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ABSTRACT

Traditional navigation systems compute the quantitatively short-
est or fastest route between two locations in a spatial network. In
practice, a problem resulting from all drivers using the shortest
path is the congregation of individuals on routes having a high
in-betweenness. To this end, several works have proposed methods
for proposing alternative routes. In this work, we test solutions for
traffic load-balancing by computing diversified routes proposing
variants of the penalty method using the road network of the Wash-
ington DC metropolitan area as a case study. Our experimental
evaluation shows that the tested Penalty-based approaches allow
to significantly balance the load of a spatial network, compared
to existing k-shortest path algorithms, and compared to a naive
baseline that randomly changes the weights of the network at each
shortest-path computation.
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1 INTRODUCTION

Efficient transportation solutions are of paramount importance in
our society. According to the latest INRIX Global Traffic Scorecard
[9], drivers in the United States wasted $305 billion while stuck in
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traffic in 2017 alone. This number is derived from more than 11
billion liters of wasted fuel per year, and 6.9 billion of man-hours
stuck in traffic per year [21]. In many geographic areas, human mo-
bility is dominated by individualized transportation solutions. Here
efficient navigation solutions play a key role. Applications such
as Google Maps derive their service quality from crowdsourcing
the traffic situation in real time. However, while sensing the crowd
to come up with traffic-sensitive shortest paths, the service then
actually targets individuals and not the collective user base (drivers)
with its solutions. Such micro-level shortest-path solutions might
lead to systemic problems such as additional traffic jams caused
by users of the same application. While providers have addressed
this problem, shortest-path solutions still do not have a macro-level
perspective across applications when generating solutions.

Our goal with this work is to look at this key aspect of individu-
alized transportation and see how we can improve it for all rather
than just for a few users. We evaluate approaches for shortest-path
computation methods that go “the extra mile” to provide greater
variety without compromising too much on path length (travel
time). Our approach is motivated by the observation that, for a
given source-target pair, there are often a number of different near-
shortest paths that actually do not differ too much in length. Such
a method would facilitate load balancing and help minimize the
aggregate travel time for all users by better utilizing the overall
road network capacity.

The problem solved in this work is to find a set of paths between
a designated pair of vertices in a given directed weighted spatial
network. Our challenge is to diversify these paths, thus minimiz-
ing the redundancy of edges between these paths, but while also
keeping the average length of these paths low. To distribute traffic,
a classic method of diversifying routes between source-target pairs
is the k-shortest path. However, as also shown by our experiments,
the k-shortest path will often make very minor detours, or even
incur loops, that do not improve traffic conditions in practise.

We show that our penalty-based approache can achieve better
and more diverse results. Rather than changing the shortest-path
algorithm, we adapt the underlying spatial network, to incentivize
the use of road segments that would have a higher associated cost.
In particular, the penalization approach increases the weight of road
segments that have been used on previous routes. As the original
weight of a segment of the road network, we use the minimum ex-
pected travel time, which we calculate as the length of the segment
divided by its speed limit. On the other hand, we use as a baseline
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an approach that changes the weight of all the road segments of
the network randomly before each shortest path computation.
The contributions of this paper include the following:

(1) We formally describe the problem of shortest path diversifi-
cation.

(2) In addition to naive solutions, we evaluate an approach based
on network penalization. This approach can be parameter-
ized to control the trade-off between length of the paths, and
their diversity.

(3) We perform qualitative and quantitative experimental eval-
uations using the Washington DC road networkas a case
study, showing that the penalty-based approach is capable
of vastly diversifying the choice of shortest path compared
to state-of-the-art solutions.

The remainder of this paper is organized as follows. In Section 2,
we survey existing work on k-shortest path computation and load
balancing on road networks. Then, Section 3 formally describe the
problem of shortest path diversification. All the tested solutions,
including a naive solution and the penalization based solution, are
presented in Section 4. Our experimental evaluation, both qualita-
tively and quantitatively is presented in Section 5, and we conclude
the paper in Section 6.

2 RELATED WORK

A related research problem to path diversification is the k-shortest
path problem (KSP) [3, 12, 25], which is about finding the k short-
est paths from a source vertex s to a target vertex t in a directed
weighted graph G for an arbitrary natural number k. The set Kpof
k shortest path is defined as the k-set (having k elements) of paths
between s to t, such that there exists no other path 7 ¢ K sp that is
shorter than any path in K.

