivially lies within B(eg, ). This completes the proof. |

P(a) P(x)

Fig. 5. The farthest point in P[c, ] from ez must lie inside the cube enclosing B(ez, €).

Lemma 3 ((3¢)-Ball). Let ¢ > 0 and let P : [1,n] — R? be a polygonal curve.
Let e : [1,2] — RY where ||e| > 2¢. Assume that P[1,~] is the longest e-prefiz of P
with respect to e and P(«) is the first point along P that intersects B(ea, ). Then
Pla, ] C Bles, 3¢).

Proof. Although the proof of Lemma 11 in Gudmundsson and Smid!” is similar, we
describe a slight modification of the proof that is necessary for our setting. Suppose
(0,0) is a Fréchet matching realizing dp(P[1,7],e) < e. Let = € [a, ] such that
P(z) is the farthest point to e;. We need to show that ||P(z) — ez|| < 3e which
implies Ple,y] € B(es, 3¢). Let tq,t, € [0,1] be two values such that o = o(ts)
and v = o(t,). Note that there exists some t, € [t,t,] such that = o(¢;). By the
triangle inequality we have:

1P (z) — 2| < [|[P(z) — e(0(t))]| + [le(0(t)) — eall < &+ [le(0(tz)) — ez
Note that ¢, > t, and we can have ||e(0(t5)) — e2|| < |le(0(t)) — ez2]|, hence:
[P(z) — 2| < e+ [le(0(ta)) — ezl
By applying the triangle inequality once more we have:

|P(z) —ez]| < e+ le(0(ta)) — P(a)|| + | P(a) — ez|| < 3e. |
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Now we show that if dp (P, Q) < &, then the two polygonal curves P and @ admit
a piecewise orthogonal matching, which can be obtained by computing longest e-
prefixes of P with respect to each segment of (). This lemma is the foundation of
our greedy algorithm (Algorithm 1).

SQ /

Z ||\

: o(t) oltr) = olts) P

Fig. 6. Given an arbitrary matching (the concatenation of the light and dark green reachable
paths), the orthogonal matching (the brown reachable path) between P[1,+] and Q[1,2] exists.
We construct a matching realizing 6 (P[y,n], Q[2,m]) < € as the concatenation of the pink and
the dark green reachable paths.

Lemma 4 (Cutting Lemma). Let ¢ > 0, and let P : [1,n] — R? and Q :
[1,m] — R? be two polygonal curves such that lp > 2¢ and lg > (1 + Vd)e. If
0r(P,Q) < g, then P[1,7] as the longest e-prefix of P with respect to Q[1,2] exists,
0r(P[1,7],Q[1,2]) < e and dr(P[y,n],Q[2,m]) < e.

Proof. Let (0,0) be any Fréchet matching realizing 6z (P, Q) < e. This corresponds
to a reachable path, which is shown as the concatenation of the light and dark
green paths in the example in Fig. 6. Let t5 € [0,1] be the largest value such that
Q(0(t2)) = qa2, hence 0p(P[1,0(t2)], Q[1,2]) < e. By Definition 2, v exists with v >
o(t2), and dp(P[1,7],Q[1,2]) < . See the brown reachable path corresponding to
the orthogonal matching realizing é(P[1, 7], Q[1,2]) < € in Fig. 6. In the remainder
of this proof we construct a matching to prove that dp(P[y,n],@[2,m]) < e (the
concatenation of the pink and dark green paths).

Let t, € [0,1] be the largest value such that P(o(t,)) = P(y). By Lemma 2,
Plo(t2),7] € B(ga,Vde). Now let t3 € [0,1] be the smallest value such that
Q(A(t3)) = g3. We have ||gz — q3|| > (1 + V/d)e, therefore B(qz,vde) N B(gz,e) = 0
and thus (o, ) cannot match g3 to any point in Plo(t2),~]. Therefore, o(t2) < v =
o(ty) < o(ts), and correspondingly 0(t2) < 6(t,) < 6(t3).

Now we construct a new matching (&,0) realizing dr(P[y,n], Q[2,m]) < ¢ as
follows: &(t) = o(t) and 0(t) = 0(t) for all t., <t < 1 (dark green reachable path).
On the other hand, since ||P(y) — ¢2|| < € (pink point) and ||P(y) — Q(0(t4))]| < ¢
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(dark green point), we know that Q[2,0(t,)] € B(P(y),¢), i.e., the pink vertical
segment is free. We set, a(t) = v and 0(t) = &=L . 2+ £ 0(ty) for all t <t < t,

(pink reachable path). Therefore, we have §g (P Fv, nl, Q[QW m]) < e, which completes
the proof. O

Now since by Lemma 4 we have 0p(P[1,7],Q[1,2]) <&, Lemma 1 implies that
the matching between P[1,v] and Q[1, 2] is orthogonal. Let P(z) be the last vertex
of P[1,7] and let Q(z’) be its closest point on Q[1,2], for some z < v and z’ < 2.
Note that if || P(y)—P(z)|| is shorter than 2, we can adjust the orthogonal matching
by simply mapping all points on Plz,v] to Q[z',2]. In addition, if P and @ have
long edges then the free-space diagram is simpler than in the general case, since the
entire vertical space (the pink segment in Fig. 6) between the two points (v, 2) and
(v,0(ty)) has to be free and cannot contain any blocked points.

3.3. The Decision Algorithm

In this section we present a linear time decision algorithm using the properties
provided in Section 3.1 and Section 3.2. In Section 3.3.1 we consider the case that
Ip > 2¢ and lg > (1 + v/d)e. In Section 3.3.2 we show that this approach can be
generalized to the case that [p > 2¢ and lg > (1 + \/&)E, and in Section 3.3.3 we
generalize the approach to the case that there is only an edge length assumption

on Q.

