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Abstract. We develop a renormalization group approach to the problem of

reducibility of quasi-periodically forced circle flows. We apply the method to

prove a reducibility theorem for such flows.

1. Introduction. In this paper, we study the dynamics of quasi-periodically time-
dependent ordinary differential equations on the circle T1 = R/(2πZ). These equa-
tions correspond to skew-product flows generated by vector fields on Td×T1 whose
dynamics are given by

ẋ = ω,

ẏ = f(x, y),
(1)

where (x, y) ∈ Td ×T1, ω ∈ Rd and f : Td ×T1 → R is real analytic. An important
problem in the dynamics of ordinary differential equations is to establish conditions
under which one can analytically conjugate the flow φt generated by (1) to the linear
flow of a constant vector field. If that is possible, we say that f is analytically or
Cω-reducible.

An important conjugacy invariant is the rotation number of f , i.e., its time
average along the orbit,

rot f = lim
t→+∞

1

t

∫ t

0

f ◦ φs(x, y) ds, (2)

for any (x, y) ∈ Td × T1 (see Section 2.3).
If f depends only on y (or ω = 0), the dynamical system given by (1) is integrable,

since the second equation then yields an autonomous vector field on the circle. In
that case, zeros of f correspond to the fixed points of the dynamics and all orbits
converge to them. If f has no zeros, then all orbits are periodically winding around
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the circle and the flow is uniquely ergodic for some absolutely continuous invariant
measure µ. The reducibility conjugacy can then be constructed using the solution

φt2 of the second equation in (1), as (x, y) 7→ (x, φ
T
2π y
2 (0)), where T is the least period

of the motion given by the frequency of the system 2πT−1 = rot f =
∫
T1 f dµ.

We are interested in the general case in which f depends on both x and y, i.e.,
non-autonomous circle flows. When d = 1, the system (1) corresponds to a periodic
perturbation of the circle flow, i.e., to a flow on T2. Herman’s theory [8] (further
developed by Yoccoz [21]) implies that if rot f/ω satisfies Yoccoz’s H arithmetical
condition [21, 22], then the system is Cω-reducible.

Similar conclusions arise in the case when ω ∈ Qd \ {0}, d > 1. Without loss of
generality, up to a time rescaling, we can take ω ∈ Zd. By a linear change of the basis
for the torus Td, we can reduce our initial system to ẋ = (1, 0, . . . , 0), ẏ = f(x, y). By

writing x = (t, λ), we obtain the systems: ṫ = 1, λ̇ = 0, ẏ = Fλ(t, y) = f((t, λ), y).
For each λ ∈ Td−1, this corresponds again to a vector field on T2.

We will now restrict our considerations to ω ∈ Rd\Qd, d > 1. In fact, we will focus
only on incommensurate frequency vectors ω, i.e., vectors whose components are
rationally independent. For incommensurate ω, the main difficulty in the analysis is
related to the existence of small divisors. In this case, there are already some results
obtained by KAM (Kolmogorov-Arnol’d-Moser)-type methods [1, 2, 16, 19]. In this
paper, we develop a different approach to the problem, based on a renormalization
method. This renormalization approach is also different than that exploited in [5, 6,
7], which is based on resummation of a perturbation series in analogy to quantum
field theory. While in KAM theory one typically encounters small divisors in a
finite number of narrow regions surrounding some resonant planes, in the problem
at hand, we encounter and develop an approach to deal with an infinite number of
resonant planes (see Remark 2). The approach developed here should, therefore,
also be useful for the construction of quasiperiodic solutions, i.e., invariant tori, for
PDEs, where one necessarily has to deal with an infinite number of resonant planes.

On a space of vector fields X = (ω, f) of the form (1), we define a renormalization
operator R (see Section 3) as

R(X) = η−1T ∗U∗X(X), (3)

where η ∈ (0, 1) is the time rescaling parameter, UX is a change of variables chosen
such that U∗X(X), i.e., the pullback of X under UX , is in an appropriate normal
form (see Section 3.2), and T is a scaling (x, y) 7→ (Tx, y), defined by a matrix
T ∈ SL(d,R). The transformation R will be constructed such that it preserves the
form of the vector field X = (ω, f) and we will define the induced map R : f 7→ R(f)
by R(ω, f) = (ω,R(f)). Note that f is a non-autonomous vector field on a circle
and R defines a renormalization operator on a Banach space of these vector fields.

We will consider vector fields close to Y = (ω, θ), with ω ∈ BC and θ ∈ DCω. We
denote by BC the set of Brjuno vectors ω ∈ Rd, i.e., vectors that satisfy [3, 4, 20]

∞∑
n=1

2−n ln(1/Ωn) <∞ , Ωn = min
ν∈V, 0<|ν|<2n

|ω · ν|, (4)

where V = Zd. Here, | · | denotes the `1 norm of a vector in Rd, and dot denotes
the usual scalar product of vectors in Rd. Given ω ∈ Rd, τ,κ ≥ 0, and C > 0, we
define DCω(C, τ,κ) to be the set of all θ ∈ R \ {0} such that

|ω · ν + kθ| > C

|ν|d+τ |k|κ
, for all k ∈ Z\{0}, ν ∈ V \ {0}. (5)
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We further define

DCω(τ,κ) =
⋃
C>0

DCω(C, τ,κ) and DCω =
⋃

τ,κ≥0

DCω(τ,κ).

Since we will perform scaling with matrices T ∈ SL(d,R), we will consider func-
tions with periodicity of a simple lattice Z in Rd that is more general that 2πZd.
Functions that are invariant under Z-translations can be identified with functions
on Td := Rd/Z or, equivalently with quasiperiodic functions on Rd with frequency
module in the dual lattice V (the set of points v ∈ Rd satisfying eiv·z = 1, for all
z ∈ Z). For convenience, we will perform a linear change of coordinates in Rd
such that ω = (1, 0, . . . , 0). The lattice obtained from 2πZd under this change of
coordinates in Rd will be denoted by Z0 and its dual lattice by V0.

We consider vector fields X of the form X = (ω, f) that are close to Y = (ω, θ),
with f analytic on a complex neighborhood of Dρ,r of Td × T1 characterized by
|=xi| < ρ and |=y| < r. In the following, we will refer to these vector fields as
vector fields of the form (ω, f). In Section 2.2, we will introduce the spaces of
vector fields of the form (ω, f) with f analytic on Dρ,r, with frequency module
in V, and the corresponding Banach spaces Aρ,r(V) of functions f . If r = ρ, we
will denote these spaces and the corresponding domains simply by Aρ(V) and Dρ,
respectively.

Let E be a projection operator onto the subspace of constant vector fields (either
on the circle or on Td × T1), given by the averaging of the function over Td × T1

(see Section 2.2).
The main results of this paper can be summarized in the following theorem.

Theorem 1.1. Let %, r > 0 and let ω ∈ BC and θ ∈ DCω. There exist a sequence
of matrices Tn ∈ SL(d,R), a sequence of time rescaling parameters ηn ∈ (0, 1), and
a corresponding sequence of renormalization operators Rn, n ∈ N, of the form (3),
such that the corresponding operators Rn are analytic from an open neighborhood
Dn−1 of θn−1, where θn = η−1

n θn−1, θ0 = θ, in Aρn−1,rn−1(Vn−1), to Aρn,rn(Vn),
where Vn = TnVn−1. The set W of infinitely renormalizable vector fields f0 in D0,
characterized by the property that fn = Rn(fn−1) belongs to Dn, for every n ∈ N,
is the graph of an analytic function W : (I− E)D0 → ED0 that satisfies W (0) = θ0

and DW (0) = 0. In particular, if f ∈ D0 and rot f = θ, then f ∈ W. If ρ > %+ δ,
ρ > r + δ and δ > 0, then every vector field X = (ω, f) with f ∈ W ∩ Aρ(V0) is
analytically reducible via an analytic conjugacy of the form ΓX = I+(0, ψX), where
I is the identity map and ψX ∈ Aδ(V0), that conjugates the flow of X and the flow
of Y = (ω, θ).

An immediate corollary of Theorem 1.1 is the following.

Corollary 1.2. For every ω ∈ BC and θ ∈ DCω, there is an open ball B centered
at θ in Aρ(V0), such that every vector field X = (ω, f), with f ∈ B and rot f = θ,
is analytically reducible to Y = (ω, θ).

