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Abstract

We consider a renormalization transformation R for skew-product maps of the
type that arise in a spectral analysis of the Hofstadter Hamiltonian. Periodic
orbits of R determine universal constants analogous to the critical exponents in
the theory of phase transitions. Restricting to skew-product maps over circle-
rotations by the golden mean, we find several periodic orbits for R, and we
conjecture that there are infinitely many. Interestingly, all scaling factors that
have been determined to high accuracy appear to be algebraically related to the
circle-rotation number. We present evidence that these values describe (among
other things) local scaling properties of the Hofstadter spectrum.

Keywords: Hofstadter spectrum, renormalization, almost Mathieu, periodic
orbit, universality and scaling, Pisano period, rotation number

Mathematics Subject Classification numbers: 37E20, 37F25, 34140 and 47A10.

(Some figures may appear in colour only in the online journal)
1. The Hofstadter model

The spectrum of the Hofstadter Hamiltonian [1, 2] is known to exhibit local self-similarity
and scaling properties. Scaling behavior can also be observed for related dynamic quantities
such as the Lyapunov exponent and the fibered rotation number. Our goal here is to describe
such phenomena within the framework of renormalization. Restricting to some specific cases,
we argue that the observed scaling constants are universal, and that many can be computed
exactly. Some of our results are rigorous, while others are based on numerical computations
and hypotheses that remain to be verified.

The Hofstadter Hamiltonian describes Bloch electrons moving on Z? under the influence
of a magnetic flux 27w« through each unit cell. It is given by
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Figure 1. Positive-energy part of the Hofstadter butterfly.

HY = NUy + U+ ANVo 4+ V), UV U, 'V, =e 2™, (1.1)

where U,,, V,, are magnetic translations and A, \’ are positive constants. In the Landau gauge,
(Ua®)(n,m) = ¢(n — 1,m) and (Vod)(n,m) = &™"“¢(n,m — 1).

For rational « = m/n with m and n coprime, the spectrum of H* consists of b bands (closed
intervals), separated by gaps (open intervals), where b = n for odd n and b = n — 1 for even
n [8]. In the limit m,n — oo where m/n approaches an irrational value, the width of these
bands tends to zero, while the gaps stay open in the sense described below. Another important
observation [5] is the following. Consider the integrated density of states d(«, E) = {dg, P%o),
where Py is the spectral projection for H* associated with the interval (—oo, E |, and where 9
is the Kronecker delta at the origin. For each spectral gap there exists an index k € Z?, also
known as the Hall conductance, such that

d(a, E) = ka(mod 1), (1.2)

for all energies E in that gap. This relation is commonly referred to as ‘gap labeling’ [6].
Conversely, given any integer £, it is known that there is a unique spectral gap with index & for
Liouville values of « [9, 19], and for Diophantine values [20] in the case A’ # \. (For rational
« = m/n with m and n co-prime, the same holds if n > 2|k|.)

The spectrum for irrational « is a Cantor set [19] of measure 4|\ — A|, as was conjectured
in [3] and proved later in [11, 12]. The generalized eigenfunctions for A > )\’ are localized in
the n-direction and extended in the m-direction; the same holds for \’ > ), but with m and n
exchanged.

The dual Hamiltonian, obtained by interchanging A and X, is unitarily equivalent to H®.
Of particular interest is the self-dual case A = \'. The spectrum for this family of operators
H, plotted as points («, E) in the plane, is known as the Hofstadter butterfly [2]. The positive-
energy part is shown in figure 1 for A = X' = 1. To be more precise, the solid regions are the
spectral gaps, and the color encodes the gap index k. The largest regions are for k = 0 (white)
and k = £1.

There exists an extensive literature on the topological features of the Hofstadter butterfly and
their connection with continued fractions; see e.g. [13, 14, 16, 22] and references therein. In
this paper, we are interested mostly in metric properties, especially accumulation phenomena
in the energy direction, or for variations in A. Other scaling properties will be described as
well.

Below we consider enlargements of figure 1 about a point p = (¢, E'), using an expanding
map M : (o, E) — (! + u(a — '), E' + v(E — E')). We call a set S € R? self-similar near p,
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Figure 2. 3-step and 6-step enlargements of the Hofstadter butterfly near (cv., 0).

with period 4, if for every open set U C R?, the sequence of true/false values n — U N M"S = ()
is asymptotically periodic with period ¢. The numbers |u|’ and |v|® will be referred to as ¢-step
scaling factors.

