
Shortest-Path Diversification through Network Penalization:
A Washington DC Area Case Study

Dan Cheng

George Mason University

dcheng4@gmu.edu

Olga Gkountouna

George Mason University

ogkounto@gmu.edu

Andreas Züfle

George Mason University

azufle@gmu.edu

Dieter Pfoser

George Mason University

dpfoser@gmu.edu

Carola Wenk

Tulane University

cwenk@tulane.edu

ABSTRACT
Traditional navigation systems compute the quantitatively short-

est or fastest route between two locations in a spatial network. In

practice, a problem resulting from all drivers using the shortest

path is the congregation of individuals on routes having a high

in-betweenness. To this end, several works have proposed methods

for proposing alternative routes. In this work, we test solutions for

traffic load-balancing by computing diversified routes proposing

variants of the penalty method using the road network of the Wash-

ington DC metropolitan area as a case study. Our experimental

evaluation shows that the tested Penalty-based approaches allow

to significantly balance the load of a spatial network, compared

to existing k-shortest path algorithms, and compared to a naive

baseline that randomly changes the weights of the network at each

shortest-path computation.

CCS CONCEPTS
• Information systems→Data analytics; •Applied computing
→ Transportation.

KEYWORDS
k-Shortest Paths, Diversification, Penalization, Load balancing, Road

Network, Traffic

ACM Reference Format:
Dan Cheng, Olga Gkountouna, Andreas Züfle, Dieter Pfoser, and Carola

Wenk. 2019. Shortest-Path Diversification through Network Penalization: A

Washington DC Area Case Study. In 12th ACM SIGSPATIAL International
Workshop on Computational Transportation Science (IWCTS’19), November 5,
2019, Chicago, IL, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/3357000.3366137

1 INTRODUCTION
Efficient transportation solutions are of paramount importance in

our society. According to the latest INRIX Global Traffic Scorecard

[9], drivers in the United States wasted $305 billion while stuck in

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

IWCTS’19, November 5, 2019, Chicago, IL, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6967-1/19/11. . . $15.00

https://doi.org/10.1145/3357000.3366137

traffic in 2017 alone. This number is derived from more than 11

billion liters of wasted fuel per year, and 6.9 billion of man-hours

stuck in traffic per year [21]. In many geographic areas, human mo-

bility is dominated by individualized transportation solutions. Here

efficient navigation solutions play a key role. Applications such

as Google Maps derive their service quality from crowdsourcing

the traffic situation in real time. However, while sensing the crowd

to come up with traffic-sensitive shortest paths, the service then

actually targets individuals and not the collective user base (drivers)

with its solutions. Such micro-level shortest-path solutions might

lead to systemic problems such as additional traffic jams caused

by users of the same application. While providers have addressed

this problem, shortest-path solutions still do not have a macro-level

perspective across applications when generating solutions.

Our goal with this work is to look at this key aspect of individu-

alized transportation and see how we can improve it for all rather

than just for a few users. We evaluate approaches for shortest-path

computation methods that go “the extra mile” to provide greater

variety without compromising too much on path length (travel

time). Our approach is motivated by the observation that, for a

given source-target pair, there are often a number of different near-

shortest paths that actually do not differ too much in length. Such

a method would facilitate load balancing and help minimize the

aggregate travel time for all users by better utilizing the overall

road network capacity.

The problem solved in this work is to find a set of paths between

a designated pair of vertices in a given directed weighted spatial

network. Our challenge is to diversify these paths, thus minimiz-

ing the redundancy of edges between these paths, but while also

keeping the average length of these paths low. To distribute traffic,

a classic method of diversifying routes between source-target pairs

is the k-shortest path. However, as also shown by our experiments,

the k-shortest path will often make very minor detours, or even

incur loops, that do not improve traffic conditions in practise.

We show that our penalty-based approache can achieve better

and more diverse results. Rather than changing the shortest-path

algorithm, we adapt the underlying spatial network, to incentivize

the use of road segments that would have a higher associated cost.

In particular, the penalization approach increases the weight of road

segments that have been used on previous routes. As the original

weight of a segment of the road network, we use the minimum ex-

pected travel time, which we calculate as the length of the segment

divided by its speed limit. On the other hand, we use as a baseline

https://doi.org/10.1145/3357000.3366137
https://doi.org/10.1145/3357000.3366137
https://doi.org/10.1145/3357000.3366137

IWCTS’19, November 5, 2019, Chicago, IL, USA Dan Cheng, Olga Gkountouna, Andreas Züfle, Dieter Pfoser, and Carola Wenk

an approach that changes the weight of all the road segments of

the network randomly before each shortest path computation.

The contributions of this paper include the following:

(1) We formally describe the problem of shortest path diversifi-

cation.

(2) In addition to naive solutions, we evaluate an approach based

on network penalization. This approach can be parameter-

ized to control the trade-off between length of the paths, and

their diversity.

(3) We perform qualitative and quantitative experimental eval-

uations using the Washington DC road networkas a case

study, showing that the penalty-based approach is capable

of vastly diversifying the choice of shortest path compared

to state-of-the-art solutions.

The remainder of this paper is organized as follows. In Section 2,

we survey existing work on k-shortest path computation and load

balancing on road networks. Then, Section 3 formally describe the

problem of shortest path diversification. All the tested solutions,

including a naive solution and the penalization based solution, are

presented in Section 4. Our experimental evaluation, both qualita-

tively and quantitatively is presented in Section 5, and we conclude

the paper in Section 6.

2 RELATED WORK
A related research problem to path diversification is the k-shortest
path problem (KSP) [3, 12, 25], which is about finding the k short-

est paths from a source vertex s to a target vertex t in a directed

weighted graphG for an arbitrary natural number k . The set Kspof
k shortest path is defined as the k-set (having k elements) of paths

between s to t , such that there exists no other path π < Ksp that is

shorter than any path in Ksp .
We argue that solutions of the k-shortest path problem are not

sufficient to diversify paths between s and t in a meaningful way. In

practise, the k shortest paths only exhibit minor differences, such

as cutting a corner, or take an additional loop in a roundabout.