Remark 1. Notice that the renormalization operators Rn are well-defined on {ω}×
Dn, which are open in the space of vector fields of the form (ω, f), and that {ω}×W
is the stable manifold for this sequence of renormalization operators.

Remark 2. The renormalization approach developed here is similar to, but techni-
cally more involved than, the renormalization approach to the construction of invari-
ant tori for Hamiltonian and other vector fields [10, 11, 12, 14, 17, 18], reducibility
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of skew-product flows on Td × SL(2,R) [15] and construction of lower-dimensional
tori for Hamiltonian flows [13]. The small divisors encountered in these problems
are produced by frequencies ν ∈ Zd that lie in the “resonant” regions, outside of
certain “non-resonant” cones, surrounding some resonant planes, perpendicular to
ω. In the case of maximal-dimensional KAM tori, the small divisors are given by
|ω ·ν| and, thus, there is only one such a plane [10, 11, 12, 14]. The renormalization
transformations (see Section 3) then eliminate the non-resonant modes of a vector
field and transform some of the remaining resonant modes into non-resonant. In the
case of reducibility of skew-product flows on Td × SL(2,R), there is an additional
resonant plane surrounded by frequencies corresponding to small divisors |ω ·ν−2ρ|,
where ±iρ are the eigenvalues of a matrix in the Lie algebra sl(2,R) [15]. In the case
of lower-dimensional tori [13], there are finitely many resonant planes corresponding
to small divisors |ω · ν + Ω · V |, where Ω ∈ RD is vector of normal frequencies and
0 < |V | ≤ 2. In the problem at hand, we encounter and develop a renormalization
approach to deal with an infinite number of resonant planes, corresponding to small
divisors of the form |ω · ν + kθ|, for k ∈ Z.

The paper is organized as follows. In Section 2, we introduce the spaces of vector
fields that we consider. In Section 3, we construct the renormalization scheme and
prove the convergence of vector fields of the form (1), on the stable manifold of
the renormalization operator, towards the constant vector field. In Section 4, we
construct analytic conjugacy between the flows of a vector field X = (ω, f) on the
stable manifold, and a constant vector field Y = (ω, θ).

2. Preliminaries.

2.1. Skew-product vector fields and changes of coordinates. Recall that we
are interested in skew-product vector fields on Td × T1, of the form

X(x, y) = (ω, f(x, y)), (6)

with ω ∈ Rd and f : Td ×T1 → R. We will refer to Td as the base and to T1 as the
fiber. The dynamics generated by X on the base is trivially given by x 7→ x + ω t
mod Z.

We will consider real analytic diffeomorphisms H ∈ Diffω(Td×T1) which preserve
the space of skew-product vector fields and are of the type

H(x, y) = (x, y + h(x, y)), (7)

where (x, y) ∈ Td × T1 and h ∈ Cω(Td × T1,T1). We call them skew-product
diffeomorphisms.

The action of H on X = (ω, f) is given by the pull-back

H∗X = (DH)−1X ◦H.

As the form of the vector field is preserved, we abuse the notation in order to write
the pull-back as acting on the fiber component of the vector field

H∗f = (1 + ∂yh)−1(−ω · ∂xh+ f ◦H). (8)

The flow φ′t generated by H∗X is related to the flow φt of X by

φ′t = H−1 ◦ φt ◦H. (9)

The vector fields and skew-product diffeomorphisms considered are real-analytic
and, thus, can be extended to a complex domain.
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2.2. Spaces and norms. We will use ‖ · ‖ and | · | to denote the `∞ and `1 norms,
respectively, of a vector in Rn or Cn.

Let ρ, r > 0 and let

Dρ,r =
{

(x, y) ∈ Cd × C : ‖=x‖ < ρ, |=y| < r
}
. (10)

In this paper, we consider functions with periodicity of Z × 2πZ, where Z is a
lattice Z ⊂ Rd. Recall that for a lattice Z ⊂ Rd, the dual lattice is defined as

V = {v ∈ Rd : (∃z ∈ Z) eiz·v = 1}. (11)

We will denote by N , the lattice Z which is dual to 2πZ.
The norm of a function f , analytic on Dρ,r, that can be expanded as

f(x, y) =
∑

v∈V,k∈N

fv,k e
ix·v+iyk, (12)

is given by

‖f‖ρ,r =
∑

v∈V,k∈N

|fv,k| eρ|v|+r|k|. (13)

Given any K ∈ N, we denote by IKf the truncation of f corresponding to the
modes with |k| ≤ K, i.e,

IKf(x, y) =
∑

v∈V,k∈N ,|k|≤K

fv,k e
ix·v+iyk.

We denote by I the identity operator acting as If = f , and by E the average of f ,
given by the action

Ef =

∫
T1

∫
Td
f(x, y) dx dy = f0,0.

The Banach space of functions f , analytic on Dρ,r, for which the norm ‖f‖ρ,r
is finite will be denoted by Aρ,r(V). Similarly, A′ρ,r(V) is the Banach spaces of
functions f , analytic on Dρ,r, for which the norm

‖f‖′ρ,r = ‖f‖ρ,r +
∑

v∈V,k∈N

(‖v‖+ |k|) |fv,k| eρ|v|+r|k|,

is finite. Whenever there is no ambiguity, we avoid writing V explicitly.
We present several properties of the above norms, which will be used throughout

the paper without an explicit reference to them.

Lemma 2.1. Let f, g ∈ A′ρ,r, r′ < r, K ∈ N and δ > 0. Let also U(x, y) =
(x, y + u(x, y)) be a skew-product diffeomorphism satisfying ‖u‖ρ,r′ < (r − r′)/2.
Then,

• supx∈Dρ,r |f(x)| ≤ ‖f‖ρ,r ≤ ‖f‖′ρ,r ≤ (1 + 2δ−1) ‖f‖ρ+δ,r+δ,
• ‖(I− IK)f‖ρ,r′ ≤ e−K(r−r′)‖f‖ρ,r,
• ‖f g‖ρ,r ≤ ‖f‖ρ,r‖g‖ρ,r,
• ‖f g‖′ρ,r ≤ ‖f‖′ρ,r‖g‖′ρ,r.
• ‖f ◦ U‖ρ,r′ ≤ ‖f‖ρ,r,
• ‖f ◦ U − f‖ρ,r′ ≤ 2(r − r′)−1‖f‖ρ,r‖u‖ρ,r′ ,

Proof. The proof of these inequalities is straightforward and will be omitted. In the
proof of the last inequality, one uses Cauchy’s estimate for the derivative.
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2.3. Rotation number. Define the (fibered) rotation number of f at (x, y) ∈
Rd × R as

rot f(x, y) = lim
t→+∞

φ̃t2(x, y)− y
t

mod 2π,

where φ̃t2 = π2φ̃
t stands for the last component of a lift φ̃t of the flow φt to the

universal cover Rd+1. Some versions of the following claim can be found in the
literature. We include here a version relevant for our systems.

Proposition 2.2. If f ∈ C0(Td × T1,R) and ω ∈ Rd is incommensurate with
respect to Z, then rot f exists and it is constant everywhere on Rd × R1.

Proof. Notice that, for every x ∈ Td and every t ∈ R, the map y 7→ φt2(x, y) is

an orientation-preserving diffeomorphism of the circle satisfying φ̃t2(x, y + 2π) =

φ̃t2(x, y) + 2π. So, if y < y′ < y + 2π, one gets |φ̃t2(x, y′) − φ̃t2(x, y)| < 2π. Assume
that the rotation number exists for some (x, y). Hence,∣∣∣∣∣ φ̃t2(x, y′)− y′

t
− φ̃t2(x, y)− y

t

∣∣∣∣∣ ≤
∣∣∣∣∣ φ̃t2(x, y′)− φ̃t2(x, y)

t

∣∣∣∣∣+

∣∣∣∣y′ − yt
∣∣∣∣ < 4π

t
,

for all t > 0. Taking the limit t→ +∞, one obtains that rot f(x, y) = rot f(x) does
not depend on y. Taking, e.g., y = 0, it remains to show that rot f(x) exists for all
x and does not depend on x.

