Temporal and Spatial Routing for Large Scale Safe
and Connected UAS Traffic Management in Urban
Areas

Ziyi Zhao'*, Zhao Jin'*, Chen Luo', Haowen Fangl,
Franco Basti®, M. Cenk Gursoy!, Carlos Caicedo?, Qinru Qiu'
I Department of Electrical Engineering & Computer Science, Syracuse University, Syracuse, NY 13244, USA
2 School of Information Studies, Syracuse University, Syracuse, NY 13244, USA
3 Thales Digital Aviation Customer Success and Innovation, Thales USA, Arlington, VA 22202, USA
{zzhao37, zjin04, cluo05, hfang02, mcgursoy, qigiu} @syr.edu, ccaicedo@syr.edu, franco.basti.e@thalesdigital.io

Abstract—Small Unmanned Aircraft Systems (sUAS) will be
an important component of the smart city and intelligent
transportation environments of the near future. The demand
for sUAS related applications, such as commercial delivery and
land surveying, is expected to grow rapidly in next few years.
In general, sUAS traffic scheduling and management functions
are needed to coordinate the launching of sUAS from different
launch sites and plan their trajectories to avoid conflict while
considering several other constraints such as expected arrival
time, minimum flight energy, and availability of communication
resources. However, as the airbone sUAS density grows in a
certain area, it is difficult to foresee the potential airspace and
communications resource conflicts and make immediate decisions
to avoid them. To address this challenge, we present a temporal
and spatial routing algorithm for sUAS trajectory management
in a high density urban area. It plans sUAS movements in a
spatial and temporal maze with the consideration of obstacles
that are either static or dynamic in time. The routing allows the
sUAS to avoid static no-fly areas (i.e. static obstacles) or other
in-flight sUAS and areas that have congested communication
resources (i.e. dynamic obstacles). The algorithm is evaluated
using an agent-based simulation platform. The simulation results
show that the proposed algorithm outperforms reference route
management algorithms in many areas, especially in processing
speed and memory efficiency. Detailed comparisons are provided
for the sUAS flight time, the overall throughput, the conflict rate
and communication resource utilization. The results demonstrate
that our proposed algorithm can be used as a solution to improve
the efficiency of airspace and communication resource utilization
for next generation smart city and smart transportation.

Index Terms—smart city, sUAS, trajectory routing, temporal-
spatial traffic management, UTM

I. INTRODUCTION

The introduction of unmanned aircraft systems (UAS) into
the global airspace creates both an opportunity and a challenge
for the aviation industry as a whole. The traffic demand from
new entrants in low-altitude airspace is forecasted to be orders
of magnitude far greater than existing commercial aviation.
Demands for controlling and monitoring this airspace will
increase in particular in large, metropolitan areas. By 2022

*These authors contributed equally.
978-1-7281-3197-9/19/$31.00 ©2019 IEEE

the FAA expects over 2 million hobbyist sUAS (under 55
Ibs) and over 450,000 commercial Unmanned Aerial Vehicles
(UAVs) to be in operation [1]. Emerging solutions such as UAS
Traffic Management (UTM) will soon be required to manage
the increased traffic within the airspace.

Even with increased on-board autonomy, given the large
number of the drones in the air, a centralized coordinator, or
multiple coordinators attending different zones are necessary
to ensure mission efficiency and safety. This requires the SUAS
to have reliable communications with one or several ground
control stations (GCSs) supported by the resources of a reliable
communications network to help ensure the safety of the UAS
flight operations. Enabling high-rate, low-latency and reliable
wireless communications between the SUAS and their GCS is
key to ensure their incorporation into the provision of services
to society.

We consider both air space and communication network
capacity as resources. The demands and utilizations of these
two resources in a SUAS system are highly correlated, and
hence should be managed together. Our goal is to plan the
trajectory of each sUAS to better utilize those two resources,
such that there are no conflicts between the trajectory of any
two sUAS and a good quality connection to cellular base
stations is maintained during the entire mission.

In this paper, we present a temporal and spatial (T-S) routing
algorithm for sUAS trajectory planning. The algorithm helps
in the management of the air traffic of a metropolitan area
that has high sUAS densities by assisting in the planning of
each sUAS trajectory in advance. The centralized management
ensures SUAS safety by proactively avoiding conflicts while
ensuring the availability of communication resources. This
comes with a marginal cost of extended flight time and longer
launching intervals. Using a multi-agent air traffic resource
usage simulator (MATRUS) [2], we compare the performance
of our proposed algorithm to other methods. Simulation results
show that, compared to the scenario without traffic management,
our proposed UAS routing algorithm completely eliminates
the potential conflicts while maintaining a 100% connectivity
during the mission with 2~3.3% reduction in throughput and

less than 2.74% increase in flight time.

The sUAS communicate with ground control stations (i.e. a
command and the control center) through the cellular network,
hence the availability of the communication resources will
impact the decisions related to SUAS traffic management. The
effectiveness of such management will eventually determine
the scale of sSUAS applications/services that can be supported
by the given air space and existing communication/monitoring
infrastructure, and also shape the planning of future infrastruc-
ture deployment. The UAS traffic management system must
be fully autonomous, so that it can handle a large number of
SUAS simultaneously and continuously.

The rest of the paper is arranged as follows: In Section II,
we review related work in UAS route management and conflict
avoidance. This is followed in Section III by details about the
proposed algorithm. Section IV describes our experiments and
evaluation of the results. Finally, Section V summarizes this
work.

II. RELATED WORK

Over the past 5 years, sUAS have played an increasingly
critical role in many fields [3]. With the rise in popularity
of SUAS, many important and notable issues regarding sUAS
traffic management have been discovered. Therefore, numerous
methods and paradigms have been proposed to solve these
issues. These proposed methods can be divided into two
main categories. One category focuses on the centralized
scheduling and management of multiple SUAS, via unmanned
air system traffic management systems [4] [5]. We refer to
these approaches as centralized control. The other category
focuses on the actions of a single SUAS, such as obstacle and
collision avoidance [6], and is referred to as distributed control.