3.3.1. Long Edges with lp > 2¢ and lg > (14 V/d)e

At the heart of our decision algorithm is the greedy algorithm presented in Algo-
rithm 1. The input to this DECISIONALGORITHM are two polygonal curves P and
@, and € > 0. The algorithm assumes that P and @) have long edges. In each itera-
tion the function LONGESTEPSILONPREFIX returns 7, where P[s,~] is the longest
e-prefix of P[s, n] with respect to Q[i—1, 4], if it exists. Here, s is the parameter where
P(s) is the endpoint of the previous longest e-prefix with respect to Q[i — 2,4 — 1].
At any time in the algorithm, if v = null, this means that the corresponding longest
e-prefix does not exist and then “No” is returned. Otherwise, the next edge of @ is
processed. This continues iteratively until all edges have been processed, or v; does
not exist for some ¢ =2,--- ,m.

The LONGESTEPSILONPREFIX(P[y;-1,n],Q[¢ — 1,i],&) procedure is imple-
mented as follows: We use Alt and Godau’s” dynamic programming algorithm to
compute the reachability information in FSD<.(P[y;—1,n], Q¢ — 1,4]), which com-
putes all (s,t) for which 6 (P[v;—1,s], Qi —1,t]) < e. This takes linear time in the
complexity of P[y,_1,n] since Q[i — 1,1] is a single segment. Then ~; is the largest s
for which 05 (P[vi—1, 5], Q[i — 1,i]) < e. Note that P(s) has to lie on the boundary
of B(gi,¢€). If no such s exists then -; = null. We now prove the correctness of our
decision algorithm.
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Algorithm 1: Decide whether ér(P,Q) < ¢

1 DEcisioNALGoRITHM(P[1,n], Q[1, m],&)

2 // Assumes lp >2¢ and lg > (1+Vd)e

3 Y1 1

4 for i + 2 to m do

5 i <—LONGESTEPSILONPREFIX (P[y;_1,n],Q[i — 1,4],&)
6 if v = null then return “No”

7 R

o]

if v < n then return “No”
9 return “Yes”

Theorem 1 (Correctness). Let ¢ > 0, and let P : [I,n] — R? and Q :
[1,m] — R be two polygonal curves such that lp > 2¢ and lg > (1 + Vd)e. Then
DECISIONALGORITHM (P, Q, ) returns “Yes” if and only if 0r (P, Q) < e.

Proof. If the algorithm returns “Yes” then the sequence {(g;,v;)} for all i =
1,...,m with vy = 1 and 7,, = n describes a monotone matching that realizes
5F (P, Q) <e.

If 6p(P,Q) < e, then we prove by induction on ¢ that the algorithm returns
“Yes”, i.e., all longest e-prefixes (P[1,72], P[v2,73], - - - s P[Ym—1,7m]) of P with re-
spect to the corresponding segments of Q) exist. For i = 2, following Lemma 4,
~o exists and can be found by the algorithm. For any ¢ > 2, the algorithm has
determined 7o, ...,v;—1 already and by Lemma 4, 0 (P[y;—1,n], Q[ — 1,m]) < e.
Another application of Lemma 4 yields that dg(P[vi—1,7i], Q¢ — 1,7]) < € and
6F(P[’7ia n]7 Q[Z’ mD <e.

In the case that : = m — 1 it remains to prove that ;11 = ¥, = n. For the sake
of contradiction, assume v, < n. Since P[y;,—1,7Vm] is the longest e-prefix, there is
no other v/, € (Vm,n| such that dp(P[ym-1,7,), @m — 1, m]) < . Consequently,
0r (P[Ym=1,Yh], Q[m — 1,m]) > € and therefore ép(P[ym—1,n], Q[m — 1,m]) > e.
Applying the contrapositive of Lemma 4 to P[yy,—1,n] and Q[m — 1,m] yields
0r(P,Q) > &, which is a contradiction. Therefore v, = n and the algorithm returns
“Yes” as claimed. D

Observation 2 (Piecewise Orthogonal Matching). If ér(P, Q) < e, then the
sequence {Y¥1,Y2, .- -,Yn} computed by Algorithm 1 induces a Fréchet matching that
maps P(v;) to q;, and therefore 6p (P, Q) < e for alli =2,...,m. Lemma 1 implies
that the matching between Plvy;—1,v;] and Qi — 1,1] is orthogonal.

We summarize this section with the following theorem:

Theorem 3 (Runtime). Let e > 0, and let P : [1,n] — R? and Q : [1,m] — R?
be two polygonal curves such that Ip > 2e and lg > (1 + \/a)a Then there exists
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Fig. 7. Two examples of matchings between P[y,_1,7v;] and Q[i — 1,4] that are not (piecewise)
orthogonal. Matchings are indicated with green arrows. All balls have radius €. (a) An example
where Ip = ||pj+1 — pj|| = 2¢ and ~; exists, but the induced Fréchet matching is not orthogonal.
(b) An example where ||g;+1 — ¢;|| = (1 + V/d)e and B(gi+1,¢€) N B(gi, Vde) N P = p;. Although
v; exists, a matching that is not piecewise orthogonal of width exactly € exists.

a greedy decision algorithm, Algorithm 1, that can determine whether p(P,Q) < ¢
in O(n +m) time.

Proof. The number of vertices in P[y;—1,7;] is at most [v;—~;—1]|+1. The algorithm
greedily finds the longest e-prefix per edge Q[i — 1,4 by calling LONGESTEPSILON-
PREFIX(P[s,n], Qi — 1,1],¢) in O([y; —vi—1] + 1) time. The for-loop iterates over
m — 1 edges, thus the runtime is Y .- ([v —vic1] + 1) < >ty — Yie1 +2) =
Ym—m+2m—1)=n—-14+2m—-2=0(Mn+m). O

3.3.2. Long Edges with lp > 2¢ and lg > (1+ \/ﬁ)s

We now consider the slightly more general case that Ip > 2e and lg > (1 + \/&)8
The optimization algorithm presented in Section 4.1 makes use of this case. Clearly,
if Ip > 2¢ and lg > (1 + v/d)e then Theorem 1 applies as usual. If Ip = 2¢ or
lo =0+ Vd)e then Algorithm 1 can still be run, however the Fréchet matching
induced by the ~; is not necessarily a piecewise orthogonal matching anymore, which
means Observation 2 may not hold, see Fig. 7. However, we can still prove a slightly
modified correctness theorem.

