
Provably Efficient Q-Learning
with Low Switching Cost

Yu Bai
Stanford University
yub@stanford.edu

Tengyang Xie Nan Jiang
UIUC

{tx10, nanjiang}@illinois.edu

Yu-Xiang Wang
UC Santa Barbara

yuxiangw@cs.ucsb.edu

Abstract

We take initial steps in studying PAC-MDP algorithms with limited adaptivity,
that is, algorithms that change its exploration policy as infrequently as possible
during regret minimization. This is motivated by the difficulty of running fully
adaptive algorithms in real-world applications (such as medical domains), and we
propose to quantify adaptivity using the notion of local switching cost. Our main
contribution, Q-Learning with UCB2 exploration, is a model-free algorithm for
H-step episodic MDP that achieves sublinear regret whose local switching cost in
K episodes is O(H3SA logK), and we provide a lower bound of Ω(HSA) on the
local switching cost for any no-regret algorithm. Our algorithm can be naturally
adapted to the concurrent setting [13], which yields nontrivial results that improve
upon prior work in certain aspects.

1 Introduction

This paper is concerned with reinforcement learning (RL) under limited adaptivity or low switching
cost, a setting in which the agent is allowed to act in the environment for a long period but is
constrained to switch its policy for at most N times. A small switching cost N restricts the agent
from frequently adjusting its exploration strategy based on feedback from the environment.

There are strong practical motivations for developing RL algorithms under limited adaptivity. The
setting of restricted policy switching captures various real-world settings where deploying new
policies comes at a cost. For example, in medical applications where actions correspond to treatments,
it is often unrealistic to execute fully adaptive RL algorithms – instead one can only run a fixed policy
approved by the domain experts to collect data, and a separate approval process is required every
time one would like to switch to a new policy [19, 2, 3]. In personalized recommendation [25], it
is computationally impractical to adjust the policy online based on instantaneous data (for instance,
think about online video recommendation where there are millions of users generating feedback at
every second). A more common practice is to aggregate data in a long period before deploying a
new policy. In problems where we run RL for compiler optimization [4] and hardware placements
[20], as well as for learning to optimize databases [18], often it is desirable to limit the frequency
of changes to the policy since it is costly to recompile the code, to run profiling, to reconfigure an
FPGA devices, or to restructure a deployed relational database. The problem is even more prominent
in the RL-guided new material discovery as it takes time to fabricate the materials and setup the
experiments [24, 21]. In many of these applications, adaptivity turns out to be really the bottleneck.

Understanding limited adaptivity RL is also important from a theoretical perspective. First, algorithms
with low adaptivity (a.k.a. “batched” algorithms) that are as effective as their fully sequential
counterparts have been established in bandits [23, 12], online learning [8], and optimization [11],
and it would be interesting to extend such undertanding into RL. Second, algorithms with few policy
switches are naturally easy to parallelize as there is no need for parallel agents to communicate if

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



they just execute the same policy. Third, limited adaptivity is closed related to off-policy RL1 and
offers a relaxation less challenging than the pure off-policy setting. We would also like to note that
limited adaptivity can be viewed as a constraint for designing RL algorithms, which is conceptually
similar to those in constrained MDPs [9, 26].

In this paper, we take initial steps towards studying theoretical aspects of limited adaptivity RL
through designing low-regret algorithms with limited adaptivity. We focus on model-free algorithms,
in particular Q-Learning, which was recently shown to achieve a Õ(

√
poly(H) · SAT ) regret bound

with UCB exploration and a careful stepsize choice by Jin et al. [16]. Our goal is to design Q-Learning
type algorithms that achieve similar regret bounds with a bounded switching cost.

The main contributions of this paper are summarized as follows:

• We propose a notion of local switching cost that captures the adaptivity of an RL algorithm in
episodic MDPs (Section 2). Algorithms with lower local switching cost will make fewer switches
in its deployed policies.