We argue that solutions of the k-shortest path problem are not
sufficient to diversify paths between s and t in a meaningful way. In
practise, the k shortest paths only exhibit minor differences, such
as cutting a corner, or take an additional loop in a roundabout.
Variants of the KSP problem have been studied in the literature that
constrain paths to be simple [15, 25], thus having no repeat vertices
which means that no state is repeated along any solution path. As
shown in our experimental evaluation in Section 5, the 500 shortest
paths avoiding loops between random source and target vertices
in the road network of the Washington DC metro area, have more
than 99% overlap in terms of edges, thus making them impractical
for applications such as traffic load balancing.

A strict way to enforcing diversity between paths is defined
by the problem of k-shortest disjoint paths [22, 23]. An efficient
algorithm to compute edge-disjoint and vertex-disjoint paths was
proposed in [6]. These algorithms are motivated by communica-
tion networks, where the goal is to maximize the probability that
any of the paths reaches the destination. However, these solutions
are inapplicable in a road network, where vertices are connected
sparsely: For any source vertex of degree n there must not be more
than n disjoint paths to a destination vertex. In an extreme case,
where the source vertex is located in a dead end (a vertex of degree
one), then there exist only one disjoint path, thus allowing for no
diversification via disjoint paths.
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Another related field is the problem of load balancing in com-
munication networks [5, 14, 20], for which reconfiguration of the
network is used to relax the load on a single vertex or edge. While
theoretically intriguing to temporarily close roads of a road traffic
network to balance the load among the network, it is not practically
possible. Our approach differs, as we do not change the topology of
the network, but we adjust the weights of edges used for navigation,
in order to force shortest-path algorithms to diverge.

Several works have been proposed to address the problem of
finding alternative routes in road networks [1, 2,4, 7, 8, 16—19]. First,
[7] formalized the problem of finding k-Shortest Paths with Limited
Overlap (k-SPwLO). Their goal is to recommend k alternative paths
which are as short as possible, and sufficiently dissimilar based on
a user-controlled similarity threshold. They proposed a baseline
solution and a faster OnePass algorithm. This problem of finding
top-k shortest paths with diversity (KSPD) has later been shown to
be a NP-hard problem [18]. The work of [2] treats path enumeration
as a “p-dispersion” problem to generate spatially dissimilar routes,
by applying a heuristic that searches for an initial k-shortest paths
solution and performs a local search based on minimizing similarity
to improve this initial solution. The notion of ‘admissible paths’ is
introduced in [1] to find “reasonable” alternative routes that feel
natural to the driver. Based on this work, [16, 19] use the concept of
‘candidate via nodes’ to further speed up the computation. Most re-
lated to our work, the notion of an ’alternative graph’ that contains
the set of reasonable alternative routes is introduced in [4]. This
work uses k-shortest paths and a variation of the penalty method
proposed in this work. Recent works reduce the execution time of
the penalty method, using dynamic runtime adjustments [17] and
based on customizable route planning [10].

In this work, the goal is not to propose new algorithms for short-
est path diversification and load balancing in road network. Rather,
our goal is to leverage existing related work to study how different
solutions for this problem affect the distribution of traffic in the
road network of the Washington DC area.

3 PROBLEM DEFINITION

In this section we formalize our definition of shortest path diversi-
fication. We first define a spatial network, as follows.

Definition 3.1 (Spatial Network). A spatial network is a directed
graph Let G = (V,E) with n := |V| vertices and m := |E| edges
where each edge (u € V,v € V) € E has a non-negative weight

f(u’ v)'
Further, we define a path between two vertices in G as follows:

Definition 3.2 (Paths). Let s,t € V be two distinct vertices of
graph G. A path Ps ; from a source vertex s to a sink vertex ¢ in G
is a sequence of vertices (s = v1, v2, ..., vq = t), where (v, vi+1) €
Eji=1,...,q-1.

The length I(Ps, ;) of path Ps ; is defined as the sum of weights
of all its edges: I(Ps,;) = Z?;ll f(vi, vit1). The number of edges in
Ps + is denoted by |Ps, ¢|. A path Ps ; is called simple if no vertex is
repeated, i.e., if for any v;,v; € P ¢ it holds that i # j — v; # v},

The set of all simple paths from s to ¢ in G = (V, E) is denoted
by Il ;. The shortest path from s to t, denoted by P; ;, is a simple
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path from s to ¢ in G that has the minimum length among all paths
in IT s, t-

As the aim of this work is to find a set of paths between two
vertices s and ¢ that are diverse, we first proceed to define a measure
of diversity of a set of paths. We define the diversity of a set of paths
s, as the total length (weight) of all edges that are traversed by
any path in 75 ;, normalized by the length of the shortest path,
formally:

Definition 3.3 (Diversity). Let s ; be a set of simple paths in G
between vertices s and ¢, we can define the diversity of 75 ; as

X fle)
D eGS,,s’ . .
(ms,¢) = e b
where Sy, , = | {e € P} the set of all edges traversed by any path
Permg s

il’lﬂs’t‘

If there is no path diversity (9 = 0) in x5 ¢, then all paths
coincide with the shortest path. Otherwise, non-overlapping edges
of diverse paths will result in a positive diversity measure.

