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ABSTRACT. We develop a renormalization group approach to the problem of
reducibility of quasi-periodically forced circle flows. We apply the method to
prove a reducibility theorem for such flows.

1. Introduction. In this paper, we study the dynamics of quasi-periodically time-
dependent ordinary differential equations on the circle T* = R/(27Z). These equa-
tions correspond to skew-product flows generated by vector fields on T x T whose
dynamics are given by

T =uw,

where (z,7) € T¢ x T!, w € R? and f: T¢ x T! — R is real analytic. An important
problem in the dynamics of ordinary differential equations is to establish conditions
under which one can analytically conjugate the flow ¢' generated by (1) to the linear
flow of a constant vector field. If that is possible, we say that f is analytically or
C“-reducible.

An important conjugacy invariant is the rotation number of f, i.e., its time
average along the orbit,

1
rot f= lim -
t—+oo t

/0 f o ¢ (x,y) ds, (2)

for any (z,y) € T? x T! (see Section 2.3).

If f depends only on y (or w = 0), the dynamical system given by (1) is integrable,
since the second equation then yields an autonomous vector field on the circle. In
that case, zeros of f correspond to the fixed points of the dynamics and all orbits
converge to them. If f has no zeros, then all orbits are periodically winding around
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the circle and the flow is uniquely ergodic for some absolutely continuous invariant
measure p. The reducibility conjugacy can then be constructed using the solution

@5 of the second equation in (1), as (z,y) — (=, (bfl"y(O)), where T is the least period
of the motion given by the frequency of the system 277! =rot f = le fdu.

We are interested in the general case in which f depends on both x and y, i.e.,
non-autonomous circle flows. When d = 1, the system (1) corresponds to a periodic
perturbation of the circle flow, i.e., to a flow on T2. Herman’s theory [8] (further
developed by Yoccoz [21]) implies that if rot f/w satisfies Yoccoz’s H arithmetical
condition [21, 22], then the system is C“-reducible.

Similar conclusions arise in the case when w € Q¢ \ {0}, d > 1. Without loss of
generality, up to a time rescaling, we can take w € Z?. By a linear change of the basis
for the torus T¢, we can reduce our initial system to = (1,0,...,0),y = f(z,y). By
writing = = (¢, \), we obtain the systems: { =1, A =0, § = Fx(t,y) = f((t,\),y).
For each A\ € T9~!, this corresponds again to a vector field on T?.

We will now restrict our considerations to w € RN\Q%, d > 1. In fact, we will focus
only on incommensurate frequency vectors w, i.e., vectors whose components are
rationally independent. For incommensurate w, the main difficulty in the analysis is
related to the existence of small divisors. In this case, there are already some results
obtained by KAM (Kolmogorov-Arnol’d-Moser)-type methods [1, 2, 16, 19]. In this
paper, we develop a different approach to the problem, based on a renormalization
method. This renormalization approach is also different than that exploited in [5, 6,
7], which is based on resummation of a perturbation series in analogy to quantum
field theory. While in KAM theory one typically encounters small divisors in a
finite number of narrow regions surrounding some resonant planes, in the problem
at hand, we encounter and develop an approach to deal with an infinite number of
resonant planes (see Remark 2). The approach developed here should, therefore,
also be useful for the construction of quasiperiodic solutions, i.e., invariant tori, for
PDEs, where one necessarily has to deal with an infinite number of resonant planes.

On a space of vector fields X = (w, f) of the form (1), we define a renormalization
operator R (see Section 3) as

R(X) ="' T U (X), (3)

where 1 € (0,1) is the time rescaling parameter, Ux is a change of variables chosen
such that U% (X), i.e., the pullback of X under Ux, is in an appropriate normal
form (see Section 3.2), and T is a scaling (x,y) — (Tx,y), defined by a matrix
T € SL(d,R). The transformation R will be constructed such that it preserves the
form of the vector field X = (w, f) and we will define the induced map R : f — R(f)
by R(w, f) = (w,R(f)). Note that f is a non-autonomous vector field on a circle
and R defines a renormalization operator on a Banach space of these vector fields.
We will consider vector fields close to Y = (w, 8), with w € BC and 6 € DC,,. We
denote by BC the set of Brjuno vectors w € R%, i.e., vectors that satisfy [3, 4, 20]

oo
Z 27" 1n(1/Qy,) < 0, Q, = min lw - v, (4)
ot vey, 0<|v|<2n

where V = Z4. Here, | - | denotes the ¢! norm of a vector in R?, and dot denotes

the usual scalar product of vectors in R?. Given w € R%, 7,5c > 0, and C > 0, we
define DC,,(C, 7, ») to be the set of all § € R\ {0} such that

C
|w1/+k0| > W’ for all kEZ\{O}, I/EV\{O} (5)
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We further define
DC, (1, ) = U DC,(C,T1,5) and DC, = U DC, (7, »).

C>0 7,220

Since we will perform scaling with matrices T' € SL(d,R), we will consider func-
tions with periodicity of a simple lattice Z in R¢ that is more general that 27Z%.
Functions that are invariant under Z-translations can be identified with functions
on T¢ := R?/Z or, equivalently with quasiperiodic functions on R¢ with frequency
module in the dual lattice V' (the set of points v € R? satisfying e?* = 1, for all
z € Z). For convenience, we will perform a linear change of coordinates in R?
such that w = (1,0,...,0). The lattice obtained from 27Z% under this change of
coordinates in R? will be denoted by Z, and its dual lattice by V.

We consider vector fields X of the form X = (w, f) that are close to Y = (w, §),
with f analytic on a complex neighborhood of D, of Te x T' characterized by
|Sz;| < pand [Sy| < r. In the following, we will refer to these vector fields as
vector fields of the form (w, f). In Section 2.2, we will introduce the spaces of
vector fields of the form (w, f) with f analytic on D, ,, with frequency module
in V, and the corresponding Banach spaces A, (V) of functions f. If r = p, we
will denote these spaces and the corresponding domains simply by A,(V) and D,
respectively.

Let E be a projection operator onto the subspace of constant vector fields (either
on the circle or on T¢ x T!), given by the averaging of the function over T¢ x T*
(see Section 2.2).

The main results of this paper can be summarized in the following theorem.