• Building on insights from the UCB2 algorithm in multi-armed bandits [5] (Section 3), we propose
our main algorithms, Q-Learning with UCB2-{Hoeffding, Bernstein} exploration. We prove that
these two algorithms achieve Õ(

√
H{4,3}SAT ) regret (respectively) and O(H3SA log(K/A))

local switching cost (Section 4). The regret matches their vanilla counterparts of [16] but the
switching cost is only logarithmic in the number of episodes.

• We show how our low switching cost algorithms can be applied in the concurrent RL setting [13],
in which multiple agents can act in parallel (Section 5). The parallelized versions of our algorithms
with UCB2 exploration give rise to Concurrent Q-Learning algorithms, which achieve a nearly
linear speedup in execution time and compares favorably against existing concurrent algorithms in
sample complexity for exploration.

• We show a simple Ω(HSA) lower bound on the switching cost for any sublinear regret algorithm,
which has at most a O(H2 log(K/A)) gap from the upper bound (Section 7).

1.1 Prior work

Low-regret RL Sample-efficient RL has been studied extensively since the classical work of Kearns
and Singh [17] and Brafman and Tennenholtz [7], with a focus on obtaining a near-optimal policy in
polynomial time, i.e. PAC guarantees. A subsequent line of work initiate the study of regret in RL
and provide algorithms that achieve regret Õ(

√
poly(H,S,A) · T ) [15, 22, 1]. In our episodic MDP

setting, the information-theoretic lower bound for the regret is Ω(
√
H2SAT ), which is matched in

recent work by the UCBVI [6] and ORLC [10] algorithms. On the other hand, while all the above
low-regret algorithms are essentially model-based, the recent work of [16] shows that model-free
algorithms such as Q-learning are able to achieve Õ(

√
H{4,3}SAT ) regret which is only O(

√
H)

worse than the lower bound.

Low switching cost / batched algorithms Auer et al. [5] propose UCB2 in bandit problems, which
achieves the same regret bound as UCB but has switching cost only O(log T ) instead of the naive
O(T ). Cesa-Bianchi et al. [8] study the switching cost in online learning in both the adversarial and
stochastic setting, and design an algorithm for stochastic bandits that acheive optimal regert and
O(log log T ) switching cost.

Learning algorithms with switching cost bounded by a fixed O(1) constant is often referred to as
batched algorithms. Minimax rates for batched algorithms have been established in various problems
such as bandits [23, 12] and convex optimization [11]. In all these scenarios, minimax optimal
M -batch algorithms are obtained for all M , and their rate matches that of fully adaptive algorithms
once M = O(log log T ).

1In particular, N = 0 corresponds to off-policy RL, where the algorithm can only choose one data collection
policy [14].

2



2 Problem setup

In this paper, we consider undiscounted episodic tabular MDPs of the form (H,S,P,A, r). The MDP
has horizon H with trajectories of the form (x1, a1, . . . , xH , aH , xH+1), where xh ∈ S and ah ∈ A.
The state space S and action space A are discrete with |S| = S and |A| = A. The initial state x1

can be either adversarial (chosen by an adversary who has access to our algorithm), or stochastic
specified by some distribution P0(x1). For any (h, xh, ah) ∈ [H]×S ×A, the transition probability
is denoted as Ph(xh+1|xh, ah). The reward is denoted as rh(xh, ah) ∈ [0, 1], which we assume to
be deterministic2. We assume in addition that rh+1(x) = 0 for all x, so that the last state xH+1 is
effectively an (uninformative) absorbing state.

A deterministic policy π consists of H sub-policies πh(·) : S → A. For any deterministic policy
π, let V πh (·) : S → R and Qπh(·, ·) : S × A → R denote its value function and state-action
value function at the h-th step respectively. Let π? denote an optimal policy, and V ?h = V π?

h and
Q?h = Qπ?

h denote the optimal V and Q functions for all h. As a convenient short hand, we denote
[PhVh+1](x, a) := Ex′∼P(·|x,a)[Vh+1(x′)] and also use [P̂hVh+1](xh, ah) := Vh+1(xh+1) in the
proofs to denote observed transition. Unless otherwise specified, we will focus on deterministic
policies in this paper, which will be without loss of generality as there exists at least one deterministic
policy π? that is optimal.