Much of the existing UAS trajectory generation research
focuses on the generation of trajectories for a single SUAS that
are energy efficient and stable. Constraints such as obstacle
avoidance and rigid body dynamics are considered. Some of
the classical approaches apply rapidly-exploring random trees
[7] and Voronoi graphs [8] [9]. In [10], the author presented
an indoor algorithm to navigate SUAS to avoid collisions. By
importing geometrical constraints, [11] proposed a solution to
avoid collisions in a static environment. In [12], to improve
obstacle avoidance for sSUAS, a method based on optical flow
is presented. Others use machine learning approaches. For
example, [13] [14] developed a deep reinforcement learning
framework that learns how to perform energy efficient waypoint
planning. However, those works assume static obstacles and a
single sUAS.

In addition, multiple sUAS trajectory planning has been
studied as a multi-agent cooperative system and solved in a
rolling horizon approach using dynamic programming [15]
or mixed integer linear programming [16]. Another strategy
involves setting an artificial reactive field around each UAS
[17]. However, these approaches do not consider any additional
resources other than the airspace. The availability of the
communication resource has not been integrated as a constraint
into these frameworks.

Most of the existing trajectory planning algorithms consider
continuous Euclidean space and the sUAS can have an arbitrary
trajectory as long as certain constraints are satisfied. Hence a
closed-form representation of the trajectory can be obtained.
Although this may allow us to find simple analytical optimal
solutions, it leads to unstructured trajectories. When the number
of sUAS increases, such irregularity leads to a traffic pattern
that is unpredictable. Furthermore, with a large number of
sUAS, to describe all constraints (i.e. collision avoidance) in
closed-form and solve the optimization problem analytically is
almost impossible. Recently, a very strict and rigid airspace
structure to handle dense operation in the urban low altitude
environment was suggested by work on Unmanned Aircraft
System (UAS) Traffic Management (UTM) at NASA in [18].
The author explored UAS operations in non-segregated airspace
and managed the risk of mid-air collision to a level deemed
acceptable to regulators. In the paper, the airspace is divided
into multiple layers, and the layers are further divided into
orthogonal sky lanes. However it focused only on defining
the regulations of the UTM system instead of solving any
optimization problems.

In this work, we focused on optimizing the computed
trajectory for sUAS in order to prevent collisions, achieve
shortest distance, and at the same time meet other realistic
environmental constraints [19]. These constraints include
avoiding no-fly zones or restricted areas, avoiding areas that
do not have cellular signal coverage or that are temporarily
experiencing congestion in the cellular network, etc. These
constraints will be modeled as static and/or dynamic obstacles
in the airspace, and can be considered simultaneously as part
of the airspace management environment.

III. THE MATRUS PLATFORM & TRAJECTORY ROUTING
ALGORITHM

A. Platform Structure

The MATRUS platform is an integrated environment for
air traffic simulation, communication resource estimation, data
analysis, and traffic animation for sUAS applications [2]. The
simulation platform was developed to evaluate UAS air traffic
management policies over a metropolitan area. The modularized
design considers each sUAS and the base stations of the
communications network as an agent, hence, it provides an
interface for us to plug-and-play different resource management
policies and evaluate their performance.

As shown in Fig. 1, the MATRUS framework consists of
several components, a multi-agent simulator, a temporal-spatial
(T-S) maze router, that performs simple trajectory planning, a
trajectory animation tool based on Google Earth, and a data
analysis tool. The geographical environment information, such
as location and size of no-fly zones, and the mission information
for each UAS, including its start time, start and end locations
are provided to the simulator as the input.

The core functionality of MATRUS is built on top of
the REPAST (Recursive Porous Agent Simulation Toolkit)
Simphony platform [20]. Agent-based techniques are used for
the modeling of UASs and base stations. Each UAS agent will

Task and environment specification
Mission Environment
Specification ﬁ g Description

Routing and simulation

Sarepast |+

Multi-agent Simulator | €=

v
Google Earth] [.ﬂ Pandas

gt S Trajectory
Routing
Engine
Trajectory Planning
& Deconfliction

Report
Generation

Trajectory
Visualization

Data Analysis

Visualization and analysis

Fig. 1: The Structure of MATRUS Framework

follow the predefined trajectory and update its location and
speed periodically. It will also connect to the available base
station channel that has the highest signal quality. Each base
station will provide a communication link to a UAS if it has
the resources to do so and it will keep track of the remaining
available resources (i.e. channels). The wireless communication
link is characterized by a distance-based path loss model that
considers the radio frequency (RF) power dissipation as a
function of the communication distance. Probabilistic line-of-
sight and non-line-of-sight propagation models are incorporated
into the link characterization. By updating the agent model,
the simulator can easily be extended to consider more complex
behavior and interactions between UASs and base stations.

B. Environment Assumptions

One of the main objectives of sSUAS traffic management is to
maximize the throughput while avoiding any potential conflicts.
The conflict is defined as the situation in which the distance
between two sUASs is smaller than the given threshold. We
divide deconfliction techniques into two categories, reactive
and proactive. A sUAS with reactive deconfliction capabilities
perceives an imminent conflict and adjusts its trajectory locally
to avoid it. The conflict could be detected via on-board sensors,
or through communication with nearby sUAS and the control
center. In either case, to ensure safety operation, the sUAS
needs to have a high amount of computing power to respond
in a short time and avoid the conflict. Furthermore, reactive
deconfliction leads to unpredictable traffic patterns. During
trajectory adjustment, a SUAS not only needs to consider the
upcoming conflict, but also any potential new conflict that may
be caused by the changing of its current trajectory. In a high
density area, this problem will soon become intractable. This
has been confirmed by the works in [21] [22], which stated the
importance of architecting a UTM solution capable of handling
high UAS traffic demand and that in some situations free flight

operations with fully decentralized trajectory planning are not
feasible or will result in very inefficient airspace operations.

The proactive deconfliction technique plans a conflict free
trajectory for each sUAS at launch time or at the time when it
enters controlled airspace. Because the control center has the
trajectory information of all sUAS in a designated airspace, it
can easily find a conflict free path for the incoming sUAS if
such path exists. If such path cannot be found, the launch of the
sUAS will be delayed or the SUAS cannot enter the airspace
until a path is available. Although the routing procedure may
have high complexity, it is done in the control center, hence
energy or computing resources will not be a limiting factor.
Other air traffic constraints, such as no-fly zones can easily be
integrated into the routing procedure.