Having a diversity measure, we can now define the k-diversified
path problem as follows.

Definition 3.4 (k-Diversified Shortest Paths). Given source and
target vertices s and ¢, we want to find a set 75 ; consisting of any
k paths for which all of the following conditions are met:

(1) Each path P € 75 ; is a simple path from s to ¢ in G.
(2) The sum of the lengths of all paths ~ ; [(P) is minimized.

Permg +

(3) The diversity D(rs, ) is maximized.

There is no unique solution to this problem as it depends on the
trade-off between the total weight of the set of all paths and the
overall diversity of the result. Any solution that is not dominated
in terms of both total weight and diversity is an acceptable solution.
It is then up to the final user to choose their best preference. If
we represented the full set of possible solutions as points on the
2-dimensional space of total weight vs. diversity, the set of all
acceptable solutions would be the result of a skyline query of low
weight and high diversity [24].

4 METHODOLOGY

To address the challenge of computing diversified shortest paths,
we consider a range of iterative approaches that are based on ma-
nipulating the edge weights of the road network graph during
subsequent runs of the SP algorithm. The methods differ how we
adjust the weights, i.e., based on (i) randomizing weights or by (ii)
penalizing the weights that already contributed to shortest paths.
The experimental study in Section 5 compares the various instances
of algorithms of each group under different quality criteria.

4.1 Edge Weight Randomization

A first, naive approach to diversify the paths between two locations
is to randomize the weights of the underlying spatial network to
lure traditional shortest path algorithms into deviating from the
shortest path. Each time a shortest path is computed, we simply
add unbiased random noise to the weights of edges. Thus, for each
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ALGORITHM 1: Graph Randomization (GR)

Data: Graph G = (V, E, f); source vertex s; target vertex ¢; number
of paths k; noise parameter &
Result: Set of k paths 75 ; = (P, P% ..., Pk_l}
s, = 0;
for e € E do
‘ we := f(e); //initialization of weights

-

[FEENY

4 end

5 fori=0,...k—1do

6 P! := Dijkstra(V, E, we;s, t);
7 mi=mU{P};

8 fore € E do

9 ‘ we = max(f(e) + N(0, f(e)? - 8%), 7);
10 end

1 end

12 return s 4;

path computation, the weight of each edge is the result of a random
variable, having the original weight as its expected value. On the
randomized spatial network, we employ a traditional shortest path
algorithm.

For this baseline approach, we use two parameters, § and 7 to
control the degree of randomization.

Definition 4.1 (Edge Weight Randomization). Let G = (V,E) be a
spatial network. Path diversification using edge weight randomiza-
tion adds an unbiased, normally distributed weight to each edge e
to the network. This is done via the function f, 4, 4(e) defined as
follows:

frana(€) = max(f(e) + N(0, f(e)’* - 6%),7) , (1)

where N(0, f(e)? - 62) is a Gaussian distributed random variable
having zero mean, and having a variance of f(e)?-§2. The rationale
for choosing this variance is to obtain a standard deviation of f(e)-d.
For instance, for § = 0.1, we expect 68% of the area under the curve
to be within f(e)+0.1f(e). The parameter 7 is a small constant that
is used to ensure that the Gaussian error does not yield negative or
zero-cost edges.

The pseudo-code of the Graph Randomization approach is pre-
sented in Algorithm 1. Initially the result trajectory set x is empty.
The weight w, for each edge e € E is initialized based on the
original weight function f of the graph G in lines 2-4. The loop
in lines 5-11 computes each of the k paths iteratively. In the first
iteration the actual shortest path Psl’ ; is computed, based on the
original weights of the edges of the graph, by invoking Dijkstra’s
algorithm in line 6. The resulting path is added to the set  in line 7.
Then the weights of all edges in G are updated in the lines 8-10
using the formula given by Equation 1. Then the same process is
repeated for the next path, which is calculated by calling Dijkstra’s
algorithm again, this time based on the randomized weights of the
edges. After k iterations, the result set 7, consisting of k paths, is
returned and the algorithm terminates.