Let At(x) = φ̃t(x, 0) and Aqt (x) = φ̃t(x, q). Therefore, Aqt (x+ p) = At(x) + (p, q)
for (p, q) ∈ Z × (2πZ). Moreover, define at(x) = π2At(x) and aqt (x) = π2A

q
t (x). We

want to show that limt→+∞ at(x)/t exists and is independent of x.
We begin with some estimates. For s, s′ > 0 and (p, q) ∈ Z × (2πZ) satisfying

‖As(x)− (p, q)‖ < 1, we have

at(x)

t
=− 1

s′t

∫ t

0

[as ◦As′(x)− as(x)− s′

t
at(x)] ds

+
1

s′t

∫ t

0

[as ◦As′(x)− aqs′(x+ ωs+ p)− as(x) + q] ds

+
1

s′t

∫ t

0

as′(x+ ωs) ds.

We can easily bound the absolute values of the first two terms. For the first one, by

noticing that
∫ t

0
(as+s′ − as)ds =

∫ t+s′
t

asds−
∫ s′

0
asds =

∫ s′
0

(as+t − as)ds, we get∫ t

0

[as ◦As′(x)− as(x)− s′

t
at(x)] ds =

∫ s′

0

[as ◦At(x)− as(x)− at(x)] ds,

whose absolute value is bounded from above by s′ times

Ms′(x) = max
0≤s≤s′

|as ◦At(x)− at(x)− as(x)|

≤2 max
0≤s≤s′,(x′,y)∈Td+1

|φ̃s2(x′, y)− y|.

The second term is bounded by∫ t

0

|as ◦As′(x)− aqs′(x+ ωs+ p)− as(x) + q| ds

≤
∫ t

0

|as ◦As′(x)− aqs′(x+ ωs+ p)| ds+

∫ t

0

|as(x)− q| ds < 4πt.
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So, ∣∣∣∣at(x)

t
− 1

t

∫ t

0

as′(x+ ωs)

s′
ds

∣∣∣∣ ≤ Ms′(x)

t
+

4π

s′
.

Taking the limit t → +∞, the first term on the right hand side approaches zero.
Using Birkhoff’s ergodic theorem, since the base flow x 7→ x+ωt mod Z is uniquely
ergodic with respect to the Lebesgue measure dm, we obtain

−4π

s′
+

∫
Td

as′

s′
dm ≤ lim inf

t→+∞

at(x)

t
≤ lim sup

t→+∞

at(x)

t
≤ 4π

s′
+

∫
Td

as′

s′
dm.

Finally, taking s′ → +∞, this shows that the rotation number rot f(x) exists and
that rot f(x) =

∫
Td rot f dm does not depend on x.

We will use the following properties of the rotation number.

Lemma 2.3. Let f, h ∈ C0(Td × T1,R). Then, we have

• |Ef − rot f | ≤ ‖f − Ef‖C0 .
• rot(τH∗f) = τ rot f ,

for any τ ∈ R and a skew-product diffeomorphism H(x, y) = (x, y + h(x, y)).

Proof. Let θ = rot f . As limt→+∞
1
t

∫ t
0
[f ◦φs(x, y)−θ] ds = 0, we immediately have

|Ef − θ| ≤ max |Ef − f |.
This proves the first part of the claim.

If we denote by φ′t the flow of τH∗f , by identity (9), we have

rot f = lim
t→+∞

π2H ◦ φ̃′t/τ ◦H−1(0)

t

= τ−1 lim
t→+∞

φ̃
′t/τ
2 ◦H−1(0) + h ◦ φ̃′t/τ2 ◦H−1(0)

t/τ

= τ−1 rot(τH∗f).

This completes the proof.

2.4. Arithmetics.

Lemma 2.4. If τ,κ > 0, there is κ > 0 such that for any C > 0 the Lebesgue mea-
sure of the complement of DCω(C, τ,κ) is bounded from above by κC. Furthermore,
DCω(τ,κ) is of full Lebesgue measure.

Proof. Let Iν,k be the interval of θ satisfying

|ω · ν + kθ| ≤ C

|ν|d+τ |k|κ
,

for some ν ∈ Zd \ {0} and k ∈ Z \ {0}. Clearly, Iν,k has width 2C(|ν|d+τ |k|1+κ)−1

and is centered at k−1ω · ν.
Recall that ‖ν‖ = maxi |νi|. Clearly, ‖ν‖ ≤ |ν|. Moreover, for each n ∈ N, one

has the following estimate on the cardinality

#{ν ∈ Zd : ‖ν‖ = n} ≤ c1nd−1

for some c1 > 0, depending on d only. So,∑
ν 6=0

|ν|−(d+τ) ≤
∑
ν 6=0

‖ν‖−(d+τ) ≤ c1
∑
n≥1

n−(τ+1)
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which converges if τ > 0. In addition, for κ > 0,∑
k 6=0

|k|−(1+κ) <∞.

Therefore, the Lebesgue measure of
⋃
ν,k Iν,k is bounded by κC for some constant

κ > 0, depending on d, τ and κ.
The measure of the above set approaches zero when C → 0. The second claim is

now immediate.

3. Renormalization. In this section, we construct the renormalization scheme.
We first define the non-resonant and resonant modes of a vector field and construct
a change of coordinates that, via the pullback, eliminates non-resonant modes of a
vector field. We then perform a scaling of the phase space that can produce some
non-resonant modes of the transformed vector field. These two transformations,
together with a time rescaling, form a one-step renormalization operator. Finally,
we construct the stable manifold for a sequence of renormalizations operators.

3.1. Resonant cones. As explained in the introduction, we will perform a trans-
formation of our coordinate system such that ω ∈ Rd takes the form ω = (1, 0, . . . , 0).
In this coordinate system, the lattice V0 will be a lattice in Rd which does not co-
incide with Zd.

At each renormalization step, we will perform the following phase space scaling
T (x, y) = (Tx, y), where

Tx = η−1x‖ + βx⊥, (14)

and x = x‖ + x⊥ is the decomposition of x into component x‖ parallel and x⊥
perpendicular to ω. Notice that we will not scale the coordinate y, and all the
functions that we consider will be periodic in y with period 2π; the lattice dual to
2πZ, the lattice N = Z, will be fixed throughout the paper.

Under the scaling, the lattice V is transforms into TV.

Definition 3.1. Given σ,K > 0 and a pair of lattices V and N , in Rd and R,

respectively, the nonresonant index set I
−

is defined as the set of pairs (v, k) ∈
(V,N ) such that |ω ·v| > σ|v| and |k| ≤ K, or v = 0 and 0 < |k| ≤ K. The resonant

index set I
+

is defined as the complement of I
−

in V ×N .

Given any L ≥ 1, we can find ` > 0 such that

|v⊥| > L or |v‖| ≥ ` , ∀v ∈ V \ {0} . (15)

We assume that the renormalization parameters σ, η, β, L, ` are positive and that
the following conditions are satisfied

σ < 1/2 , 2σL ≤ ` , 0 < η ≤ β < 1. (16)

Given K > 0, let

J = {(v, k) ∈ I
−

: |θk| > (1/2)|ω · v| and |k| ≤ K}. (17)

Let

γ = max
(v,k)∈J

{
2, θ−1,

σ + σ|v|+ |k|
|ω · v + θk|

}
.

Proposition 3.2. For all modes indexed by (v, k) with v 6= 0, |k| ≤ K and |ω ·v| >
σ|v|, or v = 0 and 0 < |k| ≤ K, if |ω · v + θk| 6= 0, then |ω · v + θk| ≥ σ/γ,
|ω · v + θk| ≥ (σ/γ)|v|, and |ω · v + θk| ≥ k/γ.
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Proof. If |ω ·v| > σ|v| and |θk| ≤ (1/2)|ω ·v|, then we have |ω ·v+θk| ≥ |ω ·v|−|θk| ≥
(1/2)|ω · v| and thus |ω · v + θk| ≥ (σ/2)|v|. Furthermore, |ω · v + θk| ≥ |θk|. Using
the conditions (15) and (16), together with L ≥ 1, we also obtain |ω · v| > σ and,
thus, |ω · v + θk| ≥ σ/2, in that case.

The number of modes with |θk| > (1/2)|ω · v| ≥ (1/2)σ|v| and |k| ≤ K is finite.
So, if |ω · v + θk| 6= 0 then |ω · v + θk| ≥ σ/γ and |ω · v + θk| ≥ (σ/γ)|v|.