With a large number of sUAS in a given airspace area, if
the SUAS trajectory has the freedom of taking any angle at
any speed, the routing will be extremely difficult as the search
space is infinite. Some constraints on the SUAS trajectory must
be imposed to reduce the route planning search space. In this
work, we adopt the “sky lane” concept proposed by the NASA
UTM group [18] and limit the trajectory to be a Manhattan
style trajectory, i.e. the SUAS can only make 90 degree turns,
and they fly at constant speed. To improve the predictability
and to ease the de-conflict cost. Similar to [18], we divide
the airspace using a grid pattern. The size of the grid cell is
defined by the minimum separation distance between UASs for
safe operations. It is guaranteed that UASs will be conflict-free
if they travel along the center of each grid cell.

To simplify discussion and illustration, we assume that all
sUASs fly at the same height and our search space consists of
only 3 dimensions: x, y and ¢ (i.e. two dimensions for space
and one for time). The entire 3 dimensional space is divided
into equal sized grids as shown in Fig. 2. The size of each
grid cell is (W, W, §), where W is the minimum distance
between sUASs which ensures that they are not in conflict.
The amount of time that a UAS needs to travel a distance W
is denoted as 0. A function M (z,y,t) — {—1,0} maps each
grid to a label, where ”-1” represents an occupied grid cell and
“0” represents unoccupied grid cell. As we can see, if location
(z,y) belongs to a no-fly zone, then M (z,y,t) = —1, 0< ¢
< oo. If a UAS flies through a location (z,y) at time ¢, then
M(z,y,t1) = —1. A UAS trajectory starts from a source grid
cell (x4, ys,ts), and end at any one of the destination grid cells,
(xd,Yd,ta), where (x5, ys) and (x4,yq) are the coordinates of
the flight source and destination, respectively, and tg,t, are
the flight start time and arrival deadline. We refer to this grid
system as the temporal-spatial (T-S) maze.

Traditional maze routing has been widely used in electronic
design automation to route the on-board or on-chip intercon-
nects. Two interconnects cannot occupy the same grid cell,
otherwise it will cause a short circuit. However, by using the
t axis, two sSUASs can occupy the same space as long as they
are there at different times. Hence, the trajectory search space
should consist of three dimensions, x, ¥ and ¢t. Two sUASs
are conflict free, if their trajectory has no intersection in the
multi-dimensional spatial and temporal space. In a T-S maze,

obviously, any route must move towards the direction where ¢
increases.

Sp
RO N
[]
T
I,

\

T
(3
[
[
L"T-I"'L'

UAV

T

STt

¥
"
[
ta
4
'k

L
"
=%

0
+
[
[
Lo
4
[
4
.

=

T

!
-.,L_

TR

P
i
\?""

L]

[}
3

)

T
|
|
|
!
T
|
!
™
|

c

—F
4

Fig. 2: 3 Dimensional Spatial-Temporal
Environment

C. Baseline T-S Routing Algorithm

In this paper, the baseline method we selected is a Breadth
First Search (BFS) based maze routing algorithm. It consists

of two stages, flooding and traceback, as shown in Fig. 3.
The flooding stage essentially performs a breadth first search.

Starting from the source grid, every non-occupied grid is labeled
by its Manhattan distance from the source grid cell using BFS
until one of the destination grid cells is reached. Then following
the descending order of the labels, a path is traced back from
the destination to the source. In order to reduce the control
thrust during the flight, the grid cell that is in the same direction
(towards the source) as the previous move will be picked with
higher priority during the traceback to reduce the number of
turns in the trajectory. The complete algorithm is given in
Algorithm 1. In the pseudo code and the following content, the
neighbor is defined as the unexplored non-diagonal adjacent
cells of current position.

4]3[2[3]4]5]6]7]8]9[10[11]12[18]14]15 3
3|2[1[2[3 45 6|7 Jl11]12[13[14]15]16 2
2[1(s[1[2 6|7 e B12[13[14[15]16[17 1
| HBEH HEEREHEERERE BE
4]3]2]3 9 [10[11[12[13[14[15[16[17| [4 3
5434 10[11[12[13[14[15[16[17 5 4
6|5 4[5 o9 [10[11]12[13 1 [6] 5
7(6[5(6]7[8]9[10[11]12 1 [7] 6

6[7 8 11[12[13 7

7 [8]9 [1012[13[14]15]16]17 [8
10[9 [8]9 [10[11 [13[14[15 7D 9
11[10] 9 [10[11]12|814[15]16 10
12[11[10[11[12[13|@ 1516[17 1
13 12[13[14|15[16[17 12
14 14]1516[17 15[16]17
15[16[17[16[15]16[17 15]16(17[16[15[16]17

(a) Stage 1: flooding (b) Stage 2: traceback

Fig. 3: Two Stage BFS Routing Algorithm

D. Sparse Represented Temporal-Spatial (SRTS) Routing

In the worst case, the BFS routing needs to label all
grids in the 3D T-S maze to reach the destination. A naive
implementation has the space complexity O(X xY xT') , where
X, Y and T are the maximum dimensions of the airspace and

T-S Routing (E(z',y,t'), 8z, 8y, St,dz, dy);

Input :Environment Matrix, Start Coordinates(s,, sy,
s¢), Destination Coordinates(d,, d)

Output : The optimal routing trajectory of one UAS

Queue Q;
Q.enqueue(start_position);

mark start_position as VISITED,
while Q # 0 do

node = Q.poll();

if node == destination then
set DestinationTimeStep;
break;

foreach neighbor € Neighbors(node) do
if neighbor IS_V ALID then
mark neighbor as VISITED:;
Q.enqueue(neighbor);
if DestinationTimeStep [S_EXIST then
‘ get trajectory by TRACEBACK;
foreach position € trajectory do
mark E[position.x][position.y|[position.t] as
OBSTACLE;
return trajectory;

Algorithm 1: T-S Routing Algorithm

the maximum time that the air traffic will last. Its memory
and computation complexity is prohibitively high. To improve
the routing computation speed for real-time applications, we
propose a Sparse Represented TS routing (SRTS) procedure
based on the Ax routing algorithm [23] [24] [25] [26].