A variation of this approach, is to only randomize the edges
that belong to the previous path, instead of all the edges of the
graph. This would require line 8 of Algorithm 1 to be modified to
only consider all edges e € P instead. We term this approach Path
Randomization (PR).
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It is worth noting that the result of the weight randomization
approach is non-deterministic. Different executions of the same
code on the same graph may yield different sets of paths and the
diversity of each result is not guaranteed.

We note that the Edge Weight Randomization may not be able
to diversify the shortest path. In particular, when the shortest path
is much shorter than the second shortest path, the shortest path
may be returned an infinite number of iterations.

THEOREM 4.2. Let G = (V,E, ) be a finite spatial network with
positive integer weights, i.e., f : E — Z*, and Il ; denote the set of
simple shortest paths between vertices s and t in G. The Edge Weight
Randomization method may return the same path an infinite number
of times in a row.

Proor. Let P! be the path returned in the first iteration. Since
the weights follow the same distribution in each iteration, there
is a non-zero probability p that the same path may be chosen in
the second iteration, i.e., it is possible that P! = P% Now, let Pk be
the path returned in iteration k. Again, since the weights follow
the same distribution in each iteration, there is a non-zero chance
pr > 0 that the same path may be chosen in iteration P¥*1. By
mathematical induction, we conclude that there is a probability
pr > 0 to obtain the same result as in the previous iteration i € N.
Since weights are randomized independently in each iteration, the
probability of having the same result after k iterations is p’f >0. O

In the following section, we describe a path penalization method
that memorizes the number of times each edge has been visited
before, and penalized edges depending on this number of make
paths using other edges more attractive. We further show that this
approach is guaranteed to find a new path after a finite number of
iterations.

4.2 Edge Weight Penalization

The penalization approach tries to introduce diversity to the set of
computed shortest paths by penalizing the weights of edge once
they contributed to a shortest path.

In its first iteration, this method calculates the actual shortest
path Psl’t as {s = v%, v%, .. ,v}] = t}. For the second iteration, we
adjust the weights of all edges (’U},Z}%_H) andi =1,...,q—1as
f'(v},v},,), by increasing their respective weights to f” = f-(1+p).
We refer p as the penalization factor.

The pseudo-code of our penalization based approach is presented
in Algorithm 2. The initialization of the original weights of every
edge in E is the same as that of Algorithm 1. The penalization
method differs in lines 8-10, where only the edges of the current path
P! are penalized by a (fixed deterministic) factor p. Note that the
penalization is cumulative; if an edge has been used by a previous
path and its original weight has been increased by p - we, then it
will again be penalized by an additional p - w/ based on its current
weight w}, if it is used again in a subsequent path.

This approach guarantees that, regardless of the choice of the
penalization factor p, the chosen path will change after a finite
number of iterations.

THEOREM 4.3. Let G = (V,E, f) be a finite spatial network with
positive integer weights, i.e., f : E — Z*, and Il5 ; denote the set
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ALGORITHM 2: Path Penalization (PP)

Data: Graph G = (V, E, f); source vertex s; target vertex ¢; number
of paths k; penalization factor p
Result: Set of k paths 75 ; = (P, P% ..., Pk}
s, = 0;
for e € E do
‘ we := f(e); //initialization of weights

[ R

4 end
5 fori=0,...k—1do
6 Pi= Dijkstra(V, E, we;s, t);

7 Trs, ¢ = JTS’tUPi;

8 for e € P! do

9 | we i=we - (1+p);
10 end

11 end

12 return TR;

of simple shortest paths between vertices s and t in G. If [Tl ¢| > 1,
then for any p > 0, it takes a finite number of iterations of the Path
Penalization method for the shortest path to differ by at least one
edge.

PROOEF. Let P! be the shortest path computed during an iteration
iandlet f! : E — Z* be the edge-weight function after these i
iterations. For a path, or a set of edges, P, let i(P) denote the total
length of its edges, after i iterations. In each subsequent iteration of
Algorithm 2 that results in the same shortest path, all edges along
P! have their weight increased by a factor of (1 + p). Now, assume
that the same path P! is chosen for k iterations, i.e., assume that
Pt = pi*1 = = pi*K_ This means that the total length of P!
will have increased to (1 + p)¥ X, cpi fi(e). Let Py € I, ; denote
another simple path such that Py # P’. Such path must exist, as we
assumed that II ; has at least two elements. Let P)ic C P, denote
the set of edges shared by P! and P,. Since any shortest path in
I1;, ; is simple, we know that P! must contain at least one edge that
is not in Py, i.e., Px \ P)i{ # 0. After i + k iterations, the length of
Py is given by