Theorem 4. Let ¢ > 0, and lp > 2 and log > (1 + \/Zi)& If
DECISIONALGORITHM(P, Q, €) returns “Yes” then 6p(P, Q) < . If it returns “No”
then 0 (P, Q) > ¢.

Proof. Let ¢* = §p(P,Q). If Ip > 2¢ and lg > (1 + V/d)e then Theorem 1 applies
as usual. So, assume [p = 2¢ or lg = (1 + Vd)e. If the algorithm returns “Yes”,
then we know that 0 (P[vi—1,7vi], Qli—1,1]) < eg for alli = 2,...,m, and therefore
e* <e.

In the remainder of this proof we show the contrapositive of the second part:
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If e* = 0p(P,Q) < & then DECISIONALGORITHM(P, @, &) returns “Yes”. So, as-
sume e* < e. Then, by Theorem 1, DECISIONALGORITHM(P, ), e*) returns “Yes”,
which means that all v = LONGESTEPSILONPREFIX(P[vy}_ {,n],Q[i — 1,i],&%)
exist for all ¢ = 2,...,m, and 7§ = 1. We prove by induction that all v, =
LONGESTEPSILONPREFIX(P[vy;_1, n], Q[i — 1,1], €) exist as well. The inductive base
is trivial to show since 73 = 7f = 1. Now as an inductive hypothesis let i > 1
be the largest integer value for which ~;_; exists and is computed. In the fol-
lowing we show that 7; = LONGESTEPSILONPREFIX(P[y;—1,n],Q[i — 1,i],¢) ex-
ists and can be computed. Let P(x) be the first point along P[yf,n] on the
boundary of B(g;,e). We have v ; < v,—1 < 7 < z, where the first inequal-
ity follows from B(g;—1,e*) C B(¢;—1,¢), and the second inequality follows from
B(gi—1,€) N B(gi,e*) = 0 because lg > 2¢. Now let (o,0) be the Fréchet matching
realizing dp(P[y/_1,7], Qi — 1,4]) < ¢*, and let ¢t € [0,1] such that o(t) = ;1.
Then from ~} ; < 7,1 < vF follows that i — 1 < 6(¢t) < i. We can therefore
construct a piecewise re-parameterization for P[y;_1, z] and Q[i — 1, ] which yields:

6p(Plyi—1,2],Qli — 1,4]) < max{ dp (P(vi-1),Q[i — 1,0(t)]),
5F(P[’Yi717’7:]ﬂQ[e(t)ﬂi])a 5F(P[7;>x]uQi) } <e.

Since ; > =z, this implies that all ~; exist for all i = 2,...,m. Note that
the procedure LONGESTEPSILONPREFIX(P[y;_1,n], Q[i — 1,4]) can compute ~; by
finding the reachable path for (v;,%) across FSD<(P[vi—1,n], Qi —1,4]). Therefore
DECISIONALGORITHM (P, @, €) returns “Yes”. O

3.3.3. Long Edges with lg > 4e

Our algorithm also can be applied to the case that one curve has arbitrary edge
lengths and the other curve has edge lengths greater than 4e.

Theorem 5 (Single Curve with Long Edges). Let e > 0, and let P : [1,n] —
R and Q : [1,m] — R? be two polygonal curves such that lp > 0 and lg > 4e. Then
there exists a greedy decision algorithm, Algorithm 1, that can determine whether
0r(P,Q) < e ordp(P,Q) > ¢ in O(n+m) time.

Proof. In the proof of Lemma 4, we can replace Lemma 2 with Lemma 3, and
realize that Lemma 4 also holds for the case {p > 0 and g > 4e. The rest follows
from Theorem 1 and Theorem 3. ]

3.4. Necessity of the Assumption

As we have seen so far, Algorithm 1 greedily constructs a feasible Fréchet matching
by linearly walking on curve P to find all longest e-prefixes on it with respect to the
corresponding edges of (). Unfortunately, this property is not always true for curves
with short edges. In general, there can be a quadratic number of blocked regions
in the free space diagram of two curves; see Fig. 8 as an example of two curves in
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R? that have edges of length exactly equal 2¢ except for some edges with lengths in
[2¢, (141/2)]. This example demonstrates that our simple greedy construction of a
Fréchet matching is unlikely to work if the edges are shorter than the assumptions
we made. It also shows that our greedy construction does not work if both curves
have edge lengths of at least 2e¢.

-— >

1?1«,17\%1173 P L po

I a1, 47 : 94596
8) .

,,,,,, IR . s
P2,P4a .

a2

. q2: qs
- . Ve
T0Tme j "2 P

Fig. 8. An example in which the greedy algorithm fails to realize the Fréchet matching highlighted
in green. Here, P[1,~2] is the longest e-prefix in P with respect to Q[1, 2], as illustrated by the red
reachable path. Also Q[1, A2] is the longest e-prefix in @ with respect to P[1,2] as illustrated by
the blue reachable path. Every edge is 2¢ long, except for the edges Q[1,2] and Q]2, 3] that have
lengths 2.02¢ and 2.005¢, respectively. The latter values are still in the range [2¢, (1 + v/2)e].

4. Optimization and Approximation

In this section, we present two algorithms for computing and approximating
the Fréchet distance between two curves with long edges, respectively. First we
give an exact algorithm which runs in O((n +m)log(n 4+ m)) time. Afterwards, we
present a linear time algorithm which is similar to the greedy decision algorithm,
but it uses the notion of minimum prefix to approximate the Fréchet distance.

4.1. Optimization

The main idea of our algorithm is that we compute critical values of the Fréchet
distance between two curves and then perform binary search on these to find the
optimal value acquired by the decision algorithm. In general, there are a cubic num-
ber of critical values, which are candidate values for the Fréchet distance between
two polygonal curves. These critical values are those ¢ for which p; € B(q1,¢) or
Pn € B(gm,€), or when decreasing ¢ slightly a free space interval disappears on
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the boundary of a free space cell or a monotone path in the free space becomes
non-monotone. See Alt and Godau’ for more details on critical values. In our case
we can show that it suffices to consider only a linear number of critical values,
because the assumption on the edge lengths of the curves implies that a piecewise
orthogonal matching exists, which reduces the number of possible critical values.
Our optimization algorithm consists of the following four steps:

(1) Run DECISIONALGORITHM(P, Q,£0) with g9 = min{lp/2,lo/(1 + Vd)}
and store all 7; = LONGESTEPSILONPREFIX(P[v;_1,n], Qi — 1,i],&0) for

all i = 2,...,m. Only proceed if DECISIONALGORITHM(P, Q,&() returns
“YeS”'
(2) If P[yi—1,7] is not (Q[i — 1,14],e0)-monotone for some ¢ = 2,...,m then

return dp (P, Q) = &o.

