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Abstract

We consider a renormalization transformationR for skew-product maps of the

type that arise in a spectral analysis of the Hofstadter Hamiltonian. Periodic

orbits ofR determine universal constants analogous to the critical exponents in

the theory of phase transitions. Restricting to skew-product maps over circle-

rotations by the golden mean, we find several periodic orbits for R, and we

conjecture that there are infinitely many. Interestingly, all scaling factors that

have been determined to high accuracy appear to be algebraically related to the

circle-rotation number. We present evidence that these values describe (among

other things) local scaling properties of the Hofstadter spectrum.
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(Some figures may appear in colour only in the online journal)

1. The Hofstadter model

The spectrum of the Hofstadter Hamiltonian [1, 2] is known to exhibit local self-similarity

and scaling properties. Scaling behavior can also be observed for related dynamic quantities

such as the Lyapunov exponent and the fibered rotation number. Our goal here is to describe

such phenomena within the framework of renormalization. Restricting to some specific cases,

we argue that the observed scaling constants are universal, and that many can be computed

exactly. Some of our results are rigorous, while others are based on numerical computations

and hypotheses that remain to be verified.

The Hofstadter Hamiltonian describes Bloch electrons moving on Z2 under the influence

of a magnetic flux 2πα through each unit cell. It is given by
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Figure 1. Positive-energy part of the Hofstadter butterfly.

Hα
= λ′(Uα + U∗

α)+ λ(Vα + V∗
α), UαVαU

−1
α V−1

α = e−2πiα, (1.1)

where Uα,Vα are magnetic translations and λ,λ′ are positive constants. In the Landau gauge,
(Uαφ)(n,m) = φ(n− 1,m) and (Vαφ)(n,m) = e2πinαφ(n,m− 1).

For rationalα = m/nwithm and n coprime, the spectrum ofHα consists of b bands (closed

intervals), separated by gaps (open intervals), where b = n for odd n and b = n− 1 for even

n [8]. In the limit m, n→∞ where m/n approaches an irrational value, the width of these

bands tends to zero, while the gaps stay open in the sense described below. Another important

observation [5] is the following. Consider the integrated density of states d(α,E) = 〈δ0,Pα
Eδ0〉,

where Pα
E is the spectral projection for Hα associated with the interval (−∞,E ], and where δ0

is the Kronecker delta at the origin. For each spectral gap there exists an index k ∈ Z2, also

known as the Hall conductance, such that

d(α,E) ≡ kα (mod 1) , (1.2)

for all energies E in that gap. This relation is commonly referred to as ‘gap labeling’ [6].

Conversely, given any integer k, it is known that there is a unique spectral gap with index k for

Liouville values of α [9, 19], and for Diophantine values [20] in the case λ′ 6= λ. (For rational
α = m/n with m and n co-prime, the same holds if n > 2|k|.)

The spectrum for irrational α is a Cantor set [19] of measure 4|λ′ − λ|, as was conjectured
in [3] and proved later in [11, 12]. The generalized eigenfunctions for λ > λ′ are localized in
the n-direction and extended in the m-direction; the same holds for λ′ > λ, but with m and n

exchanged.

The dual Hamiltonian, obtained by interchanging λ and λ′, is unitarily equivalent to Hα.

Of particular interest is the self-dual case λ = λ′. The spectrum for this family of operators

Hα, plotted as points (α,E) in the plane, is known as the Hofstadter butterfly [2]. The positive-
energy part is shown in figure 1 for λ = λ′ = 1. To be more precise, the solid regions are the

spectral gaps, and the color encodes the gap index k. The largest regions are for k = 0 (white)

and k = ±1.

There exists an extensive literature on the topological features of theHofstadter butterfly and

their connection with continued fractions; see e.g. [13, 14, 16, 22] and references therein. In

this paper, we are interested mostly in metric properties, especially accumulation phenomena

in the energy direction, or for variations in λ. Other scaling properties will be described as

well.