Regret We focus on the regret for measuring the performance of RL algorithms. Let K be the
number of episodes that the agent can play. (so that total number of steps is T := KH .) The regret
of an algorithm is defined as

Regret(K) :=

K∑
k=1

[
V ?1 (xk1)− V πk

1 (xk1)
]
,

where πk is the policy it employs before episode k starts, and V ?1 is the optimal value function for the
entire episode.

Miscellanous notation We use standard Big-Oh notations in this paper: An = O(Bn) means
that there exists an absolute constant C > 0 such that An ≤ CBn (similarly An = Ω(Bn) for
An ≥ CBn). An = Õ(Bn) means thatAn ≤ CnBn where Cn depends at most poly-logarithmically
on all the problem parameters.

2.1 Measuring adaptivity through local switching cost

To quantify the adaptivity of RL algorithms, we consider the following notion of local switching cost
for RL algorithms.
Definition 2.1. The local switching cost (henceforth also “switching cost”) between any pair of
policies (π, π′) is defined as the number of (h, x) pairs on which π and π′ are different:

nswitch(π, π′) :=
∣∣{(h, x) ∈ [H]× S : πh(x) 6= [π′]h(x)

}∣∣ .
For an RL algorithm that employs policies (π1, . . . , πK), its local switching cost is defined as

Nswitch :=

K−1∑
k=1

nswitch(πk, πk+1).

Note that (1) Nswitch is a random variable in general, as πk can depend on the outcome of the MDP;
(2) we have the trivial bound nswitch(π, π′) ≤ HS for any (π, π′) and Nswitch(A) ≤ HS(K − 1)
for any algorithm A.3

Remark The local switching cost extends naturally the notion of switching cost in online learning [8]
and is suitable in scenarios where the cost of deploying a new policy scales with the portion of (h, x)

2Our results can be straightforwardly extended to the case with stochastic rewards.
3To avoid confusion, we also note that our local switching cost is not to measure the change of the sub-policy

πh between timestep h and h+ 1 (which is in any case needed due to potential non-stationarity), but rather to
measure the change of the entire policy πk =

{
πh
k

}
between episode k and k + 1.

3



on which the action πh(x) is changed. A closely related notion of adaptivity is the global switching
cost, which simply measures how many times the algorithm switches its entire policy:

Ngl
switch =

K−1∑
k=1

1 {πk 6= πk+1} .

As πk 6= πk+1 implies nswitch(πk, πk+1) ≥ 1, we have the trivial bound that Ngl
switch ≤ Nswitch.

However, the global switching cost can be substantially smaller for algorithms that tend to change the
policy “entirely” rather than “locally”. In this paper, we focus on bounding Nswitch, and leave the
task of tighter bounds on Ngl

switch as future work.

3 UCB2 for multi-armed bandits

To gain intuition about the switching cost, we briefly review the UCB2 algorithm [5] on multi-armed
bandit problems, which achieves the same regret bound as the original UCB but has a substantially
lower switching cost.

The multi-armed bandit problem can be viewed as an RL problem with H = 1, S = 1, so that
the agent needs only play one action a ∈ A and observe the (random) reward r(a) ∈ [0, 1]. The
distribution of r(a)’s are unknown to the agent, and the goal is to achieve low regret.

The UCB2 algorithm is a variant of the celebrated UCB (Upper Confidence Bound) algorithm for
bandits. UCB2 also maintains upper confidence bounds on the true means µ1, . . . , µA, but instead
plays each arm multiple times rather than just once when it’s found to maximize the upper confidence
bound. Specifically, when an arm is found to maximize the UCB for the r-th time, UCB2 will play it
τ(r)− τ(r − 1) times, where

τ(r) = (1 + η)r

for r = 0, 1, 2, . . . and some parameter η ∈ (0, 1) to be determined. 4 The full UCB2 algorithm is
presented in Algorithm 1.

Algorithm 1 UCB2 for multi-armed bandits
input Parameter η ∈ (0, 1).