The UAS route planning problem has to consider two types
of obstacles, static and dynamic. The static obstacles refer to
the invariant geographical constraints in the route planning area.
The dynamic obstacles represent the time variant constraints,
as explained in Fig. 2. Fig. 4 further explains the interactions
among dynamic obstacles. The green grid cell represents the
sUAS for which a trajectory was recently planned, the red grid
cell stands for the landing area for that SUAS, and all the grey
cells represent the locations of other sUASs whose trajectories
have been planned in previous time steps. In Fig. 4a, each
obstacle is labeled with an arrow which represents the heading
direction of the SUAS for the next time step. Therefore, from
Fig. 4b and Fig. 4c, we can notice that the position of the
obstacles have changed.

Unlike original T-S routing, our routing method uses a 2D
map with dimensions X x Y. (This can be extended to a 3D
map if the UASs fly in different altitudes.) The obstacles are
divided into 2 categories. The static obstacles are projected onto
a 2D map, each of the obstacles occupies a specific location.
Since the static obstacles are time invariant, the information
along the ¢ axis is redundant and hence it can be eliminated.
For the dynamic obstacles, we exploit their spatial sparsity and
store them using hash tables along the ¢ axis. Each location
on the ¢ axis is associated with a hash table, which stores the

v N T

¥ +
T N RN - W DO | HEE
HT j i

|
(a) Obstacles (t-1) (b) Obstacles (t) (c) Obstacles (t+1)

Fig. 4: Time Variance Dynamic Obstacles

(z,y) coordinates of dynamic obstacles at the corresponding
time. Using an instant refreshing mechanism, the SRTS routing
algorithm only stores dynamic obstacles at or beyond the
current time step. All the obstacles in the prior time will not
affect the trajectory planning of the current sUAS, hence will
be removed automatically. In this way, the 3D environment
considered in the original T-S routing is compressed into a set
of sparsely represented 2D points corresponding to dynamic
obstacles sampled at each time step from the present up to a
future time 7”. The value of 7" is determined by the longest
flight time for UASs currently in the air or about to launch. The
experimental results show that the instant refreshing mechanism
can significantly reduce the demand of the memory resources.

Using the new environment representation, the routing
algorithm needs to check both 2D static obstacles and 3D
dynamic obstacles to acquire next moveable neighbor cell.
Only the neighbor cell which has no conflict with either type
of obstacle will be selected for the next potential movements,
as shown in Algorithm 2.

Candidate Selection (currNode, ClosedList);

Input : Current Position(currNode), Past Selected
Positions(ClosedList)

Output : The candidate neighbors of current position

netghbors= (J;
foreach position in Directions do
check position in 2D static projection;
check position in 3D dynamic projection;
CheckSignal Strength;
if position IS_VALID &
no obstacle in 2D /3D projections &
have enough signal support &
position ¢ ClosedList then
position initialization;
neighbors.add(position);
return neighbors;

Algorithm 2: Candidate Selection Algorithm

E. Routing for Connectivity

After checking the airspace resources, the algorithm also
needs to check the availability of communication resources in

order to decide the next move in the trajectory. In this work,
a simplified communication model is used, where each base
station has N orthogonal communication channels and each
channel can serve only one sUAS. At anytime, a SUAS will
connect to one base station through one of the channels that are
available at that base station. We adopt the following simple
log-distance path loss model:

PL(d) = PL(dp) + 10n loglo(d%) +x,df <do<d (1)
where PL(d) is the path loss in dB at distance d and PL(dy)
is the path loss in dB at a reference distance dy, = is a Gaussian
distributed random variable, however for simplicity, it is set
to 0 in this work. The parameter n is the path loss exponent,
which is set to 3 for line-of-sight links and 3.5 for non-line-
of-sight. Since the sSUAS connect to base stations from a high
altitude, the connection has a higher chance to be line-of-sight.
In this work we set the line-of-sight probability to be 0.9 and
the non-line-of-sight probability to be 0.1.

We assume that a link can be established between a SUAS
and a base station if the signal loss of the path between them
is less than a given threshold. Otherwise, the communication
link cannot be established. At any given time, the SUAS only
connects to the base station that has the highest signal strength
through an available channel. We assume that the connection
between sUAS and base station is dynamic and we ignore the
time and cost of the handover process.

Algorithm 3 shows the procedure for communication re-
source availability checking. First, the communication resources
(i.e. channels) will be allocated to the SUASs that are already in
the air to give them higher priority than the sUAS that are about
to launch. After updating the base station’s list of available
resources, the distance between the potential new location of
the UAS after a movement step and each base station will be
calculated and the potential signal loss will be estimated. At
the end, the movement step will be considered as a valid step
if a base station with an available communication channel and
acceptable link quality can be found. Otherwise, the movement
step will not be considered for the current position of the UAS.

During the route planning, when checking for communication
resource availability, we assume the connections between sUAS
and the base stations are line-of-sight. This may not always
be the case if there are obstacles present in the environment.
Therefore, the estimated signal strength during the routing
stage may not be the exact signal strength during the real flight.
We refer to the former as the inner belief of the resource
utilization and the latter as the ground truth. Our simulation
results show that, under the simple channel model, the inner
belief will be close to the ground truth.

F. Overall SRTS Routing Algorithm

The SRTS routing is performed on the 2D surface with the
static obstacle information. The algorithm calculates two costs
for each potential neighbor cell. The first cost is called the
movement cost, which describes the expense of moving from
the current position to the potential neighbor cell. For each

Signal Strength Check (x,y,t);

Input :Candidate Position(x, y, t)

Output : Whether a position can build the communication
link with a base station

allocate base station resources for in-flight
UASS(t);
sort BaseStationCandidates by distance in
ascending order;
foreach basestation in BaseStationCandidates do
get distance between UAS and basestation;
calculate SignalLoss;
if basestation has available channel &
SignalLoss < LOSS_THRESHOLD then
reset base station resources;
return TRUFE;
reset base station resources;

return FALSE)

Algorithm 3: Signal Strength Check Algorithm

position, the movement cost is accumulated, so it can relieve
the oscillation between two adjacent positions. The other cost
is called the destination cost, which stands for the expense of
moving from the potential neighbor cell to the destination. The
definition of the two costs are adopted from the original Ax
routing algorithm. We choose to calculate the costs based only
on the X, Y distances, because in general UAS flight energy
increases as the travel distance increases. However, as a T-S
routing algorithm, it is possible that the GCS will ask an UAS
to stay at a specific location to wait to resolve the potential
conflict. It will be part of our future work to incorporate flight
time into the cost function. The pseudo code of the SRTS
algorithm is given in the Algorithm 4.

