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Abstract

Parasitoid wasps are among the most speciose animals, yet have relatively few available genomic resources. We report a draft
genome assembly of the wasp Diachasma alloeum (Hymenoptera: Braconidae), a host-specific parasitoid of the apple maggot fly
Rhagoletis pomonella (Diptera: Tephritidae), and a developing model for understanding how ecological speciation can “cascade”
across trophic levels. Identification of gene content confirmed the overall quality of the draft genome, and we manually annotated
~400 genes as part of this study, including those involved in oxidative phosphorylation, chemosensation, and reproduction. Through
comparisons to model hymenopterans such as the European honeybee Apis mellifera and parasitoid wasp Nasonia vitripennis, as well
as a more closely related braconid parasitoid Microplitis demolitor, we identified a proliferation of transposable elements in the
genome, an expansion of chemosensory genes in parasitoid wasps, and the maintenance of several key genes with known roles in
sexual reproduction and sex determination. The D. alloeum genome will provide a valuable resource for comparative genomics
studies in Hymenoptera as well as specific investigations into the genomic changes associated with ecological speciation and
transitions to asexuality.
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Introduction

The Hymenoptera may be the largest order of insects due to
the immense diversity of parasitic wasps (i.e., “parasitoids”)
that lay their eggs into or on other insect species (LaSalle and
Gauld 1993; Austin and Dowton 2000; Whitfield 2003;
Forbes et al. 2018). The great diversity of parasitoid wasps
may be a consequence of their close relationship with their
insect hosts. When a specialist parasitoid shifts to a new host,
this change can propel the evolution of reproductive isolating
barriers between wasp populations using the new and

ancestral hosts (Feder and Forbes 2010). The evolution of re-
productive isolating barriers following a host shift is a well-
documented phenomenon in host specialist insects (Forbes
et al. 2017), but the study of genomic changes that accom-
pany such phenomena is still in its early stages.

Diachasma alloeum (Hymenoptera: Braconidae) is a spe-
cialist parasitoid of the fruit fly Rhagoletis pomonella
(Diptera: Tephritidae). After the introduction of domesticated
apples to the United States from Europe, R. pomonella infest-
ing native hawthorn fruits experienced a host shift and
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subsequently evolved reproductive isolating barriers in what
has become a well-known example of incipient ecological
speciation (Walsh 1867; Bush 1966, 1994; Nosil 2012). This
new “apple maggot fly” was sequentially colonized by
D. alloeum, which appears to have shifted from its ancestral
host, the blueberry maggot Rhagoletis mendax (Forbes et al.
2009). Two reproductive isolating barriers (i.e., diapause
emergence and host fruit volatile discrimination) have evolved
in parallel in R. pomonella and D. alloeum, and in both fly and
wasp, these traits appear to have a genetic basis (Dambroski
et al. 2005; Forbes and Feder 2006; Forbes et al. 2009). This
phenomenon of “sequential” or “cascading” speciation may
be an important driver of new biodiversity (Stireman et al.
2006; Abrahamson and Blair 2007; Hood et al. 2015).

Reproductive isolation in genus Diachasma has also
arisen as a consequence of the loss of sexual reproduc-
tion, a general pattern observed in many hymenopteran
insects (van der Kooi et al. 2017; Tvedte et al. 2019).
Asexual Diachasma muliebre appears to have split from
its sexual sister Diachasma ferrugineum between 0.5 and
1 Ma (Wharton and Marsh 1978; Forbes et al. 2013).
Although the decay of genes involved in sexual traits
has been observed in multiple asexual parasitoid wasps
(Ma et al. 2014; Kraaijeveld et al. 2016), there is a lack
of comparative assessments of genomic molecular evolu-
tion between sexual and asexual Hymenoptera.

Here, we report the de novo genome assembly of the par-
asitoid wasp D. alloeum, adding to the genomic resources for
parasitoid wasps, which are underrepresented among avail-
able hymenopteran genomes (Branstetter et al. 2018). We
performed a series of descriptive analyses to assess the overall
guality and content of the D. alloeum genome, and then fo-
cused on annotation and evolutionary analyses of gene fam-
ilies with potential relevance to speciation and sex
determination in Diachasma.