Theorem 1.1. Let o,r > 0 and let w € BC and 0 € DC,,. There exist a sequence
of matrices T,, € SL(d,R), a sequence of time rescaling parameters n, € (0,1), and
a corresponding sequence of renormalization operators R, n € N, of the form (3),
such that the corresponding operators R, are analytic from an open neighborhood
Dy—1 of Op—1, where O, = 00,1, 60 = 0, in A, . (Vno1), to Ay, v Vi),
where Vy, = TpVu—1. The set W of infinitely renormalizable vector fields fy in Dy,
characterized by the property that f, = R, (fn_1) belongs to D,,, for every n € N,
is the graph of an analytic function W : (I — E)Dy — EDq that satisfies W(0) = 6
and DW(0) = 0. In particular, if f € Dy and rot f =0, then f e W. If p> o+,
p>r+06 and § > 0, then every vector field X = (w, f) with f € WN A,(Vo) is
analytically reducible via an analytic conjugacy of the form T'x = I+(0,v¢x), where
I is the identity map and Vx € As(Vo), that conjugates the flow of X and the flow
of Y = (w,0).

An immediate corollary of Theorem 1.1 is the following.

Corollary 1.2. For every w € BC and § € DC,,, there is an open ball B centered
at 0 in A,(Vy), such that every vector field X = (w, f), with f € B and rot f =0,
is analytically reducible to Y = (w, 0).

Remark 1. Notice that the renormalization operators R, are well-defined on {w} x
D,,, which are open in the space of vector fields of the form (w, f), and that {w} x W
is the stable manifold for this sequence of renormalization operators.

Remark 2. The renormalization approach developed here is similar to, but techni-
cally more involved than, the renormalization approach to the construction of invari-
ant tori for Hamiltonian and other vector fields [10, 11, 12, 14, 17, 18], reducibility
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of skew-product flows on T¢ x SL(2,R) [15] and construction of lower-dimensional
tori for Hamiltonian flows [13]. The small divisors encountered in these problems
are produced by frequencies v € Z? that lie in the “resonant” regions, outside of
certain “non-resonant” cones, surrounding some resonant planes, perpendicular to
w. In the case of maximal-dimensional KAM tori, the small divisors are given by
|w-v| and, thus, there is only one such a plane [10, 11, 12, 14]. The renormalization
transformations (see Section 3) then eliminate the non-resonant modes of a vector
field and transform some of the remaining resonant modes into non-resonant. In the
case of reducibility of skew-product flows on T¢ x SL(2,R), there is an additional
resonant plane surrounded by frequencies corresponding to small divisors |w-v—2p|,
where +ip are the eigenvalues of a matrix in the Lie algebra s[(2,R) [15]. In the case
of lower-dimensional tori [13], there are finitely many resonant planes corresponding
to small divisors |w - v + Q- V|, where Q € RP is vector of normal frequencies and
0 < |V] < 2. In the problem at hand, we encounter and develop a renormalization
approach to deal with an infinite number of resonant planes, corresponding to small
divisors of the form |w - v + k6|, for k € Z.

The paper is organized as follows. In Section 2, we introduce the spaces of vector
fields that we consider. In Section 3, we construct the renormalization scheme and
prove the convergence of vector fields of the form (1), on the stable manifold of
the renormalization operator, towards the constant vector field. In Section 4, we
construct analytic conjugacy between the flows of a vector field X = (w, f) on the
stable manifold, and a constant vector field ¥ = (w, 6).

2. Preliminaries.

2.1. Skew-product vector fields and changes of coordinates. Recall that we
are interested in skew-product vector fields on T? x T!, of the form

X(]},y) = (w7f<x’y))7 (6)

with w € R? and f: T? x T' — R. We will refer to T? as the base and to T' as the
fiber. The dynamics generated by X on the base is trivially given by x — x + wt
mod Z.

We will consider real analytic diffeomorphisms H € Diff* (T4 x T') which preserve
the space of skew-product vector fields and are of the type

H(x,y) = (z,y + h(z,y)), (7)

where (z,y) € T¢ x T* and h € C¥(T¢ x T!,T!). We call them skew-product
diffeomorphisms.
The action of H on X = (w, f) is given by the pull-back

H*X = (DH) ' X o H.

As the form of the vector field is preserved, we abuse the notation in order to write
the pull-back as acting on the fiber component of the vector field

H*f =1+ 0yh) *(~w:0zh+ foH). (8)
The flow ¢'* generated by H*X is related to the flow ¢! of X by
¢yt =H to¢toH. (9)

The vector fields and skew-product diffeomorphisms considered are real-analytic
and, thus, can be extended to a complex domain.
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2.2. Spaces and norms. We will use ||- || and |- | to denote the £>° and ¢! norms,
respectively, of a vector in R™ or C".
Let p,r > 0 and let

Dy = {(z,y) € C? x C: ||Sz|| < p,[Sy| <7} (10)

In this paper, we consider functions with periodicity of Z x 2xZ, where Z is a
lattice Z C R?. Recall that for a lattice Z € R?, the dual lattice is defined as

V={veR (Fzec 2)e*? =1}. (11)

We will denote by N, the lattice Z which is dual to 27Z.
The norm of a function f, analytic on D, ,, that can be expanded as

f(g;yy) = Z fv,k ez‘x-eriyk’ (12)
veEV, kEN
is given by
1fllpr = D |foslertHrIEL (13)
veV,keN

Given any K € N, we denote by Ik f the truncation of f corresponding to the
modes with |k| < K, i.e,

Ik f(z,y) = Z o € VTE,

vEV,kEN|kI<K

We denote by I the identity operator acting as If = f, and by E the average of f,
given by the action

Ef = / f(@,y)dzdy = foo.
Tt JTd

The Banach space of functions f, analytic on D, ,, for which the norm ||f],,
is finite will be denoted by A, (V). Similarly, Aj, (V) is the Banach spaces of

functions f, analytic on D, ., for which the norm

1A = N low + > (0l 1K) | foi] IR

veEV,keN

is finite. Whenever there is no ambiguity, we avoid writing V explicitly.

We present several properties of the above norms, which will be used throughout
the paper without an explicit reference to them.
Lemma 2.1. Let f,g € A,,, 7" <r, K € Nand é > 0. Let also U(z,y) =
(,y + u(z,y)) be a skew-product diffeomorphism satisfying ||ul . < (r —1")/2.
Then,

supzep,, [F@)] <N fllor < NFlpe € @ +2671) (1 Flloror+s,
(X = Ta) flp,rr < e KO £,
£ 9llow < A1 florllgllors

A P WA [ A 7]

||fOUHp,T’ < Hf”p,m

1foU = fllps < 2(r =) [ fllpr

Proof. The proof of these inequalities is straightforward and will be omitted. In the
proof of the last inequality, one uses Cauchy’s estimate for the derivative. O

[ullp.rr,
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2.3. Rotation number. Define the (fibered) rotation number of f at (z,y) €
R? x R as

rot f(z,y) = lim w

mod 27,
t——+oo t

where ¢f = my¢! stands for the last component of a lift ¢! of the flow ¢! to the
universal cover R*!. Some versions of the following claim can be found in the
literature. We include here a version relevant for our systems.