(3) Compute C := U",C; U{ep}, where C; is the set of all critical values for
Pla;—1,v;) and Q[i — 1,i]. Here, P(c;) is the first point along P[vy;—1,n]
that intersects B(g;,£0) and oy = 1.

(4) Sort C and perform binary search on C using DECISIONALGORITHM(P, @, )
to find 0p(P, Q).

In step (1) we set ¢g = min{lp/2,1o/(1 + v/d)}. This means that Ip > 2, and
lg>(1+ Vd)eg. Step (2) handles the case that the matching induced by the +; may
not be a piecewise orthogonal matching. But once the algorithm proceeds to step (3),
there exists a piecewise orthogonal matching between P and @. This restricts the set
of critical values we have to consider in step (3) as follows: Let e* < gy and assume
e* = 6p(P,Q). Let v = LONGESTEPSILONPREFIX(P[v/_1,n], Qi — 1,i],e*), for
i=2,...,m, and let P(a}) be the first intersection point between P[y;_;,n] and
B(gi,e*), and of = v = 1. From B(¢;,e*) C B(g,¢eo) follows that o; < af <
v < ;. And since v;—1 < 7;, we know that P[y;_;,7/] C Pla;_1,7i]. We thus have
observed the following, see Fig. 9:

Observation 6. Let e* <eg. Foralli=2,...,m:
(1) a; < af <7 <, (2) Plyisy, 7] € Plai—1, vl

Therefore all critical values for Py} ;,~}] and Q[i — 1,] must be contained in
the set C; which are the critical values for P[a;—1,7;] and Q[i —1,4], and the binary
search in step (4) will identify *.

Lemma 5 (Correctness). Leteg = min{lp/2,lq/(1+Vd)} and lete* = ¢ (P, Q).
If in step (1) of the optimization algorithm DECISIONALGORITHM(P, Q, &) returns
“Yes”, then the optimization algorithm returns €* and * < €y. Otherwise €* > gy.

Proof. If DECISIONALGORITHM(P, @, £p) returns “No” then Theorem 4 implies
that 0p(P,Q) = &* > eo. Now suppose, for the remainder of this proof, that
DECISIONALGORITHM (P, @, ) returns “Yes”. Then we know that all 7; exist and
0 (Plyi—1,7%], Qi — 1,i]) < eg for all i = 2,...,m, and therefore ¢* < gq, see also
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Theorem 4. This implies that ¢y is an upper bound on all critical values in C. It
remains to show that the optimization algorithm returns £*.

If in step (2) there is an ¢ = 2,...,m such that P[y;_1,7] is not (Q[i — 1,4],¢)-
monotone, then there must exist an edge P[j,j + 1], for ;-1 < j < 4, such that
the angle between the direction vectors of P[j,j + 1] and Qi — 1,14] is greater than
/2. The length of all edges in P must be at least 2¢. But for this edge, the only
way a (monotone) Fréchet matching between P[y;_1,7;] and Q[i — 1,4] of width
at most g can exist is if ||p;41 — p;|| = 20 and both p; and p;y1 are matched
to x = B(pj,e0) N B(pj+1,€0) N Qi — 1,1]. Therefore the width of such a Fréchet
matching is exactly g9 and €* = ¢.

It remains to show that if the algorithm passes step (2) it returns £* at the end
of step (4). Since gy € C and €* < g, the binary search will return ¢* if ¢* = g.
So assume now that £* < go. Since the algorithm passes step (2), it follows from
Lemma 1 that the matching induced by the ; is indeed a piecewise orthogonal
matching of width less than ey. From Observation 6 follows that all critical values
for Py} 4,vf] and Qi — 1,4] must be contained in the set C; of all critical values
for Plo;—1,7;] and Q[é —1,4]. Thus, e* € C' = U™ ,C;, and the binary search in step
(4) returns £*. |

Computing The Critical Values: A piecewise orthogonal matching of width &*
between P and @ is comprised of orthogonal matchings between P[y}_;,~;] and
Q[i—1,4] for all i = 2, ..., m. The piecewise orthogonal matching may map vertices
from P to Qi — 1,i] either by an orthogonal projection or by mapping to the
endpoints ¢;_1,q;- And vertices ¢; may be mapped by on orthogonal projection to
P[a;, ;). These mappings define point-to-point distances that are candidates for *,
and thus critical values between P[v}_ ;,~v!] and Q[i —1,] that we need to optimize
over. But since £* is not known beforehand, we compute the superset C; of critical
values between Pla;_1,7;] and Q[i — 1,¢] as follows: Let H; be the hyperplane
perpendicular to Qi — 1,i] and tangent to B(g;—1,€0) that intersects Q[i — 1,4].
Similarly, define Ho with respect to B(g;,e0). For each p; € Ploy—1,v]: (1) If p;
lies between H; and H,, then any orthogonal matching of width £* maps p; to its
orthogonal projection on Q[i — 1,¢]. We therefore add the distance ||p;, Qi — 1,14]]|
to C;. (2) If p; lies on the ¢;_1-side of 1, then an orthogonal matching of width
€* can map p; either to ¢;_1 or to its orthogonal projection on Qi — 1,4]. In this
case we store both ||p;, Qi — 1,i]|| and ||p; — gi—1]| in C;. Similarly, if p; lies on the
gi-side of Hy then we store ||p;, Q[¢ — 1,4]|| and ||p; — ¢;|| in C;. Finally, for each
edge e in Plag,y;]: (3) we store ||¢;, e]|. See Fig. 9 for more illustration. We have the
following theorem:

Theorem 7 (Optimization). Let P : [1,n] — R% and Q : [1,m] — R? be two
polygonal curves. If 5p(P,Q) < min{lp/2,lq/(1+V/d)}, then p(P,Q) can be com-
puted in O((n + m)log(n +m)) time.