Initialize: rj = 0 for j = 1, . . . , A. Play each arm once. Set t← 0 and T ← T −A.
while t ≤ T do

Select arm j that maximizes rj + arj , where rj is the average reward obtained from arm j and
ar = O(

√
log T/τ(r)) (with some specific choice.)

Play arm j exactly τ(rj + 1)− τ(rj) times.
Set t← t+ τ(rj + 1)− τ(rj) and rj ← rj + 1.

end while

Theorem 1 (Auer et al. [5]). For T ≥ maxi:µi<µ?
1

2∆2
i

, the UCB2 algorithm acheives expected
regret bound

E

[
T∑
t=1

(µ? − µt)

]
≤ Oη

log T ·
∑

i:µi<µ?

1

∆i

 ,

where ∆i := µ? − µi is the gap between arm i and the optimal arm. Further, the switching cost is at
most O(A log(T/A)

η ).

The switching cost bound in Theorem 1 comes directly from the fact that
∑A
i=1(1+η)ri ≤ T implies∑A

i=1 ri ≤ O(A log(T/A)/η), by the convexity of r 7→ (1 + η)r and Jensen’s inequality. Such an
approach can be fairly general, and we will follow it in sequel to develop RL algorithm with low
switching cost.

4For convenience, here we treat (1 + η)r as an integer. In Q-learning we could not make this approximation
(as we choose η super small), and will massage the sequence τ(r) to deal with it.

4



4 Q-learning with UCB2 exploration

In this section, we propose our main algorithm, Q-learning with UCB2 exploration, and show that it
achieves sublinear regret as well as logarithmic local switching cost.

4.1 Algorithm description

High-level idea Our algorithm maintains wo sets of optimistic Q estimates: a running estimate Q̃
which is updated after every episode, and a delayed estimate Q which is only updated occasionally
but used to select the action. In between two updates to Q, the policy stays fixed, so the number of
policy switches is bounded by the number of updates to Q.

To describe our algorithm, let τ(r) be defined as

τ(r) = d(1 + η)re , r = 1, 2, . . .

and define the triggering sequence as

{tn}n≥1 = {1, 2, . . . , τ(r?)} ∪ {τ(r? + 1), τ(r? + 2), . . .}, (1)

where the parameters (η, r?) will be inputs to the algorithm. Define for all t ∈ {1, 2, . . .} the
quantities

τlast(t) := max {tn : tn ≤ t} and αt =
H + 1

H + t
.

Two-stage switching strategy The triggering sequence (1) defines a two-stage strategy for switch-
ing policies. Suppose for a given (h, xh), the algorithm decides to take some particular ah for the
t-th time, and has observed (rh, xh+1) and updated the running estimate Q̃h(xh, ah) accordingly.
Then, whether to also update the policy network Q is decided as

• Stage I: if t ≤ τ(r?), then always perform the update Qh(xh, ah)← Q̃h(xh, ah).

• Stage II: if t > τ(r?), then perform the above update only if t is in the triggering sequence,
that is, t = τ(r) = d(1 + η)re for some r > r?.

In other words, for any state-action pair, the algorithm performs eager policy update in the beginning
τ(r?) visitations, and switches to delayed policy update after that according to UCB2 scheduling.

Optimistic exploration bonus We employ either a Hoeffding-type or a Bernstein-type exploration
bonus to make sure that our running Q estimates are optimistic. The full algorithm with Hoeffding-
style bonus is presented in Algorithm 2.

4.2 Regret and switching cost guarantee

We now present our main results.

Theorem 2 (Q-learning with UCB2H exploration achieves sublinear regret and low switching
cost). Choosing η = 1

2H(H+1) and r? =
⌈

log(10H2)
log(1+η)

⌉
, with probability at least 1 − p, the regret

of Algorithm 2 is bounded by Õ(
√
H4SAT ). Further, the local switching cost is bounded as

Nswitch ≤ O(H3SA log(K/A)).

