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Abstract

Motivated by the many real-world applications of reinforcement learning (RL) that
require safe-policy iterations, we consider the problem of off-policy evaluation
(OPE) — the problem of evaluating a new policy using the historical data ob-
tained by different behavior policies — under the model of nonstationary episodic
Markov Decision Processes (MDP) with a long horizon and a large action space.
Existing importance sampling (IS) methods often suffer from large variance that
depends exponentially on the RL horizon H . To solve this problem, we consider
a marginalized importance sampling (MIS) estimator that recursively estimates
the state marginal distribution for the target policy at every step. MIS achieves a
mean-squared error of
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where µ and π are the logging and target policies, dµt (st) and dπt (st) are the
marginal distribution of the state at tth step, H is the horizon, n is the sample
size and V πt+1 is the value function of the MDP under π. The result matches the
Cramer-Rao lower bound in Jiang and Li [2016] up to a multiplicative factor of H .
To the best of our knowledge, this is the first OPE estimation error bound with a
polynomial dependence onH . Besides theory, we show empirical superiority of our
method in time-varying, partially observable, and long-horizon RL environments.

1 Introduction

The problem of off-policy evaluation (OPE), which predicts the performance of a policy with data only
sampled by a behavior policy [Sutton and Barto, 1998], is crucial for using reinforcement learning
(RL) algorithms responsibly in many real-world applications. In many settings where RL algorithms
have already been deployed, e.g., targeted advertising and marketing [Bottou et al., 2013; Tang et al.,
2013; Chapelle et al., 2015; Theocharous et al., 2015; Thomas et al., 2017] or medical treatments
[Murphy et al., 2001; Ernst et al., 2006; Raghu et al., 2017], online policy evaluation is usually
expensive, risky, or even unethical. Also, using a bad policy in these applications is dangerous and
could lead to severe consequences. Solving OPE is often the starting point in many RL applications.

To tackle the problem of OPE, the idea of importance sampling (IS) corrects the mismatch in the
distributions under the behavior policy and target policy. It also provides typically unbiased or
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strongly consistent estimators [Precup et al., 2000]. IS-based off-policy evaluation methods have
also seen lots of interest recently especially for short-horizon problems, including contextual bandits
[Murphy et al., 2001; Hirano et al., 2003; Dudík et al., 2011; Wang et al., 2017]. However, the
variance of IS-based approaches [Precup et al., 2000; Thomas et al., 2015; Jiang and Li, 2016;
Thomas and Brunskill, 2016; Guo et al., 2017; Farajtabar et al., 2018] tends to be too high to provide
informative results, for long-horizon problems [Mandel et al., 2014], since the variance of the product
of importance weights may grow exponentially as the horizon goes long. There are also model-based
approaches for solving OPE problems [Liu et al., 2018b; Gottesman et al., 2019], where the value of
the target policy is estimated directly using the approximated MDP.

Given this high-variance issue, it is necessary to find an IS-based approach without relying heavily
on the cumulative product of importance weights from the whole trajectories. While the benefit of
cumulative products is to allow unbiased estimation even without any state observability assumptions,
reweighing the entire trajectories may not be necessary if some intermediate states are directly
observable. For the latter, based on Markov independence assumptions, we can aggregate all
trajectories that share the same state transition patterns to directly estimate the state distribution shifts
after the change of policies from the behavioral to the target. We call this approach marginalized
importance sampling (MIS), because it computes the marginal state distribution shifts at every single
step, instead of the product of policy weights.

Related work [Liu et al., 2018a] tackles the high variance issue due to the cumulative product of
importance weights. They apply importance sampling on the average visitation distribution of state-
action pairs, based on an estimation of the mixed state distribution. Hallak and Mannor [2017] and
Gelada and Bellemare [2019] also leverage the same fact in time-invariant MDPs, where they use the
stationary ratio of state-action pairs to replace the trajectory weights. However, these methods may
not directly work in finite-horizon MDPs, where the state distributions may not mix.