To simplify the analysis, we focus mainly on the inverse golden mean o, = %(\/5 —1).
Figure 2 shows successive magnifications of the Hofstadter butterfly near the point (cv, 0). As
will be described below, each magnification step is a composition of three enlargement steps,
and self-similarity is observed with a period ¢ = 6. Based on high-accuracy computations, we
conjecture that the six-step scaling factor p; in the energy direction is the largest root of the
polynomial Py given below. Its numerical value is ;1 = 196.29. ..

Another scaling of the Hofstadter butterfly was described in [24] near the point (v, E,),
where E, = 2.597 ... is the largest value in the spectrum of H“*. By symmetry, the same is
observed at the lowest energy in the spectrum, E3 = —FE,. At these energies, self-similarity
is observed with a period ¢ = 3, and the three-step scaling factor is p; = 30.790... We
conjecture that 1 is the largest root of Ps, where

Ps(z) = 74 — 307 — 247 — 10z — 1,

(1.3)
Po(z) =2 — 1962 — 587° — 4z + 1.
We note that the product of the two real roots of P is (—a.) ‘. Their average ¢ satisfies ¢* —
15¢ — 5 = Ointhecase £ = 3, and (> — 98¢ — 19 = O in the case £ = 6. Using these relations,
it is easy to write down explicit expressions for the real roots of P;.

Remark 1. The scaling points (., Ey) for £ = 3 and ¢ = 6 are part of an infinite sequence
where we expect similar behavior. The mechanism that will be described below allows for
periods ¢ € {3,6,24,12,60,...}. In what follows, ¢ can be any of these numbers, unless a
specific value is given.

Besides the cases ¢ = 3 and ¢ = 6 described above, our numerical results cover £ = 24 and
¢ = 12 as well, but those are not accurate enough to yield a good guess for the polynomial ;.
The corresponding energies are Exy = 1.888 ... and Ejp = 1.990. . ., respectively.

2. Skew-product maps

The Hamiltonian H“ commutes with the dual magnetic translations, one of which is given by
(Un@)(n,m) = ¢(n,m — 1). So its spectrum can be determined by restricting H* to generalized
eigenfunctions ¢¢(n, m) = e ™"y, of the translation U, . The restricted Hamiltonian H?, also
known as the almost Mathieu (AM) Hamiltonian, is defined by (H" ¢¢)(n, m) = e 2 (H ),

4383



Nonlinearity 33 (2020) 4381 H Koch and S Koci¢

and, for \' = 1, takes the form of a Schrédinger operator
(Hau)n = Up—1 + Upt1 + Vina)u,, ne Z, (21)

with (quasi) periodic potential V(x) = 2\ cos(2m(x + &£)). The equation H“u = Eu for a
generalized eigenvector of H“ can be written as

[WH] = A(na) [uun } A(x) = {E_ V) _01} € SL(2,R). (2.2)
n—1

U, 1

When combined with a rotation x — x + « of the circle T = R/Z, this recursion defines a
skew-product map G,

G(x,y) = (x+ a,A(x)y), x€T, yeR%. (2.3)

Two dynamical quantities of interest here are the Lyapunov exponent L(G) and the fibered
rotation number o(G). They can be defined as follows. Let G be a lift of the map (x,y) —
(x + afJA(x)y||'A(x)y) from T x Sto T x R, where S denotes the unit circle ||| = 1 in R?.
Then

1 1
L(G) = lim ~ log |[(mat G")(x)||, o(G)= lim —— arg G"(x,?). (2.4)
n—oo N n—oo 27N

Here, matG" denotes the matrix part of G", and arg(x, ¥) = ¢. Assuming thatA : T — SL(2,R)
is continuous and « irrational, the limit for o(G) exists, is independent of x and ¥, independent
modulo 1 of the choice of the lift G, and convergence is uniform. Under the same assumptions,
the limit for L(G) exists and is a.e. constant in x. If G is the AM skew-product for energy FE,
the fibered rotation number is related to the density of states via d(«, E) = —20(G) modulo 1.
Furthermore, L(G) = max(0, log|\|), if E belongs to the spectrum of . For proofs of these
facts we refer to [4, 6, 7, 18]. Concerning the Lyapunov exponent for arbitrary energies, what
is known e.g. is the asymptotic behavior as A — oo for Schrodinger potentials V = Av with v
analytic; see [23] and references therein.

Denote by L(E) and o(E) Lyapunov exponent and fibered rotation number, respectively, for
the self-dual AM map at energy E. Consider one of the scaling points mentioned in remark 1.
Presumably, the energy E; belongs to the spectrum of H**. Let ¢ = |E — E;|. The graph on the
left in figure 3 shows the logarithm of L(E) as a function of loge in the case ¢ = 3. The graph
on the right shows the logarithm of R(E) = 2|o(E) — o(E/)| versus loge in the case £ = 6. The
following formula matches our data at the precision available, with £ € {3,6} and f € {L, R}.