Theorem 2 shows that the total regret of Q-learning with UCB2 exploration is Õ(
√
H4SAT ),

the same as UCB version of [16]. In addition, the local switching cost of our algorithm is only
O(H3SA log(K/A)), which is logarithmic in K, whereas the UCB version can have in the worst
case the trivial boundHS(K−1). We give a high-level overview of the proof Theorem 2 in Section 6,
and defer the full proof to Appendix A.

Bernstein version Replacing the Hoeffding bonus with a Bernstein-type bonus, we can achieve
Õ(
√
H3SAT ) regret (

√
H better than UCB2H) and the same switching cost bound.

5



Algorithm 2 Q-learning with UCB2-Hoeffding (UCB2H) Exploration
input Parameter η ∈ (0, 1), r? ∈ Z>0, and c > 0.

Initialize: Q̃h(x, a)← H , Qh ← Q̃h, Nh(x, a)← 0 for all (x, a, h) ∈ S ×A× [H].
for episode k = 1, . . . ,K do

Receive x1.
for step h = 1, . . . ,H do

Take action ah ← arg maxa′ Qh(xh, a
′), and observe xh+1.

t = Nh(xh, ah)← Nh(xh, ah) + 1;
bt = c

√
H3`/t (Hoeffding-type bonus);

Q̃h(xh, ah)← (1− αt)Q̃h(xh, ah) + αt[rh(xh, ah) + Ṽh+1(xh+1) + bt].
Ṽh(xh)← min

{
H,maxa′∈A Q̃h(xh, a

′)
}

.
if t ∈ {tn}n≥1 (where tn is defined in (1)) then

(Update policy) Qh(xh, ·)← Q̃h(xh, ·).
end if

end for
end for

Theorem 3 (Q-learning with UCB2B exploration achieves sublinear regret and low switching cost).
Choosing η = 1

2H(H+1) and r? =
⌈

log(10H2)
log(1+η)

⌉
, with probability at least 1 − p, the regret of

Algorithm 1 is bounded by Õ(
√
H3SAT ) as long as T = Ω̃(H6S2A2). Further, the local switching

cost is bounded as Nswitch ≤ O(H3SA log(K/A)).

The full algorithm description, as well as the proof of Theorem 3, are deferred to Appendix B.

Compared with Q-learning with UCB [16], Theorem 2 and 3 demonstrate that “vanilla” low-regret RL
algorithms such as Q-Learning can be turned into low switching cost versions without any sacrifice
on the regret bound.

4.3 PAC guarantee

Our low switching cost algorithms can also achieve the PAC learnability guarantee. Specifically, we
have the following
Corollary 4 (PAC bound for Q-Learning with UCB2 exploration). Suppose (WLOG) that x1 is
deterministic. For any ε > 0, Q-Learning with {UCB2H, UCB2B} exploration can output a
(stochastic) policy π̂ such that with high probability

V ?1 (x1)− V π̂1 (x1) ≤ ε

after K = Õ(H{5,4}SA/ε2) episodes.

The proof of Corollary 4 involves turning the regret bounds in Theorem 2 and 3 to PAC bounds using
the online-to-batch conversion, similar as in [16]. The full proof is deferred to Appendix C.

5 Application: Concurrent Q-Learning

Our low switching cost Q-Learning can be applied to developing algorithms for Concurrent RL [13] –
a setting in which multiple RL agents can act in parallel and hopefully accelerate the exploration in
wall time.

Setting We assume there are M agents / machines, where each machine can interact with a
independent copy of the episodic MDP (so that the transitions and rewards on the M MDPs are
mutually independent). Within each episode, the M machines must play synchronously and cannot
communiate, and can only exchange information after the entire episode has finished. Note that our
setting is in a way more stringent than [13], which allows communication after each timestep.

We define a “round” as the duration in which the M machines simultanesouly finish one episode and
(optionally) communicate and update their policies. We measure the performance of a concurrent

6



algorithm in its required number of rounds to find an ε near-optimal policy. With larger M , we expect
such number of rounds to be smaller, and the best we can hope for is a linear speedup in which the
number of rounds scales as M−1.