Variants of the KSP problem have been studied in the literature that

constrain paths to be simple [15, 25], thus having no repeat vertices

which means that no state is repeated along any solution path. As

shown in our experimental evaluation in Section 5, the 500 shortest

paths avoiding loops between random source and target vertices

in the road network of the Washington DC metro area, have more

than 99% overlap in terms of edges, thus making them impractical

for applications such as traffic load balancing.

A strict way to enforcing diversity between paths is defined

by the problem of k-shortest disjoint paths [22, 23]. An efficient

algorithm to compute edge-disjoint and vertex-disjoint paths was

proposed in [6]. These algorithms are motivated by communica-

tion networks, where the goal is to maximize the probability that

any of the paths reaches the destination. However, these solutions

are inapplicable in a road network, where vertices are connected

sparsely: For any source vertex of degree n there must not be more

than n disjoint paths to a destination vertex. In an extreme case,

where the source vertex is located in a dead end (a vertex of degree

one), then there exist only one disjoint path, thus allowing for no

diversification via disjoint paths.

Another related field is the problem of load balancing in com-

munication networks [5, 14, 20], for which reconfiguration of the

network is used to relax the load on a single vertex or edge. While

theoretically intriguing to temporarily close roads of a road traffic

network to balance the load among the network, it is not practically

possible. Our approach differs, as we do not change the topology of

the network, but we adjust the weights of edges used for navigation,

in order to force shortest-path algorithms to diverge.

Several works have been proposed to address the problem of

finding alternative routes in road networks [1, 2, 4, 7, 8, 16–19]. First,

[7] formalized the problem of finding k-Shortest Paths with Limited

Overlap (k-SPwLO). Their goal is to recommend k alternative paths

which are as short as possible, and sufficiently dissimilar based on

a user-controlled similarity threshold. They proposed a baseline

solution and a faster OnePass algorithm. This problem of finding

top-k shortest paths with diversity (KSPD) has later been shown to

be a NP-hard problem [18]. The work of [2] treats path enumeration

as a “p-dispersion” problem to generate spatially dissimilar routes,

by applying a heuristic that searches for an initial k-shortest paths

solution and performs a local search based on minimizing similarity

to improve this initial solution. The notion of ‘admissible paths’ is

introduced in [1] to find “reasonable” alternative routes that feel

natural to the driver. Based on this work, [16, 19] use the concept of

‘candidate via nodes’ to further speed up the computation. Most re-

lated to our work, the notion of an ’alternative graph’ that contains

the set of reasonable alternative routes is introduced in [4]. This

work uses k-shortest paths and a variation of the penalty method

proposed in this work. Recent works reduce the execution time of

the penalty method, using dynamic runtime adjustments [17] and

based on customizable route planning [10].

In this work, the goal is not to propose new algorithms for short-

est path diversification and load balancing in road network. Rather,

our goal is to leverage existing related work to study how different

solutions for this problem affect the distribution of traffic in the

road network of the Washington DC area.

3 PROBLEM DEFINITION
In this section we formalize our definition of shortest path diversi-

fication. We first define a spatial network, as follows.

Definition 3.1 (Spatial Network). A spatial network is a directed

graph Let G = (V ,E) with n := |V | vertices and m := |E | edges
where each edge (u ∈ V ,v ∈ V) ∈ E has a non-negative weight

f (u,v).

Further, we define a path between two vertices in G as follows:

Definition 3.2 (Paths). Let s, t ∈ V be two distinct vertices of

graph G. A path Ps,t from a source vertex s to a sink vertex t in G
is a sequence of vertices (s = v1,v2, . . . ,vq = t), where (vi ,vi+1) ∈
E, i = 1, . . . ,q − 1.

The length l(Ps,t) of path Ps,t is defined as the sum of weights

of all its edges: l(Ps,t) =
∑q−1
i=1 f (vi ,vi+1). The number of edges in

Ps,t is denoted by |Ps,t |. A path Ps,t is called simple if no vertex is

repeated, i.e., if for any vi ,vj ∈ Ps,t it holds that i , j → vi , vj .
The set of all simple paths from s to t in G = (V ,E) is denoted

by Πs,t . The shortest path from s to t , denoted by Ps,t , is a simple

Shortest-Path Diversification through Network Penalization:

A Washington DC Area Case Study IWCTS’19, November 5, 2019, Chicago, IL, USA

path from s to t inG that has the minimum length among all paths

in Πs,t .

As the aim of this work is to find a set of paths between two

vertices s and t that are diverse, we first proceed to define a measure
of diversity of a set of paths. We define the diversity of a set of paths

πs,t as the total length (weight) of all edges that are traversed by
any path in πs,t , normalized by the length of the shortest path,

formally:

Definition 3.3 (Diversity). Let πs,t be a set of simple paths in G
between vertices s and t , we can define the diversity of πs,t as

D(πs,t) =

∑
e ∈Sπs,t

f (e)

l(Ps,t)
− 1 ,

where Sπs,t =
⋃

P ∈πs,t

{e ∈ P} the set of all edges traversed by any path

in πs,t .

If there is no path diversity (D = 0) in πs,t , then all paths

coincide with the shortest path. Otherwise, non-overlapping edges

of diverse paths will result in a positive diversity measure.

Having a diversity measure, we can now define the k-diversified
path problem as follows.

Definition 3.4 (k-Diversified Shortest Paths). Given source and

target vertices s and t , we want to find a set πs,t consisting of any
k paths for which all of the following conditions are met:

(1) Each path P ∈ πs,t is a simple path from s to t in G.
(2) The sum of the lengths of all paths

∑
P ∈πs,t

l(P) is minimized.

(3) The diversity D(πs,t) is maximized.