Materials and Methods

We isolated genomic DNA from wasps collected in Fennwille,
MI. lllumina paired-end, mate pair, and TruSeq Synthetic Long
Read (TSLR) libraries were sequenced on an lllumina
HiSeq2000. The library from a single haploid male enabled
the initial contig assembly, and pooled samples were required
to achieve the minimum DNA mass needed for other library
preparations. Paired-end and mate pair reads were de novo
assembled using SOAPdenovo2 v2.04 (Luo et al. 2012) and
TSLR “reads” were added using PBlelly v2 (English et al.
2012). We removed putative microbial contaminant sequen-
ces from the assembly that were identified by both BlobTools
(Laetsch and Blaxter 2017) and a separate custom pipeline
developed by Wheeler et al. (2013) and modified as described
in Poynton et al. (2018). We separately assembled the
mitochondrial genome de novo using NOVOplasty v2.6.3
(Dierckxsens et al. 2017).

We used ten wasps of each sex to generate two (pooled
male and pooled female) paired-end RNASeq libraries and
sequenced read libraries using an lllumina HiSeg2500. The
input DNA required for library preparation precluded the
use of the same biological samples for genome and transcrip-
tome sequencing runs. We combined read data sets and as-
sembled a transcriptome de novo with Trinity (Release April
13, 2014) (http://trinityrnaseq.github.io/; last accessed May
2015) (Grabherr et al. 2011; Haas et al. 2013). Annotation
of the D. alloeum genome assembly was performed by the
NCBI using their Eukaryotic Genome Annotation Pipeline
(https:/Avww.ncbi.nlm.nih.gov/genome/annotation_euk/pro-
cess/; last accessed July 2019), with experimental support
from the RNAseq and transcriptome. Manual annotations
were added to a D. alloeum project on the i5k workspace
(https://apollo.nal.usda.gov/diaall/jbrowse/; last accessed May
2018; Poelchau et al. 2015). See Supplementary Material on-
line for additional information on genome sequencing, as-
sembly, and annotation.

Results and Discussion

Quality Assessment of Genome Assembly

Libraries from a combination of single and pooled wasp sam-
ples contained 182.88 Gb total sequence data. The de novo
genome  assembly  Dall1.0  (GenBank  accession:
GCA_001412515.1) had 3,968 scaffolds with a total scaffold
length of 388.8 Mb and a scaffold N50 of 645,583 bp (sup-
plementary table S1, Supplementary Material online). The
presence of prokaryotic-like sequences in eukaryotic genome
projects may reflect contamination in sequencing libraries or
an actual association between microorganisms and hosts. Of
the D. alloeum scaffolds, we annotated 656 as likely bacterial
contaminants and an additional scaffold (Dall2.0 RefSeq ac-
cession: NW_021680771.1) as an apparent lateral gene trans-
fer event from a Rickettsia species (see Supplementary
Material online). The likely bacterial contaminating scaffolds
were removed from the D. alloeum assembly, and the assem-
bly containing the remaining 3,313 scaffolds is available as
Dall2.0 (GCA_001412515.3).

A common metric used to assess the relative completeness
of a genome assembly is the identification of conserved
single-copy genes, performed here using BUSCO v3 (Simao
et al. 2015). We found 1,059/1,066 (99%) Arthropoda
BUSCOs and 4,300/4,415 (97%) Hymenoptera BUSCOs in
the D. alloeum genome, most of which were complete and
single-copy (fig. 1). These values are similar to BUSCO gene
content in other published hymenopteran genomes, including
Apis mellifera, Nasonia vitripennis, and Microplitis demolitor
(fig. 1 and see Supplementary Material online). Our de novo
assembly of the D. alloeum mitochondrial sequence using
NOVOplasty (Dierckxsens et al. 2017) produced a 15,936 bp
sequence with a complete set of 13 protein coding genes,
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Fic. 1.—BUSCO analysis of Diachasma alloeum and additional hymenopteran genome assemblies. >Apis mellifera assembly reported in Weinstock et al.
(2006). PNasonia vitripennis assembly reported in Werren et al. (2010). “Microplitis demolitor assembly reported in Burke et al. (2018).

two rRNA sequences, and 20 tRNA sequences (GenBank ac-
cession NW_021683654.1). In addition, our annotation of 65/
68 (96%) of the canonical suite of nuclear-encoded mito-
chondrial genes provided additional evidence for a high-
quality genome assembly (see Supplementary Material
online).

We used RepeatModeler (Smit et al. 2015), PASTEClassifier
(Hoede et al. 2014, version 1.0), and RepeatMasker (Smit
et al. 2010) for de novo repeat identification, repeat reclassi-
fication, and repeat quantification, respectively (see
Supplementary Material online). Remarkably, nearly half
(49%) of the D. alloeum genome consisted of repetitive
sequences, although a substantial contributor (30%) was
from unclassified repetitive sequences.