Concurrent Q-Learning Intuitively, any low switching cost algorithm can be made into a con-
current algorithm, as its execution can be parallelized in between two consecutive policy switches.
Indeed, we can design concurrent versions of our low switching Q-Learning algorithm and achieve a
nearly linear speedup.
Theorem 5 (Concurrent Q-Learning achieves nearly linear speedup). There exists concurrent versions
of Q-Learning with {UCB2H, UCB2B} exploration such that, given a budget of M parallel machines,
returns an ε near-optimal policy in

Õ

(
H3SA+

H{5,4}SA

ε2M

)
rounds of execution.

Theorem 5 shows that concurrent Q-Learning has a linear speedup so long as M = Õ(H{2,1}/ε2).
In particular, in high-accuracy (small ε) cases, the constant overhead term H3SA can be negligible
and we essentially have a linear speedup over a wide range of M . The proof of Theorem 5 is deferred
to Appendix D.

Comparison with existing concurrent algorithms Theorem 5 implies a PAC mistake bound as
well: there exists concurrent algorithms on M machines, Concurrent Q-Learning with {UCB2H,
UCB2B}, that performs a ε near-optimal action on all but

Õ

(
H4SAM +

H{6,5}SA

ε2

)
:= NCQL

ε

actions with high probability (detailed argument in Appendix D.2).

We compare ourself with the Concurrent MBIE (CMBIE) algorithm in [13], which considers the
discounted and infinite-horizon MDPs, and has a mistake bound5

Õ

(
S′A′M

ε(1− γ′)2
+

S′2A′

ε3(1− γ′)6

)
:= NCMBIE

ε

Our concurrent Q-Learning compares favorably against CMBIE in terms of the mistake bound:

• Dependence on ε. CMBIE achieves NCMBIE
ε = Õ(ε−3 + ε−1M), whereas our algorithm

achieves NCQL
ε = Õ(ε−2 +M), better by a factor of ε−1.

• Dependence on (H,S,A). These are not comparable in general, but under the “typi-
cal” correspondence6 S′ ← HS, A′ ← A, (1 − γ′)−1 ← H , we get NCMBIE

ε =

Õ(H3SAMε−1 +H8S2Aε−3). Compared to NCQL
ε , CMBIE has a higher dependence on

H as well as a S2 term due to its model-based nature.

6 Proof overview of Theorem 2

The proof of Theorem 2 involves two parts: the switching cost bound and the regret bound. The
switching cost bound results directly from the UCB2 switching schedule, similar as in the bandit case
(cf. Section 3). However, such a switching schedule results in delayed policy updates, which makes
establishing the regret bound technically challenging.

The key to the Õ(poly(H) ·
√
SAT ) regret bound for “vanilla” Q-Learning in [16] is a propagation

of error argument, which shows that the regret7 from the h-th step and forward (henceforth the

5(S′, A′, γ′) are the {# states, # actions, discount factor} of the discounted infinite-horizon MDP.
6One can transform an episodic MDP with S states to an infinite-horizon MDP with HS states. Also note

that the “effective” horizon for discounted MDP is (1− γ)−1.
7Technically it is an upper bound on the regret.

7



h-regret), defined as
K∑
k=1

δ̃kh :=

K∑
k=1

[
Ṽ kh − V

πk

h

]
(xkh),

is bounded by 1 + 1/H times the (h+ 1)-regret, plus some bounded error term. As (1 + 1/H)H =
O(1), this fact can be applied recursively for h = H, . . . , 1 which will result in a total regret bound
that is not exponential in H . The control of the (excess) error propagation factor by 1/H and the
ability to converge are then achieved simultaneously via the stepsize choice αt = H+1

H+t .

In constrast, our low-switching version of Q-Learning updates the exploration policy in a delayed
fashion according to the UCB2 schedule. Specifically, the policy at episode k does not correspond
to the argmax of the running estimate Q̃k, but rather a previous version Qk = Q̃k

′
for some k′ ≤ k.

This introduces a mismatch between the Q used for exploration and the Q being updated, and it is a
priori possible whether such a mismatch will blow up the propagation of error.