Proof. By Lemma 5 we know that the optimization algorithm returns ép(P, Q)
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Ha Ha Ha He

Fig. 9. Shown are two examples of orthogonal matchings between P[y;_,,v}] and Q[i — 1,4], and
the associated critical values (point-to-point distances defined by the matching). The cylinders
C(Qi—1,14),e0) and C(Q[i—1,i],e*) are shown, where eg > £*. (a) p; falls into case (2), when the
orthogonal matching maps p; either to g; (if p; lies inside B(g;,&*)) or orthogonally to Q[i — 1,1]
(if p; lies outside B(gs,€*)). (b) If an edge of P is tangent to B(g;,e*), then case (3) occurs. Here,
the orthogonal matching has to map ¢; to an edge e in Pla;, ;]

correctly if §p(P, Q) is strictly less than min{lp/2,1lg/(1 + v/d)}. It only remains
to prove the runtime of the algorithm. First we show that the number of critical
values is linear. For each segment Q[i — 1,14], there are three cases for critical values
contained in C;: (1) There are at most [c; —v;—1]+1 values if vertex p; lies between
‘Hi and Hs. This is an upper bound for the number of vertices in P[y;_1,a;]. (2)
There are at most 2([y;,-1 — a;—1| + 1) values if vertex p; lies on the ¢;_;-side of
H1, and similarly there are at most 2([v; — a;] + 1) values if p; lies on the g;-side
of Hz. (3) There are at most [v; — a;] critical values for each edge e in Play, ]
Overall, the total is: |C;| < (1 — i) + (Vic1 — @im1) + (35 — @i—1) + 11 < 2(y; —
a;i—1)+11 =2(y; —7vi—1) +2(vi—1 — @;—1) + 11. The latter inequality follows because
ai—1 < vi—1 < a; <, see Fig. 9. Note that >0, (7, —vi—1) = Ym—71 = n—1, and
Yoty (vie1 — @i—1) < n, therefore, |C| =Y 1", |Ci] <2(n—1)+2n+11(m — 1) =
O(n+m).

The optimization algorithm first runs Algorithm 1 in O(n+m) time, then com-
putes C in O(n + m) time, and finally sorts C' in O((n + m) log(n + m)) time and
performs binary search on C' using the decision algorithm in O((n + m)log(n +m))
time. Therefore, the total runtime is O((n + m)log(n + m)). O

4.2. Approximation Algorithm

In this section we present a v/d-approximation algorithm running in linear time.
As a counterpart to the notion of longest e-prefix we now introduce the notion of
minimum prefix, which is the longest prefix of P with minimum Fréchet distance
to a line segment e.

Definition 3 (Minimum Prefix). Let P : [1,n] — R? be a polygonal curve and
e : [1,2] = R? be a segment. Define o/ = max argmin, ,,, dp(P[1,t],¢). We call
P[1,7'] the minimum prefix of P with respect to e.
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Note that in the definition above, P(y') necessarily lies on the boundary of
B(eg, "), where ¢/ = minj<¢<,, dp(P[1,%],e). The approximation algorithm is pre-
sented in Algorithm 2. First, for an initial threshold e = min{lp/(2V/d), lo/(2d)},
it runs DECISIONALGORITHM( P, ), &g). The algorithm only continues if “Yes” gets
returned. This ensures that P and Q have long edges, with Ip > 2v/de > 2¢ and
lg>2de>(1+ \/&)E Then, similar to the decision algorithm, the approximation
algorithm greedily searches for longest e-prefixes with respect to each segment of Q.
However, it updates the current value of € in each step, by computing the minimum
prefix and its associated Fréchet distance to the portion of ) considered so far.

Algorithm 2: Approximate 0z (P, Q)

1 APPROXIMATIONALGORITHM(P[1,n], Q[1,m])

2 0 + min{lp/2v/d, lg/2d}

3 if DECc1S10NALGORITHM(P, Q,£0) = “No” then return “I don’t know”
4 | (72,82) «MiniMumMPREFIX (P[1, 1], QI1,2])

5 E &9

6 S < Y2

7 for i + 3 to m do

8 (i, €i) < MiNIMUMPREFIX (Pls,n], Qi — 1,i])
9 € + max{e,&;}

10 54
11 if v, = n then

12 ‘ return ¢
13 else

14 L e < max{e, dr (P[Ym, 1], ¢m)}

15 return ¢

Now we are ready to prove the correctness of Algorithm 2:

Lemma 6 (The Approximation). Let P = P[l,n] and Q = Q[1,m] be
two polygonal curves and let e* = §p(P,Q). If e* < min{lp/2V/d,lg/2d} then
APPROXIMATIONALGORITHM (P, Q) returns a value between e* and +/de*. Other-
wise it returns “I don’t know”.

Proof. From Algorithm 2 we have that ¢, = dp(P[vi—1, Vi), Q¢ — 1,1]). We prove
by induction on i that e; < V/de*. For i = 2, & is being minimized and obviously
g9 < " < V/de*. For any i > 2, there are two possible cases: either ; < €* or
g; > ¢*. In the former case, trivially &; < v/de*. In the remainder of the proof
we consider the latter case that is ¢; > &*. We know from Theorem 1 that all
~; = LONGESTEPSILONPREFIX(P[y;_1,n], Q[i—1,i],e*) foralli = 1,2, ..., m exist.
And by inductive hypothesis we know that max{es, ..., e;,_1} < Vde*.
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We also know from line 8 of Algorithm 2 that ¢; = 0p(P[yi—1,7%), Qi — 1,1])
and P[y;—1,7;] is the minimum prefix with respect to Q[¢ — 1,4]. For the sake of
contradiction we assume &; > v/de* > *. We now distinguish two cases:

(a) If 7,1 < v/_,, then by Lemma 2 we have §p(P[vi_1,7 1], ¢i-1) < Vde*.
Also §p (P 1,77], Qi — 1,4]) < €*, hence 6 (Plyi_1,7}], Qi — 1,i]) < Vde* < &.
This contradicts the fact that P[vy;_1,~;] is the minimum prefix of P[y;,_1,n] with
respect to Qi — 1,14], see Fig. 10(a).