Chemosensory Gene Repertoire in D. alloeum

Chemoreception in arthropods is mediated by three major
families of receptors: odorant receptors (ORs), gustatory
receptors (GRs), and ionotropic receptors (IRs) (Clyne et al.
1999, 2000; Benton et al. 2009). In addition, two major fam-
ilies of water-soluble proteins are responsible for transport
and/or quenching of ligands to chemosensory receptors:
odorant binding proteins (OBPs) and chemosensory proteins
(CSPs) (Vieira and Rozas 2011; Pelosi et al. 2014; Larter et al.
2016). Chemosensory discrimination of fruit volatiles is an
important axis of divergence among host fly-associated pop-
ulations of D. alloeum, initiating reproductive isolating barriers
between these wasps (Forbes et al. 2009).

Previous characterizations of chemosensory genes in hy-
menopteran insects, in particular the gene-rich receptor fam-
ilies, demonstrate that automated gene prediction pipelines
are generally poor at accurately predicting these gene models
(Robertson and Wanner 2006; Croset et al. 2010; Robertson
et al. 2010, 2018; Zhou et al. 2015). We therefore manually

annotated a total of 321 gene models that represents the full
inventory of five chemosensory gene families in D. alloeum
(table 1 and see Supplementary Material online). The OR, GR,
and IR gene families were larger in D. alloeum and other
parasitoid wasps relative to A. mellifera. We found
D. alloeum OR lineages in addition to clusters of GRs present
in the braconid wasps D. alloeum and M. demolitor but ab-
sent in the well-studied hymenopterans N. vitripennis or
A. mellifera (see Supplementary Material online). We also ob-
served an increased number of IRs in D. alloeum relative to
another Microplitis species, M. mediator (see Supplementary
Material online). Although we identified chemosensory gene
clusters specific to D. alloeum, the extensive gene duplication,
gene loss, and sequence divergence in these families resulted
in poor phylogenetic resolution and indeterminate orthology
between gene family members. The difficulty in attributing
gene expansions to D. alloeum is compounded by the relative
lack of genome resources for parasitoid wasps.

In summary, this gene set is an important resource for fu-
ture studies of the evolutionary history of Diachasma chemo-
sensory genes. It will be critical to ascertain the members of
the D. alloeum chemosensory repertoire that operate specif-
ically in chemosensory behavior. Although the families are
generally well conserved across insects, the challenge of
orthology assessment and the limited functional study of
these genes make it difficult to estimate the precise chemo-
sensory inventory of D. alloeum. ORs operate specifically in
odorant recognition, and the expansion of OR genes in insects
may have been adaptive during the transition to terrestrial life
(Robertson et al. 2003, but see Missbach et al. 2014).
Although relatively understudied, the IR family has a likely
protostome origin, and conservation of multiple orthologs ini-
tially identified in Drosophila melanogaster suggest an
important function of IR genes in olfaction across insects
(Rytz et al. 2013). Conversely, the origin of GRs dates back
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Table 1

Chemosensory Gene Content of Selected Hymenopteran Insects

Organism ORs GRs IRs OBPs CSPs Citations

Diachasma alloeum 187 (14)  39(1) 51 (5) 15 (0) 9 (0) This study

Apis mellifera 163 (11)  10(0) 100% 21(0% 6(0° Robertson and Wanner (2006); Forét and Maleszka (2006); Forét et al.
(2007); Croset et al. (2010); Elsik et al. (2014)

Nasonia vitripennis 225(76) 47(11) 99(54) 90 (8) 9 (0) Robertson et al. (2010); Robertson et al. (2018); Werren et al. (2010); Vieira
et al. (2012)

Microplitis demolitor® 218 (4) 85(1) Zhou et al. (2015)

Microplitis mediator 17(0% 20(0° 3(0%) Zhang et al. (2009); Wang et al. (2016); Peng et al. (2017)

Note.—Intact gene counts are outside parentheses and pseudogene counts are inside parentheses.

2Pseudogene counts were not addressed explicitly in the study.

5Zhou et al. (2015) provided counts of truncated models and pseudogenes for ORs and GRs, however, these sequences were not published and therefore were not used in

building phylogenies.

to the Placozoa, and GR-like genes in basal animals function in
development, not chemosensation (Robertson 2015; Saina
et al. 2015). The OBP and CSP transporter families have roles
in chemical ligand delivery to chemosensory receptors but also
function in release of pheromones, reproductive processes,
and embryonic development (Pelosi et al. 2018).
Transcriptome data sets used for D. alloeum gene predictions
were taken from pooled whole male and female wasps, so we
cannot exclude the possibility that some genes have nonche-
mosensory roles. Future studies should incorporate tissue-
specific RNA data sets to provide stronger support for genetic
components of chemosensation in D. alloeum.