We resolve this issue via a novel error analysis, which at a high level consists of the following steps:

(i) We show that the quantity δ̃kh is upper bounded by a max error

δ̃kh ≤
(

max
{
Q̃k

′

h , Q̃
k
h

}
−Qπk

h

)
(xkh, a

k
h) =

(
Q̃k

′

h −Q
πk

h +
[
Q̃kh − Q̃k

′

h

]
+

)
(xkh, a

k
h)

(Lemma A.3). On the right hand side, the first term Q̃k
′

h −Q
πk

h does not have a mismatch (as
πk depends on Q̃k

′
) and can be bounded similarly as in [16]. The second term [Q̃kh − Q̃k

′

h ]+
is a perturbation term, which we bound in a precise way that relates to stepsizes in between
episodes k′ to k and the (h+ 1)-regret (Lemma A.4).

(ii) We show that, under the UCB2 scheduling, the combined error above results a mild blowup in
the relation between h-regret and (h+ 1)-regret – the multiplicative factor can be now bounded
by (1+1/H)(1+O(ηH)) (Lemma A.5). Choosing η = O(1/H2) will make the multiplicative
factor 1 +O(1/H) and the propagation of error argument go through.

We hope that the above analysis can be applied more broadly in analyzing exploration problems with
delayed updates or asynchronous parallelization.

7 Lower bound on switching cost

Theorem 6. Let A ≥ 4 andM be the set of episodic MDPs satisfying the conditions in Section 2.
For any RL algorithm A satisfying Nswitch ≤ HSA/2, we have

sup
M∈M

Ex1,M

[
K∑
k=1

V ?1 (x1)− V πk
1 (x1)

]
≥ KH/4.

i.e. the worst case regret is linear in K.

Theorem 6 implies that the switching cost of any no-regret algorithm is lower bounded by Ω(HSA),
which is quite intuitive as one would like to play each action at least once on all (h, x). Compared
with the lower bound, the switching cost O(H3SA logK) we achieve through UCB2 scheduling is
at most off by a factor of O(H2 logK). We believe that the logK factor is not necessary as there
exist algorithms achieving double-log [8] in bandits, and would also like to leave the tightening of
the H2 factor as future work. The proof of Theorem 6 is deferred to Appendix E.

8 Conclusion

In this paper, we take steps toward studying limited adaptivity RL. We propose a notion of local
switching cost to account for the adaptivity of RL algorithms. We design a Q-Learning algorithm
with infrequent policy switching that achieves Õ(

√
H{4,3}SAT ) regret while switching its policy

for at most O(log T ) times. Our algorithm works in the concurrent setting through parallelization
and achieves nearly linear speedup and favorable sample complexity. Our proof involves a novel

8



perturbation analysis for exploration algorithms with delayed updates, which could be of broader
interest.

There are many interesting future directions, including (1) low switching cost algorithms with tighter
regret bounds, most likely via model-based approaches; (2) algorithms with even lower switching
cost; (3) investigate the connection to other settings such as off-policy RL.

Acknowledgment

The authors would like to thank Emma Brunskill, Ramtin Keramati, Andrea Zanette, and the staff
of CS234 at Stanford for the valuable feedback at an earlier version of this work, and Chao Tao
for the very insightful feedback and discussions on the concurrent Q-learning algorithm. YW was
supported by a start-up grant from UCSB CS department, NSF-OAC 1934641 and a gift from AWS
ML Research Award.

References
[1] S. Agrawal and R. Jia. Optimistic posterior sampling for reinforcement learning: worst-case

regret bounds. In Advances in Neural Information Processing Systems, pages 1184–1194, 2017.

[2] D. Almirall, S. N. Compton, M. Gunlicks-Stoessel, N. Duan, and S. A. Murphy. Designing
a pilot sequential multiple assignment randomized trial for developing an adaptive treatment
strategy. Statistics in medicine, 31(17):1887–1902, 2012.