In contrast to the prior work, the first goal of our paper is to study the sample complexity and
optimality of the marginalized approach. Specifically, we provide the first finite sample error bound
on the mean-square error for our MIS off-policy evaluation estimator under the episodic tabular MDP
setting (with potentially continuous action space). Our MSE bound is the exact calculation up to low
order terms. Comparing to the Cramer-Rao lower bound established in [Jiang and Li, 2016, Theorem
3] for DAG-MDP, our bound is larger by at most a factor of H and we have good reasons to believe
that this additional factor is required for any OPE estimators in this setting.

In addition to the theoretical results, we empirically evaluate our estimator against a number of strong
baselines from prior work in a number of time-invariant/time-varying, fully observable/partially
observable, and long-horizon environments. Our approach can also be used in most of OPE estimators
that leverage IS-based estimators, such as doubly robust [Jiang and Li, 2016], MAGIC [Thomas and
Brunskill, 2016], MRDR [Farajtabar et al., 2018] under mild assumptions (Markov assumption).

Here is a road map for the rest of the paper. Section 2 provides the preliminaries of the problem of
off-policy evaluation. In Section 3, we offer the design of our marginalized estimator, and we study
its information-theoretical optimality in Section 4. We present the empirical results in a number of
RL tasks in Section 5. At last, Section 6 concludes the paper.

2 Problem formulation

Symbols and notations. We consider the problem of off-policy evaluation for a finite horizon,
nonstationary, episodic MDP, which is a tuple defined by M = (S,A, T, r,H), where S is the state
space,A is the action space, Tt : S×A×S → [0, 1] is the transition function with Tt(s′|s, a) defined
by probability of achieving state s′ after taking action a in state s at time t, and rt : S ×A× S → R
is the expected reward function with rt(s, a, s′) defined by the mean of immediate received reward
after taking action a in state s and transitioning into s′, and H denotes the finite horizon. We use P[E]
to denote the probability of an event E and p(x) the p.m.f. (or pdf) of the random variable X taking
value x. E[·] and E[·|E] denotes the expectation and conditional expectation given E, respectively.

Let µ, π : S → PA be policies which output a distribution of actions given an observed state. We
call µ the behavioral policy and π the target policy. For notation convenience we denote µ(at|st)
and π(at|st) the p.m.f of actions given state at time t. The expectation operators in this paper will
either be indexed with π or µ, which denotes that all random variables coming from roll-outs from
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the specified policy. Moreover, we denote dµt (st) and dπt (st) the induced state distribution at time t.
When t = 1, the initial distributions are identical dµ1 = dπ1 = d1. For t > 1, dµt (st) and dπt (st) are
functions of not just the policies themselves but also the unknown underlying transition dynamics,
i.e., for π (and similarly µ), recursively define

dπt (st) =
∑
st−1

Pπt (st|st−1)dπt−1(st−1),

where Pπt (st|st−1) =
∑
at−1

Tt(st|st−1, at−1)π(at−1|st−1).
(2.1)

We denote Pπi,j ∈ RS×S ∀j < i as the state-transition probability from step j to step i un-
der a sequence of actions taken by π. Note that Pπt+1,t(s

′|s) =
∑
a Pt+1,t(s

′|s, a)πt(a|s) =
Tt+1(s′|s, πt(s)).

Behavior policy µ is used to collect data in the form of (s
(i)
t , a

(i)
t , r

(i)
t ) ∈ S ×A× R for time index

t = 1, . . . ,H and episode index i = 1, ..., n. Target policy π is what we are interested to evaluate.
Also, let D to denote the historical data, which contains n episode trajectories in total. We also define
Dh = {(s(i)t , a

(i)
t , r

(i)
t ) : i ∈ [n], t ≤ h} to be roll-in realization of n trajectories up to step h.

Throughout the paper, probability distributions are often used in their vector or matrix form. For
instance, dπt without an input is interpreted as a vector in a S-dimensional probability simplex and
Pπi,j is then a stochastic transition matrix. This allows us to write (2.1) concisely as dπt+1 = Pπt+1,td

π
t .