Chemosensory genes are promising candidates for differ-
ential selective regimes in apple and hawthorn populations
of D. alloeum. Rhagoletis pomonella host flies use olfactory
cues from ripening fruit to identify suitable sites for mating
and oviposition (Linn et al. 2003). Like R. pomonella,
D. alloeum parasitoids have demonstrated odor preferences
for their host fruits, representing a potential prezygotic re-
productive barrier preventing mating between wasp popu-
lations utilizing different hosts (Forbes et al. 2009).
Evolutionary rate and differential expression analyses of che-
mosensory genes in D. alloeum populations could be poten-
tial areas of inquiry.

Chemosensory gene evolution could also be influenced by
transitions in reproductive strategies in Diachasma. \Wasp
courtship is mediated by the male perception of sex phero-
mones produced by females (Boush and Baerwald 1967).
Across arthropods, chemosensory genes demonstrate differ-
ential expression in males and females (Zhou et al. 2012;
Shiao et al. 2013; Eyun et al. 2017). Chemosensory genes
showing strong sex bias may be candidates for degradation
in an asexual genome, such as those involved in female sig-
naling or male recognition of mate signals (Normark et al.
2003; Tabata et al. 2017). Future studies could assess sex-
specific expression of chemosensory genes in D. alloeum
and corresponding evolutionary patterns in its asexual relative
D. muliebre.

Diachasma alloeum Contains Canonical Genes Involved in
Reproduction and Sex Determination

Hymenoptera is an insect order characterized by haplodiploid
sex determination, providing an opportunity for studying the
evolution of reproductive modes, including transitions from
sexual to asexual systems. Meiosis is essential to obligate sex-
ual reproduction, such that loss of sex may be accompanied
by the subsequent degradation of meiotic genetic machinery
(Schurko and Logsdon 2008). However, identical sets of mei-
osis genes in D. alloeum (sexual) and D. muliebre (asexual)
(Tvedte et al. 2017) and population genetic data implying
that the asexual D. muliebre undergoes recombination
(Forbes et al. 2013) together suggests that asexual wasps re-
tain meiotic production of gametes despite the loss of sexual
reproduction. Given the apparent lack of male production in
D. muliebre, a noncanonical form of meiosis could facilitate
the maintenance of genetic variation and promote the persis-
tence of this asexual lineage.

In many hymenopterans, development into male versus
female forms is based on allelic states at a single locus, a
mechanism known as complementary sex determination
(CSD) (van Wilgenburg et al. 2006). In A. mellifera specifically,
sex determination depends on the csd gene (Hasselmann
et al. 2008). We found no evidence of the csd locus in
D. alloeum, however our inability to consistently rear wasps
in the laboratory at the current time precludes our ability to
definitively rule out CSD as a sex determination mechanism. In
CSD and non-CSD hymenopterans, a well-conserved sex de-
termination regulatory cascade includes transformer and dou-
blesex, both displaying sex-specific splicing (Geuverink and
Beukeboom 2014). We annotated male and female isoforms
of transformer and doublesex genes in D. alloeum (GenBank
accessions  THK33055.1, THK33056.1, THK32977.1,
THK32978.1).

Sex determination genes may be targets of selection in
asexual Hymenoptera. Across insects, male production occurs
due to alternative splicing of transformer rendering the pro-
tein nonfunctional, leading to male-splicing of doublesex.
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Conversely, translation of full-length transformer into func-
tional protein mediates the splicing of female-specific double-
sex isoforms (Verhulst et al. 2010). RNA-seq read mapping
patterns supported sex-specific transformer isoforms in
D. alloeum (see Supplementary Material online). In all-
female Diachasma species, we would expect selection to pre-
serve the full-length transformer gene. In doublesex, the fe-
male isoform in D. alloeum is shorter (see Supplementary
Material online), similar to splicing patterns in other insects
(Cho et al. 2007; Oliveira et al. 2009). The single exon specific
to males may be subject to future degradation following sex
loss in asexual Diachasma species.

Additional genes contributing to sex-specific traits (e.g.,
sperm production, pheromones, pigmentation) may be can-
didates for degradation in asexual wasps (van der Kooi and
Schwander 2014; Kraaijeveld et al. 2016). The high quality of
D. alloeum assembly provides a suitable framework for future
studies of the effects of sexual and asexual reproductive
modes on patterns of molecular evolution across the wasp
genome.

Supplementary Material

Supplementary data are available at Genome Biology and
Evolution online.
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