IV. EXPERIMENTAL RESULTS & ANALYSIS

We demonstrate the performance of the SRTS algorithm in
UAS trajectory planning on the MATRUS simulation frame-
work. The environment settings in MATRUS contain parameters
that specify the base station configurations, individual UAS
action configurations and air space configurations.

In this paper, the number of base stations and the channels
available for UAS communications at each base station are
fixed to be 10 and 8, respectively. For each UAS, the trajectory
mode is set to be Manhattan style. The UAS mission generation
interval varies from 10, 20, and 30 seconds. They will be
referred to as the high, medium and low traffic configurations,
respectively, in the rest of this section. And, the number of no-
fly zones is either none or 2. Each combination of parameters
defines one specific scenario. The reported results is the average
of 10 runs for each specific scenario. For each run of one
scenario, the simulation time is 20,000 time steps which
corresponds to 20,000 seconds. Based on the observations
from the experiments, the UAS simulation behavior becomes

Sparse Represented TS Routing (s, Sy, S¢, dz, dy);

Input : Start Coordinates(s, sy, s¢), Destination
Coordinates(d,, dy)

Output : The optimal routing trajectory of one UAS

OpenList = (;

ClosedList = 0
OpenList.add(start_position);

while OpenList # () do

node = Open List.poll();

Instant Refreshing Mechanism

if node == destination then

trajectory = retriveTrajectory(node) ;

break;
ClosedList.add(node);

foreach neighbor € CandidateSelection do
if neighbor € OpenList then
| neighbor = OpenList.get(neighbor)
calculate neighbor's NewMovementCost,;
if NewMovementCost < OldMovementCost
|| neighbor ¢ OpenList then
update neighbor’'s MovementCost;
update neighbor’'s DestinationCost;
OvwerallCost = MovementCost +
DestinationCost;
if neighbor ¢ OpenList then
‘ OpenList.add(neighbor);
foreach position € trajectory do
‘ mark OBSTACLE in 3D dynamic projection;
return trajectory;

Algorithm 4: Sparse Represented TS Routing Algorithm

stable after 300 time steps. Therefore, the simulation length is
sufficient for us to analyze different scenarios.

Four sUAS launching areas and four landing areas are
distributed in the map, which is 90 square miles in size. Their
locations are selected based on the distribution of business
and residential areas in Upstate, New York. Each launching
area has a different launching probability. In a given interval,
each launching area will request to launch a SUAS with a
given probability. For each launch request, the landing area is
randomly selected from the four candidates. Given the launch
and landing areas, the exact launch and landing spots are
randomly picked within the areas.

One of the traffic scenario environments is illustrated in
Fig. 5. In the figure, the red rectangles represent the sUAS
launching areas, the blue rectangles stand for the sSUAS landing
areas and the grey rectangles indicate blocked areas (i.e. the
no-fly zones). The location of 10 base stations are also marked
on the map. The coordinates of those base stations are set
based on the actual base station facilities registered with the
FCC.

Fig. 5: Traffic Scenario Environment

A. Evaluation Metrics

Three metrics have been introduced to evaluate the perfor-
mance of the routing algorithm: Average Throughput, Average
Flight Time and Average Conflict Ratio.

To ensure flight safety, two flying SUAS must be separated
by a sufficient distance. Because the current sUAS cannot make
sharp turns or slow down immediately to a stop, leaving enough
space for each sUAS is necessary for safety considerations.
Therefore, centered at every location (z, y) of the map, a square
is drawn whose dimension is equal to the minimum separation
distance. If a square is occupied by more than one SUAS at the
same time, then location (x,y) has a conflict at this particular
time. By default, we use 18 meters as the minimum separation
distance in the experiment.

In our evaluation, the conflict ratio is used to analyze the
safety metric. It is defined as the number of missions that have
encountered at least one conflict during the flight divided by
the total number of launched SUAS missions.

The sUAS throughput indicates the capacity of the simulated
air space. It is measured by the number of launched sUAS
during a fixed time. There is a fundamental trade-off between
safety and throughput. The trajectory planning algorithm can
significantly reduce the conflict ratio, however it will also affect
the throughput. The goal of the routing algorithm is to achieve
maximum throughput while avoiding any potential conflicts.

Besides the average throughput of the entire simulated area,
the performance of every single sUAS is also crucial. In this
paper. The average flight time of individual sSUAS has been
considered as the last metric to evaluate the performance of
the routing algorithm. In general, a longer average flight time
indicates more detours during the flight and higher energy
consumption. Hence, a viable routing algorithm should not
lead to a large increase in the sUAS flight time.

B. Conflict Elimination

In the first experiment, we compare the maximum sUAS
density in different air traffic scenarios, and demonstrate the
effectiveness of our proposed routing algorithm. We visualize
the distribution of maximum density of sUASs per grid location
for the simulation scenario of high traffic without no-fly zones
in Figs. 6, 7 and 8. The black boxes in the density maps
represent the sUAS launching areas and the green boxes stand
for the sUAS landing areas. In the density map, the light blue
spots indicate normal traffic density, i.e. the maximum density

of sUAS in that area is 1 sUAS per grid cell. In contrast,
the bright red spot indicates conflict, i.e. the maximum sUAS
density is equal to or greater than 2 in the specific location. The
white areas are those where no sUAS has ever visited. Hence,
the maximum density also represents the distribution of the
sUAS trajectory. If a sUAS passes through the blocked area, it
will be considered as a conflict. Table I compares throughput,
flight time and conflict rate for traffic scenarios without routing,
with T-S routing, and with SRTS routing.