Proposition 2.2. If f € C%(T? x T, R) and w € R? is incommensurate with
respect to Z, then rot f exists and it is constant everywhere on R® x R,

Proof. Notice that, for every x € T? and every ¢t € R, the map y + ¢5(z,y) is
an orientation-preserving diffeomorphism of the circle satisfying ¢b(z,y + 27) =
5 (x,y) + 2m. So, if y <y < y+ 2w, one gets |d5(x,y’) — dh(x,y)| < 27. Assume
that the rotation number exists for some (x,y). Hence,
¢z y) —y  ds(xy) —y| _ [d5(x,y) — ¢5(2,y)
t t t

<

_|_

- 4
y-y| _4r
t t

for all t > 0. Taking the limit ¢ — -+o00, one obtains that rot f(z,y) = rot f(z) does
not depend on y. Taking, e.g., y = 0, it remains to show that rot f(x) exists for all
x and does not depend on z.

Let A(z) = ¢(x,0) and AY(z) = ¢'(x, q). Therefore, Al(z+p) = Ay(z) + (p, q)
for (p,q) € Z x (27Z). Moreover, define a;(z) = moA¢(z) and af (x) = mo Af(x). We
want to show that lims_, o a:(z)/t exists and is independent of x.

We begin with some estimates. For s,s > 0 and (p,q) € Z x (27Z) satisfying
[As(x) = (p, @)l <1, we have

at(x) I s

C= i) [as 0 Ay (@) = as(2) = T ar(2)] ds

t
45 [ oo dv@) — (o +ws +p) - a,(o) + dlds
t

5i ), as (x + ws) ds.
We can easily bound the absolute values of the first two terms. For the first one, by
t+s’

. asds — f;l as.ds = f(f/ (as+t — as)ds, we get

noticing that fot (asts —as)ds =

’
S/

t s
/ [as 0 Ay (z) — as(x) — ?at(ax)} ds :/ [as 0 At(z) — as(x) — ar(x)] ds,
0 0
whose absolute value is bounded from above by s’ times

My (z) = max |aso Ay(z) — ar(z) - as(z)]

<2 max b3 ', y) —yl.
S2 o B i [¢5(2",y) —
The second term is bounded by

t
/ las 0 Agr(z) — al,(z + ws + p) — as(x) + ¢| ds
0

t t
S/ las 0 Ay (x) — al, (x + ws + p)| d8+/ las(x) — q| ds < 4.
0 0
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So,

t
ag(z) 1 / ag (z + ws) ds’ < Msft(aj) N 41
0

t ot s’ s’

Taking the limit ¢ — +o00, the first term on the right hand side approaches zero.
Using Birkhoff’s ergodic theorem, since the base flow  — z+wt mod Z is uniquely
ergodic with respect to the Lebesgue measure dm, we obtain

4 s’ . 4 s’
*1+/ a%dmgliminfwghmsupw<i+/ a%dm.

s Ta S t——o00 400 s Ta S

Finally, taking s’ — 400, this shows that the rotation number rot f(x) exists and
that rot f(z) = [y, rot f dm does not depend on z. O

We will use the following properties of the rotation number.

Lemma 2.3. Let f,h € C°(T¢ x T!,R). Then, we have

o [Ef —rot fl < |If —Efllco-
o rot(TH*f) =7rot f,

for any T € R and a skew-product diffeomorphism H(z,y) = (z,y + h(z,y)).
Proof. Let 0 =rot f. Aslimy o % fg[fogbs (z,y)—0] ds = 0, we immediately have
Ef - 6] < max |Ef — f].

This proves the first part of the claim.
If we denote by ¢'* the flow of TH* f, by identity (9), we have

T H o ¢'t'7 0 H=1(0)

rot f = , ligl .
— 400
gy 92O HTH(O) +ho g o HTH(0)
=7 lim
t—+00 t/T
=7 rot(TH* f).
This completes the proof. O

2.4. Arithmetics.

Lemma 2.4. If 1,3 > 0, there is k > 0 such that for any C > 0 the Lebesque mea-
sure of the complement of DC,(C, T, ) is bounded from above by kC. Furthermore,
DC, (T, ) is of full Lebesgue measure.

Proof. Let I, ), be the interval of  satisfying
C
. B < ———
o+ RO i

for some v € Z%\ {0} and k € Z \ {0}. Clearly, I, has width 2C(|v|4F7|k[1+>)~1
and is centered at k™1w - v.
Recall that ||v|| = max; |v;|. Clearly, ||v|| < |v|. Moreover, for each n € N, one
has the following estimate on the cardinality
#{v ezt |v|=n} <cni!
for some ¢; > 0, depending on d only. So,

Z |~ +7) < Z [v) =) < ¢ Z n—(T+D

v#0 v#0 n>1
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which converges if 7 > 0. In addition, for s > 0,

D IR0 < oo,
k#£0
Therefore, the Lebesgue measure of |, I, is bounded by xC for some constant
K > 0, depending on d, 7 and .
The measure of the above set approaches zero when C — 0. The second claim is
now immediate. O

3. Renormalization. In this section, we construct the renormalization scheme.
We first define the non-resonant and resonant modes of a vector field and construct
a change of coordinates that, via the pullback, eliminates non-resonant modes of a
vector field. We then perform a scaling of the phase space that can produce some
non-resonant modes of the transformed vector field. These two transformations,
together with a time rescaling, form a one-step renormalization operator. Finally,
we construct the stable manifold for a sequence of renormalizations operators.

3.1. Resonant cones. As explained in the introduction, we will perform a trans-
formation of our coordinate system such that w € R? takes the form w = (1,0, ...,0).
In this coordinate system, the lattice Vy will be a lattice in R? which does not co-
incide with Z.

At each renormalization step, we will perform the following phase space scaling
T(xz,y) = (Tz,y), where

To=n"a)+ Bz, (14)

and z = x| + x is the decomposition of x into component x| parallel and z
perpendicular to w. Notice that we will not scale the coordinate gy, and all the
functions that we consider will be periodic in y with period 27; the lattice dual to
277, the lattice N' = Z, will be fixed throughout the paper.

Under the scaling, the lattice V is transforms into TV.