Below we consider enlargements of figure 1 about a point p = (α′,E′), using an expanding
map M : (α,E) 7→ (α′ + u(α− α′),E′ + v(E− E′)). We call a set S ∈ R

2 self-similar near p,
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Figure 2. 3-step and 6-step enlargements of the Hofstadter butterfly near (α∗, 0).

with period ℓ, if for every open setU ⊂ R2, the sequence of true/false values n 7→ U ∩MnS = ∅
is asymptotically periodic with period ℓ. The numbers |u|ℓ and |v|ℓ will be referred to as ℓ-step
scaling factors.

To simplify the analysis, we focus mainly on the inverse golden mean α∗ =
1
2
(
√
5− 1).

Figure 2 shows successive magnifications of the Hofstadter butterfly near the point (α∗, 0). As
will be described below, each magnification step is a composition of three enlargement steps,

and self-similarity is observed with a period ℓ = 6. Based on high-accuracy computations, we

conjecture that the six-step scaling factor µ1 in the energy direction is the largest root of the

polynomial P6 given below. Its numerical value is µ1 = 196.29 . . .
Another scaling of the Hofstadter butterfly was described in [24] near the point (α∗,E∗),

where E∗ = 2.597 . . . is the largest value in the spectrum of Hα∗ . By symmetry, the same is

observed at the lowest energy in the spectrum, E3 = −E∗. At these energies, self-similarity

is observed with a period ℓ = 3, and the three-step scaling factor is µ1 = 30.790 . . . We

conjecture that µ1 is the largest root of P3, where

P3(z) = z4 − 30z3 − 24z2 − 10z− 1,

P6(z) = z4 − 196z3 − 58z2 − 4z+ 1.
(1.3)

We note that the product of the two real roots of Pℓ is (−α∗)−ℓ. Their average ζ satisfies ζ2 −
15ζ − 5 = 0 in the case ℓ = 3, and ζ2 − 98ζ − 19 = 0 in the case ℓ = 6. Using these relations,

it is easy to write down explicit expressions for the real roots of Pℓ.

Remark 1. The scaling points (α∗,Eℓ) for ℓ = 3 and ℓ = 6 are part of an infinite sequence

where we expect similar behavior. The mechanism that will be described below allows for

periods ℓ ∈ {3, 6, 24, 12, 60, . . .}. In what follows, ℓ can be any of these numbers, unless a

specific value is given.

Besides the cases ℓ = 3 and ℓ = 6 described above, our numerical results cover ℓ = 24 and

ℓ = 12 as well, but those are not accurate enough to yield a good guess for the polynomialPℓ.

The corresponding energies are E24 = 1.888 . . . and E12 = 1.990 . . . , respectively.

2. Skew-product maps

The Hamiltonian Hα commutes with the dual magnetic translations, one of which is given by

(Uαφ)(n,m) = φ(n,m− 1). So its spectrum can be determined by restrictingHα to generalized

eigenfunctionsφξ(n,m) = e−2πimξun of the translationUα. The restricted HamiltonianHα, also

known as the almost Mathieu (AM) Hamiltonian, is defined by (Hαφξ)(n,m) = e−2πimξ(Hαu)n
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and, for λ′ = 1, takes the form of a Schrödinger operator

(Hαu)n = un−1 + un+1 + V(nα)un, n ∈ Z, (2.1)

with (quasi) periodic potential V(x) = 2λ cos(2π(x + ξ)). The equation Hαu = Eu for a

generalized eigenvector ofHα can be written as

[

un+1

un

]

= A(nα)

[

un
un−1

]

, A(x) =

[

E − V(x) −1

1 0

]

∈ SL(2,R). (2.2)

When combined with a rotation x 7→ x + α of the circle T = R/Z, this recursion defines a

skew-product map G,

G(x, y) = (x + α,A(x)y), x ∈ T, y ∈ R
2. (2.3)

Two dynamical quantities of interest here are the Lyapunov exponent L(G) and the fibered

rotation number ̺(G). They can be defined as follows. Let G be a lift of the map (x, y) 7→
(

x + α‖A(x)y‖−1A(x)y
)

from T× S to T× R, where S denotes the unit circle ‖y‖ = 1 in R2.