There is no unique solution to this problem as it depends on the

trade-off between the total weight of the set of all paths and the

overall diversity of the result. Any solution that is not dominated

in terms of both total weight and diversity is an acceptable solution.

It is then up to the final user to choose their best preference. If

we represented the full set of possible solutions as points on the

2-dimensional space of total weight vs. diversity, the set of all

acceptable solutions would be the result of a skyline query of low

weight and high diversity [24].

4 METHODOLOGY

To address the challenge of computing diversified shortest paths,

we consider a range of iterative approaches that are based on ma-

nipulating the edge weights of the road network graph during

subsequent runs of the SP algorithm. The methods differ how we

adjust the weights, i.e., based on (i) randomizing weights or by (ii)

penalizing the weights that already contributed to shortest paths.

The experimental study in Section 5 compares the various instances

of algorithms of each group under different quality criteria.

4.1 Edge Weight Randomization

A first, naive approach to diversify the paths between two locations

is to randomize the weights of the underlying spatial network to

lure traditional shortest path algorithms into deviating from the

shortest path. Each time a shortest path is computed, we simply

add unbiased random noise to the weights of edges. Thus, for each

ALGORITHM 1: Graph Randomization (GR)

Data: Graph G = (V , E, f); source vertex s ; target vertex t ; number

of paths k ; noise parameter δ

Result: Set of k paths πs,t = {P
1, P 2, . . . , Pk−1 }

1 πs,t := ∅;

2 for e ∈ E do

3 we := f (e); //initialization of weights

4 end

5 for i = 0, . . . k − 1 do

6 P i := Dijkstra(V , E, we ; s, t);

7 π := π ∪ {P i };

8 for e ∈ E do

9 we :=max (f (e) + N (0, f (e)2 · δ 2), τ);

10 end

11 end

12 return πs,t ;

path computation, the weight of each edge is the result of a random

variable, having the original weight as its expected value. On the

randomized spatial network, we employ a traditional shortest path

algorithm.

For this baseline approach, we use two parameters, δ and τ to
control the degree of randomization.

Definition 4.1 (Edge Weight Randomization). Let G = (V ,E) be a
spatial network. Path diversification using edge weight randomiza-

tion adds an unbiased, normally distributed weight to each edge e
to the network. This is done via the function frand (e) defined as
follows:

frand (e) =max(f (e) + N (0, f (e)2 · δ2),τ) , (1)

where N (0, f (e)2 · δ2) is a Gaussian distributed random variable

having zero mean, and having a variance of f (e)2 ·δ2. The rationale
for choosing this variance is to obtain a standard deviation of f (e)·δ .
For instance, for δ = 0.1, we expect 68% of the area under the curve

to be within f (e)±0.1f (e). The parameter τ is a small constant that
is used to ensure that the Gaussian error does not yield negative or

zero-cost edges.

The pseudo-code of the Graph Randomization approach is pre-

sented in Algorithm 1. Initially the result trajectory set π is empty.

The weight we for each edge e ∈ E is initialized based on the

original weight function f of the graph G in lines 2-4. The loop

in lines 5-11 computes each of the k paths iteratively. In the first

iteration the actual shortest path P1s,t is computed, based on the

original weights of the edges of the graph, by invoking Dijkstra’s

algorithm in line 6. The resulting path is added to the set π in line 7.

Then the weights of all edges in G are updated in the lines 8-10

using the formula given by Equation 1. Then the same process is

repeated for the next path, which is calculated by calling Dijkstra’s

algorithm again, this time based on the randomized weights of the

edges. After k iterations, the result set π , consisting of k paths, is

returned and the algorithm terminates.

A variation of this approach, is to only randomize the edges

that belong to the previous path, instead of all the edges of the

graph. This would require line 8 of Algorithm 1 to be modified to

only consider all edges e ∈ P i instead. We term this approach Path

Randomization (PR).

IWCTS’19, November 5, 2019, Chicago, IL, USA Dan Cheng, Olga Gkountouna, Andreas Züfle, Dieter Pfoser, and Carola Wenk

It is worth noting that the result of the weight randomization

approach is non-deterministic. Different executions of the same

code on the same graph may yield different sets of paths and the

diversity of each result is not guaranteed.

We note that the Edge Weight Randomization may not be able

to diversify the shortest path. In particular, when the shortest path

is much shorter than the second shortest path, the shortest path

may be returned an infinite number of iterations.

Theorem 4.2. Let G = (V ,E, f) be a finite spatial network with
positive integer weights, i.e., f : E → Z+, and Πs,t denote the set of
simple shortest paths between vertices s and t in G . The Edge Weight

Randomization method may return the same path an infinite number

of times in a row.

Proof. Let P1 be the path returned in the first iteration. Since
the weights follow the same distribution in each iteration, there

is a non-zero probability p that the same path may be chosen in

the second iteration, i.e., it is possible that P1 = P2. Now, let Pk be

the path returned in iteration k . Again, since the weights follow
the same distribution in each iteration, there is a non-zero chance

pr > 0 that the same path may be chosen in iteration Pk+1. By
mathematical induction, we conclude that there is a probability

pr > 0 to obtain the same result as in the previous iteration i ∈ N.
Since weights are randomized independently in each iteration, the

probability of having the same result after k iterations ispkr > 0. �

In the following section, we describe a path penalization method

that memorizes the number of times each edge has been visited

before, and penalized edges depending on this number of make

paths using other edges more attractive. We further show that this

approach is guaranteed to find a new path after a finite number of

iterations.

4.2 Edge Weight Penalization

The penalization approach tries to introduce diversity to the set of

computed shortest paths by penalizing the weights of edge once

they contributed to a shortest path.

In its first iteration, this method calculates the actual shortest

path P1s,t as {s = v
1
1 ,v

1
2 , . . . ,v

1
q = t}. For the second iteration, we

adjust the weights of all edges (v1i ,v
1
i+1) and i = 1, . . . ,q − 1 as

f ′(v1i ,v
1
i+1), by increasing their respective weights to f ′ = f ·(1+p).