(b) Now for the case that v} ; < 7;_1, consider the matching (o, 6) realizing
0p(P,Q) = €*. There exists some t € [0,1] such that v;_; = o(t). We can see
that Q(6(t)) € Q[i — 1,i] as follows: We know that B(g;i—1,ei—1) N B(gi,e*) = 0
since ||gio1 — ¢ > 2de* > (1 +V/d)e* and ;1 < V/de*. This implies ;1 < 7}
and therefore v ; < -1 < 7, and correspondingly ¢ —1 < 6(t) < 4. By
inductive hypothesis we know that ;-1 = ||gi—1 — P(vi—1)| < Vde*, thus
Q[i —1,0(t)] € B(P(vi_1),Vde*) which implies §p(P(v;_1), Q[i — 1,0(t)]) < Vde*.
Combining this with 0p(P[y;—1,7/], Q[0(t),i]) < €* from the optimal matching
yields 67 (P[yi_1,7], Qi — 1,i]) < Vde* < ¢;. This contradicts that P[y;_1,7i] is
the minimum prefix of P[y;_1,n] with respect to Q[i — 1,4], see Fig. 10(b).

In the end, if v, < n = ~,, then Lemma 2 again implies 07 (P[ym, n], gm) <

Vds* as claimed. The algorithm returns max{ey,...,&m}. Since there has to be
some €; > €, and we proved by induction that all e; < V/de*, the algorithm returns
a value between ¢* and v/de*. D

Fig. 10. Illustration for the proof of Lemma 6 when ; > €*. (a) v;—1 <v/_; (b) vi—1 > /4.

The MinimumPrefix Procedure: Given a polygonal curve P : [1,n] — R?
and a segment e : [1,2] — R? we implement MINIMUMPREFIX (P, e), as described
in Algorithm 3, as follows: For every i« = 1,...,n — 1, let ¢; be the distance
associated with a minimum prefix ending on the segment P[i,7 + 1]. Formally,
¢; = minge[; ;41 0r(P[1,2],e). Algorithm 3 computes all the ¢; in a dynamic pro-
gramming fashion. The minimum of the ¢; is the desired ¢, and the LONGESTEP-
SILONPREFIX computes the corresponding ~.

Before we can prove the correctness of Algorithm 3, we need the following tech-
nical lemma that states when ¢ is increased, the longest e-prefix can only get longer.
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Algorithm 3: Compute MINIMUMPREFIX(P[1,n],e[1,2])

1 MINIMUMPREFIX(P[1,n], e[1, 2])

2 ¢+ ||lp1 — el

3 | ¢ « min{lp/2, ||e||/2Vd}

4 v <= LONGESTEPSILONPREFIX(P[1,n], e[1, 2],¢’)
5 for i + 1 to |y'] do

6 ¢; < max{c, ||es, Pli,i + 1]||}

7 L ¢ < max{c, ||pi+1,€e[1, 2]||}

[

g = minlgigwj C;
9 return (¢, LONGESTEPSILONPREFIX(P[1,n],¢[1,2],¢))

Lemma 7 (Prefix monotonicity). Let P : [1,n] — R? and Q : [1,m] — R?

be two polygonal curves and ¢ > € > 0. Let vy = ~; = 1 and for all
i = 2,...,m let ; = LONGESTEPSILONPREFIX(P[v;_1,n|,Q[i — 1,i],¢) and
v} = LONGESTEPSILONPREFIX(P[y,_1,n],Q[i — 1,i],&"). Then ~; < ~i for all
t=2,...,m.

Proof. The proof is by the induction. For ¢ = 2, we know that

dr(P[1,74],Q[1,2]) < € < e. Let x be a parameter such that P(z) is the first
intersection point between P[y5,n] and the boundary of B(go,¢), thus 75 < z.
Now observe that dp(P[v5,x],q2) < e. Combining ér(P[1,v5],Q[1,2]) < € and
0r(P[vh,x],q2) < e yields 0p(P[L,z],Q[1,2]) < e. Since 5 is the longest e-prefix
with respect to Q[1,2], we have 74 < x < 79, and therefore v} < 5. Now for i > 2,
by the inductive hypothesis we have v,_; < v;—1. It remains to show ~, < ;. Con-
sider a matching (o, 0) realizing dp(P[yi_1,7.], Qi — 1,i]) < £’. Let t be the value
such that o(t) = ~;—1. Now we construct a new matching for P[y;_1,x], where
x is defined as in the inductive base, but with respect to B(g;,e). We know that
drp(P(vi-1), Qi — 1,0(¢)]) < e. Also we have 0p(P[vi—1,7,], Q[O(t),i]) < & < e by
(0,0). Observe that dp (P[], z],q:) < e. Thus, dp(P[yi—1,2],Q[i — 1,i]) < e and
using a similar argument as in the inductive base we have v, < x < ~;, therefore
Yi < Vi O

Now we are ready to prove the correctness of Algorithm 3:

Lemma 8 (Correctness). Let e : [1,2] — R be a line segment and let P :
[1,n/] — R? be a polygonal curve monotone with respect to the line supporting e.
The distance returned by MINIMUMPREFIX(P, e) is minj<;<, 0p(P[1,t],€).

Proof. According to the algorithm:

Ci = maX{le - 61”, 1<f§1§;‘,’<_1 Hpj+17eH7 ||62,P[i,i + 1]”}
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Since e[1, 2] is a segment and P[1,n/] is monotone with respect to the line supporting
e, it follows from Lemma 1 that for any ¢ < ¢ < i 4+ 1 there exists an orthogonal
matching such that:

5p(P[L,t],¢) = max{llps — e1ll, max [pyi1,ell, |P(2) — eall}
1<)<i—1

By taking the minimum on both sides, we get min;<;<;+1 05 (P[1, t],e) = max{||p1 —
e1]l, maxi<j<;—1 ||pj+1,ell, min;<i<;41 || P(t) — ez2||} = ¢;. It suffices to run the for-
loop until n’ = |4/], since by the assumption we only compute the minimum e-prefix
P[1,~] if its distance is at most €’ (line 3 of Algorithm 3), and by Lemma 7 it follows
~v < 4. Therefore, e = miniLZlJ ¢ = mingil ¢; = minj <<, 0 (P[L,t],€). O
Theorem 8 (Runtime). Let P : [1,n] — R? and Q : [1,m] — R? be two polygo-
nal curves. If 6p(P, Q) < min{lp/(2V/d),1q/(2d)}, then Algorithm 2 approzimates
5r(P,Q) in O(n + m) time within an approzimation factor of v/d.