Let I− be the projection operator onto the subspace spanned by modes (v, k) ∈ I−

defined by the truncation

I
−
f(x, y) =

∑
(v,k)∈I−

fv,ke
ix·v+iyk.

The projection operator onto the subspace spanned by modes (v, k) ∈ I+

is denoted

by I+ , and defined as I+ = I− I− .

3.2. Elimination of non-resonant modes. In this subsection, we construct a
coordinate transformation U = U1 such that U∗f has no non-resonant modes. We
construct this transformation using a homotopy method, which is different from the
method used in [10, 11, 12, 13, 14, 15]. Let ω ∈ Rd, θ ∈ R, σ > 0, γ > 0, and

ε =
σ2

96γ2(‖(ω, θ)‖+ 2/3)
(18)

Theorem 3.3. Let ω ∈ Rd, θ ∈ R, ρ > 0, 0 < r′ < r, σ > 0 and γ > 0.
Assume that 0 < σ

2γ < r − r′ < 1. If X = (ω, f) with ‖f − θ‖ρ,r ≤ ε, there is an

isotopy Ut : Dρ,r′ → Dρ,r of real-analytic diffeomorphisms of the form Ut(x, y) =
(x, y + ut(x, y)) such that U0 = I is the identity map, and

I
−
U∗t f = (1− t)I

−
f, t ∈ [0, 1],

satisfying

‖ut‖′ρ,r′ ≤ 4tγσ−1‖I
−
f‖ρ,r′ ,

‖U∗t f − θ‖ρ,r′ ≤
(

2 +
t

3

)
‖f − θ‖ρ,r,

‖(I− E)U∗t f‖ρ,r′ ≤
(

2 +
t

3

)
‖(I− E)f‖ρ,r

‖EU∗t f − Ef‖ρ,r′ ≤ 8tχγ2σ−2‖(I− E)f‖2ρ,r,

(19)

where χ =
(

4t‖(ω, θ)‖+ σ
γ + 1

r−r′
σ2

γ2

)
. Moreover, the map f 7→ Ut is analytic.

Proof. Define the operator F : I−A′ρ,r′ → I−Aρ,r′ as

F(u) = I
−
U∗f = I

−−ω · ∂xu+ f ◦ U
1 + ∂yu

for ‖u‖′ρ,r′ < 1, (20)

where U = I + u. The derivative of this operator is given by

DF(u)h = I
− 1

1 + ∂yu

(
−Dω,θh+ ∂yf ◦ U h+

Dω,θu− f ◦ U + θ

1 + ∂yu
∂yh

)
,

where Dω,θ = (ω, θ) ·(∂x, ∂y) and the dot denotes the dot product. We would like to
determine a one-parameter family ut, with 0 ≤ t ≤ 1, satisfying F(ut) = (1−t)F(u0)
and u0 = 0.
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Firstly, we will show that DF(0) = I−(−Dω,θ + ∂yf − (f − θ)∂y) is invertible.
Since

‖D−1
ω,θ I

−
h‖′ρ,r′ =

∑
(v,k)∈I−

(1 + ‖v‖+ |k|) |hv,k|
|ω · v + kθ|

eρ|v|+r
′|k|

≤
∑

(v,k)∈I−
γσ−1 |hv,k|eρ|v|+r

′|k|

≤ γσ−1‖I
−
h‖ρ,r′ ,

we obtain that D−1
ω,θ : I−Aρ,r′ → I−A′ρ,r′ is well-defined with

‖D−1
ω,θ‖ ≤ γσ

−1.

Since the linear operator f̂ = ∂yf − (f − θ)∂y : A′ρ,r′ → Aρ,r′ is continuous with

norm bounded from above by ‖f̂‖ ≤ 1
r−r′ ‖f − θ‖ρ,r + ‖f − θ‖ρ,r′ , the norm of

DF(0)−1 : I−Aρ,r′ → I−A′ρ,r′ is bounded as

‖DF(0)−1‖ = ‖D−1
ω,θ(I− I

−
f̂D−1

ω,θ)
−1‖ ≤

‖D−1
ω,θ‖

1− 2‖f̂‖‖D−1
ω,θ‖

≤ 2‖D−1
ω,θ‖,

for ‖f̂‖ ≤ (4‖D−1
ω,θ‖)−1, that holds if 1

r−r′ ‖f − θ‖ρ,r + ‖f − θ‖ρ,r′ ≤ σ/(4γ).

Secondly, we prove that DF(u) is invertible for sufficiently small u. Notice that,
if ‖u‖ρ,r′ ≤ (r − r′)/2, we have

‖[DF(u)−DF(0)]h‖ρ,r′ =

∥∥∥∥I− 1

1 + ∂yu

[
∂yuDω,θh+ ((∂yf) ◦ U − ∂yf)·

· (1 + ∂yu)h+ (f − θ)∂yu ∂yh− (f ◦ U − f) ∂yh

+
Dω,θu+ (f − θ) ◦ U∂yu

1 + ∂yu
∂yh

]∥∥∥∥
ρ,r′

≤
‖u‖′ρ,r′‖h‖′ρ,r′

1− ‖u‖′ρ,r′
[‖(ω, θ)‖

+

(
1 +

8

(r − r′)2
(1 +

r − r′

4
+ ‖u‖′ρ,r′)

)
·‖f − θ‖ρ,r +

‖(ω, θ)‖+ ‖f − θ‖ρ,r
1− ‖u‖′ρ,r′

]
.

If r − r′ < 1, ‖u‖′ρ,r′ ≤ 1/2 and ∆ = 3‖(ω, θ)‖ + (3 + 14(r − r′)−2)‖f − θ‖′ρ,r, we
obtain

‖DF(u)−DF(0)‖ ≤ 2∆‖u‖′ρ,r′ . (21)

Therefore, if

‖u‖′ρ,r′ ≤ min

{
1

2
,
r − r′

2
,

1

4∆‖DF(0)−1‖

}
:= δ, (22)

DF(u) is invertible, with

‖DF(u)−1‖ ≤ 1

‖DF(0)−1‖−1 − ‖DF(u)−DF(0)‖
≤ 2‖DF(0)−1‖.
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Finally, by first differentiating F(ut) = (1 − t)F(u0) with respect to t and then
integrating, we obtain

ut = −
∫ t

0

DF(us)
−1F(0) ds,

whenever the family members us satisfy the same smallness condition (22) as u

above so that the derivative of F is invertible. Furthermore, ut ∈ I−A′ρ,r′ is real-
analytic for each t and satisfies

‖ut‖′ρ,r′ ≤ t sup
‖u‖′

ρ,r′≤δ
‖DF(u)−1‖ ‖I

−
f‖ρ,r′

≤ 2t‖DF(0)−1‖ ‖I
−
f‖ρ,r′ ≤ tδ,

if ‖I−f‖ρ,r′ ≤ δ(2‖DF(0)−1‖)−1. The map f 7→ ut is analytic.
Since

U∗t f − θ =−Dω,θut + (f − θ) ◦ Ut

+
∑
n≥1

(−∂yut)n(−Dω,θut + (f − θ) ◦ Ut), (23)

and ut ∈ I−A′ρ,r′ , by taking the I+ projection of (23),

I
+

U∗t f − θ = I
+

(f − θ) ◦ Ut +
∑
n≥1

(−∂yut)n(−Dω,θut + (f − θ) ◦ Ut)

 , (24)

and assuming ‖f − θ‖ρ,r ≤ σ/(8γ), we obtain

‖I
+

(U∗t f − θ)‖ρ,r′ ≤ ‖f − θ‖ρ,r +
‖ut‖′ρ,r′

1− ‖ut‖′ρ,r′
(
‖ut‖′ρ,r′‖(ω, θ)‖+ ‖f − θ‖ρ,r

)
≤ ‖f − θ‖ρ,r + 4t‖I

−
f‖ρ,r′

(
1

12
+ ‖DF(0)−1‖‖f − θ‖ρ,r

)
≤ ‖f − θ‖ρ,r +

4

3
t‖I
−
f‖ρ,r′ .

Since, by construction,

I
−
U∗t f = (1− t)I

−
f, (25)

we also have ‖I−U∗t f‖ρ,r′ = (1− t)‖I−f‖ρ,r′ , and

‖U∗t f − θ‖ρ,r′ ≤ ‖f − θ‖ρ,r +

(
1 +

t

3

)
‖I
−
f‖ρ,r′ .