2.00
0 200 400 600 800 1000
o . — X . . Lo
1001 5 1.50
200 : | o
.] i F1.25
0 p =_, Conflicts :l
. =
dermenene s Al T ORRANGE ol
400 :
r0.75
500
+0.50
600 4
r0.25
O Start Area
L 0.00
Fig. 6: sUAS Trajectory Density without
Traffic Management
2.00
0 200 400 600 800 1000
0 . : . . . s

100 1 150

200
r125
o
300 A

400 -

r1.00

r0.75

500
r0.50

600
r0.25

O Start Area

Fig. 7: sUAS Trajectory Density with
Traffic Management (T-S Routing)

The first thing we can observe from Table I is that, in the
heavy traffic scenario, without trajectory management, 21.73%
missions will have conflicts. The conflict ratio has further
increased to 46.10% if no-fly zone conflicts are also considered.
By applying the traffic management, both the original T-S
routing algorithm and the SRTS routing algorithm can eliminate
all the conflicts. The cost is 2.2~3.3% reduction in throughput
and less than 2.74% increase in the flight time. The reason of the
throughput reduction is because, with trajectory management,
the sUAS that cannott find a conflict free path will not be
launched. Therefore, the more restrictive the constraints are,
the fewer sUAS that will be launched.

TABLE I: Routing Algorithm Comparison

Avg. Throughput

Avg. Flight Time Avg. Conflict Ratio

Traffic Type 0 No-Fly Zone | 2 No-Fly Zones | 0 No-Fly Zone | 2 No-Fly Zones | 0 No-Fly Zone | 2 No-Fly Zones
Heavy traffic (generation/10s)
No Routing 4006 4006 491.65s 491.65s 21.73% 46.10%
Baseline T-S Routing | 3897 (-2.72%) 3874 (-3.30%) 495.23s (+0.73%) | 505.10s (+2.74%) 0.0% 0.0%
SRTS Routing 3901 (-2.62%) 3880 (-3.15%) 494.79s (+0.64%) | 504.67s (+2.65%) 0.0% 0.0%
Medium Traffic (generation/20s)
No Routing 1985 1985 491.73s 491.73s 11.53% 34.92%
Baseline T-S Routing | 1937 (-2.42%) 1930 (-2.77%) 494.86s (+0.64%) | 503.52s (+2.40%) 0.0% 0.0%
SRTS Routing 1940 (-2.27%) 1934 (-2.57%) 494.74s (+0.61%) | 503.76s (+2.45%) 0.0% 0.0%
Light Traffic (generation/30s)
No Routing 1315 1315 490.82s 490.82s 7.96% 31.8%
Baseline T-S Routing | 1288 (-2.05%) 1286 (-2.21%) 493.72s (+0.59%) | 502.45s (+2.37%) 0.0% 0.0%
SRTS Routing 1289 (-2.00%) 1288 (-2.05%) 493.85s (+0.62%) | 502.32s (+2.34%) 0.0% 0.0%

2.00

0 200 400 600 800 1000

100 150

200 |
r1.25
: L
300
- 1.00

r0.75

500
r0.50

600

r0.25

33 Start Area

Fig. 8: sUAS Trajectory Density with
Traffic Management (SRTS Routing)

From Fig. 6 we can see that, without routing, some bright
red points (i.e. conflicts) exist around the center of map. From
Fig. 7 and 8 we can see that applying the TS routing and
SRTS routing algorithm fully eliminate the conflicts. The SUAS
trajectory concentrates in the upper part of the map in Fig. 8,
because the candidate next move selection in SRTS follows
a fixed priority, where going west or east always has higher
priority than going north or south if all other conditions are
the same.

C. Communication Connectivity Improvement

In the second experiment, we demonstrate how SRTS routing
can improve the connectivity of the sUAS with the cellular
network. Using the log-distance path loss model given in
Section III-E, the UAS will establish a communication link

with a base station if the path loss is less than 140dB.
Otherwise, the communication link cannot be established.

Table I compares the routing results of the SRTS algorithm
without consideration of connectivity (row 1) and with the
consideration of connectivity (row 2). Fig. 10 and Fig. 9 show

the SUAS trajectories with and without the connectivity check.

The circles in the figure indicate the areas that are covered by
a base station.

Our simulation results show that without checking the
connectivity, in heavy traffic situation, the no link rate is

TABLE II: The Comparison with Connectivity
Check Algorithm

Traffic Type Avg. Inflight | Avg. Flight | No Link
UASs Time Rate
Heavy Traffic (generation/10s)
SRTS Routing w/o.
Conn. Check 95.95 491.46s 85.15%
SRTS Routing w.
Conn. Check 70.03 517.82s 0.00%
Medium Traffic (generation/20s)
SRTS Routing w/o.
Conn. Check 49.28 491.43s 43.48%
SRTS Routing w.
Conn. Check 41.44 513.12s 0.00%
Light Traffic (generation/30s)
SRTS Routing w/o.
Conn. Check 32.44 491.44s 26.25%
SRTS Routing w. ' .
Conn. Check 28.66 512.82s 0.00%

85.15%. This means 85.15% of sUAS will experience a certain
period of time in its mission in which no cellular link can be
established to communicate with the GCS. The no link rate
reach 43.48% and 26.25% in medium and light traffic. Although
the routing algorithm can plan a conflict free trajectory for
those sUAS, some locations along the trajectory either do not
have coverage from the cellular network (as shown in Fig. 9) or
the available channels have been depleted due to congestions.
By applying the connectivity check, the no link rate is reduced
to 0%. From Fig. 10 we can see that the sUAS only fly in
the areas which are covered by the base stations. We can also
observe that with the connectivity check, the average number
of sUASSs in the air is decreased by 27%, and the average flight
time of the sUAS is increased by 5%. Since the availability
of channels in the environment is limited, a SUAS will not be
launched if communication links cannot be established in the
flight path. The percentage throughput reduction is less when
the traffic becomes lighter.