Definition 3.1. Given o, K > 0 and a pair of lattices V and N, in R? and R,
respectively, the nonresonant index set I is defined as the set of pairs (v, k) €
(V,N) such that |w-v| > og|v| and |k| < K, or v =0 and 0 < |k| < K. The resonant
index set I is defined as the complement of I in V x N.
Given any L > 1, we can find ¢ > 0 such that
lvr|>L or |u|>¢, Vv e V\ {0}. (15)

We assume that the renormalization parameters o, 7, 3, L, ¢ are positive and that
the following conditions are satisfied

o<1/2, 20L < ¢, 0<n<p<L (16)
Given K > 0, let
J={(w,k) el : |0kl > (1/2)|w-v| and k| < K}. (17)
o ol + K
+ ojv| +
= 2,071, % .
7 ﬁ?@{’ »lw- v + O] }

Proposition 3.2. For all modes indexed by (v, k) withv # 0, |k| < K and |w-v| >
olv], orv=0and 0 < |k| < K, if |w-v+0k| # 0, then |w-v+ 0k| > o/,
lw- v+ 0k| > (a/7)|v|, and |w - v+ 0k| > k/~.
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Proof. If |w-v| > o|v| and |0k| < (1/2)|w-v|, then we have |w-v+0k| > |w-v|—|0k| >
(1/2)|w - v| and thus |w- v+ 0k| > (¢/2)|v|. Furthermore, |w - v+ 0k| > |0k|. Using
the conditions (15) and (16), together with L > 1, we also obtain |w - v| > ¢ and,
thus, |w - v+ 0k| > o/2, in that case.

The number of modes with |0k| > (1/2)|w - v| > (1/2)o|v| and |k| < K is finite.
So, if |w - v + 0k| # 0 then |w-v + 0k| > o/v and |w - v + 0k| > (o/7)|v]. O

Let T be the projection operator onto the subspace spanned by modes (v, k) € I
defined by the truncation

T fly)= Y. fore™"TWh

(v,k)el™

The projection operator onto the subspace spanned by modes (v, k) € T " is denoted
by I", and defined as I =1—1 .

3.2. Elimination of non-resonant modes. In this subsection, we construct a
coordinate transformation & = U; such that U* f has no non-resonant modes. We
construct this transformation using a homotopy method, which is different from the
method used in [10, 11, 12, 13, 14, 15]. Let w € R, # € R, o > 0, v > 0, and

0.2

7 9692 ([(w, )] T 2/3)

Theorem 3.3. Let w € RY, § € R, p > 0,0 <7 <7, 0 >0 and vy > 0.
Assume that 0 < 5= <1 — < 1. If X = (w, f) with || f —0||,,» < €, there is an

isotopy U: D, — D, of real-analytic diffeomorphisms of the form Uy(x,y) =
(x,y + ut(z,y)) such that Uy = I is the identity map, and

I U f=(1-8I f, t €10,1],

(18)

satisfying
[uell}, s < 4ty HL f]

p,r’s
i} t
1027 = Ol < (24 5) 1 = bl
t (19)
0= B0l < (24 5) 1= )l

IEU; f = Efllpe < 8tx7v*0 (T~ E)f

Py

where x = (4t||(w,0)|| +2+ L "—2) Moreover, the map f — Uy is analytic.

r—r’ y2
Proof. Define the operator F: ]I_A’p,r/ =1 A, as
—w-Ogu+ folU
1+ 0yu
where U = I + u. The derivative of this operator is given by
1 Dyou— foU+0
—_ : Oyh |,
1+ d,u 1+ 0yu

where D, g = (w,0)-(9z,0y) and the dot denotes the dot product. We would like to
determine a one-parameter family u;, with 0 < ¢ < 1, satisfying F (us) = (1—t)F (uo)
and ug = 0.

Flu)y=T U*f=1

for [ull,,» <1, (20)

DF(u)h=T (Dw,9h+ayfoUh+
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Firstly, we will show that DF(0) =1 (=D, ¢ + 0, f — (f — 6)9,) is invertible.
Since

- 1 k|) [Py /
HD‘:19H h”;;,r’ — Z ( + ||U|| + | |) | 7k|ep|v\+r | k|

|w - v+ k6
(v,k)el™
< Z ’}/0_1 |hv-’k|ep|v\+r'|k\
(v,k)el™

< ’yo_l||]17h||p77-/,
we obtain that D_y: 1 A, — 1 A, is well-defined with
DSyl < yo™t.
Since the linear operator ]? = 0yf — (f —0)0y: ‘A;»m’ — A, is continuous with
norm bounded from above by |f] < —A1f = 6l + |If — Ollp, the norm of
DF0)~':T A, =T A}, is bounded as

-1
|| w,0

IDFO)Y = |DZLM -1 fDZH) 7Y < ——=20
1- 2| fIIDZ} I

<2|D4ll,

for | £]l < (4)1Dg 5l ~", that holds if 2= f = Ol + | f = Oll o < 0/ (4).
Secondly, we prove that DF(u) is invertible for sufficiently small . Notice that,
if |lullpr < (r—17")/2, we have

I[DF (u) = DFO)] hllp.r Oyu Dy ph + ((Oyf) o U = 8y f)-

- 1
:HH 1+ 0yu [
1+ 0,0kt (f — 0)0,udyh— (FoU — f)dyh
Dw,gu + (f — 9) o U8yu
+ . a,h

’

P
el 1l
<2 e o))
P

’
,T

8 r—r
1 1 -
# (1 o T )

[0l + |f9p,r] |

1= [lull},

ALf = Ollp.r +

Ifr—1 <1, HUH/p,w < 1/2 and A = 3||(w,0)|| + (3 + 14(r — ") 72| f — 0||;M, we
obtain
IDF(u) = DF(0)]| < 2A[ul[}, .- (21)
Therefore, if
1 r—7' 1
7, <min< = =4 22
full e < min { 3.7 5 Sxrmr= O (22)

DF(u) is invertible, with

1 1
I < IF T 157w - bF o)

[DF (u) < 2| DF(0)7"I.
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Finally, by first differentiating F(u:) = (1 — t)F (ug) with respect to ¢ and then
integrating, we obtain

up = — /t DF(us) ' F(0) ds,
0

whenever the family members uy satisfy the same smallness condition (22) as u

above so that the derivative of F is invertible. Furthermore, u; € H7A277r, is real-
analytic for each ¢ and satisfies

el <t Sup IDF ()M T £l

lll? <

< 24| DFO) T fllpo < 10,

if T flpr <6(2|DF(0)7Y)~t. The map f +— u; is analytic.
Since
Ulf—0=—Dgpu+ (f—0)oU,
+ 3 " (~0yu)" (=D gus + (f —0) 0 Uy), (23)
n>1
and uy €1 A’ _,, by taking the " projection of (23),

P,

TUSf=0=T [(f=0)oUs+ > (~0yue)"(~Dugue + (f —0) o Up) |, (24)

n>1
and assuming || f — 0|, < 0/(87), we obtain

T lJuell},
1T (U f = Olpr <N =0l + W (el | (o, O 411 = 61l )
p,r’

_ 1 B
<1 =Bl + 48T Fl 35+ IDFO 1S = 61, )

4
S = Ollpr + ST Fllpr-
Since, by construction,
LU f=01-10I (25)
prt =1 =T fllpr, and

t _
g ST =0+ (14 )T Flr

The second inequality in (19) follows.