4 log(er )

f(E) =~ Cy(log e)¢™, log(y11)

2.5)

as E — E; from below (—) or from above (+4). The functions Cy are periodic with period
log(41), where p; is the largest root of P;. Here C depends on (¢, f), while j; only depends
on (. The conjectured asymptotics (2.5) is based on our renormalization analysis described
below, and we believe that the same holds for any ¢ € {3,6,24,12,...} and f € {L,R}. The
constant f; is an analogue of a critical index in the theory of critical phenomena. We note
that the case ¢ = 3 has an exceptional feature: since Ej3 lies at the bottom of the spectrum, the
function C_ is zero for f = R and constant for f = L.
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Figure 3. Scaling of L as E 1 E3 (left) and of 1/4 — g as E | E¢ = 0 (right).

3. Renormalization

The observation of such asymptotic scaling suggests that a suitable renormalization trans-
formation R for skew-product maps has a periodic point P, of period ¢, and that p; is
the largest eigenvalue of the derivative DR/(P,). Let G be a skew-product map as in (2.3),
henceforth abbreviated as G = («,A). Regard G as a map on R x R?. If G arises from a
Schrddinger operator (2.1) with a 1-periodic potential V, then we pair G with a second skew-
product map F = (1,I). The 1-periodicity of the matrix function A is expressed by the fact
that G commutes with F. As was observed and used in [24], the AM map G with potential
V(x) = 2Acos(2m(x + £)) and § = «/2 is reversible, in the sense that

G '=8GS, S(x,y) =(—x,8y), S[(l) é] (3.1

Thus, we restrict now to pairs P = (F, G) that are reversible, and we choose our renormalization
transformation to preserve reversibility, provided that ¥ and G commute. The matrix parts of
F and G are always assumed to take values in SL(2, R). The transformation R considered in
[24] is given by

R(P) = (A{'GALAT'FGT'AY),  Ai(x,y) = (aux, SetSy), (3.2)

where ; = o (P) is determined by a suitable normalization condition. We note that this choice
of R is tailored to the study of skew-product maps G = («a, A) with a = .. Due to the identity
l—a,=a%a pair ((1, B), (c., A)) is mapped to a pair ((1, By), (., A1)). Analogous transfor-
mations can be defined for other quadratic irrationals . Approximate renormalization schemes
and limiting cases have been considered earlier in [15, 17].

Itis instructive to consider what happens to fibered rotation numbers under renormalization.
Let F = (8,B) and G = (a, A), with o and (3 irrational. Assume that A and B are continuous 1-
periodic functions on R, taking values in SL(2, R). If F and G commute, then o(FG) = o(F) +
0(G) modulo 1. This follows e.g. from the uniform convergence [6] of the second limit in (2.4).
As a consequence, if (F|, G;) = R(F, G), then

oF)] _ [0 1] [P
e 0 T[] 6

This equation defines a hyperbolic map of the torus T?, related to Arnold’s cat map [10]. It

has a dense set of periodic orbits, with homoclinic or heteroclinic connections between any

0

two them. In particular, every point [m /n

} lies on a periodic orbit. If m and n are coprime,
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then its period agrees with the fundamental period £(n) of the Fibonacci sequence modulo n.
To see why, multiply both rotation vectors in (3.3) by n, to get a congruence modulo n over
the integers. Denoting by U the 2 x 2 matrix in (3.3), the condition for a period ¢ is U’ = I
modulo n. A straightforward computation shows that this condition holds if and only if £ is
a period of the Fibonacci sequence modulo 7. The smallest such integer ¢ > 0 is known as
the Pisano period ¢(n). The two periods described earlier are /(2) = 3 and ¢(4) = 6. Periods
£(n) with odd n are not expected to occur in the AM model, due to a symmetry that implies
o(E) + o(—E) = 1 modulo 1.

An explicit computation (with A and B constant rotations) shows that the transformation R
has a ‘trivial’ invariant two-torus on which R is conjugate to the map (3.3). Presumably, this
torus attracts AM pairs for A < 1, but we did not study this situation. For the ‘critical’ maps
considered here, such an invariant torus may exist as well, but the conjugacy is unlikely to be
smooth (based on the observed eigenvalues). In any case, if orbits with periods ¢(n) for odd n
exist in a suitable space, then the closure of this set should carry uncountably many aperiodic
recurrent orbits for R.