We visualize the resource usage of each base station at some
sampled time steps. And the time steps 500, 5000, 10000
and 198000 are chosen. Since the total simulation duration is
20000, the number of airbone UASs at time 5000 and 10000
are representative of the peak value for in-flight UAS in the
whole simulation. Fig. 11 shows the distribution of available

1000

0 200 400 600 800

600 -

3 Start Area [End Area

0.00

Fig. 9: Planned Trajectory without Connectivity Check
Algorithm

o 200 400 600 800 1000

600

[Start Area [End Area 0.00

Fig. 10: Planned Trajectory with Connectivity Check
Algorithm

communication channels at different time during the simulation.
The sample time 500 and 19800 approach to the start time and
the end time of the simulation, therefore, the number of in-
flight UAS is sparse. The bright yellow represents the available
channels are sufficient at that time. However, the deep blue
stands for the area where all the communication channels are
occupied.

The distribution of available channels in Fig. 11 are collected
from the simulation, hence they represent the “ground truth”
information of available communication resources. Based on
our observation, the inner belief of the communication resource
distribution during the routing stage is very close to the ground
truth. Due to the space limit, we do not plot them here,
however, they look just the same as Fig. 11. The similarity is
expected because the connections between sUAS and the base
stations has 90% of chance to be line-of-sight as mentioned
in section III-E. This means the path-loss is mainly a function
of the distance between the sUAS and the base station, and is
highly predictable.

0 200 400 600 800 1000 12

600 800 1000
H i EI i I ilo
8
6
4
2
0

(@) Tso0 (b) Ts000

‘ ‘ 125
100

o 200 400

[

L

() Tro000 (d) T19800

Fig. 11: Distribution of available cellular
channels (Ground Truth)

D. The Resource Usage of the Routing Algorithm

In the last experiment, we compare the memory usage and
computing time of different routing algorithms. Almost all the
routing algorithms need to store the environment information
of a vast airspace, therefore, there may be a high demand for
memory storage during the runtime. We also analyze the time to
compute a route for each SUAS. This computation must finish
in a very short amount of time so that the launch of the sSUAS
will not be delayed. Hence, we record the average memory
usage and the average routing time during our simulation. The
comparison between T-S routing and SRTS routing is given in
Table III.

From Table III we can see that compared to T-S routing,
the SRTS routing method reduces memory usage by more
than 70%. With the help of the instant refreshing mechanism,
only the present and future obstacle information will be
preserved. And the history obstacle information will been
removed automatically. Hence, when increasing from light
traffic to medium and heavy traffic, the memory demand of
SRTS only increases 2% and 6% respectively for scenarios
with no-fly zone constraint, and 2% and 4% respectively
for scenarios without no-fly zone constraint. While the T-S
routing’s memory demand increases 11% and 21% respectively
for scenarios with no-fly zone constraint, and 10% and 18%
respectively for scenarios without no-fly zone constraint. These
number show that SRTS routing is much more scalable than
T-S routing in terms of storage complexity. Moreover, the
results indicate that including geographical constraints (i.e. no-
fly zones) is not a heavy burden for our routing algorithm.
Compared with the simulation scenario without the trajectory
management, even with 2 no-fly zones, the memory usage
of our proposed algorithm increases only about 10.5%, 7.5%
and 5.5% in the cases of heavy, medium and light traffics,
respectively.

Moreover, the results from Table IV show that, by using

TABLE III: Routing Algorithm Memory Usage Comparison

Traffic Type Heavy Traffic (generation/10s) Medium Traffic (generation/20s) Light Traffic (generation/30s)
0 No-Fly Zone | 2 No-Fly Zones | 0 No-Fly Zone | 2 No-Fly Zones | 0 No-Fly Zone | 2 No-Fly Zones
No Routing 675MB+2.2% 675MB+2.2% 667MB+£2.1% 66"MB+2.1% 666MB+1.5% 666MB+1.5%
Baseline T-S Routing | 3513MB+3.7% | 3608MB+3.3% | 3257TMB43.1% | 3315MB+2.9% | 2963MB+3.8% | 2974MB+3.5%
SRTS Routing 725MB+3.4% 746MB+2.3% 713MB+3.8% T1TMB=£2.7% 698MB+3.2% 703MB+3.0%

TABLE IV: Routing Algorithm Running time Comparison

Heavy Traffic (generation/10s)

Traffic Type 0 No-Fly Zone 2 No-Fly Zones

Medium Traffic (generation/20s)
0 No-Fly Zone

Light Traffic (generation/30s)

2 No-Fly Zones 0 No-Fly Zone 2 No-Fly Zones

Baseline T-S Routing 2.33ms 3.20ms

1.81ms

2.27ms 1.49ms 1.86ms

SRTS Routing 0.37ms (-84.12%) | 0.49ms (-84.69%)

0.35ms (-80.66%)

0.42ms (-81.50%) | 0.34ms (-77.18%) | 0.40ms (-78.49%)

our SRTS routing algorithm, the UAS route planning time
can be significantly reduced. Compared with the original TS
routing algorithm, we can achieve 84.69%, 81.50% and 78.49%
planning time reduction in the scenarios of high, medium and
light traffics, respectively.

In addition, we evaluate the routing time of the SRTS routing
algorithm in different airspace conditions, and the results are
displayed in Fig. 12. The X-axis represents the average number
of UAS in-the-air when the trajectory is planned and the Y-axis
stands for the average planning time in milliseconds. The blue
line and the red line are the time consumption of the approved
launching and the failed launching. First, the experiment results
show that the declined launching always take longer planning
time than approved launching. This is because the system needs
to try all the possible movements until there are no options to
choose, then it will decline a launch request. For the approved
launching, after one trajectory is found, the other possible
movements will not be considered. Second, the results reveal
that our proposed routing algorithm has a linear time complexity
to the length of trajectory that was found. The average planning
time is highly correlated to the average trajectory length. That
explains why in the same simulation environment, the planning
time will increase marginally when there are more UASs in
the air. Again, the results show that the SRTS algorithm is
scalable to the congestion level of the airspace.