Also note that while st, at, rt are usually used to denote fixed elements in set S,A and R, in
some cases we also overload them to denote generic random variables s(1)t , a

(1)
t , r

(1)
t . For exam-

ple, Eπ[rt] = Eπ[r
(1)
t ] =

∑
st,at,st+1

dπ(st, at, st+1)rt(st, at, st+1) and Varπ[rt(st, at, st+1)] =

Varπ[rt(s
(1)
t , a

(1)
t , s

(1)
t+1)]. The distinctions will be clear in each context.

Problem setup. The problem of off-policy evaluation is about finding an estimator v̂π : (S ×A×
R)H×n → R that makes use of the data collected by running µ to estimate

vπ =

H∑
t=1

∑
st

dπt (st)
∑
at

π(at|st)
∑
st+1

Tt(st+1|st, at)rt(st, at, st+1), (2.2)

where we assume knowledge about µ(a|s) and π(a|s) for all (s, a) ∈ S × A, but do not observe
rt(st, at, st+1) for any actions other than a noisy version of it the evaluated actions. Nor do we
observe the state distributions dπt (st)∀t > 1 implied by the change of policies. Nonetheless, our goal
is to find an estimator to minimize the mean-square error (MSE): MSE(π, µ,M) = Eµ[(v̂π − vπ)2],
using the observed data and the known action probabilities. Different from previous studies, we focus
on the case where S is sufficiently small but S2A is too large for a reasonable sample size. In other
words, this is a setting where we do not have enough data points to estimate the state-action-state
transition dynamics, but we do observe the states and can estimate the distribution of the states after
the change of policies, which is our main strategy.

Assumptions: We list the technical assumptions we need and provide necessary justification.

A1. ∃Rmax, σ < +∞ such that 0 ≤ E[rt|st, at, st+1] ≤ Rmax,Var[rt|st, at, st+1] ≤ σ2 for
all t, st, at.

A2. Behavior policy µ obeys that dm := mint,st d
µ
t (st) > 0 ∀t, st such that dπt (st) > 0.

A3. Bounded weights: τs := maxt,st
dπt (st)
dµt (st)

< +∞ and τa := maxt,st,at
π(at|st)
µ(at|st) < +∞.

Assumption A1 is assumed without loss of generality. The σ bound is required even for on-policy
evaluation and the assumption on the non-negativity andRmax can always be obtained by shifting and
rescaling the problem. Assumption A2 is necessary for any consistent off-policy evaluation estimator.
Assumption A3 is also necessary for discrete state and actions, as otherwise the second moments of
the importance weight would be unbounded. For continuous actions, τa < +∞ is stronger than we
need and should be considered a simplifying assumption for the clarity of our presentation. Finally,
we comment that the dependence in the parameter dm, τs, τa do not occur in the leading O(1/n)
term of our MSE bound, but only in simplified results after relaxation.
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3 Marginalized Importance Sampling Estimators for OPE

In this section, we present the design of marginalized IS estimators for OPE. For small action spaces,
we may directly build models by the estimated transition function Tt(st|st−1, at−1) and the reward
function rt(st, at, st+1) from empirical data. However, the models may be inaccurate in large action
spaces, where not all actions are frequently visited. Function approximation in the models may cause
additional biases from covariate shifts due to the change of policies. Standard importance sampling
estimators (including the doubly robust versions)[Dudík et al., 2011; Jiang and Li, 2016] avoid the
need to estimate the model’s dynamics but rather directly approximating the expected reward:

v̂πIS =
1

n

n∑
i=1

H∑
h=1

[
h∏
t=1

π(a
(i)
t |s

(i)
t )

µ(a
(i)
t |s

(i)
t )

]
r
(i)
h .