IH(Py) = I'(Px \ PL) + (1 +p)* - I(PL) )
while the length of P; is given by
(P = (1+p)* 11 (PL) = (1+p)F - IH(PLY+ (14+p)*IH(PP\PL) . (3)

Combining (2) and (3) we obtain

F(Pe) <I'(PY) & 1Py \Py) < (1+p) I (P \ P})  (4)
I'(Px \ P})
< ©)

Since we assume that all edges have finite weights, there must
exist a finite k such that I/(Py) < [!(P}). Thus, P! is no longer the
shortest path, since there exists at least one path, namely Py that is
shorter. Let Py, be the shortest path after k iterations. Again, since
all paths in IIg ; are simple, there must be at least one edge in Py
that is not in P*. O
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Figure 1: The distribution of speed limits of the network
Theorem 4.3 guarantees that this path penalization based ap-
proach will eventually yield a new path, unless there is only one
simple path between source and target vertices.

5 EXPERIMENTS

In this section, we describe experimental evaluation, qualitative and
quantitative, comparing the penalization based approach against
various baseline solutions. All the approaches were implemented
in python and tested on a 16GB Ram Intel Xeon CPU 3.0GHz Dell
workstation, running Windows 10.

5.1 Data

To evaluate the aforementioned approaches, we used a real trans-
portation network. In particular, we used the road network of the
Washington DC Metropolitan Area, which we obtained from Open
Street Map [13]. For every edge e we assign its weight as f(e) = Zl)—ee,
where [, is the length and v, the speed limit of the edge. This
weight equals the minimum travel time of that edge, and simulates
free-flow travel at maximum speed. Figure 1 presents a visualization
of the distribution of speed limits of every road on our network.
For our experiments we randomly generated a set of 25 location
pairs to be used as sources and targets.

5.2 Method Overview

We have included the following shortest-path computation methods
in our experimental analysis:

e PP: We evaluate the Path Penalization (PP) based approach
(as described in Section 4.2) for varying values of the penal-
ization factor p € {0.01,0.03,0.1,0.3}.

® PP p — co: A variant of the PP method with large path penal-
ties W >> meag f(e). This simulates the k-shortest disjoint

e

path problem([22, 23], where an edge cannot be included in
two paths, and hence an edge is removed once it has been
used in a shortest path.

e GR: A baseline method that randomizes the weights of all
graph edge after each shortest path iteration.

o PR: A baseline variant that randomizes the weights of only
those edges that belonged to the path computed in the pre-
vious iteration.

o k-Shortest Paths: Original k-shortest path method. We
used an implementation ! of Yen’s algorithm [25].

!https://github.com/beegeesquare/k-shortest-path
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Unless stated otherwise, we use the standard setting of k = 100
paths. For the “Penalization p — o0” approach, W is a very big
number, treated as ‘infinity’. This approach sets any visited edge
to the same weight W to ensure that all ’infinities’ are treated
equal. At the same time, W is a finite number to avoid problems
of connectivity when no more paths between source and target
exist after edges are removed. For example, there may be less than
k edges connected to the source or to the target vertex. In this
case, the algorithm is forced to minimize the number of incurred
W-edges first, then minimizing the remaining shortest path last.
In the extreme case that all edges have been visited, the next path
will be the one with the fewest number of edges, regardless of their
original weight.

5.3 Quality Criteria

To assess the quality of the various algorithms in terms of sets of
shortest paths they produce we use three specific criteria: Entropy,
the Redundancy and Diversity. While diversity has already been
defined in Section 3, we give definitions for the other measures as
follows.

First, we define the load of an edge, which we will require for
other definitions in this section.

Definition 5.1 (Edge Load). Let = = {P!, ..., P"*} be a set of paths
in G. For any edge e € E its load is defined as the number of paths
traversing e:

Lr(e)={Pen|ecP}

For each edge e € E, the normalized load L, (e)/|r| is between
0and 1.

Definition 5.2 (Load Balance Entropy). Given a set of paths 7 in
a road network graph G, we want to measure how distributed the
paths are with respect to the road network. We refer to this quality
as the entropy of the load distribution.

&, =— Z Ly (e) 1o , Lr(e) )

24l 7]

If a set of paths is not diverse and they considerably overlap,
then for each edge e the normalized load £, (e)/|r| is either 0 (if
no path traverses e) or 1 (if all paths traverse e). In other words,
when the diversity is lowest then the entropy is 0. On the other
hand, if the normalized load is evenly distributed in the network
then the entropy is higher. Note that by definition of £, it always
holds that £ (e) < |x|, therefore, the argument of the logarithm is
always less than or equal to 1, and therefore the entropy is always
non-negative.