1.2 I I I T
—8— Approved Launching
1 {-| —&— Declined Launching s

<
o0
T
|

Average Planning Time (ms)
o o
i~ >
T T
| |

e
o
\
|

| | | |
00 40 80 120 160

Average in-flight UAS

|
200 240

Fig. 12: Routing Time in Various Airspace Conditions

V. CONCLUSIONS

In this paper, we have proposed a new sparse represented tem-
poral spatial routing algorithm for Unmanned Aircraft Systems
(UAS) traffic management. The proposed algorithm allows the
sUAS to avoid static no-fly areas (i.e. static obstacles) or other
in-flight sUAS and areas that have contested communication
resources (i.e. dynamic obstacles). The core functionality of
the routing algorithm supports the instant refresh of the in-
flight environment making it appropriate for highly dynamic
air traffic scenarios. In addition, our characterization of the
routing time and memory usage demonstrate that our algorithm
outperforms a traditional T-S routing algorithm. Finally, the
results have shown that the proposed algorithm has the ability to
evaluate different SUAS traffic management policies. Moreover,
the SRTS routing algorithm can be easily integrated with other
simulation tools for further study.

REFERENCES

[1] F. Mohammed, A. Idries, N. Mohamed, J. Al-Jaroodi, and I. Jawhar,
“Uavs for smart cities: Opportunities and challenges,” in 2014 Interna-
tional Conference on Unmanned Aircraft Systems (ICUAS), pp. 267-273,
IEEE, 2014.

[2] Z. Zhao, C. Luo, Z. Jin, F. Basti, M. C. Gursoy, C. Caicedo, and Q. Qiu,
“A simulation framework for fast design space exploration of unmanned
air system traffic management policies,” arXiv preprint arXiv:1902.04035,
2019.

[3] A. Puri, “A survey of unmanned aerial vehicles (uav) for traffic surveil-

lance,” Department of computer science and engineering, University of

South Florida, pp. 1-29, 2005.

P. Kopardekar, J. Rios, T. Prevot, M. Johnson, J. Jung, and J. E.

Robinson, “Unmanned aircraft system traffic management (utm) concept

of operations,” 2016.

S. Sastry, G. Meyer, C. Tomlin, J. Lygeros, D. Godbole, and G. Pappas,

“Hybrid control in air traffic management systems,” in Proceedings of

1995 34th IEEE Conference on Decision and Control, vol. 2, pp. 1478—

1483, IEEE, 1995.

[6] B. Albaker and N. Rahim, “A survey of collision avoidance approaches
for unmanned aerial vehicles,” in 2009 International Conference for
Technical Postgraduates (TECHPOS), pp. 1-7, IEEE, 2009.

[7]1 S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[8]1 S. A. Bortoff, “Path planning for vavs,” in Proceedings of the 2000

American Control Conference. ACC (IEEE Cat. No. 00CH36334), vol. 1,

pp. 364-368, IEEE, 2000.

J. Tisdale, Z. Kim, and J. K. Hedrick, “Autonomous uav path planning

and estimation,” IEEE Robotics & Automation Magazine, vol. 16, no. 2,

pp. 35-42, 2009.

M. Odelga, P. Stegagno, and H. H. Biilthoff, “Obstacle detection, tracking

and avoidance for a teleoperated uav,” in 2016 IEEE international

conference on robotics and automation (ICRA), pp. 2984-2990, IEEE,

2016.

4

[5

=

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

H. L. N. N. Thanh and S. K. Hong, “Completion of collision avoidance
control algorithm for multicopters based on geometrical constraints,”
IEEE Access, vol. 6, pp. 27111-27126, 2018.

C. Wang, W. Liu, and M. Q.-H. Meng, “Obstacle avoidance for
quadrotor using improved method based on optical flow,” in 2015 IEEE
International Conference on Information and Automation, pp. 1674-1679,
IEEE, 2015.

Y. Li, H. Eslamiat, N. Wang, Z. Zhao, A. K. Sanyal, and Q. Qiu,
“Autonomous waypoints planning and trajectory generation for multi-
rotor uavs,” Proceedings of Design Automation for CPS and IoT, 2019.
H. Eslamiat, Y. Li, N. Wang, A. K. Sanyal, and Q. Qiu, “Autonomous
waypoint planning, optimal trajectory generation and nonlinear tracking
control for multi-rotor uavs,”

R. W. Beard and T. W. McLain, “Multiple uav cooperative search under
collision avoidance and limited range communication constraints,” in
42nd IEEE International Conference on Decision and Control (IEEE
Cat. No. 03CH37475), vol. 1, pp. 25-30, IEEE, 2003.

B. D. Song, J. Kim, and J. R. Morrison, “Rolling horizon path planning
of an autonomous system of uavs for persistent cooperative service: Milp
formulation and efficient heuristics,” Journal of Intelligent & Robotic
Systems, vol. 84, no. 1-4, pp. 241-258, 2016.

E. Rimon and D. E. Koditschek, “Exact robot navigation using artificial
potential functions,” Departmental Papers (ESE), p. 323, 1992.

D.-S. Jang, C. A. Ippolito, S. Sankararaman, and V. Stepanyan, “Concepts
of airspace structures and system analysis for uas traffic flows for urban
areas,” in AIAA Information Systems-AIAA Infotech@ Aerospace, p. 0449,
2017.

D. Ferguson, M. Likhachev, and A. Stentz, “A guide to heuristic-based
path planning,” in Proceedings of the international workshop on planning
under uncertainty for autonomous systems, international conference on
automated planning and scheduling (ICAPS), pp. 9-18, 2005.

M. J. North, E. Tatara, N. T. Collier, J. Ozik, et al., “Visual agent-based
model development with repast simphony,” tech. rep., Tech. rep., Argonne
National Laboratory, 2007.

P. H. Kopardekar, “Unmanned aerial system (uas) traffic management
(utm): Enabling low-altitude airspace and uas operations,” 2014.

R. A. Clothier, B. P. Williams, and N. L. Fulton, “Structuring the safety
case for unmanned aircraft system operations in non-segregated airspace,”
Safety science, vol. 79, pp. 213-228, 2015.

P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100-107, 1968.

B.-C. Seet, G. Liu, B.-S. Lee, C.-H. Foh, K.-J. Wong, and K.-K. Lee,
“A-star: A mobile ad hoc routing strategy for metropolis vehicular
communications,” in International Conference on Research in Networking,
pp- 989-999, Springer, 2004.

N. J. Nilsson, The quest for artificial intelligence. Cambridge University
Press, 2009.

S. Edelkamp, S. Jabbar, and A. Lluch-Lafuente, “Cost-algebraic heuristic
search,” in AAAI pp. 1362-1367, 2005.