To adjust for the differences in the policy, importance weights are used and it can be shown that this
is an unbiased estimator of vπ (See more detailed discussion of IS and the doubly robust version
in Appendix C). The main issue of this approach, when applying to the episodic MDP with large
action space is that the variance of the importance weights grows exponentially in H [Liu et al.,
2018a], which makes the sample complexity exponentially worse than the model-based approaches,
when they are applicable. We address this problem by proposing an alternative way of estimating
the importance weights which achieves the same sample complexity as the model-based approaches
while allowing us to achieve the same flexibility and interpretability as the IS estimator that does not
explicitly require estimating the state-action dynamics Tt. We propose the Marginalized Importance
Sampling (MIS) estimator:

v̂πMIS =
1

n

n∑
i=1

H∑
t=1

d̂πt (s
(i)
t )

d̂µt (s
(i)
t )

r̂πt (s
(i)
t ). (3.1)

Clearly, if d̂π → dπt , d̂µ → dµt , r̂πt → Eπ[Rt(st, at)|st], then v̂πMIS → vπ .

It turns out that if we take d̂µt (st) := 1
n

∑
i 1(s

(i)
t = st) — the empirical mean — and define

d̂πt (st)/d̂
µ
t (st) = 0 whenever nst = 0, then (3.1) is equivalent to

∑H
t=1

∑
st
d̂πt (st)r̂

π(st) – the
direct plug-in estimator of (2.2). It remains to specify d̂πt (st) and r̂π(st). d̂πt (st) is estimated
recursively using

d̂πt = P̂πt d̂
π
t−1, where P̂πt (st|st−1) =

1

nst−1

n∑
i=1

π(a
(i)
t−1|st−1)

µ(a
(i)
t−1|st−1)

1((s
(i)
t−1, s

(i)
t ) = (st−1, st));

and r̂πt (st) =
1

nst

n∑
i=1

π(a
(i)
t |st)

µ(a
(i)
t |st)

r
(i)
t 1(s

(i)
t = st), (3.2)

where nsτ is the empirical visitation frequency to state sτ at time τ . Note that our estimator of rπt (st)
is the standard IS estimators we use in bandits [Li et al., 2015], which are shown to be optimal (up to
a universal constant) when A is large [Wang et al., 2017].

The advantage of MIS over the naive IS estimator is that the variance of the importance weight need
not depend exponentially in H . A major theoretical contribution of this paper is to formalize this
argument by characterizing the dependence on π, µ as well as parameters of the MDP M . Note that
MIS estimator does not dominate the IS estimator. In the more general setting when the state is given
by the entire history of observations, Jiang and Li [2016] establishes that no estimators can achieve
polynomial dependence in H . We give a concrete example later (Example 1) about how IS estimator
suffers from the “curse of horizon” [Liu et al., 2018a]. MIS estimator can be thought of as one that
exploits the state-observability while retaining properties of the IS estimators to tackle the problem of
large action space. As we illustrate in the experiments, MIS estimator can be modified to naturally
handle partially observed states, e.g., when s is only observed every other step.

Finally, when available, model-based approaches can be combined into importance-weighted methods
[Jiang and Li, 2016; Thomas and Brunskill, 2016]. We defer discussions about these extensions in
Appendix C to stay focused on the scenarios where model-based approaches are not applicable.
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4 Theoretical Analysis of the MIS Estimator

Motivated by the challenge of curse of horizon with naive IS estimators, similar to [Liu et al., 2018a],
we show that the sample complexity of our MIS estimator reduces to O(H3). To the best of our
knowledge, this is first sample complexity guarantee under this setting, which also matches the
Cramer-Rao lower bound for DAG-MDP [Jiang and Li, 2016] as n→∞ up to a factor of H .
Example 1 (Curse of horizon). Assume a MDP with i.i.d. state transition models over time and
assume that πt

µt
is bounded from both sides for all t. Suppose the reward is a constant 1 only

shown at the last step, such that naive IS becomes v̂πIS = 1
n

∑n
i=1

[∏H
t=1

π(a
(i)
t |s

(i)
t )

µ(a
(i)
t |s

(i)
t )

]
. For every

trajectory,
∏H
t=1

πt
µt

= exp
[∑H

t=1 log πt
µt

]
; let Elog = E[log πt

µt
] and Vlog = Var[log πt

µt
]. By

Central Limit Theorem,
∑H
t=1 log πt

µt
asymptotically follows a normal distribution with parameters(

−HElog, HVlog
)
. In other words,

∏H
t=1

πt
µt

asymptotically follows LogNormal
(
−HElog, HVlog

)
,

whose variance is exponential in horizon:
(
exp (HVlog)− 1

)
. On the other hand, MIS estimates the

state distributions recursively, yielding variance that is polynomial in horizon and small OPE errors.