Definition 5.3 (Redundancy). For a given set of paths 7 in G, we
denote S; = |J {e € P} the set of all edges traversed by any path

Pern
in 7. We define the redundancy of a set of paths as:
PZ |P|
R _ SV
ISkl

Intuitively, redundancy is an indicator of the degree of popular
edges in a set of paths. Specifically, it is the fraction of the total
number of edges of all paths, divided by the total number of unique
edges of all paths. This quantity represents the average utilization of
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edges that appear in at least one trajectory. If all paths are identical
then R = |x|, the total number of paths. Whereas, if there is no
overlap and each edge is used at most once in a path, then R = 1.

5.4 Qualitative Evaluation

Before providing a quantitative assessment of our results in terms
of the metrics defined above, we provide a few visual examples of
what kind of paths the different methods produce. Figure 2 shows a
map excerpt of the Washington DC metropolitan area. The six maps
visualize different k-shortest paths results for the same source and
target vertex pair, but in each case based on different penalization
and randomization parameters. Figure 2(a) shows the shortest path
calculated by Dijkstra’s algorithm [11], while Figure 2(b) shows the
top 100 shortest paths given by Yen’s algorithm [25]. We observe
that, the resulting 100-shortest paths are all extremely similar to
the shortest path. We see that Yen’s k-shortest paths do not intro-
duce any meaningful diverse paths, but only small local detours
to the actual shortest path. As such, this example serves as a good
motivation for our work.

Figures 2(c) through 2(h) show paths computed by alternative
approaches aiming at increasing the diversity of the paths. Assum-
ing the paths are comparable in terms of length (using travel time
as a metric as described in Section 5.3), then this would allow us
from a traffic management point of view, to distribute the traffic
load in a more meaningful way. In each figure, the actual shortest
path is shown as a black dashed line, while diversified paths are
shown in blue. Using transparency, stacked paths appear darker
(more opaque) and indicate more popular routes. Figure 2(c) shows
a set of paths computed by the GR method (randomized graph),
which re-assigns random weights to all edges of the road network
in between iterations. Figure 2(d) shows the 100 shortest paths
obtained by the PR method, a path randomization approach which
randomizes only those edges that belong to the (i — 1)-st shortest
path when calculating the i-th shortest path. Both randomization
approaches marginally increase the diversity of generated paths
and most paths still reuse a large portion of the actual shortest
path. It must be noted that the results of these two approaches
are non-deterministic, i.e., different runs produce slightly different
results. However the aforementioned figures are representative, as
the degree of diversity was similar for different runs although the
individual paths were not quite identical.

Figures 2(e)-2(h) shows the 100 shortest paths resulting from the
PP diversification approach using varying penalization factors. As
the penalization factor increases, the resulting set of 100 paths be-
comes more diverse. For Figure 2(e), every used edge was penalized
by increasing its weight by 1%. After each new path calculation we
penalize all its edges before computing the next path. Penalization
is accumulative. Figures 2(f) and 2(g) show the results of the same
approach for penalization factors of 3% and 10% respectively.

Figure 2(h) illustrates the results of the penalization based ap-
proach when the penalization factor approaches infinity, which
is similar to removing an edge once it has been used in any path.
The problem with such a method is that there may be connectivity
issues after a few iterations. For instance, the number of edges inci-
dent to the source or target may be less than k. Instead of setting
the weights to infinity (i.e., removing edges from the graph), we
choose a very large weight instead, e.g., W >> maxe(w,). This
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severely discourages the use of this edge in a path, but does not
remove completely in case of connectivity issues. For example, if
the only way from a source to a target is by using a bridge, then
this road network edge must be used, even if its weight has been set
to W. This approach also allows for the extreme case in which all
edges have been used in a path already. Here the next path will be
the one with the fewest number of edges, since all edges have the
same weight (W). As can be seen in Figure 2(h), this approach has
the largest diversity, covering most of the road network. However,
many of the paths become much longer than the original shortest
path incurring unreasonable detours.

5.5 Experimental Results

In the following, we show the results of our quantitative studies,
measuring diversity and path length for all approaches described
in Section 5.2, using all quality criteria described in Section 5.3.

