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Abstract

Spectral analysis of electron spin resonance (ESR) is a powerful technique for various in-
vestigations including characterization of spin systems, measurements of spin concentration,
and probing spin dynamics. The nitrogen-vacancy (NV) center in diamond is a promising mag-
netic sensor enabling improvement of ESR sensitivity to the level of a single spin. Therefore,
understanding the nature of NV-detected ESR (N'V-ESR) spectrum is critical for applications to
nanoscale ESR. Within this work we investigate the linewidth of NV-ESR from single substi-
tutional nitrogen centers (called P1 centers). NV-ESR is detected by a double electron-electron
resonance (DEER) technique. By studying the dependence of the DEER excitation bandwidth
on NV-ESR linewidth, we find that the spectral resolution is improved significantly and even-
tually limited by inhomogeneous broadening of the detected P1 ESR. Moreover, we show that

the NV-ESR linewidth can be as narrow as 0.3 MHz.

Introduction

Electron spin resonance (ESR) spectroscopy is a powerful technique to investigate properties of
magnetic systems and their local environments. '™ In particular, ESR spectral analysis, in which
the position, intensity, and line-shape of the ESR spectrum is carefully analyzed to extract spin pa-
rameters including g-values, hyperfine and spin-spin couplings, zero-field splittings and rotational
correlation times of systems, is widely and routinely used for characterizations and investigations
in science and engineering fields. Examples include identification of paramagnetic defect con-
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tents in semiconductors,”~" investigations of structures and conformational dynamics of biological

molecules,® 'Y and characterizations of photochemical reactions. =13

The nitrogen-vacancy (NV) center is of significant interest in quantum sensing due to its unique
properties. 1417 The NV center is an S = 1 spin system consisting of a single vacancy site located
adjacent to a nitrogen atom in the diamond lattice. The electronic structure of the NV center

enables optical readout and initialization of the spin system through optically detected magnetic

resonance (ODMR).!# In addition, the long-lived quantum coherence of the NV centers’ spin



states, 18,19

provides the NV center with high sensitivity to external magnetic fields, with fields as
small as 100 fT being reported.? Its atomic size combined with high sensitivity to magnetic fields
gives the NV center a sensing radius in the nanometer range, allowing ESR sensitivity to improve to
the level of a single electron spin.?! Using a single NV center, nanoscale ESR detection of several
types of spins in solid state and biological systems has been demonstrated.?'~2° For applications of
NV-detected ESR (denoted NV-ESR in this manuscript) spectral analysis, it is critical to understand
the nature of NV-ESR line-shape and to establish a procedure to obtain a high resolution spectrum
representing intrinsic properties of the sample.

Here we investigate the nature of an NV-ESR spectrum of single substitutional nitrogen defects
in diamond (called P1 centers). The NV-ESR spectrum is obtained using a double electron-electron
resonance (DEER) pulse sequence, which utilizes pulses at two distinct microwave (MW) frequen-
cies to coherently control the NV center and target spins. By studying the spectral line width as a
function of the DEER pulse length, we identify a significant contribution of the DEER excitation
bandwidth to the observed NV-ESR linewidth at short pulse lengths. At long pulse lengths, we
observe that the ESR linewidth is limited by inhomogeneous broadening of the detected P1 ESR
frequency (7, -limit), representing intrinsic spin dynamics of P1 spins. Moreover, by employing
a long DEER pulse, we observed that the ESR linewidth is as narrow as 0.3 MHz and, with the
improvement of the spectral resolution, we clearly resolve a small splitting (2 MHz) in P1 ESR that

originates from the anisotropic hyperfine coupling and four different orientations of the P1 spins.

Materials and Methods

Diamond sample

A single crystal (2.0 x 2.0 x 0.3 mm?) of (111)-cut high pressure high temperature type-Ib dia-

mond (purchased from Sumitomo electric industries) was used in this study.



115 GHz ESR spectroscopy

The 230 GHz/115 GHz ESR system employs a high-power solid-state source consists of an 8-
10 GHz synthesizer, pin switch, microwave amplifiers, and frequency multipliers. The output
power of the source system is 100 mW at 230 GHz and 700 mW at 115 GHz. The 230/115 GHz
excitation is propagated using a quasioptical bridge and a corrugated waveguide and couples to
a sample located at the center of a 12.1 T cryogenic-free superconducting magnet. ESR signals
are isolated from the excitation using induction mode operation.>? For ESR detection, we employ
a superheterodyne detection system in which 115 GHz is down-converted into the intermediate
frequency (IF) of 3 GHz then down-converted again to in-phase and quadrature components of dc
signals. Details of the system have been described elsewhere.3!-3? In the present experiment, the
magnetic field modulation strength was adjusted to maximize the intensity of ESR signals without
distorting the lineshape (typical modulation amplitude of 0.02 mT with modulation frequency of

20 kHz).