Then

L(G) = lim
n→∞

1

n
log ‖(mat Gn)(x)‖, ̺(G) = lim

n→∞
1

2πn
arg Gn(x,ϑ). (2.4)

Here, matGn denotes the matrix part ofGn, and arg(x,ϑ) = ϑ. Assuming that A : T→ SL(2,R)

is continuous and α irrational, the limit for ̺(G) exists, is independent of x and ϑ, independent
modulo 1 of the choice of the lift G, and convergence is uniform. Under the same assumptions,

the limit for L(G) exists and is a.e. constant in x. If G is the AM skew-product for energy E,

the fibered rotation number is related to the density of states via d(α,E) ≡ −2̺(G) modulo 1.

Furthermore, L(G) = max(0, log|λ|), if E belongs to the spectrum of Hα. For proofs of these

facts we refer to [4, 6, 7, 18]. Concerning the Lyapunov exponent for arbitrary energies, what

is known e.g. is the asymptotic behavior as λ→∞ for Schrödinger potentials V = λv with v
analytic; see [23] and references therein.

Denote by L(E) and ̺(E) Lyapunov exponent and fibered rotation number, respectively, for

the self-dual AM map at energy E. Consider one of the scaling points mentioned in remark 1.

Presumably, the energy Eℓ belongs to the spectrum of Hα∗ . Let ǫ = |E− Eℓ|. The graph on the
left in figure 3 shows the logarithm of L(E) as a function of logǫ in the case ℓ = 3. The graph

on the right shows the logarithm of R(E) = 2|̺(E)− ̺(Eℓ)| versus logǫ in the case ℓ = 6. The

following formula matches our data at the precision available, with ℓ ∈ {3, 6} and f ∈ {L,R}.

f (E) ≃ C±(log ǫ)ǫτ , τ =
ℓ log(α−1

∗ )

log(µ1)
, (2.5)

as E→ Eℓ from below (−) or from above (+). The functions C± are periodic with period

log(µ1), where µ1 is the largest root of Pℓ. Here C± depends on (ℓ, f), while µ1 only depends

on ℓ. The conjectured asymptotics (2.5) is based on our renormalization analysis described

below, and we believe that the same holds for any ℓ ∈ {3, 6, 24, 12, . . .} and f ∈ {L,R}. The
constant µ1 is an analogue of a critical index in the theory of critical phenomena. We note

that the case ℓ = 3 has an exceptional feature: since E3 lies at the bottom of the spectrum, the

function C− is zero for f = R and constant for f = L.
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Figure 3. Scaling of L as E ↑ E3 (left) and of 1/4 − ̺ as E ↓ E6 = 0 (right).

3. Renormalization

The observation of such asymptotic scaling suggests that a suitable renormalization trans-

formation R for skew-product maps has a periodic point P∗ of period ℓ, and that µ1 is

the largest eigenvalue of the derivative DRℓ(P∗). Let G be a skew-product map as in (2.3),

henceforth abbreviated as G = (α,A). Regard G as a map on R× R2. If G arises from a

Schrödinger operator (2.1) with a 1-periodic potential V, then we pair G with a second skew-

product map F = (1, I ). The 1-periodicity of the matrix function A is expressed by the fact

that G commutes with F. As was observed and used in [24], the AM map G with potential

V(x) = 2λ cos(2π(x + ξ)) and ξ = α/2 is reversible, in the sense that

G−1
= SGS, S(x, y) = (−x, Sy), S =

[

0 1

1 0

]

. (3.1)

Thus,we restrict now to pairsP = (F,G) that are reversible, andwe choose our renormalization

transformation to preserve reversibility, provided that F and G commute. The matrix parts of

F and G are always assumed to take values in SL(2,R). The transformation R considered in

[24] is given by

R(P) =
(

Λ
−1
1 GΛ1,Λ

−1
1 FG−1

Λ1

)

, Λ1(x, y) =
(

α∗x, Se
σ1Sy

)

, (3.2)

whereσ1 = σ1(P) is determined by a suitable normalization condition.We note that this choice

ofR is tailored to the study of skew-productmapsG = (α,A) with α = α∗. Due to the identity
1− α∗ = α2

∗, a pair ((1,B), (α∗,A)) is mapped to a pair ((1,B1), (α∗,A1)). Analogous transfor-

mations can be defined for other quadratic irrationalsα. Approximate renormalization schemes

and limiting cases have been considered earlier in [15, 17].