5.5.1 Travel Time Evaluation. Figure 3 shows the travel time for
each of the 100 paths computed by the different approaches illus-
trated for a single source and target vertex pair in Figure 2. The
k = 100 shortest paths computed using the original k shortest-path
algorithm [25] have almost identical travel times. The example
of Figure 2(b) shows that the 100 paths overlap considerably, and
hence have no diversity. The two randomization approaches, GR
and PR, also fail to achieve diversity, as the travel times of the paths
in their result sets are quite close to the original shortest path.

The path penalization approaches (PP) on the other hand exhibit
a higher variance in the total lengths (travel times) of the computed
paths. This variance increases with the number of iterations. For
larger penalization factors the average path length increases and
so does the variance between subsequent iterations (spikes). For
p=0.01, i.e., a 1% increase in edge weight, the path travel times
increase moderately in comparison to the actual shortest path. For
p=0.3, the paths on average double in length after about 60 iterations.
In the extreme case of the p — oo approach, the travel times of paths
grow up to 3 times larger than the shortest path after 30 iterations.
Also, the variance increases significantly. Following 74 iterations, it
plateaus since all edges have been visited and all alternative paths
have been exhausted. Following this, the shortest path will always
be the one with the fewest number of edges (minimum “hops”),
which is not necessarily the actual shortest path.

5.5.2  Comparison of Different Source Target Pairs. What follows
is a comparison of the various methods in terms of path diversity,
entropy, redundancy and path length (travel time). For those exper-
iments we computed k=100 paths each for 25 random sets of source
and target vertices (cf. Figure 4). Figure 4(a) shows the diversity re-
sults (logarithmic scale). Diversity is low for the original k-shortest
path algorithm. Both randomization methods GR and PR generate
comparable results, which are close to one order of magnitude
larger than those of the original method. The penalization methods
generate the most diverse results. Even small penalization factors
(p=0.01) provide for an increase in diversity by 82.2% on average,
compared to the randomization approaches. Larger penalization
factors result in even more significant gains. Finally, the p — oo
achieves 99.86% more diversity than the randomization approaches.

Figure 4(b) shows the results for measured entropy. The entropy
of a set of paths is another indicator of path diversity. The re-
sults are similar to diversity, but have some interesting differences.
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Figure 2: Diversity of 100 shortest paths computed between a fixed source-destination pair using different approaches.

The two randomization approaches achieve marginally higher en-
tropy compared to the original method. The penalization methods
manage to increase the entropy by at least 75% even with a small
penalization factor of 1%. Again, larger factors result in higher en-
tropy. The p — oo approach achieves an entropy comparable to the

p=0.3 penalization in some cases. The reason here is that after it
plateaus and has visited most edges, it will always return the path
of the lowest number of edges, as shown in the example of Figure 3.
This causes the edges of this “last” frequently visited path to have
a significantly higher load and decreases the overall entropy.
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Figure 3: Travel time of each of the k=100 paths

The redundancy measurements are shown in Figure 4(c) in a scale
from 1 to 100. We observe a trend similar to the inverse of diversity
as the more diverse a set of paths is, the lower is its redundancy.
The original 100-shortest paths are highly redundant, i.e., close to
100. Randomization methods GR and PR achieve a redundancy of 35
and 39, respectively. All penalization methods generate path sets of
R=12 and below. The p — oo approach has the lowest redundancy
for all the source-target pairs, ranging from 1.1% to 1.5%.

Figure 4(d) shows the average path length (travel time). The
randomization methods produce paths with lengths close to that
of the original method (withing 2%). The penalization methods
for small p values, generates paths that have high diversity and
relatively small paths lengths. For p=0.01 the average path length is
increased by only 5.7% (compared to the original method), while the
result is 98% more diverse. The extreme case of penalization p — oo
achieves high diversity at the cost of a very long paths.

5.5.3  Path Length versus Diversity. The trade-off between travel
time and path diversity is illustrated in Figure 5. This figure relates
the quality measures to resulting path length. Overall, we are trying
to find a set of “shortest” paths that is diverse and close to the length
of the actual shortest path.

Figure 5(a) plots diversity with respect to path length. We observe
two extremes, (i) the original k-shortest path method produces the
shortest but not at all diverse paths and (ii) the p — oo penalization
method produces the most diverse but also longest paths. Random-
ization methods perform close to the original method. However, if
we want to find the solution with the best trade-off between diver-
sity and length, we have to identify the set of points that belong to
the skyline [24] of high diversity and low travel time. This would
include all points that are not dominated by any other point in both
dimensions. Since PR is worse than GR in terms of both diversity
and travel time, PR is dominated by GR. The penalization methods
PP are not dominated by any other approach. Different values of
p achieve a different trade-off between diversity and length. As p
increases we gain in terms of higher diversity but lose in terms of
a greater path length. This relationship appears to be linear for the
penalization based approach, as shown in Figure 5(a).