For even n, the Pisano period ¢(n) is a multiple of 3. Thus, we restrict our analysis to iter-
ates R’ with £ a multiple of 3. Notice that S3/(P) can be obtained by first iterating (F, G)
(G, FG™")¢ times, and then conjugating the resulting maps with a scaling

Ag(x,y) = (alx, S%7y) (3.4)

where oy = o(P) is determined by a suitable normalization condition.
The following result is a slight extension of theorem 1.1 in [24].

Theorem 3.1. R° has a reversible fixed point P, = (F.,G.) with F, and G, commuting.
P, is not a fixed point of R. The matrix parts of F,. and G, are non-constant and extend to
entire analytic functions. The scaling exponent 0. = o3(P,) is positive and satisfies the bound
o — ¢3] < 1073, where c3 = 1 cosh™ (o).

We conjecture that o, = c3 and note that the squared y-scaling factors e™>3 are the real
roots of the polynomial Q3(z) = z* — 22 — 2722 — 2z + 1.

The following theorem is proved in [25].
Theorem 3.2. R has a reversible fixed point P, = (F., G,) with F, and G, commuting.
P, is not a fixed point of R for any positive k < 6. The matrix parts of F. and G, are non-
constant and extend to entire analytic functions. The scaling exponent o, = g¢(P,) is positive
and satisfies the bound |0, — cg| < 1071, where ¢ = % cosh™'(a?).

We conjecture that o, = ¢ and note that =% are the real roots of the polynomial Q4(z) =
-8 —272 —8z+1.

The fixed point P, described in theorem 3.1 (theorem 3.2) can be associated with the Pisano
period ¢ = {(n) for n = 2 (n = 4). Numerically, P, attracts the self-dual AM pair with energy
E; under iteration of 93. In addition, we have numerical evidence for the existence of analogous
fixed points forn = 6 with /(n) = 24, and forn = 8 with /(n) = 24. The corresponding rotation
number is o(G) = % in all cases considered. Our computations for n = 8 were carried out at
sufficient accuracy to predict a scaling exponent ¢j, = % cosh™!(a%). This was motivated by
the observation that ¢ = 2¢3. A similar relation for ¢;, seems excluded.

Remark 2. For convenience we have labeled periodic orbits by their fundamental period ¢.
However, the torus map (3.3) can have several periodic orbits with fundamental period ¢(n).
They arise from Fibonacci integer sequences modulo n that do not include a consecutive pair
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(0, 1). Furthermore, there could be more than one (or no) periodic orbit of R for some periodic
orbits of the map (3.3).
Theorem 3.1 is proved by first solving the fixed point problem for the transformation

R(F,G) = (A'GF ' GA3, AJ'GT'FGT'FG'A3), (3.5)

which is obtained from 93° by a ‘palindromic’ re-arrangement of the factors F*! and G*'. This
transformation has the advantage that reversible pairs are mapped to reversible pairs, even if
the component maps do not commute. After establishing the existence of a fixed point P, for
A3, we prove that its components F, and G, commute. An analogous approach is used in our
proof of theorem 3.2.

We note that, due to the scaling x — «,x involved, the analysis can be carried out on a
bounded domain in C. Entire analyticity of the matrix functions B, = mat F, and A, = mat G,
follows by iterating the fixed point equation and using that x — «,.x is analyticity improving.
The same argument shows that A, and B, are exponentially bounded on all of C. More spe-
cific bounds can be obtained by using information on the Lyapunov exponent of maps that are
attracted to P, under renormalization. Based on an explicit expression [21] for the Lyapunov
exponent of complex-translated AM maps, we expect that log||B.(x)|| and log||A.(c.x)|| grow
like 275~ '/2|x| in the imaginary direction. This is consistent with the decay rate of the Taylor
coefficient that we find numerically in the cases £ = 3 and ¢ = 6.

4. Scaling and universality

In both cases (¢ = 3 and ¢ = 6) our analysis requires as input an approximate fixed point of SR/,
Such a pair Py is obtained numerically by starting with the self-dual AM pair P with energy E,
and computing Py, = 93¥/(P) for some large k. The fact that this procedure works suggests that
P is attracted to our fixed point P, under the iteration of ML, If we assume that this is the case,
then it is possible to relate asymptotic properties of P to local properties of the transformation
R near the orbit of P... Since R defines a dynamical system on a space of pairs, the same applies
to other families in the domain of fA.