We now formalize the sample complexity bound in Theorem 4.1.
Theorem 4.1. Let the value function under π be defined as follows:

V πh (sh) := Eπ

[
H∑
t=h

rt(s
(1)
t , a

(1)
t , s

(1)
t+1)

∣∣∣∣∣s(1)h = sh

]
∈ [0, Vmax], ∀h ∈ {1, 2, ...,H}.

For the simplicity of the statement, define boundary conditions: r0(s0) ≡ 0, σ0(s0, a0) ≡ 0,d
π
0 (s0)
dµ0 (s0)

≡

1, π(a0|s0)µ(a0|s0) ≡ 1 and V πH+1 ≡ 0. Moreover, let τa := maxt,st,at
π(at|st)
µ(at|st) and τs := maxt,st

dπt (st)
dµt (st)

. If
the number of episodes n obeys that

n > max

{
16 log n

mint,st d
µ
t (st)

,
4tτaτs

mint,st max{dπt (st), d
µ
t (st)}

}
for all t = 2, ...,H , then the our estimator v̂πMIS with an additional clipping step obeys that

E[(P v̂πMIS − vπ)2] ≤ 1

n

H∑
h=0

∑
sh

dπh(sh)2

dµh(sh)
Varµ

[
π(a

(1)
h |sh)

µ(a
(1)
h |sh)

(V πh+1(s
(1)
h+1) + r

(1)
h )

∣∣∣∣∣s(1)h = sh

]

·

(
1 +

√
16 log n

nmint,st d
µ
t (st)

)
+

19τ2aτ
2
s SH

2(σ2 +R2
max + V 2

max)

n2
.

Corollary 1. In the familiar setting when Vmax = HRmax, then the same conditions in Theorem 4.1
implies that:

E[(P v̂πMIS − vπ)2] ≤ 4

n
τaτs(Hσ

2 +H3R2
max).

We make a few remarks about the results in Theorem 4.1.

Dependence on S,A and the weights. The leading term in the variance bound very precisely calcu-
lates the MSE of a clipped version of our estimator v̂MIS

1 modulo a (1 +O(n−1/2)) multiplicative
factor and an O(1/n2) additive factor. Specifically, our bound does not explicitly depend on S and A
but instead on how similar π and µ are. This allows the method to handle the case when the action
space is continuous. The dependence on τa, τs only appear in the low-order terms, while the leading
term depends only on the second moments of the importance weights.

Dependence on H . In general, our sample complexity upper bound is proportional to H3, as
Corollary 1 indicates. Our bound reveals that in several cases it is possible to achieve a smaller

1The clipping step to [0, HRmax] or [0, Vmax] should not be alarming. It is required only for technical
reasons, and the clipped estimator is a valid estimator to begin with. Since the true policy value must be within
the range, the clipping step is only going to improve the MSE.
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exponent on H for specific triplets of (M,π, µ). For instance, when π ≈ µ, such that τa, τs =
1 + O(1/H), the variance bound gives O((V 2

max + Hσ2)/n) or O((H2R2
max + Hσ2)/n), which

matches the MSE bound (up to a constant) of the simple-averaging estimator that knows π = µ
a-priori. (See Remark 3 in the Appendix for more details). If Vmax is a constant that does not depend
on H (this is often the case in games when there is a fixed reward at the end), then the sample
complexity is only O(H).