It is instructive to consider what happens to fibered rotation numbers under renormalization.

Let F = (β,B) andG = (α,A), with α and β irrational. Assume that A and B are continuous 1-

periodic functions on R, taking values in SL(2,R). If F and G commute, then ̺(FG) ≡ ̺(F)+
̺(G) modulo 1. This follows e.g. from the uniform convergence [6] of the second limit in (2.4).

As a consequence, if (F1,G1) = R(F,G), then

[

̺(F1)

̺(G1)

]

≡
[

0 1

1 −1

] [

̺(F)
̺(G)

]

(mod 1). (3.3)

This equation defines a hyperbolic map of the torus T2, related to Arnold’s cat map [10]. It

has a dense set of periodic orbits, with homoclinic or heteroclinic connections between any

two them. In particular, every point
[

0
m/n

]

lies on a periodic orbit. If m and n are coprime,
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then its period agrees with the fundamental period ℓ(n) of the Fibonacci sequence modulo n.

To see why, multiply both rotation vectors in (3.3) by n, to get a congruence modulo n over

the integers. Denoting by U the 2× 2 matrix in (3.3), the condition for a period ℓ is Uℓ ≡ I

modulo n. A straightforward computation shows that this condition holds if and only if ℓ is
a period of the Fibonacci sequence modulo n. The smallest such integer ℓ > 0 is known as

the Pisano period ℓ(n). The two periods described earlier are ℓ(2) = 3 and ℓ(4) = 6. Periods

ℓ(n) with odd n are not expected to occur in the AM model, due to a symmetry that implies

̺(E)+ ̺(−E) ≡ 1
2
modulo 1.

An explicit computation (with A and B constant rotations) shows that the transformationR

has a ‘trivial’ invariant two-torus on which R is conjugate to the map (3.3). Presumably, this

torus attracts AM pairs for λ ≪ 1, but we did not study this situation. For the ‘critical’ maps

considered here, such an invariant torus may exist as well, but the conjugacy is unlikely to be

smooth (based on the observed eigenvalues). In any case, if orbits with periods ℓ(n) for odd n
exist in a suitable space, then the closure of this set should carry uncountably many aperiodic

recurrent orbits forR.

For even n, the Pisano period ℓ(n) is a multiple of 3. Thus, we restrict our analysis to iter-

ates Rℓ with ℓ a multiple of 3. Notice that Rℓ(P) can be obtained by first iterating (F,G) 7→
(G,FG−1)ℓ times, and then conjugating the resulting maps with a scaling

Λℓ(x, y) =
(

αℓ
∗x, S

ℓeσℓSy
)

, (3.4)

where σℓ = σℓ(P) is determined by a suitable normalization condition.

The following result is a slight extension of theorem 1.1 in [24].

Theorem 3.1. R
3 has a reversible fixed point P∗ = (F∗,G∗) with F∗ and G∗ commuting.

P∗ is not a fixed point of R. The matrix parts of F∗ and G∗ are non-constant and extend to
entire analytic functions. The scaling exponent σ∗ = σ3(P∗) is positive and satisfies the bound
|σ∗ − c3| < 10−443, where c3 =

1
2
cosh−1(α−1

∗ ).

We conjecture that σ∗ = c3 and note that the squared y-scaling factors e±2c3 are the real

roots of the polynomialQ3(z) = z4 − 2z3 − 2z2 − 2z+ 1.

The following theorem is proved in [25].

Theorem 3.2. R
6 has a reversible fixed point P∗ = (F∗,G∗) with F∗ and G∗ commuting.

P∗ is not a fixed point of Rk for any positive k < 6. The matrix parts of F∗ and G∗ are non-
constant and extend to entire analytic functions. The scaling exponent σ∗ = σ6(P∗) is positive
and satisfies the bound |σ∗ − c6| < 10−431, where c6 =

1
2
cosh−1(α−3

∗ ).

We conjecture that σ∗ = c6 and note that e
±2c6 are the real roots of the polynomialQ6(z) =

z4 − 8z3 − 2z2 − 8z+ 1.