Consider e.g. a Schrodinger operator H“* and the associated map G = (o, A). Let P =
((1,I),G) and (F,, G,) = R"(P). Then G, = A;le"An, where g, is the n + Ist Fibonacci
number. The matrix part of G?" is related to the matrix part A, of G, via

(mat G™) (o' x) = e75S" A, (x)S" e 5. 4.1

If the sequence k — Py, converges to a fixed point P, of R, then oy ~ ko, for large k, where
o, is the scaling exponent associated with P.. This shows that the scaling factors ¢’ given in
theorems 3.1 and 3.2 describe the asymptotic behavior of generalized eigenfunctions of H“*
with the proper rotation numbers. A precise argument along these lines is given in [24], as
well as a graph of the generalized eigenfunction for the self-dual AM Hamiltonian for energy
E. = —E;.

Concerning proper rotation numbers, we note that, while the periodic orbits of the map (3.3)
are pairs with rational components, their stable manifolds include mostly irrational pairs. In
particular, all pairs with o(F) = 0 and 20(G) € Z*[«,] are attracted to rational periodic orbits.
Numerically, we find e.g. that the self-dual AM pair with 20(G) = 1 — «, is attracted under
iteration of R to the 3-periodic orbit described in theorem 3.1. The corresponding energy is
E=1874...

Other universal quantities are associated with the eigenvalues of modulus > 1 of the deriva-
tive of ¢ at a fixed point P,. These eigenvalues have been determined numerically for the fixed
points described in theorems 3.1 and 3.2. In both cases, SR’ appears to be hyperbolic, with
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exactly two eigenvalues of modulus > 1. It seems likely that the same is true much more gen-
erally. In some sense, the ‘universality class’ is governed by the two-parameter* AM model. To
be more precise about hyperbolicity: we restrict R’ to a codimension 1 manifold that includes
all commuting pairs in the space being considered. Without this restriction, DOR‘(P.) has a
simple eigenvalue (—1)* that is associated with a non-commuting perturbation of P,.

Two scaling phenomena that are governed by the largest eigenvalue 1) are described by
(2.5). This eigenvalue determines the ¢-step asymptotic scaling of the Hofstadter butterfly at
(v, Ey) in the energy direction. One of the assumptions here is that the AM family intersects the
stable manifold of 2R transversally; or equivalently, that this family converges to the unstable
manifold of P, under the iteration of 93¢ and proper rescaling. To be more precise, let /i be the
second largest eigenvalue of DR!(P.), and define s = (p1S1, pass) for all s = (s1,s,) in R2.
For s near zero, denote by P(s) the AM pair for E = E; + s; and A = 1 + s,. Then the family
s — RM (P(;fks)) is assumed to converge to a parametrization of the local unstable manifold
of M’ at P, as k tends to infinity. We note that the diagonal nature of the parameter-scaling 1
is specific to the AM family.

Consider e.g. the one-parameter family obtained by setting s, = 0. Assuming that the Lya-
punov exponents and rotation numbers have limits as well, a straightforward computation
yields the behavior (2.5) for positive € = |s;| close to zero.

Next, consider the one-parameter family obtained by setting s; = 0. Let s, > 0, and denote
by G(s,) the second component of the pair P(s). In this case, we already know that L(G(s,)) =
log(1l + s2). So the assumptions made above yield a prediction for the eigenvalue ji,. Notice
that, up to a conjugacy by Ay, the second component of R* (P(11~*s)) is the map G(M; ksz)q"é
where g, ~ 57'/?a;"! denotes the n + 1st Fibonacci number. Assuming that the Lyapunov
exponent of G(ME ksz)q"é converges to a finite nonzero value as k — oo, the above implies that
o = o ‘. This value of y, is indeed observed numerically, for the two periods £(2) = 3 and
((4)=6.

We have also computed the first 12 contracting eigenvalues of £ = Dmg/ 3(P*). Numerically,
the fifth largest (in modulus) eigenvalue y5 is a real root of the polynomial Py, related to largest
eigenvalue /i1 as described after (1.3). For these real roots  of P, one also finds that x = p'/3
satisfies x* — 3x> — x — 1 = 0 in the case £ = 3, while x = p'/? satisfies x* — 14x> — 2x —
1 = 0 in the case ¢ = 6. The remaining eigenvalues of £ appear to be (real and) of the form
(Fa)X, (Fa ) e, or (fa, ) e 2, for some positive integer k. Both signs appear, if we
count multiplicities in the case £ = 6. For at least one choice of the sign, the eigenvector is
generated by a coordinate transformation or corresponds to a non-commuting direction; see
[24] for details on how to determine these eigenvectors. For the other values we do not have
an explanation.
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