ODMR spectroscopy

The ODMR system is based on a homebuilt confocal microscope system. A 100-mW 532-nm
laser (Crystalaser) is passed through an acousto-optic modulator (Isomet 1250C) before being di-
rected through a low-pass filter (Omega) and into a single mode fiber (Thorlabs). The output of the
fiber is directed through a dichroic mirror and up through a microscope objective (Zeiss 100X) to
the sample stage. Fluorescence (FL) is detected by an avalanche photodiode (Excelitas) through
a high-pass filter (Omega) and another single mode fiber. The autocorrelation measurement is
performed with a Hanbury Brown-Twiss interferometer.3* For ODMR, microwave (MW) excita-
tion is directed from the sources (Stanford Research Systems SG386 and Rohde-Schwarz SML03)
through a power combiner, and a high gain amplifier to the sample stage. A 20 um gold wire is

placed on the surface of the diamond for MW excitation and coherent control of the NV centers.



Results and Discussion
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Figure 1: CW ESR spectrum of P1 centers taken at 115 GHz at room temperature. The inset graph
shows the spectrum of the m; = —1 ESR signal. The ESR linewidth is 0.15 £0.02 mT. A field
modulation of 0.01 mT at 20 kHz and a field sweep rate of 0.01 mT/s were used.

We first perform 115 GHz continuous wave ESR (CW ESR) spectroscopy to identify impurity
contents within the diamond sample. Figure 1 shows CW ESR data of the diamond sample with
application of an external magnetic field along the [111] direction. We observe five pronounced
ESR signals from P1 centers (S=1/2,1 =1, Ayy=82MHzandA, =114 MHz).” The intensity of
115 GHz wave excitation was reduced to avoid the saturation of the ESR signal and the intensity of
magnetic field modulation was carefully adjusted to maximize the signal-to-noise ratio of the ESR
signal without distortion. The P1 spectrum consists of five ESR signals due to the four possible
orientations of P1 and the anisotropic hyperfine coupling. Namely, the signals at 4.104, 4.108 and
4.113 T correspond to the ESR of P1 centers oriented along the [111] direction while the signals at
4.105, 4.108 and 4.112 T are from the other three orientations, [111], [111], and [111]. As shown
in the inset of Fig. 1, the linewidth of the observed ESR is 0.15+0.02 mT for the signal at 4.113
T.

We next measure P1 ESR using a single NV center in diamond. For NV-ESR measurements,
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Figure 2: ODMR experiment to identify a NV center. (a) Diagram of the experimental setup. (b)
Spatial FL image with NV1 indicated in the solid red circle. (¢) Autocorrelation measurement of
NVI1. The dotted red line drawn at 0.5 indicates the threshold for single quantum emitters. (d)
CW ODMR signals from the lower (|0) <» |—1)) and upper (|0) <> |41)) transitions. The signal is
normalized by the FL intensity without MW excitation.



we employ a homebuilt ODMR system as shown in Fig. 2(a). Figure 2(b) shows a FL image of
the diamond sample as well as an isolated FL peak for the present experiment (denoted as NV1).
An autocorrelation measurement, as shown in Fig. 2(c), shows a dip in the signal at ¢t = 0O that
proves the FL emission is from a single quantum emitter. CW ODMR measurements, where the
FL intensity is monitored while sweeping the microwave frequency, are then performed on the
isolated FL spot, as shown in Fig. 2(d). The observed ODMR signals correspond to the mg = —1
and mg = 0, and the mg = +1 and mg = 0 transitions of the NV center (S = 1, g = 2.0028 and
D = 2.87 GHz). Therefore, we determine this spot to be a single NV center. From the observed
ODMR frequencies we determined the applied magnetic field to be 33.4 mT with a polar angle of

6.1 +0.1 degrees from the [111] axis.
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Figure 3: Pulsed ODMR data collected from NV1 at 33.4 mT. (a) Measurement of Rabi oscil-
lations. The Rabi oscillations show a 7 pulse time of 40 ns. The pulse sequence is shown in
the inset. The data is normalized to reflect the probability of the NV center being in the mg = 0
state (P|mg = 0)).2* For all pulsed ODMR presented, a 5 us laser pulse is used to initialize the
spin state while a 300 ns laser pulse is used for readout. Microwave pulses (shown as blue rect-
angles) are applied to drive the |0) <+ |—1) transition. Each pulse sequence is repeated 10*-10°
times for an unweighted averaging of each data point. (b) Spin echo measurement. The spin echo

data shows a spin decoherence time (73) of 40 us for NV1. Data is shown in agreement with
1) = expl—(1/Ts)]. 334