The second inequality in (19) follows.
By taking the I − E projection of the identities (26) and (25), adding them up

and using the fact that (I−E)(f ◦Ut) = (I−E)((f −Ef) ◦Ut), we similarly obtain
the third inequality in (19).

By taking the E projection of identity (26), we obtain

EU∗t f − Ef = E((I− E)f) ◦ Ut +
∑
n≥1

(−∂yut)n(−Dω,θut + ((I− E)f) ◦ Ut). (26)

Taking into account that

‖E((I− E)f) ◦ Ut‖ρ,r′ ≤ ‖∂y((I− E)f)‖
ρ, r+r

′
2

‖u‖ρ,r′

≤ 2

r − r′
‖(I− E)f‖ρ,r‖u‖ρ,r′ ,

(27)
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we obtain the fourth inequality in (19).

3.3. Phase space and time rescaling. Consider the linear coordinate transfor-
mation T : (x, y) 7→ (Tx, y) rescaling the base torus, where T ∈ SL(d,R) is a matrix
associated to ω, defined as in (14). In addition, we will perform a linear time
rescaling t 7→ η−1t.

Since ω = η−1 T−1ω, the joint action of T and time rescaling on X = (ω, f) is
given by

η−1 T ∗X = (ω, η−1 f ◦ T ).

We are interested in the action of this transformation on vector fields with no
non-resonant modes, since the non-resonant modes are eliminated by a coordinate
change constructed in Theorem 3.3.

Lemma 3.4. If 0 < ρ′′ ≤ ηρ′ and 0 < η, β < 1, 0 < r′′ ≤ r′ − σ/2, σ > 0, then T ∗

defines a bounded linear operator from I+Aρ′,r′(V) to Aρ′′,r′′(TV), with the property
that

‖T ∗I
+

IK(I− E)f‖ρ′′,r′′ ≤ e−ρ
′(1−ηβ)L‖I

+

IK(I− E)f‖ρ′,r′ .

‖T ∗(I− IK)f‖ρ′′,r′′ ≤ e−
1
2σK‖(I− IK)f‖ρ′,r′ .

‖T ∗Ef‖ρ′′,r′′ ≤ ‖Ef‖ρ′,r′ ,

Proof. Due to our choice of the norm, it suffices to verify the given bounds for a

single mode f̂v,k(x, y) = fv,ke
ix·v+iyk labeled by (v, k). From the definitions of the

scaling map it follows that

‖T ∗f̂v,k‖ρ′′,r′′ ≤ eA‖f̂v,k‖ρ′,r′ ,

where A ≤ ρ′′|Tv‖|+ ρ′′|Tv⊥| − ρ′|v‖| − ρ′|v⊥| − (r′ − r′′)|k| .
In order to prove the first bound, assume that (v, k) belongs to I

+

and |k| ≤ K.
Thus, |v‖| ≤ σ|v|, with v 6= 0. Since |v| = |v‖|+ |v⊥|, Tv‖ = η−1v‖ and Tv⊥ = βv⊥,
we find that A ≤ −ρ′(1− ηβ)|v⊥|. Notice now that, in this case, |v‖| < 2σ|v⊥|, by
using that σ < 1/2, which does not allow frequencies v that satisfy |v‖| ≤ L and
|v⊥| ≥ `, due to the condition (16). Thus, we must have |v‖| > L, by condition
(15).

The second bound follows directly from our initial estimate on A by using that
|Tv| ≤ |η−1v| and |k| > K. Setting v = 0 and k = 0 leads the third bound.

3.4. Renormalization transformations. Following [12, 13, 15], we express the
Brjuno condition on ω (and, thus, on V) in terms of the summability of the series
of numbers

an =
∞∑
k=n

2n−k
[
2−k−κ ln(1/Ω′k+κ) + (k + κ′)−2

]
, Ω′n = min

0<|ν⊥|<2n
|ν‖| , (28)

for all positive integers n. Here κ and κ′ are two integer constants that will be
specified later on.

It follows from the definition that an+1/2 < an < 2an+1, for all n ∈ N and, thus,
an+12n+1/4 < an2n < an+12n+1. In particular, an2n is an increasing sequence.

We will define the scaling parameters as in [13],

ηn =

(
An+1

An

) d−1
d

, βn =

(
An+1

An

) 1
d

, where An =

∞∑
k=n

ak , (29)
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for all positive integers n. Since {an}n∈N is a summable sequence of positive num-
bers, the sequence {An}n∈N is well-defined, decreasing and converging to zero. We
define, recursively, λn = ηnλn−1, with λ0 = 1. These definitions imply the last
bound in (16), since ηn < βn < 1 for d > 1.

These parameters are used to define the scaling maps Tn and Pn = Tn · · ·T1, at
the n-th renormalization step, for each n ∈ N, as

Tn(x) = η−1
n x‖ + βnx⊥ , Pn(x) = λ−1

n x‖ +
( n∏
i=1

βi
)
x⊥ . (30)

We also define T0 = P0 as the identity maps. Notice that the determinants |Tn| =
|Pn| = 1, for all n ∈ N, by the choice of the scaling parameters.

Given a lattice V0 = V ⊂ Rd, we define the lattice Vn−1 = Pn−1V0 , defining the
frequency space of the functions that are going to be renormalized in the n-th step.
The parameters L and ` used in the n-th renormalization step are

Ln−1 = 2n+κ
n−1∏
i=1

βi , `n−1 = λ−1
n−1e

−an2n+κ

. (31)

Proposition 3.5. If v ∈ Vn−1 is nonzero, then either |v‖| ≥ `n−1 or |v⊥| > Ln−1 .

Proof. Assume that v ∈ Vn−1 satisfies 0 < |v⊥| ≤ Ln−1. Then the corresponding

lattice point ν = P−1
n−1v in V0 satisfies |ν⊥| ≤ (

∏n−1
i=1 βi)

−1Ln−1 = 2n+κ and, thus,

|ν‖| ≥ Ω′n+κ by (28). Since we have Ω′n+κ > e−an2n+κ

, this yields

|v‖| = λ−1
n−1|ν‖| ≥ λ

−1
n−1Ω′n+κ > λ−1

n−1e
−an2n+κ

= `n−1 , (32)

as claimed.
Let Cθ be a constant dependent of θ, that will be specified later on.

Definition 3.6. We define the resonant cone width parameter at the n-th renor-
malization step

σn = (2κ′C−1
θ λn−1Ln−1)−1e−an2n+κ

=
CθA1

2κ′An
2−(n+κ)e−an2n+κ

. (33)

This definition immediately implies σn > 0 and 2σnLn−1 ≤ `n−1, for κ′ > Cθ
and all n ∈ N.

Definition 3.7. Given the initial domain parameters %, r > 0, we define the n-th
step cut-off parameter

Kn−1 =
2%

A1σn
an2n+κ. (34)

The following proposition completes the verification of all bounds in (16).

Proposition 3.8. For any fixed κ′ and κ sufficiently large (depending on κ′), we
have

∑∞
n=1 σn < 1/2.

Proof. Notice that

σn <
CθA1

2κ′an
2−(n+κ)e−an2n+κ

.

Since {an2n}n∈N is a growing sequence, the sequence {σn}n∈N is decreasing. Notice
also that for a fixed κ′, and sufficiently large κ, we have 2n+κan ≥ 2n+κ(n+κ′)−2 ≥
c′2κn, for some constant c′ > 0 depending only on κ′. This makes the sum

∑∞
n=1 σn

finite and, since by choosing κ sufficiently large, A1 decreases, we can make this
sum smaller than 1/2.



5338 SAŠA KOCIĆ AND JOÃO LOPES DIAS

Definition 3.9. The initial domain parameters are ρ0 = % > 0 and r0 = r > 0.
The n-th step domain parameters are

ρn−1 = λn−1%, rn−1 = r

[
1−

n−1∑
i=1

(
σi
γi

+
σi
2

)]
. (35)

Remark 3. It follows from Proposition 3.8 and the fact that γi ≥ 2 that rn > r/2.