By taking the I — E projection of the identities (26) and (25), adding them up
and using the fact that (I—E)(foU;) = I—-E)((f —Ef) oU;), we similarly obtain
the third inequality in (19).

By taking the E projection of identity (26), we obtain

EU f —Ef =E(I~E)f) o U+ Y (=0yu)"(~Du,gur + (L= E)f) 0 Uy). (26)

n>1

we also have ||[I U} f

U7 f =0

Taking into account that
[E(T=E)f) 0 Utllp,rr < 10y (A =B, raer el

(27)
2 @ =B fllpllull

<
r—r
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we obtain the fourth inequality in (19). O

3.3. Phase space and time rescaling. Consider the linear coordinate transfor-
mation T: (z,y) — (Tx,y) rescaling the base torus, where T' € SL(d, R) is a matrix
associated to w, defined as in (14). In addition, we will perform a linear time
rescaling t — n~1t.

Since w = n~! T~ 1w, the joint action of 7 and time rescaling on X = (w, f) is
given by

N TX = (w7 foT).

We are interested in the action of this transformation on vector fields with no
non-resonant modes, since the non-resonant modes are eliminated by a coordinate
change constructed in Theorem 3.3.

Lemma 3.4. If0< p”" <np’ and0<n,<1,0< 7" <r'—0/2, 0 >0, then T*

defines a bounded linear operator from H+Ap1,w (V) to Ay i (TV), with the property
that
7T T (L= B) f]| pr v < € COLN T Tpe (T — B) £ e -

* —1ls
1T (@ = Tx) fll e < €275 (@ =) fll o -
||T*Ef‘|p”,r” < ”Ef”l)'ﬂ" ’
Proof. Due to our choice of the norm, it suffices to verify the given bounds for a

single mode fwk(x, y) = fu £ VT labeled by (v, k). From the definitions of the
scaling map it follows that

1T follor i < €21l foklloror
where A < p[Toy| + p"|Tv | — fluy| = plfos] — (7 — v ||
In order to prove the first bound, assume that (v, k) belongs to I and |k| < K.
Thus, |v)| < olv|, with v # 0. Since [v] = |vj|+|vL|, Tvy =~ vy and Tv = Bvy,
we find that A < —p'(1 —np)|vL|. Notice now that, in this case, |v| < 20lvL], by
using that o < 1/2, which does not allow frequencies v that satisfy |vj| < L and
lvi| > £, due to the condition (16). Thus, we must have |v)| > L, by condition

(15).
The second bound follows directly from our initial estimate on A by using that
|Tv| < |n~1v| and |k| > K. Setting v = 0 and k = 0 leads the third bound. O

3.4. Renormalization transformations. Following [12, 13, 15], we express the
Brjuno condition on w (and, thus, on V) in terms of the summability of the series
of numbers

.= 2”"“{2"“‘”119’ +(k+r)7?, Q= mi , (28
a k; n(1/Qy) + (k + ) =g min vyl (28)

for all positive integers n. Here x and k' are two integer constants that will be
specified later on.
It follows from the definition that a,11/2 < a,, < 2a,+1, for all n € N and, thus,
an+12"+1/4 < ap2" < an+12"+1. In particular, a,2" is an increasing sequence.
We will define the scaling parameters as in [13],

Apia En Apy1 a S
m=(52) e (G2) e d= S @

k=n
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for all positive integers n. Since {a, }nen is a summable sequence of positive num-
bers, the sequence {4, },cn is well-defined, decreasing and converging to zero. We
define, recursively, A, = npA,—1, with Ag = 1. These definitions imply the last
bound in (16), since n, < 3, < 1 for d > 1.

These parameters are used to define the scaling maps T, and P, =T, ---T1, at
the n-th renormalization step, for each n € N, as

n
To(z) =, 2y + Buzy Py(z) =\ oy + (Hﬁi)xL. (30)
i=1
We also define Ty = Py as the identity maps. Notice that the determinants |T,| =
|P,| =1, for all n € N, by the choice of the scaling parameters.
Given a lattice Vy =V C R, we define the lattice V,,_1 = P,_1Vy, defining the
frequency space of the functions that are going to be renormalized in the n-th step.
The parameters L and ¢ used in the n-th renormalization step are

277,+)i

n—1
Lnfl - 2n+n H 51 3 ‘gnfl - A;i167a7L (31)
i=1

Proposition 3.5. Ifv € V,_1 is nonzero, then either [v|| > £, 1 or [vi| > Lp_1 .
Proof. Assume that v € V,,_; satisfies 0 < |v,| < L,—1. Then the corresponding
lattice point v = P, ! v in V satisfies |1 | < (H?;ll‘ )1 L,—1 = 27" and, thus,
Iyl = Q5,4 by (28). Since we have Q. > e=n2"™" this yields
ol = A2yl = A0 > Al e T =l (32)
as claimed. O
Let Cy be a constant dependent of @, that will be specified later on.

2n+n

Definition 3.6. We define the resonant cone width parameter at the n-th renor-
malization step

_ n+r C@Al ntw
w = (26 Cy N1 Lyyy) Lo a2 = 0L gm(nhe) gman2™ 33
o (2k'Cy 1 1) e A e (33)
This definition immediately implies o,, > 0 and 20,L,_1 < £,_1, for &' > Cy
and all n € N.

Definition 3.7. Given the initial domain parameters g,r > 0, we define the n-th
step cut-off parameter
20

10n

Kn—l =

a2 e, (34)

The following proposition completes the verification of all bounds in (16).

Proposition 3.8. For any fized £’ and s sufficiently large (depending on k'), we
have Y00 on < 1/2.

Proof. Notice that

CoAy
2k’ ay,
Since {a,2" }nen is a growing sequence, the sequence {0y, }nen is decreasing. Notice
also that for a fixed «/, and sufficiently large &, we have 2"**q,, > 2" "% (n+x/)=2 >
¢'2%n, for some constant ¢ > 0 depending only on x’. This makes the sum | o,
finite and, since by choosing « sufficiently large, A; decreases, we can make this
sum smaller than 1/2. O

on < 9= (ntr) g=an2"
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Definition 3.9. The initial domain parameters are pg = ¢ > 0 and g = r > 0.
The n-th step domain parameters are

n—1
g; g;
Pn—1 = )\nflga Tn—1 =T |;l - Z ( + )
i=1

vi o 2 (35)

Remark 3. It follows from Proposition 3.8 and the fact that 7; > 2 that r, > r/2.
Definition 3.10. Let 6,,_; = \,,*,0, for n € N. Let also
Jo 1 ={(,k) €l (Va_1) : |0p_1k| > (1/2)|w-v| and k < K,,_1},

and

Yo = max {2 9_ W}
" emer, U w v+ Ok

Definition 3.11. We say that 0 is DC,, (V) if there exist constants 7,5 > 0 and
C > 0 such that

w - v+ Ok| > (36)

Cliasitic
for all v € V\{0} and all k € N.