Optimality. Comparing to the Cramer-Rao lower bound of the Theorem 3 in [Jiang and Li, 2016],
which we paraphrase below

1

n

H∑
h=1

∑
sh

dπh(sh)2

dµh(sh)

∑
ah

πh(ah|sh)2

µh(ah|sh)
Var

[
V πh+1(s

(1)
h+1) + r

(1)
h

∣∣∣s(1)h = sh, a
(1)
h = ah

]
, (4.1)

the MSE of our estimator is asymptotically bigger by an additive factor of

1

n

H∑
h=1

∑
sh

dπh(sh)2

dµh(sh)
Varµ

[
πh(a

(1)
h |sh)

µh(a
(1)
h |sh)

Qπh(sh, a
(1)
h )

]
, (4.2)

where Qπh(sh, ah) := E
[
(V πh+1(s

(1)
h+1) + r

(1)
h )
∣∣s(1)h = sh, a

(1)
h = ah

]
is the standard Q-function

the MDP. The gap is significant as the CR lower bound (4.1) itself only has a worst-case bound of
H2τsτa/n

2, while (4.2) is proportional to H3τsτa/n. This implies that our estimator is optimal up
to a factor of H . See Remark 4 for more details in the appendix.

It is an intriguing open question whether this additional factor ofH can be removed. Our conjecture is
that the answer is negative and what we established in Theorem 4.1 matches the correct information-
theoretic limit for any methods in the cases when the action space A is continuous (or significantly
larger than n). This conjecture is consistent with an existing lower bound in the simpler contextual
bandits setting, where Wang et al. [2017] established that a variance of expectation term analogous to
the one above cannot be removed, and no estimators can asymptotically attain the CR lower bound
for all problems in the large state/action space setting.

4.1 Proof Sketch

In this section, we briefly describe the main technical components in the proof of Theorem 4.1. More
detailed arguments are deferred to the full proof in Appendix B.

Recall that (3.1) is equivalent to
∑H
t=1

∑
st
d̂πt (st)r̂

π(st), where r̂π(st) is estimated with importance
sampling and d̂πt (st) is recursively estimated using d̂πt−1(st−1) and the importance sampling estimator
of the transition matrix Pπt (st|st−1) under π. While the MIS estimator is easy to state, it is not
straightforward to analyze. We highlight three challenges below.

1. Dependent data and complex estimator: While the episodes are independent, the data within
each episode are not. Each time step of our MIS estimator uses the data from all episodes
up to that time step.

2. An annoying bias: There is a non-zero probability that some states st at time t is not visited
at all in all n episodes. This creates a bias in the estimator of d̂πh for all time h > t. While
the probability of this happening is extremely small, conditioning on the high probability
event breaks the natural conditional independences, which makes it hard to analyze.

3. Error propagation: The recursive estimator d̂πt is affected by all estimation errors in earlier
time steps. Naive calculation of the error with a constant slack in each step can lead to a
“snowball” effect that causes an exponential blow-up.

All these issues require delicate handling because otherwise the MSE calculation will not be tight.
Our solutions are as follows.

Defining the appropriate filtration. The first observation is that we need to have a convenient
representation of the data. Instead of considering the n episodes as independent trajectories, it is
more useful to think of them all together as a Markov chain of multi-dimensional observations

2This is somewhat surprising as each of the H summands in the expression can be as large as H2.
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of n state, action, reward triplets. Specifically, we define the “cumulative” data up to time t by

Datat :=
{
s
(i)
1:t, a

(i)
1:t−1, r

(i)
1:t−1

}n
i=1

. Also, we observe that the state of the Markov chain at time t can
be summarized by nst — the number of times state st is visited.

Fictitious estimator technique. We address the bias issue by defining a fictitious estimator ṽπ . The
fictitious estimator is constructed by, instead of d̂πt and r̂πt , the fictitious version of these estimators
d̃πt and r̃πt , where d̃πt is constructed recursively using

d̃πt (st) =
∑
st−1

P̃π(st|st−1)d̃πt−1(st−1).