Definition 3.10. Let θn−1 = λ−1
n−1θ, for n ∈ N. Let also

J
−

n−1 = {(v, k) ∈ I
−

(Vn−1) : |θn−1k| > (1/2)|ω · v| and k ≤ Kn−1},
and

γn = max
(v,k)∈J−n−1

{
2, θ−1

n−1,
σn + σn|v|+ k

|ω · v + θn−1k|

}
.

Definition 3.11. We say that θ is DCω(V) if there exist constants τ,κ > 0 and
C > 0 such that

|ω · v + θk| > C
|v|d+τ |k|κ

, (36)

for all v ∈ V\{0} and all k ∈ N .

In the following, for any θ ∈ DCω(V), τ,κ, C are the associated constants as in
Definition 3.11.

Proposition 3.12. If θ is a positive number such that θ ∈ DCω(V), then there
exists a universal constant ξ > 0, such that for all n ∈ N,

γn < ξCθ(λn−1σn)−(d+τ)(
n−1∏
i=1

βi)
−(d+τ)Kd+τ+κ+1

n−1 , (37)

where Cθ = max{θ−1, C−1(θ + 1)θd+τ}.

Proof. Recall that ν = P−1
n−1v. By definition, we have

γn = max
(v,k)∈J−n−1

{
2, θ−1

n−1,
σn + σn|v|+ |k|
|ω · v + θn−1k|

}
< max

(v,k)∈J−n−1

{
2, θ−1

n−1,
2|ω · v|+ |k|
|ω · v + θn−1k|

}
< max

(v,k)∈J−n−1

{
2, θ−1

n−1,
(θn−1 + 1)|k|
|ω · v + θn−1k|

}
(38)

< max
(v,k)∈J−n−1

{
2, λn−1θ

−1,
(λ−1
n−1θ + 1)|k|

λ−1
n−1|ω · ν + θκ|

}
.

Now, using the fact that θ ∈ DCω(V), we find

1

|ω · ν + θk|
≤ C−1|ν|d+τ |k|κ ≤ C−1(

n−1∏
i=1

βi)
−(d+τ)|v|d+τ |k|κ , (39)

by using that

|v| = |v‖|+ |v⊥| = λ−1
n−1|ν‖|+ (

n−1∏
i=1

βi)|ν⊥| ≥ (
n−1∏
i=1

βi)|ν|. (40)
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For (v, k) ∈ J−n−1 and v 6= 0, we have σn|v| < |ω · v| < 2θn−1|k| ≤ 2θn−1Kn−1 and,
thus, |v| < 2θ(λn−1σn)−1Kn−1.

Therefore, we obtain that

γn < ξCθ(λn−1σn)−(d+τ)(
n−1∏
i=1

βi)
−(d+τ)Kd+τ+κ+1

n−1 , (41)

where ξ is a universal constant, and Cθ = max{θ−1, C−1(θ + 1)θd+τ}.

Definition 3.13. For n ∈ N, let

µn = exp
{
−%λn−1(1− βnηn)Ln−1

}
= exp

{
− %

A1
an2n+κ}. (42)

Proposition 3.14. µn+1 < µn < µ
1/4
n+1, for n ∈ N. Furthermore, given C,N > 0,

if κ′ and then κ are chosen sufficiently large, then for all n ≥ 1,

µn ≤ Ce−N2n+κan , µn ≤ C2−Nn , µn ≤ C
(
An
A1

)N
. (43)

Proof. Let C > 0 and N > 0 be arbitrary. Since an+1/2 < an < 2an+1, for all

n ∈ N, we have an+12n+1/4 < an2n < an+12n+1, and thus µn+1 < µn < µ
1/4
n+1. By

choosing κ′ and κ sufficiently large, we have 1/A1 ≥ N . Increasing them further,
if needed, we obtain the first bound. Keeping κ′ fixed, and increasing κ further,
if necessary, we obtain the second two bounds in (43) by using that 2n+κan ≥
2n+κ(n + κ′)−2 ≥ c′2κn, for some positive constant c′ depending only on κ′. The

same inequality, together with An/A1 > an/A1 > C1/Ne−%2n+κan/(NA1), where the
last inequality is valid for sufficiently large κ, implies the third bound in (43).

Proposition 3.14 directly implies the following claim.

Corollary 3.15. Given any C,N > 0, if κ′ and κ are chosen sufficiently large,
then for all n ≥ 1,

µn ≤ CσNn , µn ≤ CK−Nn−1 , µn ≤ CηNn ,

µn ≤ CλNn ≤ CηNn ≤ CβNn , µn ≤ Cγ−Nn .
(44)

Proof. In the first and the last inequality we have also used that µn ≤ Cκ′
−N

for
any given C,N > 0, if κ is chosen sufficiently large.

From Theorem 3.3, it follows that there exists a universal constant R > 0 such
that the n-th step renormalization operator Rn is well-defined from an open ball
Bn−1 ⊂ Aρn−1,rn−1

(Vn−1) around θn−1, of radius Rσ2
n/(γ

2
nθn−1), into Aρn,rn(Vn).

We may choose the domain of the first step renormalization operator to be any ball
D0 ⊂ Rσ2

1/(γ
2
1θ). Notice that the restriction of Rn to EAρn−1,rn−1(Vn−1) is a linear

operator from EAρn−1,rn−1
(Vn−1) to EAρn,rn(Vn) that will be denoted by Ln.

The following claim follows directly from Theorem 3.3 and Lemma 3.4.

Theorem 3.16. There exists C,R > 0 such that the n-th step renormalization
operator Rn is a bounded analytic map from Bn−1 into Aρn,rn(Vn), that satisfies
‖L−1

n ‖ ≤ 1 and

‖(I− E)Rn(fn−1)‖ρn,rn ≤ Cη−1
n µn‖(I− E)fn−1‖ρn−1,rn−1 ,

‖ERn(fn−1)−Rn(Efn−1)‖ρn,rn ≤ Cλ−1
n γ2

nσ
−2
n ‖(I− E)fn−1‖2ρn−1,rn−1

.
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In what follows, a domain Dn−1 for Rn is a subset of Bn−1 described above,
which is open in Aρn−1,rn−1(Vn−1) and contains θn−1. Given a domain Dn−1, for

each Rn, the domain D̃n−1 of

R̃n = Rn ◦ · · · ◦R1,

for n ∈ N, is defined recursively as the subset of all functions in the domain of R̃n−1

that are mapped by R̃n−1 into the domain Dn−1 of Rn. By Theorem 3.16, these

domains are open, non-empty, and the transformations R̃n are analytic.
To prove the following theorem, we apply the stable manifold theorem for se-

quences of mappings between Banach spaces that was proved in [11] (Section 6
therein).

Theorem 3.17. If κ′ and then κ are chosen sufficiently large, then there exist
a sequence of domains Dn−1 for the transformations Rn such that the set W =

∩n∈N∪{0}D̃n is the graph of an analytic function W : (I − E)D0 → ED0 satisfying
W (0) = θ and DW (0) = 0. For every f ∈ W, and every n ∈ N,

‖(I− E)R̃n(f)‖ρn,rn ≤ χ1/2
n ‖(I− E)f‖%,r,

‖ER̃n(f)− θn‖ρn,rn ≤ χn‖(I− E)f‖2%,r,
(45)

where χn =
∏n
k=1 µk.

Proof. We start by rescaling the transformations Rn. For every n ∈ N, let dn =
dn−1σ

2
n+1/(γ

2
n+1θn), with d0 > 0 be half of the constant R from Theorem 3.16.

Consider the transformations

Rn(g) = d−1
n [Rn(θn−1 + dn−1g)− θn−1], (46)

for n ∈ N. By Theorem 3.16, Rn is analytic and bounded on a ball ‖g‖ρn−1,rn−1 < 2,
and satisfies

‖(I− E)Rn(g)‖ρn,rn ≤ εn‖(I− E)g‖ρn−1,rn−1
,

‖ERn(g)−Rn(Eg)‖ρn,rn ≤ ϕn‖(I− E)g‖2ρn−1,rn−1
,

(47)

where εn = Cη−1
n σ−2

n+1γ
2
n+1θnµn, ϕn = Cη−1

n σ−2
n σ−2

n+1γ
2
nγ

2
n+1θnθn−1, and C > 0.