Next, we perform the NV-ESR experiment. We first conduct Rabi oscillation and spin echo
(SE) measurements to determine pulse lengths and the spin coherence time (7;) for NV-ESR. As

shown in the inset of Fig. 3(a), the Rabi measurement is performed by first initializing the spin
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Figure 4: NV-ESR of NV1 with 7 = 5.7 us. (a) NV-ESR spectrum obtained for NV1 with a 56-ns
MW?2 m-pulse. SE intensity at the same 7 is shown as a reference. The DEER pulse length was
chosen to maximize signal for the axial P1 orientation. ESR frequencies calculated from the P1
spin Hamiltonian are shown in the stick spectrum. (b) Rabi oscillations of P1 centers measured
by NV-ESR. The NV-ESR signal is plotted against ,, (solid black). The distance to the end of the
sequence is indicated by 7" and was 5.7 (2.0) us for the upper (lower) data. SE data (Solid blue) is
shown as a reference. The simulation using Eq. 1 is shown in red. The pulse sequence used for the
NV-ESR Rabi experiment is shown to the right.



state into |0) with a long laser pulse before applying a variable length of MW pulses. The final
spin state is then read out using a short laser pulse to induce FL from the NV center (see the inset
of Fig. 3(a)). T, is measured using a Hahn spin echo sequence (see the inset of Fig. 3(b)). We
determined the 7> of NV1 to be 40 us. After the Rabi and SE experiments, we perform NV-ESR
using a DEER technique, as shown in Fig. 4(a). NV-ESR is performed by measuring the change in
a coherent state of the NV center as a function of the frequency of the DEER pulse. The coherent
state change is induced by a shift of the magnetic dipole field of target spins due to the population
inversion of target spins induced by the DEER pulse. For this measurement, a 7 of 5.7 us was
chosen to reduce decoherence of the NV center. As shown in Fig. 4(a), the resulting spectrum
exhibits five peaks, in agreement with P1 ESR. In the measurement, the MW intensity is adjusted
to ensure the DEER pulse length performs a 7 rotation of the P1 center spins. Figure 4(b) shows
Rabi oscillations of P1 centers measured by NV-ESR with different 7' values (see the sequence in
Fig. 4(b)). To explain the results, we consider the following NV-ESR model which describes the
spin dynamics of an ensemble of two-level systems.3® Using this model, the intensity of NV-ESR

is given by,

—2mloMeny 88T < . 2 9> }
INv—Esgr = exp n{ sin” — (D
9/3h 2/,

where g is the vacuum permeability, up is the Bohr magneton, gyy is the g-value of the NV
center, gp is the g value of target spins, 7 is the time for phase to accumulate after application of
the DEER pulse, 7 is the reduced Planck constant, and 7 is the concentration of target spins. The

(sin2 %) 1 term represents the effective population inversion of the DEER pulse given as,

(w3) = earre

x sin’ ( (& —w)>+ QZ%’)L(&A@)d& )
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where Q is the Rabi frequency of the target spins, @ is the frequency of MW2, ¢, is the applied
pulse length, and L(&; Aw) is an intrinsic ESR line of P1 spins where A® represents the linewidth.

Therefore, Eq. 2 includes the effects of the MW excitation and the ESR line on the NV-ESR signal.



The P1 Rabi data were simulated with Eq. 1 by fixing T while allowing n to vary. As shown in
Fig. 4(b), the simulations were found to be in good agreement with the experiments. We found
that NV-ESR intensity depends on the value of 7. As shown in Fig. 4(b), NV-ESR with 7 = 2.0
s exhibits a high intensity contrast between 7 and 7 /2 pulses.