[3] D. Almirall, I. Nahum-Shani, N. E. Sherwood, and S. A. Murphy. Introduction to smart
designs for the development of adaptive interventions: with application to weight loss research.
Translational behavioral medicine, 4(3):260–274, 2014.

[4] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano. A survey on compiler
autotuning using machine learning. ACM Computing Surveys (CSUR), 51(5):96, 2018.

[5] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2-3):235–256, 2002.

[6] M. G. Azar, I. Osband, and R. Munos. Minimax regret bounds for reinforcement learning.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
263–272. JMLR. org, 2017.

[7] R. I. Brafman and M. Tennenholtz. R-max-a general polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231, 2002.

[8] N. Cesa-Bianchi, O. Dekel, and O. Shamir. Online learning with switching costs and other
adaptive adversaries. In Advances in Neural Information Processing Systems, pages 1160–1168,
2013.

[9] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh. A lyapunov-based approach
to safe reinforcement learning. In Advances in Neural Information Processing Systems, pages
8092–8101, 2018.

[10] C. Dann, L. Li, W. Wei, and E. Brunskill. Policy certificates: Towards accountable reinforcement
learning. arXiv preprint arXiv:1811.03056, 2018.

[11] J. Duchi, F. Ruan, and C. Yun. Minimax bounds on stochastic batched convex optimization. In
Conference On Learning Theory, pages 3065–3162, 2018.

[12] Z. Gao, Y. Han, Z. Ren, and Z. Zhou. Batched multi-armed bandits problem. arXiv preprint
arXiv:1904.01763, 2019.

[13] Z. Guo and E. Brunskill. Concurrent pac rl. In Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015.

9



[14] J. P. Hanna, P. S. Thomas, P. Stone, and S. Niekum. Data-efficient policy evaluation through
behavior policy search. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1394–1403. JMLR. org, 2017.

[15] T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning.
Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

[16] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan. Is Q-learning provably efficient? In Advances
in Neural Information Processing Systems, pages 4868–4878, 2018.

[17] M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. Machine
learning, 49(2-3):209–232, 2002.

[18] S. Krishnan, Z. Yang, K. Goldberg, J. Hellerstein, and I. Stoica. Learning to optimize join
queries with deep reinforcement learning. arXiv preprint arXiv:1808.03196, 2018.

[19] H. Lei, I. Nahum-Shani, K. Lynch, D. Oslin, and S. A. Murphy. A "smart" design for building
individualized treatment sequences. Annual review of clinical psychology, 8:21–48, 2012.

[20] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou, N. Kumar, M. Norouzi,
S. Bengio, and J. Dean. Device placement optimization with reinforcement learning. In
nternational Conference on Machine Learning (ICML-17), pages 2430–2439. JMLR. org, 2017.

[21] P. Nguyen, T. Tran, S. Gupta, S. Rana, M. Barnett, and S. Venkatesh. Incomplete conditional
density estimation for fast materials discovery. In Proceedings of the 2019 SIAM International
Conference on Data Mining, pages 549–557. SIAM, 2019.

[22] I. Osband, D. Russo, and B. Van Roy. (more) efficient reinforcement learning via posterior
sampling. In Advances in Neural Information Processing Systems, pages 3003–3011, 2013.

[23] V. Perchet, P. Rigollet, S. Chassang, E. Snowberg, et al. Batched bandit problems. The Annals
of Statistics, 44(2):660–681, 2016.

[24] P. Raccuglia, K. C. Elbert, P. D. Adler, C. Falk, M. B. Wenny, A. Mollo, M. Zeller, S. A.
Friedler, J. Schrier, and A. J. Norquist. Machine-learning-assisted materials discovery using
failed experiments. Nature, 533(7601):73, 2016.

[25] G. Theocharous, P. S. Thomas, and M. Ghavamzadeh. Personalized ad recommendation
systems for life-time value optimization with guarantees. In Twenty-Fourth International Joint
Conference on Artificial Intelligence, 2015.

[26] M. Yu, Z. Yang, M. Kolar, and Z. Wang. Convergent policy optimization for safe reinforcement
learning. In Advances in Neural Information Processing Systems, 2019.

10