In addition, we have ‖L−1
n ‖ < 1/4. We will restrict Rn to the domain Dn−1 ⊂

Aρn−1,rn−1
(Vn−1) defined by

‖Eg‖ρn−1,rn−1
< 1, ‖(I− E)g‖ρn−1,rn−1

< δn−1, (48)

where δn−1 = (6ϕn)−1. By Corollary 3.15, if κ′ and κ are chosen sufficiently large,

then Cη−1
n σ−2

n+1γ
2
n+1θnµ

1/2
n ≤ 1/6 and

Cη−1
n+1η

−1
n λ−1

n+1σ
−2
n+2σ

−2
n+1σ

2
nγ

2
n+2γ

2
n+1γ

−2
n θµn ≤ 1,

and, therefore, εn ≤ µ
1/2
n /6 and εnδn−1 ≤ δn, for all n ∈ N. The assumptions

of Theorem 6.1 in [11] are now verified with ϑ = 1/4, and the conclusions of this
theorem imply the statements of our claim.

Let D0 be a domain whose existence is guaranteed by Theorem 3.17.

Theorem 3.18. If rot f = θ, and f ∈ D0, then f ∈ W.
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Proof. If rot f = θ, let f = θ + d0g and g0 = g and gn = Rn(gn−1). Lemma 2.3
guarantees that |Efn − rot fn| ≤ ‖(I − E)fn‖ρn,rn and, thus, analogously to (47),
we also have

‖(I− E)Rn(gn−1)‖ρn,rn ≤ εn‖(I− E)gn−1‖ρn−1,rn−1 ,

‖ERn(gn−1)‖ρn,rn ≤ εn‖(I− E)gn−1‖ρn−1,rn−1
,

(49)

as long as gn−1 ∈ Dn−1. Since, εnδn−1 ≤ δn < 1, if g ∈ D0, then gn ∈ Dn, for all
n ∈ N. Here, we have also used that rot fn = λ−1

n rot f (see Lemma 2.3).

4. Analytic conjugacy. We say that a vector field X = (ω, f) with f ∈ Aρ,r(V)
is reducible to Y = (ω, θ) if there is a continuous embedding ΓX : D0 = Td ×T1 →
Dρ,r, such that for all t ∈ R,

φtX ◦ ΓX = ΓX ◦ φtω,θ, (50)

where φω,θ is the linear flow of the constant vector field Y = (ω, θ). We refer to ΓX
as the conjugacy between the flows of X and Y or the reducibility conjugacy for X.

Consider a one-step renormalization operator R and a vector field X in the
domain of R. If F is any map from Td×T1 into the domain of ΛX = UX ◦T , define
the map

MX(F ) = ΛX ◦ F ◦ T −1 . (51)

We will restrict our consideration to maps F of the form F = I + ψ, where I is

the identity map and ψ(x, y) = (0, ψ̂(x, y)). Notice, thatMX preserves the form of
these maps, since UX is also of the same form.

Formally, if ΓR(X) is a conjugacy between the flows of R(X) and (ω, η−1θ), then
ΓX =MX(ΓR(X)) is a conjugacy between the flows of X and the vector field (ω, θ).
This can be seen easily from the identity

ΛX ◦ φηtR(X) = φtX ◦ ΛX . (52)

Denote by A0(V) the Banach space of continuous functions F : D0 → Cd+1 , with
frequency module in V, for which the norm ‖F‖0,V =

∑
v∈V,k∈N ‖Fv,k‖ is finite,

where Fv,k are the Fourier coefficients of F .
Consider now a fixed but arbitrary vector field X = X0 that belongs to the stable

manifoldW of our renormalization transformations, described by Theorem 3.17. Let
Xn = Rn(Xn−1), for n ≥ 1. In order to simplify the notation, we will write Uk
in place of the map UXk associated to the vector field Xk and Mk+1 in place of
MXk . Our goal is to construct an appropriate sequence of functions Γk ∈ A0(Vk),
satisfying

Γn−1 =Mn(Γn) = Λn ◦ Γn ◦ T −1
n , Λn = Un−1 ◦ Tn , (53)

for all n ∈ N. Then, we will show that Γ0 is the reducibility conjugacy for X0.
Let us define Bn, for every n ≥ 0, to be the vector space A0(Vn), equipped with

the norm

‖ψ‖′n = s−1
n ‖ψ‖0,Vn = s−1

n

∑
v∈Vn,k∈N

‖ψv,k‖ , sn =
r

2 · 4n
λn . (54)

Denote by Bn the unit ball in I + Bn , centered at the identity I, and by Bn/2 the
ball of radius 1/2 in the same space.
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Proposition 4.1. If κ′ and then κ are chosen sufficiently large, then there exists
an open neighborhood B of θ in A%,r(V0) such that, for every X = (ω, f) with
f ∈ W ∩ B, and for every n ∈ N, the map Mn is well defined and analytic,
as a function from Bn to Bn−1 . Furthermore, Mn takes values in Bn−1/2, and
‖DMn(F )‖ ≤ 1/3 , for all F ∈ Bn .

Proof. Clearly, Mn is well-defined in some open neighborhood of I in Bn , and

Mn(F ) = I + g + (Un−1 − I) ◦ (I + g) , g = Tn ◦ ψ ◦ T −1
n , (55)

where ψ = F − I. In order to estimate the norm of Un−1 − I, we can apply Theo-
rem 3.3, with ρ = ρn−1 and r′ = r′n−1, where rn ≤ r′n−1 < rn−1 . By Theorem 3.17,

‖Un−1 − I‖ρn−1,r′n−1
≤ 4

γn
σn
‖I
−
fn−1‖ρn−1,r′n−1

≤ 4
γn
σn
χ

1/2
n−1‖(I− E)f‖ρ,r ≤ χ1/11

n ,
(56)

for all n > 1, and for all f ∈ W ∩ B. Here, we have also used Proposition 3.14,
and assumed that κ′ and then κ have been chosen sufficiently large, and that the
neighborhood B of θ has been chosen sufficiently small (depending on κ′ and κ).
The first estimate in (56) and the final bound also hold for n = 1.

The composition with I + g in Equation (55) can be controlled by Lemma 2.1,
using the fact that ‖g‖0,Vn−1

≤ η−1
n sn‖ψ‖′n ≤ r′n−1/2, since ‖ψ‖′n ≤ 1, as we assume

that F ∈ Bn. Using sn/sn−1 = ηn/4 , we obtain ‖g‖′n−1 ≤ η−1
n ηn/4 ≤ 1/4 . From

(56) we obtain ‖Un−1 − I‖′n−1 ≤ s−1
n−1χ

1/11
n ≤ 1/4, if κ′ and κ have been chosen

sufficiently large. These estimates show that Mn−1 maps Bn into Bn−1/2.
Now, we obtain a bound on the norm of the derivative map

DMn(F )ψ̄ = ḡ +D(Un−1 − I) ◦ (I + g)ḡ, (57)

where ḡ = Tn ◦ ψ̄ ◦ T −1
n . Since ‖g‖0,Vn−1

≤ ρn−1/2, using the Cauchy estimate on
the derivative, we find

‖D(Un−1 − I)‖ρn−1,
rn−1

2
≤ 2

rn−1
‖Un−1 − I‖ρn−1,rn−1 . (58)

Since rn−1 > r/2, we obtain a bound on the norm of this derivative analogous to
that of (56). This, together with the fact that the inclusion map from Bn into Bn−1

is bounded in norm by ηn/4, shows that

‖DMn(F )ψ̄‖′n−1 ≤
sn
sn−1

η−1
n

(
1 + ‖D(Un−1 − I)‖ρn−1,

rn−1
2

)
‖ψ̄‖′n, (59)

and, consequently, ‖DMn(F )‖ ≤ 1/3 , for all n ∈ N, and F ∈ Bn .
Below, we will make use of the following estimate on the difference between the

flow for X = (ω, f) and the flow for the constant vector field Y = (ω, θ).