We seek to determine the origin of the observed linewidth in Fig. 4(a) by extracting the contri-
bution from the MW excitation bandwidth. The contribution is studied by analyzing the NV-ESR
linewidth as a function of the DEER pulse length (z,). In the experiment, the MW power is ad-
justed to maintain a m-pulse for all pulse lengths. As shown in Fig. 5(a), the spectrum narrows
and the shape of the spectrum changes as the pulse length of the DEER pulse increases. In order
to characterize the linewidth, we fit each spectrum to a sum of two Lorentzians with resonance
positions for all orientations of P1 centers (i.e., m; = 0 transitions for the [111] orientation and
the other three orientations at 943 and 945 MHz, respectively). The extracted full widths at half
maximum (FWHM) are summarized in Fig. 5(b) where the linewidths strongly depend on ¢, below
aty of 0.4 us. To explain the dependence of the pulse length on the linewidth, we analyze con-
tributions to the linewidth by fitting FWHM calculated using Eq. 1 with the experimental FWHM
where A® (Lorentzian linewidth) is a fit parameter. As shown in Fig. 5(b), we found excellent
agreement with the observed linewidths with Aw = 1.6 MHz with 90% confidence bounds of
(1.4,1.8) MHz. In the figure, we also show partial contributions of the MW excitation and A®
where the contribution of the MW excitation bandwidth is obtained by numerical calculation of
FWHM using L(&;Aw) = (&) in Eq. 1. This analysis verified that the MW excitation bandwidth
is a major contribution of the NV-ESR linewidth when t, is shorter than ~0.4 us. As shown in
the inset of Fig. 5(b), the observed NV-ESR spectrum is well-explained by the simulation using
Eq. 1 with Aw = 1.6 MHz. Moreover, the obtained high spectral resolution NV-ESR spectrum
allows clear identification of the m; = 0 P1 ESR signals for the [111] orientation and the non-[111]
orientations which are separated by only 2 MHz. This small splitting was not well resolved in a
previous experiment performed at a similar magnetic field.?? The splitting is due to the contribu-

tion of the anisotropic hyperfine interaction comparable to the Zeeman energy at the low magnetic
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Figure 5: Dependence of DEER pulse length on NV-ESR linewidth. (a) NV-ESR spectra taken us-
ing various 7-pulse lengths; 7-pulse lengths are indicated in the legend. (b) The NV-ESR linewidth
as a function of the pulse length. The red solid line is the result of a nonlinear least squares regres-
sion using Eq. 1 and A® = 1.6 (90 % confidence bounds of (1.4,1.8)) MHz. Fitting was done with
weights 1/62. The blue and green dashed lines show partial contributions. The blue dashed line
is the MW excitation bandwidth, while the green dashed line shows A®. The inset graph shows
the spectrum taken using a 7-pulse of 1 us. The spectrum was normalized for the probability of
the NV |0) state. The simulated spectrum based on a linewidth of 1.6 MHz is shown in red. (c)
Ramsey measurement using NV-ESR to measure 7,". Pulses were applied 2 ps before the end of
the sequence. The pulse sequence used for NV-ESR Ramsey is shown to the right. The spacing
between the pulses (t) was varied in the NV-ESR Ramsey measurement (Sig.). A reference ex-
periment was performed concurrently with the position of a single 7-pulse being varied by . NV
center (P1 center) pulse times were 40 (64) and 24 (32) ns, for the 7 and /2 pulses respectively.
The fit is shown in red.
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field which sets the ESR frequency from the non-[111] orientations to 945 MHz at 33.4 mT while
the [111] orientation remains at 943 MHz. We next confirm the nature of the intrinsic linewidth
A® = 1.6 MHz by comparing with the spin dephasing time (75°). T, relaxation time originates
from an inhomogeneous distribution of ESR frequencies and represents the linewidth in many
conventional ESR experiments. Given the 7 and /2 pulse lengths with 7 = 2 us as shown in
Fig. 4(b), we perform a DEER Ramsey experiment to measure 75". To confirm the observed sig-
nal, a concurrent experiment varying the position of the m-pulse (Ref.) was performed with the
sequence shown in Fig. 5(c). We observed exponential behavior from the Ramsey measurement,
as shown in Fig. 5(c). The observed signal was then analyzed by fitting the data with Eq. 1 where
(sin? %) L = —exp(t/T;). We observed a 7, = 118 + 34 ns from the analysis for NV1. The value
of T;" corresponds to a FWHM of 2.7+ 1.0 MHz, a value in reasonable agreement with the A
extracted from frequency measurements. Furthermore, from the analysis of the NV-ESR intensity
at 943 MHz, the detected magnetic dipole field (Bp;,) is =420 nT. 23 This strength of the magnetic
field corresponds to an axially aligned single spin at a distance of ~16 nm.