Proof. Let ¢* = 0p(P,Q). The algorithm only proceeds past line 3 if
e < g0 = min{lp/2Vd,lo/2d} and DECISIONALGORITHM(P, Q,&q) returns
“Yes”. Now, let ¢ = +deo, v, = 1, and for all i = 2,...,m let =
LONGESTEPSILONPREFIX(P[y,_;,n], Qi — 1,4],¢’). Note that by definition of &',
both curves have long edges, i.e., lp > 2V/dey > 2¢’ and lg > 2deg = 2/de' >
(14 \/&)5’. From the proof of Lemma 6 we know that ¢; < Vde* < Vdgy = ¢’
and since ||gi_1 — qi|| > 2Vde’, we have that B(q;_1,€') N B(gi,e;) = 0. There-
fore, vi_; < ;. Lemma 7 implies that v; < 4/ due to &; < &', therefore
Vie1 <vi_y <7vi<~lforalli=2,...,m.

The for-loop in Algorithm 2 has m—2 iterations. In iteration 4, the algorithm calls
MINIMUMPREFIX(P[vy;_1,7/], Q[¢ — 1,4]) in line 8. The for-loop in Algorithm 3 has
[7vi—7i—1] + 1 iterations, where [/ —~;_1] + 1 is the upper bound for the number
of vertices in P[y;_1,7/]. Therefore, the runtime of Algorithm 2 is: Y ", ([} —
Y] 1) € S = vim1 +2) = X — %) + Yy — 1) + 2m — ).
Since v;_; < i, we have 37705 (v) — 7i) < 30705 (vi — vi—q)- Thus, 3330, (v) — %) +
Sima(vi —vim1) +2(m — 1) < 3L (v — vic) + 2t (v —vim1) H2(m — 1) =
Y=t rm—n+2m—-1)=2n—-1)+2(n—1)+2(m—-1)=0(n+m). D

5. Data Structure For Longest e-Prefix Queries

In this section, we consider query variants of the setting in Section 3 for curves in
the plane. We wish to solve the following problem: Preprocess a polygonal curve
P : [1,n] — R? into a data structure such that for any polygonal query curve
Q : [1,m] — R? and a positive e < min{lp/2,1q/(1++/2)} one can efficiently decide
whether dp (P, Q) < . Note that throughout this section we assume, as before, that
P and @ have long edges, i.e., [p > 2¢ and Ig > (1 + V2)e. Our query algorithm
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is identical to Algorithm 1. However, the key idea for speeding up the query al-
gorithm is to efficiently compute LONGESTEPSILONPREFIX(P[1, n], Q[1,2],¢) for a
given query segment Q[1, 2] in sublinear time. Our algorithm to compute the longest
e-prefix with respect to Q[1,2] is shown in Algorithm 4. According to Lemma 1 if
5(P[1,7],Q[1,2]) < g, then P[1,] is (Q[1,2],e)-monotone. This is equivalent to
computing the largest parameter 1 < t < n such that the following conditions hold:
(1) p1 € B(qu,¢) and P(t) € B(ge,¢), (2) P[1,t] C C(Q[1,2],¢), and (3) P[1,¢] is
monotone with respect to line supporting Q[1,2]. Note that the smallest value ¢
that violates either of the conditions above is a potential ~.

Algorithm 4: Compute LONGESTEPSILONPREFIX(P[1, n], Q[1,2], )

LoONGESTEPSILONPREFIX(P[1,n], Q[1,2],¢)

if p1 ¢ B(q1,¢) then return ‘null’

A < LONGESTMONOTONEPREFIX(P[1, n], Q[1,2])
« < FIRSTINTERSECTION(P[1, A], B(g2,¢))

if a = null then return ‘null’

B < LASTINTERSECTION(P[1, A], B(ge,¢))

r < CYLINDERINTERSECTION(P[1, A], C(Q[1, 2],¢))
if r = null then return min(\, g)

if r <« or A < a then return ‘null’

if a <r < ora<\<fgthen return min(r, \)
if r > 8 and \ > 8 then return

© 00 N O ok W N =

i
o

[y
=

Here, LONGESTMONOTONEPREFIX returns A, where P()\) is the endpoint of
the longest subcurve of P[1,n] that starts in p; and is monotone with respect
to the line supporting Q[1,2]. FIRSTINTERSECTION returns «, where P(«) is the
first intersection point between P[1, A] and B(go, €). Similarly, LASTINTERSECTION
returns 3, where P(f) is the last intersection point. CYLINDERINTERSECTION finds
r where P(r) is the first point along P that intersects the boundary of C(Q[1,2],¢).
Computing LONGESTMONOTONEPREFIX: We store all the edges of P in the leaves
of a binary tree T ordered with respect to their indices. We call the subset of edges
stored in the leaves of the subtree rooted at a node v the canonical subset of v. A
set of nodes vy, -+, v, in the subtree of v is called a set of canonical nodes of v if
their leaves sets are disjoint and the union of their leaves sets is the leaves of the
subtree of v. For each edge in P we consider its direction vector. Each internal node
v stores the pair of the minimum/maximum angles between the direction vector
and x-axis among all associated direction vectors stored in its canonical subset.
Once given a query angle ® and a starting point p;, we retrieve O(logn) many
leftmost (starting with p;) canonical nodes of T" whose leaves spans all edges in
P that satisfy the monotonicity condition, i.e., condition (3) as mentioned earlier,
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with respect to ®. This can simply be done by recursively searching children of a
node v violating the monotonicity condition with respect to ®. Once satisfying the
condition, we already have O(logn) internal nodes to report their leaves as P[1, A].
Searching children and reporting nodes take O(logn) time altogether using O(n)
space and O(nlogn) preprocessing time.