We refer p as the penalization factor.

The pseudo-code of our penalization based approach is presented

in Algorithm 2. The initialization of the original weights of every

edge in E is the same as that of Algorithm 1. The penalization

method differs in lines 8-10, where only the edges of the current path

P i are penalized by a (fixed deterministic) factor p. Note that the
penalization is cumulative; if an edge has been used by a previous

path and its original weight has been increased by p ·we , then it

will again be penalized by an additional p ·w ′
e based on its current

weightw ′
e if it is used again in a subsequent path.

This approach guarantees that, regardless of the choice of the

penalization factor p, the chosen path will change after a finite

number of iterations.

Theorem 4.3. Let G = (V ,E, f) be a finite spatial network with
positive integer weights, i.e., f : E → Z+, and Πs,t denote the set

ALGORITHM 2: Path Penalization (PP)

Data: Graph G = (V , E, f); source vertex s ; target vertex t ; number

of paths k ; penalization factor p

Result: Set of k paths πs,t = {P
1, P 2, . . . , Pk }

1 πs,t := ∅;

2 for e ∈ E do

3 we := f (e); //initialization of weights

4 end

5 for i = 0, . . . k − 1 do

6 P i := Dijkstra(V , E, we ; s, t);

7 πs,t := πs,t ∪ P i ;

8 for e ∈ P i do

9 we := we · (1 + p);

10 end

11 end

12 return TR;

of simple shortest paths between vertices s and t in G. If |Πs,t | > 1,

then for any p > 0, it takes a finite number of iterations of the Path

Penalization method for the shortest path to differ by at least one

edge.

Proof. Let P i be the shortest path computed during an iteration
i and let f i : E → Z+ be the edge-weight function after these i
iterations. For a path, or a set of edges, P , let l i (P) denote the total
length of its edges, after i iterations. In each subsequent iteration of
Algorithm 2 that results in the same shortest path, all edges along

P i have their weight increased by a factor of (1 + p). Now, assume
that the same path P i is chosen for k iterations, i.e., assume that

P i = P i+1 = ... = P i+k . This means that the total length of P i

will have increased to (1 + p)k
∑
e ∈P i f

i (e). Let Px ∈ Πs,t denote
another simple path such that Px � P i . Such path must exist, as we
assumed that Πs,t has at least two elements. Let P

i
x ⊂ Px denote

the set of edges shared by P i and Px . Since any shortest path in

Πs,t is simple, we know that P i must contain at least one edge that
is not in Px , i.e., Px \ P

i
x � ∅. After i + k iterations, the length of

Px is given by

l i (Px) = l
i (Px \ P

i
x) + (1 + p)

k · l i (P ix) , (2)

while the length of Pi is given by

l i (P i) = (1+p)k ·l i (P ix) = (1+p)
k ·l i (P ix)+(1+p)

k l i (P i \P ix) . (3)

Combining (2) and (3) we obtain

l i (Px) < l i (P i) ⇔ l i (Px \ P
i
x) < (1 + p)

k l i (P i \ P ix) (4)

⇔ log1+p
l i (Px \ P

i
x)

l i (P i \ P ix)
< k . (5)

Since we assume that all edges have finite weights, there must

exist a finite k such that l i (Px) < l i (P i). Thus, P i is no longer the
shortest path, since there exists at least one path, namely Px that is

shorter. Let Py be the shortest path after k iterations. Again, since

all paths in Πs,t are simple, there must be at least one edge in Py
that is not in P i . �

Shortest-Path Diversification through Network Penalization:

A Washington DC Area Case Study IWCTS’19, November 5, 2019, Chicago, IL, USA

Figure 1: The distribution of speed limits of the network

Theorem 4.3 guarantees that this path penalization based ap-

proach will eventually yield a new path, unless there is only one

simple path between source and target vertices.

5 EXPERIMENTS

In this section, we describe experimental evaluation, qualitative and

quantitative, comparing the penalization based approach against

various baseline solutions. All the approaches were implemented

in python and tested on a 16GB Ram Intel Xeon CPU 3.0GHz Dell

workstation, running Windows 10.

5.1 Data

To evaluate the aforementioned approaches, we used a real trans-

portation network. In particular, we used the road network of the

Washington DC Metropolitan Area, which we obtained from Open

Street Map [13]. For every edge e we assign its weight as f (e) = le
ve

,

where le is the length and ve the speed limit of the edge. This

weight equals the minimum travel time of that edge, and simulates

free-flow travel at maximum speed. Figure 1 presents a visualization

of the distribution of speed limits of every road on our network.

For our experiments we randomly generated a set of 25 location

pairs to be used as sources and targets.

5.2 Method Overview

We have included the following shortest-path computationmethods

in our experimental analysis:

• PP: We evaluate the Path Penalization (PP) based approach
(as described in Section 4.2) for varying values of the penal-

ization factor p ∈ {0.01, 0.03, 0.1, 0.3}.
• PP p →∞: A variant of the PPmethod with large path penal-
tiesW >> max

e ∈E
f (e). This simulates the k-shortest disjoint

path problem[22, 23], where an edge cannot be included in

two paths, and hence an edge is removed once it has been

used in a shortest path.

• GR: A baseline method that randomizes the weights of all

graph edge after each shortest path iteration.

• PR: A baseline variant that randomizes the weights of only

those edges that belonged to the path computed in the pre-

vious iteration.

• k-Shortest Paths: Original k-shortest path method. We

used an implementation 1 of Yen’s algorithm [25].

1https://github.com/beegeesquare/k-shortest-path

Unless stated otherwise, we use the standard setting of k = 100

paths. For the “Penalization p → ∞” approach,W is a very big

number, treated as ‘infinity’. This approach sets any visited edge

to the same weight W to ensure that all ’infinities’ are treated

equal. At the same time,W is a finite number to avoid problems

of connectivity when no more paths between source and target

exist after edges are removed. For example, there may be less than

k edges connected to the source or to the target vertex. In this

case, the algorithm is forced to minimize the number of incurred

W -edges first, then minimizing the remaining shortest path last.