Figure 5(b) shows the corresponding relationship between en-
tropy and path length. It is shown that none of the tested solutions
is dominated by any other approach. Increasing the p results in
longer paths, but also in increased entropy, which can be translated
as a better distribution of paths in the road network (load balance).
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The relationship between average path length and redundancy
is presented in Figure 5(c). Looking at this graph as a more tradi-
tional skyline, we want to find the points that have low values for
both these quality metrics. All PP results are part of the skyline,
as they are not dominated in both dimensions by any other point.
The approach that appears to substantially lower the redundancy of
its result, while keeping a reasonable average travel time is PP for
penalization factors p of 0.01 and/to 0.03.

5.5.4 Scalability. Figure 6 shows the behavior of all approaches for
different values of k. The first three graphs report the average values
of our quality metrics for 25 source-target pairs. Figure 6(a) shows
how the average diversity increases with k. While, the original
method is constant, the two randomization approaches are slow
growing, so do the penalization methods grow almost linearly with
k. The p — oo methods plateaus at k=90 due to the saturation effect
of having visited all edges. Note that, by definition the diversity
cannot decrease when adding more paths to the result set. If we
keep computing the same path from some iteration and on, the
diversity will remain stable, which explains the behavior of the
p — oo curve.

Figure 6(b) shows a sublinear Entropy growth. All methods are
outperformed by the penalization variants PP by at least two orders
of magnitude. The entropy of PP p — oo increases rapidly and then
decreases after k=90 due to the above mention saturation effect and
eventually always visiting the path with the fewest edges.

Figure 6(c) shows the redundancy behavior. Note that the y-
axis uses a logarithmic scale. All methods shows similar rates of
growth. We clearly observe the k-shortest path approach having
the largest increase in redundancy, followed by the curves of PR and
GR. The redundancy of these approaches is approximately linear.
The penalization methods outperform all others and manage to
maintain low values of redundancy R<10, for any k. Again, the
p — oo approach exhibits interesting behavior. Initially, it shows
almost no redundancy, as it avoid picking the same edge more
than once unless the graph topology forces it to pick a duplicate.
Once this approach converges into the shortest number of hops,
the redundancy remains low, as most of the graph has already been
explored in the first iterations.

Finally, Figure 6(d) shows the path length (travel time) for every
iteration up to 500 paths, averaged over the 25 random source-target
pairs. Note that in this last graph, every measurement corresponds

to the kth path, not the set of the first k paths that were used for the
previous three graphs. The path length of the 500-shortest paths re-
mains almost stable for all iterations, showing that these 500 paths
do not differ substantially from each other. The path lengths of the
randomization approaches remain low and relatively close to the
original shortest paths, without experiencing significant variance.
An interesting observation is the path randomization approach
progressively yielding longer paths. The reason is that the most
commonly chosen paths chosen after randomization have progres-
sively more random noise added. While this noise is unbiased, it
increases the variance of the weight of the randomized edges. Con-
sequently, some edges may get very large weights, but extremely
low weights are impossible due to the constraint of having positive
weights. This adds a slight bias towards making the average edge
larger, thus creating a trend of preferring new edges. We also see
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that, for all approaches, the travel times is strongly correlated to
the entropy. This result is intuitive, as longer paths are more likely
to explore new areas of the network, thus increasing the entropy
of the distribution of visited edges.

6 CONCLUSIONS

This work addresses the meaningful diversification of possible paths
from a source to a target location. Solving this problem has appli-
cations for commuters, who want to reduce the monotony of their
daily travel patterns, for fleet navigation, where the task is to move
a large number of vehicles through the network, and load balancing,

which tries to reduce the traffic of bottlenecks in the road network.
First, we concluded that methods that compute (i) k-shortest paths
and (ii) the k disjoint shortest paths are too strict, either offering
too little diversity in practice, or involving unreasonable detours.
To identify a compromise, we test variations of the penalty method,
an approach that iteratively penalizes edges that have been used in
previous paths. Our approach allows one to balance the trade-off
between path length (travel time) and diversity using a single pa-
rameter p. We show theoretically that this approach is guaranteed
to find new paths. In our experimental evaluation, we first show
that different choices of p affect the network space explored by
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our paths, while existing solutions fail to achieve reasonable diver-
sity. In our qualitative evaluation, we show that this trend prevails

for

randomly chosen source and target locations, while incurring

reasonable run-times.
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