Moreover, we investigate NV-ESR spectroscopy with other single NV centers (NV2-5). As
summarized in Fig. 6, NV2-5 also exhibit a strong pulse length dependence similar to what we ob-
served in NV1. For NV2, Aw of 0.9 (0.9, 1.0) MHz was observed in agreement with the measured
T; of 240 £ 125 ns, as shown in Fig. 6(a). The linewidth observed for NV3 (Aw = 1.0 MHz) was
similar to that of NV2 (Fig. 6(b)). The linewidth observed for NV4 and NV5 (Aw = 0.3 MHz)
was similar in magnitude, but significantly smaller than NV1-3 (Fig. 6(c) and (d)). For NV4, we
measure the m; = 0 ESR transition and resolve a very narrow linewidth that allowed for clear res-
olution of the two peaks originated from the [111] and the other orientations of P1 spins. In NV5,
the NV-ESR linewidth with a pulse length of 2 s was only 0.3 (0.2, 0.4) MHz. Overall, the results
from NV 1-5 provide clear examples of nanoscale ESR investigation of the inhomogeneity in ESR
signals. This is shown by variation in ESR linewidths as measured by different NVs located within
the same diamond crystal. Moreover, the observed linewidths of NV-ESR are much smaller than

that in HF ESR (see Fig. 1). This is most likely because of the significant difference in the sample
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Figure 6: Dependence of DEER pulse length on NV-ESR linewidth for NVs 2-5. @y was set
to the resonance position(s) for linewidth extraction as discussed in the main text. (a) Result of
NV2. 7=19.5 us and By = 37.7 mT. The red solid line shows the fit result and the blue and
green dashed lines show partial contributions from the MW excitation and Aw, respectively. From
the fit, Aw = 0.9(0.9,1.0) MHz was obtained. The inset graph shows the spectrum taken using
a m-pulse of 1 us (green) with the fitted spectrum shown in red. (b) Result of NV3. 7 =15 us
and By = 37.8 mT. From the fit, Aw = 1.0(0.5,1.5) MHz was obtained. The inset graph shows
the spectrum taken using a 7-pulse of 1 us. (c) Result of NV4. 7 =8.81 us and By = 32.7 mT.
Linewidth data was extracted using a sum of two equal-width Lorentzians with w; and @, set to
be 941 and 943 MHz respectively. From the fit, Aw = 0.3(0.0,0.6) MHz was obtained. The inset
graph shows the spectrum taken using a m-pulse of 1.6 us with the simulated spectrum shown in
red. (d) Result of NV5. 7 =15 us and By = 37.8 mT. From the fit, Aw = 0.3(0.2,0.4) MHz was
extracted. The inset graph shows the spectrum taken using a 7-pulse of 2 us.
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size between the two experiments. Conventional ESR obtains signal from all spins within the mil-
limeter scale sample while the sample volume in NV-ESR is confined within several to a-few-tens
of nanometers from the NV center. This significantly smaller size of the sample volume limits the
number of detected P1 spins. In the present case, P1 ESR in the nanometer-scaled sample volume
has significantly smaller inhomogeneity compared with conventional ESR. As shown by the pre-
vious conventional ESR investigations, there are two major contributions to the P1 ESR linewidth;
hyperfine couplings to '>C nuclear spin baths and magnetic dipole couplings to P1 spin baths.36-38
When the P1 concentration is low, the ESR linewidth as narrow as ~0.3 MHz is broadened by
the hyperfine couplings to the '*C nuclear spin baths. On the other hand, when the P1 concentra-
tion is high, the linewidth is broader due to the coupling of the P1 spin baths and depends on the
P1 concentration. Therefore the present result strongly suggests that the variation of observed P1
linewidths is due to inhomogeneity of densities and spatial configurations of P1 spin baths within
the detected nanoscale volume. Furthermore, for NV 4 and 5, the contribution from the P1 spin

baths is negligible on the linewidths (~0.3 MHz) while the hyperfine coupling to '3C spin baths is

the major contribution.

Conclusion

Within this article we investigated the nature of the NV-ESR linewidth by studying P1 ESR. We
found that the spectral resolution depends strongly on the length of the DEER pulse. This was
particularly evident when pulse lengths are shorter than 0.4 us. Upon using long pulse lengths, the
minimum resolved linewidth was found to be limited by inhomogeneous broadening of P1 ESR
(T -limit). This linewidth was found to vary between NV centers, indicating spatial inhomogene-
ity of local magnetic fields surrounding each NV center. Since NV-ESR is useful for investigation
of many spin systems with single spin sensitivity, the ability to perform high-resolution NV-ESR is
critical. The present work provides important context into the improvement of spectral resolution.

In particular, we demonstrated resolution of a small ESR splitting (2 MHz) by improving the spec-
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tral resolution and identified dominant coupling between P1 and surrounding electron and nuclear
spins. Furthermore, the present technique will be applicable for various NV-ESR investigations

including identification of multiple types of spins and study of spin dynamics.
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