In the extreme case that all edges have been visited, the next path

will be the one with the fewest number of edges, regardless of their

original weight.

5.3 Quality Criteria

To assess the quality of the various algorithms in terms of sets of

shortest paths they produce we use three specific criteria: Entropy,

the Redundancy and Diversity. While diversity has already been

defined in Section 3, we give definitions for the other measures as

follows.

First, we define the load of an edge, which we will require for

other definitions in this section.

Definition 5.1 (Edge Load). Let π = {P1, ..., Pn } be a set of paths
in G. For any edge e ∈ E its load is defined as the number of paths

traversing e:
Lπ (e) = |{P ∈ π | e ∈ P}|

For each edge e ∈ E, the normalized load Lπ (e)/|π | is between
0 and 1.

Definition 5.2 (Load Balance Entropy). Given a set of paths π in

a road network graphG, we want to measure how distributed the

paths are with respect to the road network. We refer to this quality

as the entropy of the load distribution.

Eπ = −
∑

e ∈G

Lπ (e)

|π |
· log2

Lπ (e)

|π |
.

If a set of paths is not diverse and they considerably overlap,

then for each edge e the normalized load Lπ (e)/|π | is either 0 (if
no path traverses e) or 1 (if all paths traverse e). In other words,

when the diversity is lowest then the entropy is 0. On the other

hand, if the normalized load is evenly distributed in the network

then the entropy is higher. Note that by definition of L, it always

holds that Lπ (e) ≤ |π |, therefore, the argument of the logarithm is

always less than or equal to 1, and therefore the entropy is always

non-negative.

Definition 5.3 (Redundancy). For a given set of paths π in G, we
denote Sπ =

⋃
P ∈π

{e ∈ P} the set of all edges traversed by any path

in π . We define the redundancy of a set of paths as:

Rπ =

∑
P ∈π

|P |

|Sπ |

Intuitively, redundancy is an indicator of the degree of popular

edges in a set of paths. Specifically, it is the fraction of the total

number of edges of all paths, divided by the total number of unique

edges of all paths. This quantity represents the average utilization of

IWCTS’19, November 5, 2019, Chicago, IL, USA Dan Cheng, Olga Gkountouna, Andreas Züfle, Dieter Pfoser, and Carola Wenk

edges that appear in at least one trajectory. If all paths are identical

then R = |π |, the total number of paths. Whereas, if there is no

overlap and each edge is used at most once in a path, then R = 1.

5.4 Qualitative Evaluation
Before providing a quantitative assessment of our results in terms

of the metrics defined above, we provide a few visual examples of

what kind of paths the different methods produce. Figure 2 shows a

map excerpt of theWashington DCmetropolitan area. The six maps

visualize different k-shortest paths results for the same source and

target vertex pair, but in each case based on different penalization

and randomization parameters. Figure 2(a) shows the shortest path

calculated by Dijkstra’s algorithm [11], while Figure 2(b) shows the

top 100 shortest paths given by Yen’s algorithm [25]. We observe

that, the resulting 100-shortest paths are all extremely similar to

the shortest path. We see that Yen’s k-shortest paths do not intro-

duce any meaningful diverse paths, but only small local detours

to the actual shortest path. As such, this example serves as a good

motivation for our work.

Figures 2(c) through 2(h) show paths computed by alternative

approaches aiming at increasing the diversity of the paths. Assum-

ing the paths are comparable in terms of length (using travel time

as a metric as described in Section 5.3), then this would allow us

from a traffic management point of view, to distribute the traffic

load in a more meaningful way. In each figure, the actual shortest

path is shown as a black dashed line, while diversified paths are

shown in blue. Using transparency, stacked paths appear darker

(more opaque) and indicate more popular routes. Figure 2(c) shows

a set of paths computed by the GR method (randomized graph),

which re-assigns random weights to all edges of the road network

in between iterations. Figure 2(d) shows the 100 shortest paths

obtained by the PR method, a path randomization approach which

randomizes only those edges that belong to the (i − 1)-st shortest

path when calculating the i-th shortest path. Both randomization

approaches marginally increase the diversity of generated paths

and most paths still reuse a large portion of the actual shortest

path. It must be noted that the results of these two approaches

are non-deterministic, i.e., different runs produce slightly different

results. However the aforementioned figures are representative, as

the degree of diversity was similar for different runs although the

individual paths were not quite identical.

Figures 2(e)-2(h) shows the 100 shortest paths resulting from the

PP diversification approach using varying penalization factors. As

the penalization factor increases, the resulting set of 100 paths be-

comes more diverse. For Figure 2(e), every used edge was penalized

by increasing its weight by 1%. After each new path calculation we

penalize all its edges before computing the next path. Penalization

is accumulative. Figures 2(f) and 2(g) show the results of the same

approach for penalization factors of 3% and 10% respectively.

Figure 2(h) illustrates the results of the penalization based ap-

proach when the penalization factor approaches infinity, which

is similar to removing an edge once it has been used in any path.

The problem with such a method is that there may be connectivity

issues after a few iterations. For instance, the number of edges inci-

dent to the source or target may be less than k . Instead of setting

the weights to infinity (i.e., removing edges from the graph), we

choose a very large weight instead, e.g.,W >> maxe (we). This

severely discourages the use of this edge in a path, but does not

remove completely in case of connectivity issues. For example, if

the only way from a source to a target is by using a bridge, then

this road network edge must be used, even if its weight has been set

toW . This approach also allows for the extreme case in which all

edges have been used in a path already. Here the next path will be

the one with the fewest number of edges, since all edges have the

same weight (W). As can be seen in Figure 2(h), this approach has

the largest diversity, covering most of the road network. However,

many of the paths become much longer than the original shortest

path incurring unreasonable detours.