In the following, for any 8 € DC,,(V), T, 3¢,C are the associated constants as in
Definition 3.11.

Proposition 3.12. If 6 is a positive number such that 8 € DC,(V), then there
exists a universal constant & > 0, such that for alln € N,

Yo < ECp(An—10m) 7 HB ST T, (37)

where Cg = max{0~1,C~1(0 + 1)§4+7}.
Proof. Recall that v = P, v. By definition, we have

Yo = max {2 -1 G"+0"U|+|k|}
" wres, U " Jw- v+ 0n 1k
i {2’0;11’ 2|w - v| + || }
(v,k)ed,, |w U+ O lkl
1
max {2,9n11, no1+ DIk } (38)
(u kyeJ, _ |w v+ 61|
AL 0+ 1)k
max 2.0, 67! —+)|‘
(v,k)es w v+ 0k
Now, using the fact that 6 € DC,,( V), we find
1 1), 1d+ T —(d
- 'rk;t<c N—(d+71) d+'rk% 39
S <O (T sl e, (a0

by using that

o] = Jog| + vl = A2 vyl + ( Hﬁz il = ( Hﬂz vl. (40)



REDUCIBILITY OF QUASI-PERIODICALLY FORCED CIRCLE FLOWS 5339

For (v,k) € J,_; and v # 0, we have 0, |v| < |w - v| < 20,,_1]k| < 20,,_1K,,_1 and,
thus, |[v] < 20(A\n_10,) 1K, 1.
Therefore, we obtain that

Yo < ECo(An—10y) (47 Hﬁ T T, (41)

where ¢ is a universal constant, and Cp = max{6~1,C~1(6 + 1)09+7}. O

Definition 3.13. For n € N, let

Q n+rK
iy = exp{—g)\n,l(l — Bnnn)Ln,l} = exp{—A—aHQ e (42)
1
Proposition 3.14. 41 < pin < ui{fl, for n € N. Furthermore, given C;N > 0,
if k' and then k are chosen sufficiently large, then for alln > 1,

nt A, N
fin < Ce” N2 oy, < 027N, <0 <A1> : (43)

Proof. Let C > 0 and N > 0 be arbitrary. Since an4+1/2 < a,, < 2an41, for all
n € N, we have a,412""1/4 < a,2" < a, 12", and thus 1 < g, < ui/fl. By
choosing k' and « sufficiently large, we have 1 /A1 > N. Increasing them further,
if needed, we obtain the first bound. Keeping ' fixed, and increasing x further,
if necessary, we obtain the second two bounds in (43) by using that 2""%q, >
2nFR(n 4+ k') =2 > '2%n, for some positive constant ¢’ depending only on &’ The
same inequality, together with A, /41 > a,/A; > Cl/Ne_QQ"M“n/(NAl), where the
last inequality is valid for sufficiently large &, implies the third bound in (43). O
Proposition 3.14 directly implies the following claim.

Corollary 3.15. Given any C,N > 0, if ¥’ and k are chosen sufficiently large,
then for allm > 1,

,unSCO'éV, <CKnNia /Lnéomjy, (44)
fn < CAY < Cnn <cgl, <oy

Proof. In the first and the last inequality we have also used that u, < C &N for
any given C, N > 0, if x is chosen sufficiently large. O

From Theorem 3.3, it follows that there exists a universal constant R > 0 such
that the n-th step renormalization operator R, is well-defined from an open ball
B,—1 C Ay, 1y (Vn—1) around 6,,_, of radius Ro2/(v260,—1), into A,, ., (V).
We may choose the domain of the first step renormalization operator to be any ball
Dy C Ro?/(v36). Notice that the restriction of R, to EA,, | ., (Vs—1) is a linear
operator from EA,, | ». ,(Vn—1) to EA,, .. (V,) that will be denoted by L,.

The following claim follows directly from Theorem 3.3 and Lemma 3.4.

Theorem 3.16. There exists C, R > 0 such that the n-th step remormalization

operator Ry, is a bounded analytic map from B,y into A,, . (Vn), that satisfies
11 <1 and

1T =E)Rn(fa-)lpnirn < Ot | (1= E) frmtllps s
||Emn(fn—l) n(Efn 1)||Pn Tn _CA 172 72”(1[_ )fn 1||pn 1,"n—1"
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In what follows, a domain D,,_; for R, is a subset of B,_; described above,
which is open in A, , . ,(Vn—1) and contains 6,,_;. Given a domain D,,_;, for
each R,,, the domain D,,_1 of

mn:%no"'omla

for n € N, is defined recursively as the subset of all functions in the domain of 9~%n,1
that are mapped by E?inA into the domain D,,_; of R,,. By Theorem 3.16, these
domains are open, non-empty, and the transformations i)NQn are analytic.

To prove the following theorem, we apply the stable manifold theorem for se-
quences of mappings between Banach spaces that was proved in [11] (Section 6
therein).

Theorem 3.17. If v’ and then k are chosen sufficiently large, then there exist
a sequence of domains Dy,_1 for the transformations R, such that the set W =
mneNu{O}ﬁn is the graph of an analytic function W : (I — EYDy — EDy satisfying
W(0) =60 and DW(0) = 0. For every f € W, and every n € N,

1T = E)Ra(llpnrn < X2 1T = E)fllgur,

_ (45)
”E%n(f) - en”Pn,rn < Xn”(]I - E)fHE),rv

where xn = 15— ftk-

Proof. We start by rescaling the transformations R,,. For every n € N, let d,, =
dn-102,1/(v2,10,), with dy > 0 be half of the constant R from Theorem 3.16.
Consider the transformations

R(9) = dy ' [Rn (On1 + dn—19) — On_1], (46)

for n € N. By Theorem 3.16, R,, is analytic and bounded on a ball ||g||,, _,.r._1 < 2,
and satisfies

H(H - ]E)Rn(g)llpmm < enl(T- E)g||pn71;77171’

(47)
IER,.(g) — Rn(Eg)”pn,rn < onl|(I— E)g||;27n_1,rn_1a

where ¢, = Cngla;fl*ygﬂﬂn,un, On = Cn;lagQU;flfyg*ngGnGn,l, and C' > 0.