Proposition 4.2. Let τ > 0 and let X = (ω, f) be a vector field with f ∈ A%,r(V),
such that τ‖f − θ‖%,r < r′ < r. Then, for all t in the interval [−τ, τ ],

‖φtX − φtω,θ‖%,r−r′ ≤ ‖t(f − θ)‖%,r . (60)

Let φn be the flow for the vector field Xn. We start with the identity

φtn−1 ◦Mn(F ) ◦ φ−tω,θn−1
=Mn

(
φηntn ◦ F ◦ φ−ηnt

ω,η−1
n θn−1

)
, (61)

which follows from the relation (52) between the flow of a vector field and the flow
of the renormalized vector field.
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Proposition 4.3. Under the same assumptions as in Proposition 4.1, there exists
an open neighborhood B of θ in A%,r(V0), such that for every X = (ω, f) with
f ∈ W ∩ B, and for every n ≥ 1, the function φsn ◦ F ◦ φ−sω,θn belongs to Bn,

whenever F ∈ Bn/2 and |s| ≤ χ−1/6
n .

Proof. We will use the following easily verifiable identity

φsn ◦ F ◦ φ−sω,θn = I + ψ ◦ φ−sω,θn +
[
φsn ◦ φ−sω,θn − I

]
◦
(
I + ψ ◦ φ−sω,θn

)
. (62)

Since, by assumption, ‖ψ‖′n ≤ 1/2, and ‖ψ ◦ φ−sω,θn‖0,Vn = ‖ψ‖0,Vn , we have ‖ψ ◦
φ−sω,θn‖0,Vn ≤ sn/2.

By Proposition 4.2 and Theorem 3.17, we have the bound∥∥φsn ◦ φ−sω,θn − I∥∥ρn,rn−sn/2 ≤ ‖s(fn − θn)‖ρn,rn ≤ 2χ1/3
n ‖(I− E)f‖%,r, (63)

provided that the right hand side of this inequality is less than sn/2. This is
certainly the case if ‖f − θ‖%,r is chosen sufficiently small. The composition in (62)
is well-defined since sn < rn.

The third term on the right hand side of (62) can be bounded as

‖
[
φsn ◦ φ−sω,θn − I

]
◦
(
I + ψ ◦ φ−sω,θn

)
‖′n−1 ≤

ηn
2
χ1/3
n ‖(I− E)f‖%,r , (64)

which is smaller than 1/2, for any n ≥ 1, if f is sufficiently close to θ. The claim
follows.

We will now construct the conjugacy.

Theorem 4.4. Under the same assumptions as in Proposition 4.1, there exists an
open neighborhood B of θ in A%,r(V), such that the following holds. Given any
X = (ω, f) with f ∈ W ∩B, and any sequence of functions Fk ∈ Bk , define

Γn,k =
(
Mn+1 ◦ . . . ◦Mk

)
(Fk) , 0 ≤ n < k . (65)

Then, the limits Γn = limk→∞ Γn,k exist in Bn , are independent of the choice of
F0, F1, . . ., and satisfy the identities (53). Furthermore, Γ0 is the conjugacy between
X and (ω, θ), and the map f 7→ Γ0 is analytic and bounded on W ∩B.

Proof. By Proposition 4.1, the map Mn : Bn → Bn−1/2 contracts distances by a
factor of at least 1/2. Thus, if 1 ≤ n < k < k′, then the difference Γn,k′ − Γn,k
is bounded in norm by 2n−k+1. This shows that the sequence k 7→ Γn,k converges
in Bn to a limit Γn, which is independent of the choice of the functions Fk . By
choosing Fk = Γk for all k, we obtain the identities (53). The analyticity of f 7→ Γ0

follows, via the chain rule, from the analyticity of the maps used in our construction,
and from uniform convergence.

In order to prove that Γ0 conjugates the flow of X to the linear flow of (ω, θ), we
will use the identity (61). To be more precise, given a real number t, with |t| < 1,
define tn = λnt for all n ≥ 0. Proposition 4.3 allows us to iterate the identity (61),
and get the identity

φt0 ◦ Γ0,k ◦ φ−tω,θ =
(
M1 ◦ . . . ◦Mk

)(
φtkk ◦ φ

−tk
ω,θk

)
, (66)

for all k > 0. As proved above, the right (and thus left) hand side of this equation
converges in A0(V) to Γ0 . In addition, Γ0,k → Γ0 in A0(V), and the convergence is
pointwise as well. Thus, since the flow φt0 is continuous, we have φt0 ◦Γ0 ◦φ−tω,θ = Γ0 .
This identity now extends to arbitrary t ∈ R, due to the group property of the flow,
and the fact that composition with φsω,θ is an isometry on A0(V).
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In what follows, the reducibility conjugacy Γ0 for the vector field X = (ω, f)
with f ∈ W will be denoted by ΓX . For convenience, we extend the map f 7→ ΓX
to an open neighborhood of θ, by setting ΓX = ΓX′ , where X ′ = (ω, f ′) with
f ′ = (I +W )((I− E)f).

Theorem 4.5. Let ρ > %+ δ, ρ > r+ δ and δ > 0. Under the same assumptions as
in Proposition 4.1, there exists an open neighborhood B of θ in Aρ(V0), such that
ΓX has an analytic continuation to ‖ Imx‖ < δ and | Im y| < δ, for each X = (ω, f)
with f ∈ B. With this continuation, the map f 7→ ΓX defines a bounded analytic
map from B to Aδ(V0).

Proof. The proof of this theorem is analogous to the proof of Theorem 4.5 of [11].
Consider the translations Rq,p(x, y) = (x + q, y + p), with q ∈ Rd and p ∈ R. As
before, for vector fields X = (ω, f), R∗q,pX denotes the pullback under Rq,p; the
corresponding action on f is denoted by R∗q,pX. For functions F : D0 → Dρ′ , with

ρ′ > 0, we define R∗q,pF = R−1
q,p ◦F ◦Rq,p. The renormalization operator R and the

maps MX , defined in (51), satisfy

R ◦R∗q,p = R∗T−1q,p ◦ R, MR∗q,pX = R∗q,p ◦MX ◦ (R∗T−1q,p)
−1. (67)

Here, we have used the fact that the translations R∗u are isometries on the spaces
Ar(V) and that the domain of R is translation invariant. This also implies that
the manifold W is invariant under translations R∗q,p, which is used in the second
identity in (67).

As was explained above, we can extend the function f 7→ ΓX to vector fields of
the form X = (ω, f) with f in an open neighborhood of θ, via ΓX = ΓX′ , where
X ′ = (ω, f ′) and f ′ = (I + W )((I − E)f). If restricted to a sufficiently small open
ball B ⊂ A%,r(V0), centered at θ, the map f 7→ ΓX is analytic and bounded on the
whole B.

The construction of Γ0 in the proof of Theorem 4.4, together with identities (67)
and the invariance property W = W ◦ R∗q,p, shows that ΓR∗q,pX = R∗q,pΓX , for all

X = (ω, f) with f ∈ B. Thus, if q ∈ Rd and p ∈ R, then

ΓX(q, p) =
(
Rq,p ◦ ΓR∗q,pX

)
(0, 0), (68)

for f ∈ B. The idea now is to use the analyticity of map f 7→ ΓX , to extend the
right hand side of (68) to the complex domain ‖ Im q‖ < δ and | Im p| < δ. Choose
an open neighborhood B′ of θ in Aρ(V0) such that R∗q,pB

′ ⊂ B for all (q, p) ∈ Cd+1

of norm δ′ = ρ−% or less. Then, the right hand side of (68), regarded as a function
of (f, q, p), is analytic and bounded on the product of B′ with the strips ‖=q‖ < δ′

and |=p| < δ′. Denoting this function by G, we have G(f, ·) ∈ Aδ(V0), for all
f ∈ B′. The analyticity of f 7→ G(f, ·) is obtained now by using, for instance, a

contour integral formula for (g(t)− g(0)− tg′(0))/t2 with g(t) = G(f + tf̃ , ·).
Theorem 3.17 and Theorem 4.5 imply Theorem 1.1.
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(1972), 199–239.

[5] L. Corsi and G. Gentile, Oscillator synchronisation under arbitrary quasi-periodic forcing,

Commun. Math. Phys., 316 (2012), 489–529.
[6] G. Gentile, Resummation of perturbation series and reducibility for Bryuno skew-product

flows, J. Stat. Phys., 125 (2006), 321–361.

[7] G. Gentile, Degenerate lower-dimensional tori under the Bryuno condition, Ergodic Theory
and Dynam. Systems , 27 (2007), 427–457.

[8] M.-R. Herman, Sur la conjugasion differentiable des difféomorphismes du cercle a de rotations,
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