5.5 Experimental Results
In the following, we show the results of our quantitative studies,

measuring diversity and path length for all approaches described

in Section 5.2, using all quality criteria described in Section 5.3.

5.5.1 Travel Time Evaluation. Figure 3 shows the travel time for

each of the 100 paths computed by the different approaches illus-

trated for a single source and target vertex pair in Figure 2. The

k = 100 shortest paths computed using the original k shortest-path

algorithm [25] have almost identical travel times. The example

of Figure 2(b) shows that the 100 paths overlap considerably, and

hence have no diversity. The two randomization approaches, GR
and PR, also fail to achieve diversity, as the travel times of the paths

in their result sets are quite close to the original shortest path.

The path penalization approaches (PP) on the other hand exhibit

a higher variance in the total lengths (travel times) of the computed

paths. This variance increases with the number of iterations. For

larger penalization factors the average path length increases and

so does the variance between subsequent iterations (spikes). For

p=0.01, i.e., a 1% increase in edge weight, the path travel times

increase moderately in comparison to the actual shortest path. For

p=0.3, the paths on average double in length after about 60 iterations.
In the extreme case of thep → ∞ approach, the travel times of paths

grow up to 3 times larger than the shortest path after 30 iterations.

Also, the variance increases significantly. Following 74 iterations, it

plateaus since all edges have been visited and all alternative paths

have been exhausted. Following this, the shortest path will always

be the one with the fewest number of edges (minimum “hops”),

which is not necessarily the actual shortest path.

5.5.2 Comparison of Different Source Target Pairs. What follows

is a comparison of the various methods in terms of path diversity,

entropy, redundancy and path length (travel time). For those exper-

iments we computed k=100 paths each for 25 random sets of source

and target vertices (cf. Figure 4). Figure 4(a) shows the diversity re-

sults (logarithmic scale). Diversity is low for the original k-shortest
path algorithm. Both randomization methods GR and PR generate
comparable results, which are close to one order of magnitude

larger than those of the original method. The penalization methods

generate the most diverse results. Even small penalization factors

(p=0.01) provide for an increase in diversity by 82.2% on average,

compared to the randomization approaches. Larger penalization

factors result in even more significant gains. Finally, the p → ∞

achieves 99.86% more diversity than the randomization approaches.

Figure 4(b) shows the results for measured entropy. The entropy

of a set of paths is another indicator of path diversity. The re-

sults are similar to diversity, but have some interesting differences.

Shortest-Path Diversification through Network Penalization:

A Washington DC Area Case Study IWCTS’19, November 5, 2019, Chicago, IL, USA

(a) Shortest path by Dijkstra’s algorithm (b) 100-Shortest paths by Yen’s algorithm

(c) 100 paths by total graph randomization (δ = 0.1) (d) 100 paths by previous-path randomization (δ = 0.1)

(e) 100 paths by penalization (p = 0.01) (f) 100 paths by penalization (p = 0.03)

(g) 100 paths by penalization (p = 0.1) (h) 100 paths by penalization (p →∞)

Figure 2: Diversity of 100 shortest paths computed between a fixed source-destination pair using different approaches.

The two randomization approaches achieve marginally higher en-

tropy compared to the original method. The penalization methods

manage to increase the entropy by at least 75% even with a small

penalization factor of 1%. Again, larger factors result in higher en-

tropy. The p →∞ approach achieves an entropy comparable to the

p=0.3 penalization in some cases. The reason here is that after it

plateaus and has visited most edges, it will always return the path

of the lowest number of edges, as shown in the example of Figure 3.

This causes the edges of this “last” frequently visited path to have

a significantly higher load and decreases the overall entropy.

IWCTS’19, November 5, 2019, Chicago, IL, USA Dan Cheng, Olga Gkountouna, Andreas Züfle, Dieter Pfoser, and Carola Wenk

0 20 40 60 80 100
iteration k

102

3 101

4 101

6 101

Tr
av
el
 ti
m
e
 [m

in
]

PP p=0.01
PP p=0.03

PP p=0.1
PP p=0.3

PP p->∞
PR δ=0.1

GR δ=0.1
k-shortest paths

Figure 3: Travel time of each of the k=100 paths

The redundancymeasurements are shown in Figure 4(c) in a scale

from 1 to 100. We observe a trend similar to the inverse of diversity

as the more diverse a set of paths is, the lower is its redundancy.

The original 100-shortest paths are highly redundant, i.e., close to

100. Randomization methods GR and PR achieve a redundancy of 35

and 39, respectively. All penalization methods generate path sets of

R=12 and below. The p → ∞ approach has the lowest redundancy

for all the source-target pairs, ranging from 1.1% to 1.5%.

Figure 4(d) shows the average path length (travel time). The

randomization methods produce paths with lengths close to that

of the original method (withing 2%). The penalization methods

for small p values, generates paths that have high diversity and

relatively small paths lengths. For p=0.01 the average path length is
increased by only 5.7% (compared to the original method), while the
result is 98% more diverse. The extreme case of penalization p → ∞

achieves high diversity at the cost of a very long paths.

5.5.3 Path Length versus Diversity. The trade-off between travel

time and path diversity is illustrated in Figure 5. This figure relates

the quality measures to resulting path length. Overall, we are trying

to find a set of “shortest” paths that is diverse and close to the length

of the actual shortest path.

Figure 5(a) plots diversity with respect to path length. We observe

two extremes, (i) the original k-shortest path method produces the

shortest but not at all diverse paths and (ii) the p → ∞ penalization

method produces the most diverse but also longest paths. Random-

ization methods perform close to the original method. However, if

we want to find the solution with the best trade-off between diver-

sity and length, we have to identify the set of points that belong to

the skyline [24] of high diversity and low travel time. This would

include all points that are not dominated by any other point in both

dimensions. Since PR is worse than GR in terms of both diversity

and travel time, PR is dominated by GR. The penalization methods

PP are not dominated by any other approach. Different values of

p achieve a different trade-off between diversity and length. As p
increases we gain in terms of higher diversity but lose in terms of

a greater path length. This relationship appears to be linear for the

penalization based approach, as shown in Figure 5(a).