In addition, we have ||L;}| < 1/4. We will restrict R,, to the domain D,,_; C
As v 1 (V1) defined by

1Egllp—srns <1, [T =E)gllp—s,rner < On-1, (48)
where §,,_1 = (6¢,)t. By Corollary 3.15, if &’ and k are chosen sufficiently large,
then Cn;lagilfyflﬂﬂn,u}ﬂ <1/6 and

-1, —1y—1 _—2 -2 -
Cnn—i-lnn 1)‘7L+10n+20n+10-7217721-&-27721-&-1771 29”" S 1’
and, therefore, ¢, < u,lz/ 2 /6 and €,6,-1 < 0y, for all n € N. The assumptions
of Theorem 6.1 in [11] are now verified with ¢ = 1/4, and the conclusions of this
theorem imply the statements of our claim. O
Let Dy be a domain whose existence is guaranteed by Theorem 3.17.

Theorem 3.18. Ifrot f =0, and f € Dy, then f € W.
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Proof. If rot f = 0, let f = 0+ dog and g9 = g and ¢, = Ry(gn—1). Lemma 2.3

guarantees that |[Ef, —rot f,| < ||(I — E)fyl5,.», and, thus, analogously to (47),
we also have

H(H - E)Rn(gn—l)npmﬂz S 6”“(]1 - E)gn—lnpnfly"‘n—l’

IER: (gn—1)llpn,rn < EnllT—E)gn-1llpn_1,rn_1>

as long as g,—1 € Dp_1. Since, €,0,-1 <, < 1, if g € Dy, then g, € D, for all
n € N. Here, we have also used that rot f,, = A\, ' rot f (see Lemma 2.3). O

(49)

4. Analytic conjugacy. We say that a vector field X = (w, f) with f € A, (V)
is reducible to Y = (w, ) if there is a continuous embedding I'y : Dy = T¢ x T! —
D, ., such that for all t € R,

(ZSS(OFX:FXOQSZM% (50)

where ¢, ¢ is the linear flow of the constant vector field ¥ = (w, #). We refer to I'x
as the conjugacy between the flows of X and Y or the reducibility conjugacy for X.

Consider a one-step renormalization operator R and a vector field X in the
domain of R. If F is any map from T¢ x T! into the domain of Ax = Ux o T, define
the map

Mx(F)=AxoFoT " (51)

We will restrict our consideration to maps F' of the form F = I + 1, where [ is
the identity map and ¢ (z,y) = (0, ’L[)(l', y)). Notice, that M x preserves the form of
these maps, since Uy is also of the same form.

Formally, if T (x) is a conjugacy between the flows of R(X) and (w,n~'6), then
I'x = Mx(I'r(x)) is a conjugacy between the flows of X and the vector field (w, ).

This can be seen easily from the identity
Ax o ¢?7Rt(x) = (bg( oAx. (52)

Denote by Ao (V) the Banach space of continuous functions F' : Dy — C4*+1 | with
frequency module in V, for which the norm [[Flloy = >2,cy gepr [[Fokll is finite,
where F, ;, are the Fourier coefficients of F'.

Consider now a fixed but arbitrary vector field X = X that belongs to the stable
manifold W of our renormalization transformations, described by Theorem 3.17. Let
X, = Ru(Xn-1), for n > 1. In order to simplify the notation, we will write Uy
in place of the map Uy, associated to the vector field X} and My in place of
Mx, . Our goal is to construct an appropriate sequence of functions I'y, € Ag(Vi),
satisfying

Fn—l = Mn(rn) == An o Fn o 7;;1 3 An =Up—10°0 7;1 ) (53)

for all n € N. Then, we will show that I'y is the reducibility conjugacy for Xj.
Let us define B, for every n > 0, to be the vector space Ay(V,,), equipped with
the norm

— T n
0V, = Snl Z 19wkl Sn = A" (54)

. An
VEV, kEN 2-4

1l = 55l

Denote by B,, the unit ball in I + B,, , centered at the identity I, and by B, /2 the
ball of radius 1/2 in the same space.
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Proposition 4.1. If &' and then k are chosen sufficiently large, then there exists
an open neighborhood B of 0 in A, (Vo) such that, for every X = (w,f) with
f € Wn B, and for every n € N, the map M, is well defined and analytic,
as a function from B, to B,_1. Furthermore, M,, takes values in B,_1/2, and
| DM, (F)|| <1/3, for all F € B,, .

Proof. Clearly, M,, is well-defined in some open neighborhood of [ in B, , and
Mu(F)=1+g+Unr—~Do(I+g), g=TuowoT ', (55

where ¢ = F' — I. In order to estimate the norm of U,,_1 — I, we can apply Theo-
rem 3.3, with p = p,_1 and ' = r/,_,, where r,, <r/,_; < r,_1. By Theorem 3.17,

. _
s = Tllp sy S AZNT frallpni,
n

(56)

In

<420 =Bl < 0/
n

n n ’

for all n > 1, and for all f € W N B. Here, we have also used Proposition 3.14,
and assumed that k' and then x have been chosen sufficiently large, and that the
neighborhood B of 6 has been chosen sufficiently small (depending on ' and k).
The first estimate in (56) and the final bound also hold for n = 1.

The composition with I + ¢ in Equation (55) can be controlled by Lemma 2.1,
using the fact that ||glo.v, _, < ny tsalllll, < 7h_1/2, since ||¢]|, < 1, as we assume
that F' € B,,. Using s,/sn—1 = 1,/4, we obtain ||g||,,_; < n;,'n,/4 < 1/4. From
(56) we obtain |Up—1 — I||},_; < sgilxi/n < 1/4, if ¥’ and k have been chosen
sufficiently large. These estimates show that M,,_; maps B,, into B,_1/2.

Now, we obtain a bound on the norm of the derivative map

DM (F)yp =g+ DUn-1 —I)o (I +9)3, (57)
where g = T, 01 o T, L. Since ||gllo.v, , < pn—1/2, using the Cauchy estimate on
the derivative, we find

HD(Un—l - I)|

2
|[)n7177.n771 S ?”Mn_l - I||pn—177'71—1' (58)

-1
Since 7,1 > r/2, we obtain a bound on the norm of this derivative analogous to

that of (56). This, together with the fact that the inclusion map from B,, into B,_1
is bounded in norm by 7, /4, shows that

_ Sn _ _
IDMAFY oy € 2 (14 1D Qs = D, o) 100 (59)

n—

and, consequently, |[DM,,(F)|| < 1/3,for alln € N, and F € B,, . O
Below, we will make use of the following estimate on the difference between the
flow for X = (w, f) and the flow for the constant vector field Y = (w, 6).