The fixed point P∗ described in theorem 3.1 (theorem 3.2) can be associated with the Pisano

period ℓ = ℓ(n) for n = 2 (n = 4). Numerically, P∗ attracts the self-dual AM pair with energy

Eℓ under iteration ofR
ℓ. In addition,we have numerical evidence for the existence of analogous

fixed points forn = 6with ℓ(n) = 24, and for n = 8with ℓ(n) = 24. The corresponding rotation

number is ̺(G) = 1
n
in all cases considered. Our computations for n = 8 were carried out at

sufficient accuracy to predict a scaling exponent c12 =
1
2
cosh−1(α−6). This was motivated by

the observation that c6 = 2c3. A similar relation for c12 seems excluded.

Remark 2. For convenience we have labeled periodic orbits by their fundamental period ℓ.
However, the torus map (3.3) can have several periodic orbits with fundamental period ℓ(n).
They arise from Fibonacci integer sequences modulo n that do not include a consecutive pair
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(0, 1). Furthermore, there could be more than one (or no) periodic orbit ofR for some periodic

orbits of the map (3.3).

Theorem 3.1 is proved by first solving the fixed point problem for the transformation

R3(F,G) = (Λ−1
3 GF−1GΛ3, Λ

−1
3 G−1FG−1FG−1

Λ3), (3.5)

which is obtained fromR
3 by a ‘palindromic’ re-arrangement of the factors F±1 andG±1. This

transformation has the advantage that reversible pairs are mapped to reversible pairs, even if

the component maps do not commute. After establishing the existence of a fixed point P∗ for
R3, we prove that its components F∗ and G∗ commute. An analogous approach is used in our

proof of theorem 3.2.

We note that, due to the scaling x 7→ α∗x involved, the analysis can be carried out on a

bounded domain inC. Entire analyticity of the matrix functionsB∗ = matF∗ and A∗ = matG∗
follows by iterating the fixed point equation and using that x 7→ α∗x is analyticity improving.

The same argument shows that A∗ and B∗ are exponentially bounded on all of C. More spe-

cific bounds can be obtained by using information on the Lyapunov exponent of maps that are

attracted to P∗ under renormalization. Based on an explicit expression [21] for the Lyapunov

exponent of complex-translated AMmaps, we expect that log‖B∗(x)‖ and log‖A∗(α∗x)‖ grow
like 2π5−1/2|x| in the imaginary direction. This is consistent with the decay rate of the Taylor

coefficient that we find numerically in the cases ℓ = 3 and ℓ = 6.

4. Scaling and universality

In both cases (ℓ = 3 and ℓ = 6) our analysis requires as input an approximate fixed point ofRℓ.

Such a pair Pkℓ is obtained numerically by starting with the self-dual AM pair Pwith energy Eℓ

and computingPkℓ = R
kℓ(P) for some large k. The fact that this procedure works suggests that

P is attracted to our fixed point P∗ under the iteration ofRℓ. If we assume that this is the case,

then it is possible to relate asymptotic properties of P to local properties of the transformation

R near the orbit of P∗. SinceR defines a dynamical system on a space of pairs, the same applies

to other families in the domain ofR.

Consider e.g. a Schrödinger operator Hα∗ and the associated map G = (α∗,A). Let P =

((1, I ),G) and (Fn,Gn) = R
n(P). Then Gn = Λ

−1
n GqnΛn, where qn is the n+ 1st Fibonacci

number. The matrix part of Gqn is related to the matrix part An of Gn via

(mat Gqn) (αn∗x) = eσnSSnAn(x)S
n e−σnS. (4.1)

If the sequence k 7→ Pkℓ converges to a fixed point P∗ ofRℓ, then σkℓ ∼ kσ∗ for large k, where
σ∗ is the scaling exponent associated with P∗. This shows that the scaling factors eσ∗ given in

theorems 3.1 and 3.2 describe the asymptotic behavior of generalized eigenfunctions of Hα∗

with the proper rotation numbers. A precise argument along these lines is given in [24], as

well as a graph of the generalized eigenfunction for the self-dual AM Hamiltonian for energy

E∗ = −E3.