Figure 5(b) shows the corresponding relationship between en-
tropy and path length. It is shown that none of the tested solutions

is dominated by any other approach. Increasing the p results in

longer paths, but also in increased entropy, which can be translated

as a better distribution of paths in the road network (load balance).

The relationship between average path length and redundancy
is presented in Figure 5(c). Looking at this graph as a more tradi-

tional skyline, we want to find the points that have low values for

both these quality metrics. All PP results are part of the skyline,

as they are not dominated in both dimensions by any other point.

The approach that appears to substantially lower the redundancy of
its result, while keeping a reasonable average travel time is PP for
penalization factors p of 0.01 and/to 0.03.

5.5.4 Scalability. Figure 6 shows the behavior of all approaches for
different values ofk . The first three graphs report the average values
of our quality metrics for 25 source-target pairs. Figure 6(a) shows

how the average diversity increases with k . While, the original

method is constant, the two randomization approaches are slow

growing, so do the penalization methods grow almost linearly with

k . The p → ∞methods plateaus at k=90 due to the saturation effect

of having visited all edges. Note that, by definition the diversity

cannot decrease when adding more paths to the result set. If we

keep computing the same path from some iteration and on, the

diversity will remain stable, which explains the behavior of the

p → ∞ curve.

Figure 6(b) shows a sublinear Entropy growth. All methods are

outperformed by the penalization variants PP by at least two orders
of magnitude. The entropy of PP p → ∞ increases rapidly and then

decreases after k=90 due to the above mention saturation effect and

eventually always visiting the path with the fewest edges.

Figure 6(c) shows the redundancy behavior. Note that the y-

axis uses a logarithmic scale. All methods shows similar rates of

growth. We clearly observe the k-shortest path approach having

the largest increase in redundancy, followed by the curves of PR and
GR. The redundancy of these approaches is approximately linear.

The penalization methods outperform all others and manage to

maintain low values of redundancy R<10, for any k . Again, the
p → ∞ approach exhibits interesting behavior. Initially, it shows

almost no redundancy, as it avoid picking the same edge more

than once unless the graph topology forces it to pick a duplicate.

Once this approach converges into the shortest number of hops,

the redundancy remains low, as most of the graph has already been

explored in the first iterations.

Finally, Figure 6(d) shows the path length (travel time) for every

iteration up to 500 paths, averaged over the 25 random source-target

pairs. Note that in this last graph, every measurement corresponds

to the kth path, not the set of the first k paths that were used for the

previous three graphs. The path length of the 500-shortest paths re-

mains almost stable for all iterations, showing that these 500 paths

do not differ substantially from each other. The path lengths of the

randomization approaches remain low and relatively close to the

original shortest paths, without experiencing significant variance.

An interesting observation is the path randomization approach

progressively yielding longer paths. The reason is that the most

commonly chosen paths chosen after randomization have progres-

sively more random noise added. While this noise is unbiased, it

increases the variance of the weight of the randomized edges. Con-

sequently, some edges may get very large weights, but extremely

low weights are impossible due to the constraint of having positive

weights. This adds a slight bias towards making the average edge

larger, thus creating a trend of preferring new edges. We also see

Shortest-Path Diversification through Network Penalization:
A Washington DC Area Case Study IWCTS’19, November 5, 2019, Chicago, IL, USA

source-target pair #

(a) Diversity

source-target pair #

(b) Entropy

source-target pair #

(c) Redundancy

source-target pair #

(d) Average travel time

Figure 4: Diversity, Entropy, Redundancy and Path length for 25 random source-target vertex pairs.

0 50 100
Diversity

30

40

50

60

70

Ov
er

al
l t

ra
ve

l t
im

e
[m

in
]

(a) Path length (travel time) vs. Diversity

0 500 1000 1500 2000
Entropy

30

40

50

60

70

Ov
er

al
l T

ra
ve

l T
im

e
[m

in
]

(b) Path length (travel time) vs. Entropy

0 20 40 60
Redundancy

30

40

50

60

70

Ov
er
al
l t
ra
ve

l t
im

e
[m

in
] PP p=0.01

PP p=0.03
PP p=0.1
PP p=0.3
PP p->∞
PR δ=0.1
GR δ=0.1
k- horte t path

(c) Path length (travel time) vs. Redundancy

Figure 5: Average path length (travel time) vs. Diversity, Entropy and Redundancy, for k=100 shortest paths.

that, for all approaches, the travel times is strongly correlated to

the entropy. This result is intuitive, as longer paths are more likely

to explore new areas of the network, thus increasing the entropy

of the distribution of visited edges.

6 CONCLUSIONS
This work addresses themeaningful diversification of possible paths

from a source to a target location. Solving this problem has appli-

cations for commuters, who want to reduce the monotony of their

daily travel patterns, for fleet navigation, where the task is to move

a large number of vehicles through the network, and load balancing,

which tries to reduce the traffic of bottlenecks in the road network.

First, we concluded that methods that compute (i) k-shortest paths
and (ii) the k disjoint shortest paths are too strict, either offering

too little diversity in practice, or involving unreasonable detours.