Computing FIRSTINTERSECTION and LASTINTERSECTION: Let H be the hyper-
plane intersecting Q[1, 2] that is perpendicular to Q[1,2] and is tangent to B(gs, €).
Let H’' be the other hyperplane perpendicular to Q[1,2] and tangent to B(gs,¢).
Since P[1, A] is monotone with respect to the line supporting Q[1, 2], we know that
A must lie on the go-side of H. And P(a) € P[1, \] must be located on the first edge
intersecting Ho. We start from p; and perform an exponential search on the edges
of P[1, \] to find the first edge that intersects H. Once the edge is found, we can find
P(«) in constant time since each edge of P is longer than 2¢ which is the diameter
of B(ge,¢). Using the same method we can find P(3) € P[1, )], if we consider H’
instead of H. If X is on the go-side of H’, we perform the exponential search on
PI[1, ] to find P(3). If X is on the ¢i-side of ' then there is no P(8) € P[1, \] and
the algorithm does not require it. The whole process takes O(logn) time.

Computing CYLINDERINTERSECTION: Similar to Gudmundsson and Smid,'® we
construct a balanced binary search tree storing the points p1, pa, ..., p, in its leaves
(sorted by their indices). At each node of this tree, we store the convex hull of all
points stored in its subtree. Given a query range P[1, )], we can retrieve O(logn)
many canonical nodes of the tree containing convex hulls whose leaves span the
whole range. For each convex hull we only need to compute extreme points with
respect to the direction vector of the edge QI1,2]. If all extreme points lie inside
C(QI1,2],¢e), then r = null, otherwise we consider the first extreme point P(z) of
some convex hull which lies outside C'(Q]1,2],¢). Note that P[1,x] crosses one of
the two boundaries of C(QI1,2],¢). Performing exponential search on P[1,x] will
find the first point that lies outside the respective boundary of C(Q[1,2],e) for
which P(z) is obtained. This structure needs O(nlogn) space and preproccessing
time and answers queries in O(log? n) time. Plugging Algorithm 4 into the decision
algorithm (Algorithm 1), we obtain the following theorem:

Theorem 9 (General Curves). Let P : [1,n] — R? be a polygonal curve. A data
structure of O(nlogn) size can be built in O(nlogn) time such that for any query
curve @ : [1,m] — R? and a positive constant ¢ < min(lp/2,lg/(1+ v/2)), it can
be decided in O(mlog®n) time whether 5p(P,Q) < ¢.

Proof. The correctness of the query algorithm follows from Theorem 1. As we men-
tioned, the space and preprocessing time of the whole data structure is O(nlogn).
Using Algorithm 4, the longest e-prefix can be computed in O(log2 n) time per
segment, and hence the query algorithm runs in O(mlog2 n) time. O
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When P is an z-monotone curve, we can handle queries in a slightly faster
query time and also smaller space. In this case, we assume that € is given at the
preprocessing stage. The z-monotonicity of P allows us to use a different data
structure for supporting the CYLINDERINTERSECTION procedure, since the query
time and space of this structure dominates the cost of our entire data structure.

Fig. 11. Illustrating how combining the straight and circular line ray shooting queries can find the
first point along P[1, A] that leaves C(Q[1,2],¢).

We implement the CYLINDERINTERSECTION procedure by performing two types
of ray shooting queries, straight and circular, along the boundary of C(Q[1,2],¢).
It is easy to see that it suffices to perform at most two straight ray shooting queries
and four circular ray shooting queries since P is z-monotone. See Fig. 11 for an
illustration of the queries for the top part of the boundary of C(Q[1,2],¢).

For straight ray shooting queries we use the data structure by Hershberger
and Suri.!? Given a simple polygon, their structure returns the first point on the
boundary of the polygon that is hit by a query ray p. It can be built in O(nlogn)
time using O(n) space and answer queries in O(logn) time. However, to be able
to use this structure we need to reduce our problem to ray shooting in a simple
polygon. Let Py be the (unbounded) polygon bounded from below by P, from the
left by a vertical ray from p; to oo, and from the right by a vertical ray from p,, to
oo. Similarly let Py, be the (unbounded) polygon bounded from above by P, from
the left by a vertical ray from p; to —oo, and from the right by a vertical ray from
pn to —oo. We build one data structure for Py, and one for Py. For circular ray
shooting queries we use the data structure by Cheong et al.2® Consider a simple
polygon P with size n in the plane and let » > 0. For any circular query ray p
with center o, radius r, and start point s’, one can report in O(logn) query time
the first point on the boundary of P which is hit by p. Combining these structures
gives us the first point along P[1,\] that leaves the cylinder, which completes the
implementation of CYLINDERINTERSECTION. We have the following theorem:

Theorem 10 (z-Monotone Preprocessed Curve). Let ¢ > 0 and let P :
[1,n] — R? be an z-monotone polygonal curve in R? such that lp > 2e. A lin-
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ear size data structure can be built in O(nlogn) time such that for any polygonal
query curve Q : [1,m] — R? with lg > (1 + \/2)e, one can decide in O(mlogn)
time whether 0p(P,Q) < e.

6. Discussion and Future Work

In this paper we provided a linear time decision algorithm, an O((n+m)log(n+m))
time optimization algorithm, a linear time v/d-approximation algorithm and a data
structure with O(m log? n) query time for the Fréchet distance between curves that
have long edges. Our algorithms are simple greedy algorithms that run in any
constant dimension. In Section 3.4 we gave a critical example that justifies our
assumptions on the edge lengths.

We proposed several greedy algorithms. Our assumption on the edge lengths
allowed us to obtain a linear time constant-factor approximation algorithm for the
(continuous) Fréchet distance. On the other hand, Bringmann and Mulzer!? pre-
sented a greedy linear time exponential approximation algorithm for general curves
under the discrete Fréchet distance. An interesting future research direction would
be to develop a trade-off between the lengths of edges and the runtime, and in
general prove hardness in terms of the edge lengths.
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