Concerning proper rotation numbers, we note that, while the periodic orbits of the map (3.3)

are pairs with rational components, their stable manifolds include mostly irrational pairs. In

particular, all pairs with ̺(F) = 0 and 2̺(G) ∈ Z2[α∗] are attracted to rational periodic orbits.
Numerically, we find e.g. that the self-dual AM pair with 2̺(G) = 1− α∗ is attracted under

iteration of R to the 3-periodic orbit described in theorem 3.1. The corresponding energy is

E = 1.874 . . ..
Other universal quantities are associated with the eigenvalues of modulus> 1 of the deriva-

tive ofRℓ at a fixed pointP∗. These eigenvalues have been determined numerically for the fixed

points described in theorems 3.1 and 3.2. In both cases, Rℓ appears to be hyperbolic, with
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exactly two eigenvalues of modulus> 1. It seems likely that the same is true much more gen-

erally. In some sense, the ‘universality class’ is governed by the two-parameter4 AMmodel. To

be more precise about hyperbolicity: we restrictRℓ to a codimension 1 manifold that includes

all commuting pairs in the space being considered. Without this restriction, DRℓ(P∗) has a
simple eigenvalue (−1)ℓ that is associated with a non-commuting perturbation of P∗.

Two scaling phenomena that are governed by the largest eigenvalue µ1 are described by

(2.5). This eigenvalue determines the ℓ-step asymptotic scaling of the Hofstadter butterfly at

(α∗,Eℓ) in the energy direction.One of the assumptions here is that theAM family intersects the

stable manifold ofRℓ transversally; or equivalently, that this family converges to the unstable

manifold of P∗ under the iteration ofRℓ and proper rescaling. To be more precise, let µ2 be the

second largest eigenvalue of DRℓ(P∗), and define µs = (µ1s1,µ2ss) for all s = (s1, s2) in R2.

For s near zero, denote by P(s) the AM pair for E = Eℓ + s1 and λ = 1+ s2. Then the family

s 7→ R
kℓ(P(µ−ks)) is assumed to converge to a parametrization of the local unstable manifold

of Rℓ at P∗ as k tends to infinity. We note that the diagonal nature of the parameter-scaling µ
is specific to the AM family.

Consider e.g. the one-parameter family obtained by setting s2 = 0. Assuming that the Lya-

punov exponents and rotation numbers have limits as well, a straightforward computation

yields the behavior (2.5) for positive ǫ = |s1| close to zero.

Next, consider the one-parameter family obtained by setting s1 = 0. Let s2 > 0, and denote

by G(s2) the second component of the pair P(s). In this case, we already know that L(G(s2)) =

log(1+ s2). So the assumptions made above yield a prediction for the eigenvalue µ2. Notice

that, up to a conjugacy by Λkℓ, the second component ofRkℓ(P(µ−ks)) is the map G
(

µ−k
2 s2

)qkℓ ,

where qn ≃ 5−1/2α−n−1
∗ denotes the n+ 1st Fibonacci number. Assuming that the Lyapunov

exponent of G
(

µ−k
2 s2

)qkℓ converges to a finite nonzero value as k→∞, the above implies that

µ2 = α−ℓ
∗ . This value of µ2 is indeed observed numerically, for the two periods ℓ(2) = 3 and

ℓ(4) = 6.

We have also computed the first 12 contracting eigenvalues ofL = DR
ℓ/3
3 (P∗). Numerically,

the fifth largest (in modulus) eigenvalueµ5 is a real root of the polynomialPℓ, related to largest

eigenvalue µ1 as described after (1.3). For these real roots µ of Pℓ, one also finds that x = µ1/3

satisfies x4 − 3x3 − x − 1 = 0 in the case ℓ = 3, while x = µ1/2 satisfies x4 − 14x3 − 2x −
1 = 0 in the case ℓ = 6. The remaining eigenvalues of L appear to be (real and) of the form

(±α∗)kℓ, (±α∗)kℓe2cℓ , or (±α∗)kℓe−2cℓ , for some positive integer k. Both signs appear, if we

count multiplicities in the case ℓ = 6. For at least one choice of the sign, the eigenvector is

generated by a coordinate transformation or corresponds to a non-commuting direction; see

[24] for details on how to determine these eigenvectors. For the other values we do not have

an explanation.
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