To identify a compromise, we test variations of the penalty method,

an approach that iteratively penalizes edges that have been used in

previous paths. Our approach allows one to balance the trade-off

between path length (travel time) and diversity using a single pa-

rameter p. We show theoretically that this approach is guaranteed

to find new paths. In our experimental evaluation, we first show

that different choices of p affect the network space explored by

IWCTS’19, November 5, 2019, Chicago, IL, USA Dan Cheng, Olga Gkountouna, Andreas Züfle, Dieter Pfoser, and Carola Wenk

0 100 200 300 400 500
iteration k

0

50

100

150

200

Di
ve

rs
ity

PP p=0.01
PP p=0.03

PP p=0.1
PP p=0.3

PP p->∞
PR δ=0.1

GR δ=0.1
k-shortest paths

(a) Diversity vs. k

0 100 200 300 400 500
iteration k

0

500

1000

1500

2000

2500

En
tro

py

PP p=0.01
PP p=0.03

PP p=0.1
PP p=0.3

PP p->∞
PR δ=0.1

GR δ=0.1
k-shortest paths

(b) Entropy vs. k

0 100 200 300 400 500
iteration k

100

101

102

103

Re
du

nd
an

cy

PP p=0.01
PP p=0.03

PP p=0.1
PP p=0.3

PP p->∞
PR δ=0.1

GR δ=0.1
k-shortest paths

(c) Redundancy vs. k

0 100 200 300 400 500
iteration k

30

40

50

60

70

80

90

100

Tr
av
el
 T
im

e
 f
 E
ac
h
Pa
th
 [m

in
]

PP p=0.01
PP p=0.03

PP p=0.1
PP p=0.3

PP p->∞
PR δ=0.1

GR δ=0.1
k-sh rtest paths

(d) Path length (travel time) of each path

Figure 6: Diversity, Entropy, Redundancy and Path length (travel time) for varying k .

our paths, while existing solutions fail to achieve reasonable diver-

sity. In our qualitative evaluation, we show that this trend prevails

for randomly chosen source and target locations, while incurring

reasonable run-times.

REFERENCES
[1] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. Alternative routes in

road networks. In International Symposium on Experimental Algorithms, pages
23–34. Springer, 2010.

[2] V. Akgün, E. Erkut, and R. Batta. On finding dissimilar paths. European Journal
of Operational Research, 121(2):232–246, 2000.

[3] H. Aljazzar and S. Leue. K∗: A heuristic search algorithm for finding the k shortest

paths. Artificial Intelligence, 175(18):2129–2154, 2011.
[4] R. Bader, J. Dees, R. Geisberger, and P. Sanders. Alternative route graphs in road

networks. In International Conference on Theory and Practice of Algorithms in
(Computer) Systems, pages 21–32. Springer, 2011.

[5] M. E. Baran and F. F. Wu. Network reconfiguration in distribution systems for loss

reduction and load balancing. IEEE Transactions on Power delivery, 4(2):1401–1407,
1989.

[6] R. Bhandari. Survivable networks: algorithms for diverse routing. Springer Science
& Business Media, 1999.

[7] T. Chondrogiannis, P. Bouros, J. Gamper, and U. Leser. Alternative routing:

k-shortest paths with limited overlap. In Proceedings of the 23rd SIGSPATIAL
International Conference on Advances in Geographic Information Systems, page 68.
ACM, 2015.

[8] T. Chondrogiannis, P. Bouros, J. Gamper, and U. Leser. Exact and approximate

algorithms for finding k-shortest paths with limited overlap. In 20th International
Conference on Extending Database Technology: EDBT 2017, pages 414–425, 2017.

[9] G. Cookson. Inrix global traffic scorecard (2017). INRIX Research, February,

(published February 2018).

[10] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck. Customizable route

planning. In International Symposium on Experimental Algorithms, pages 376–
387. Springer, 2011.

[11] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[12] D. Eppstein. Finding the k shortest paths. SIAM Journal on computing, 28(2):652–
673, 1998.

[13] M. Haklay and P. Weber. Openstreetmap: User-generated street maps. IEEE
Pervasive Computing, October-December:12–18, 2008.

[14] M. Kashem, V. Ganapathy, and G. Jasmon. Network reconfiguration for load

balancing in distribution networks. IEE Proceedings-Generation, Transmission and
Distribution, 146(6):563–567, 1999.

[15] N. Katoh, T. Ibaraki, and H. Mine. An efficient algorithm for k shortest simple

paths. Networks, 12(4):411–427, 1982.
[16] M. Kobitzsch. An alternative approach to alternative routes: Hidar. In European

Symposium on Algorithms, pages 613–624. Springer, 2013.
[17] M. Kobitzsch, M. Radermacher, and D. Schieferdecker. Evolution and evaluation

of the penalty method for alternative graphs. 2013.

[18] H. Liu, C. Jin, B. Yang, and A. Zhou. Finding top-k shortest paths with diversity.

IEEE Transactions on Knowledge and Data Engineering, 30(3):488–502, 2017.
[19] D. Luxen and D. Schieferdecker. Candidate sets for alternative routes in road

networks. In International Symposium on Experimental Algorithms, pages 260–270.
Springer, 2012.

[20] J. P. Rohrer, A. Jabbar, and J. P. Sterbenz. Path diversification: A multipath

resilience mechanism. In Design of Reliable Communication Networks, 2009.
DRCN 2009. 7th International Workshop on, pages 343–351. IEEE, 2009.

[21] D. Schrank, B. Eisele, T. Lomax, and J. Bak. Urban Mobility Scorecard. The Texas
A&M Transportation Institute and INRIX, 2015.

[22] J. Suurballe. Disjoint paths in a network. Networks, 4(2):125–145, 1974.
[23] J. W. Suurballe and R. E. Tarjan. A quick method for finding shortest pairs of

disjoint paths. Networks, 14(2):325–336, 1984.
[24] E. Tiakas, A. N. Papadopoulos, and Y. Manolopoulos. Skyline queries: An intro-

duction. In 2015 6th International Conference on Information, Intelligence, Systems
and Applications (IISA), pages 1–6, July 2015.

[25] J. Y. Yen. Finding the k shortest loopless paths in a network. Management Science,
17(11):712–716, 1971.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Methodology
	4.1 Edge Weight Randomization
	4.2 Edge Weight Penalization

	5 Experiments
	5.1 Data
	5.2 Method Overview
	5.3 Quality Criteria
	5.4 Qualitative Evaluation
	5.5 Experimental Results

	6 Conclusions
	References