Proposition 4.2. Let 7 > 0 and let X = (w, f) be a vector field with f € A, ,(V),
such that T||f — 8|, <1’ <. Then, for all t in the interval [—T, 7],

H‘bfx - (bf.yﬂllg,r—r’ < ||t(f - e)Hg,r' (60)
Let ¢, be the flow for the vector field X,,. We start with the identity
S o Mu(F) 0oLy = Mu(oh'oFop ", ), (61)

which follows from the relation (52) between the flow of a vector field and the flow
of the renormalized vector field.
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Proposition 4.3. Under the same assumptions as in Proposition j.1, there exists
an open neighborhood B of 0 in A, Vo), such that for every X = (w,f) with
f € WnN B, and for every n > 1, the function ¢ o F o qS;,Sgn belongs to B,,

whenever F' € B, /2 and |s| < .
Proof. We will use the following easily verifiable identity
GroFod y =I+vod y +[dnodsy —Io(I+doeesy ).  (62)
Since, by assumption, [|¢[;, < 1/2, and [[¢ 0 ¢_5 [lo,v, = [[¥]lo,v, , we have [|¢p o
b, lov, < sn/2.
By Proposition 4.2 and Theorem 3.17, we have the bound

65 0005, =l 0 s 2 < NsUn = 0)llpnre < 2x 2 NA=E)fllor,  (63)
Pn;Tn n/

provided that the right hand side of this inequality is less than s,/2. This is
certainly the case if || f — 6], is chosen sufficiently small. The composition in (62)
is well-defined since s,, < ry,.

The third term on the right hand side of (62) can be bounded as

Ién o 65s, — 1o (T+vodyy Mny < X *IT—=E)flor,  (64)

which is smaller than 1/2, for any n > 1, if f is sufﬁc1ently close to #. The claim
follows. O
We will now construct the conjugacy.

Theorem 4.4. Under the same assumptions as in Proposition 4.1, there exists an
open neighborhood B of 6 in A, ,.(V), such that the following holds. Given any
X = (w, f) with f € WN B, and any sequence of functions Fy, € By, , define

Fn,k:(Mn+1o--~oMk)(Fk>7 0<n<k. (65)
Then, the limits I';, = limg_ oo 'y i exist in B, , are independent of the choice of
Fo, F1, ..., and satisfy the identities (53). Furthermore, Ty is the conjugacy between

X and (w,0), and the map f — T is analytic and bounded on W N B.

Proof. By Proposition 4.1, the map M, : B, — B, _1/2 contracts distances by a
factor of at least 1/2. Thus, if 1 < n < k < k’, then the difference Ty, j» — 'y, &
is bounded in norm by 27—k+1  This shows that the sequence k — T, 1 converges
in B,, to a limit I';,, which is independent of the choice of the functions F} . By
choosing F), = Ty, for all k, we obtain the identities (53). The analyticity of f +— T'g
follows, via the chain rule, from the analyticity of the maps used in our construction,
and from uniform convergence.

In order to prove that T’y conjugates the flow of X to the linear flow of (w, 6), we
will use the identity (61). To be more precise, given a real number ¢, with |¢| < 1,
define ¢, = A,t for all n > 0. Proposition 4.3 allows us to iterate the identity (61),
and get the identity

¢60F07k0¢;f9 = (M1 O...OMk) (d) (z)w Gk) (66)

for all k > 0. As proved above, the right (and thus left) hand side of this equation
converges in Ag(V) to Iy . In addition, I'g x — I'g in A(V), and the convergence is
pointwise as well. Thus, since the flow ¢} is continuous, we have ¢ ol oqﬁ;tg =Ty.
This identity now extends to arbitrary ¢t € R, due to the group property of the flow,
and the fact that composition with ¢7, , is an isometry on Ag(V). O
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In what follows, the reducibility conjugacy Iy for the vector field X = (w, f)
with f € W will be denoted by I'x . For convenience, we extend the map f — I'x
to an open neighborhood of 8, by setting I'y = I'xs, where X' = (w, f’) with
fr=0+W)(([T-E)f).

Theorem 4.5. Let p > o409, p>r+3d and § > 0. Under the same assumptions as
in Proposition 4.1, there exists an open neighborhood B of 0 in A,(Vy), such that
T'x has an analytic continuation to | Imz|| < ¢ and |Imy| < 6, for each X = (w, f)
with f € B. With this continuation, the map f — T'x defines a bounded analytic
map from B to As(Vp).

Proof. The proof of this theorem is analogous to the proof of Theorem 4.5 of [11].
Consider the translations R, ,(7,y) = (z + ¢,y + p), with ¢ € R? and p € R. As
before, for vector fields X = (w, f), R} ,X denotes the pullback under R, ,; the
corresponding action on f is denoted by Ry ,X. For functions F': Dy — D/, with
p' > 0, we define R, P = R;Il) oFoRy,. The renormalization operator R and the
maps My, defined in (51), satisfy

RoR;,=Rp1,,°R, Mp: x =Ry, 0Mxo (Rp1g,) " (67)

Here, we have used the fact that the translations R are isometries on the spaces
A, (V) and that the domain of R is translation invariant. This also implies that
the manifold W is invariant under translations Rj ,, which is used in the second
identity in (67).

As was explained above, we can extend the function f — I'x to vector fields of
the form X = (w, f) with f in an open neighborhood of 8, via I'x = I'x/, where
X' = (w,f)and f' = I+ W)(I-E)f). If restricted to a sufficiently small open
ball B C A, (W), centered at ¢, the map f — I'x is analytic and bounded on the
whole B.

The construction of Ty in the proof of Theorem 4.4, together with identities (67)

and the invariance property W = W o R, shows that I‘R;‘px = Ry I'x, for all

X = (w, f) with f € B. Thus, if ¢ € R? and p € R, then
1—‘X (Q7p) = (Rq,p o FR(’;‘pX) (Oa 0)7 (68)

for f € B. The idea now is to use the analyticity of map f — 'y, to extend the
right hand side of (68) to the complex domain ||Img| < § and |Imp| < §. Choose
an open neighborhood B’ of # in .A,(Vy) such that R; B’ C B for all (¢,p) € Cca+t
of norm §’ = p— g or less. Then, the right hand side of (68), regarded as a function
of (f,q,p), is analytic and bounded on the product of B’ with the strips ||Sq|| < ¢’
and |Sp| < ¢'. Denoting this function by G, we have G(f,-) € As(V), for all
f € B’. The analyticity of f — G(f,-) is obtained now by using, for instance, a
contour integral formula for (g(£) — g(0) — t¢’(0))/t2 with g(t) = G(f + tf,). O
Theorem 3.17 and Theorem 4.5 imply Theorem 1.1.
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