The key difference is that whenever nst < Eµnst(1 − δ) for some 0 < δ < 1, we assign
P̃π(st+1|st) = Pπ(st+1|st) and r̃π(st) = Eπ[rt|st] — the true values of interest. This ensures that
the fictitious estimator is always unbiased (see Lemma B.2). Note that this fictitious estimator cannot
be implemented in practice. It is used as a purely theoretical construct that simplifies the analysis of
the (biased) MIS estimator. In Lemma B.1, we show that the ṽπ and v̂π are exponentially close to
each other.

Disentangling the dependency by backwards peeling. The fictitious estimator technique reduces
the problem of calculating the MSE of the MIS estimator to a variance analysis of the fictitious
estimator. By recursively applying the law of total variance backwards that peels one item at a time
from Datat, we establish an exact linear decomposition of the variance of the fictitious estimator
(Lemma B.3):

Var[ṽπ] =

H∑
h=0

∑
sh

E

[
d̃πh(sh)

2

nsh
1

(
nsh ≥

ndµh(sh)

(1− δ)−1

)]
Varµ

[
π(a

(1)
h |sh)

µ(a
(1)
h |sh)

(V πh+1(s
(1)
h+1) + r

(1)
h )

∣∣∣∣∣s(1)h = sh

]
.

Observe that the value function V πt shows up naturally. This novel decomposition can be thought of
as a generalization of the celebrated Bellman-equation of variance [Sobel, 1982] in the off-policy,
episodic MDP setting with a finite sample and can be of independent interest.

Characterizing the error propagation in d̃πh(sh). Lastly, we bound the error term in the state
distribution estimation as follows

E

[
d̃πh(sh)2

nsh
1

(
nsh ≥

ndµh(sh)

(1− δ)−1

)]
≤ (1− δ)−1

n

(
dπh(sh)2

dµh(sh)
+ Var

[
d̃πh(sh)

])
,

which reduces the problem to bounding Var[d̃πh(sh)]. We show (in Theorem B.1) that instead of an
exponential blow-up as will a concentration-inequality based argument imply, the variance increases
at most linearly in h: Var[d̃πh(sh)] ≤ 2(1−δ)−1hdπh(sh)

n . The proof uses a novel decomposition of
Cov(d̃πh) (Lemma B.5), which is derived using a similar backwards peeling argument as before.
Finally, Theorem 4.1 is established by appropriately choosing δ = O(

√
log n/nmint,st d

µ
t (st)).

Due to space limits, we can only highlight a few key elements of the proof. We invite the readers to
check out a more detailed exposition in Appendix B.

5 Experiments

Throughout this section, we present the empirical results to illustrate the comparison among different
estimators. We demonstrate the effectiveness of our proposed marginalized estimator by comparing it
with different classic estimators on several domains.

The methods we compare in this section are: direct method (DM), importance sampling (IS),
weighted importance sampling (WIS), importance sampling with stationary state distribution (SSD-
IS), and marginalized importance sampling (MIS). DM uses the model-based approach to estimate
Tt(st|st−1, at−1), rt(st, at) by enumerating all tuples of (st−1, at−1, st), IS is the step-wise impor-
tance sampling method, WIS uses the step-wise weighted (self-normalized) importance sampling
method, SSD-IS denotes the method of importance sampling with stationary state distribution pro-
posed by [Liu et al., 2018a]3, and MIS is our proposed marginalized method. Note that our MIS

3Our implementation of SSD-IS for the discrete state case is described in Appendix D.3.
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also uses the trick of self-normalization to obtain better performance, but the MIS normalization
is different: we normalize the estimate d̂πt to the probability simplex, whereas WIS normalizes the
importance weights. We provide further results by comparing doubly robust estimator, weighted
doubly robust estimator, and our estimators in Appendix D. We use logarithmic scales in all figures
and include 95% confidence intervals as error bars from 128 runs. Our metric is the relative root
mean squared error (Relative-RMSE), which is the ratio of RMSE and the true value vπ .

S1S2 S3

!1

!2

p 1-p

r=1 r=-1

r=1 r=-1

1-p p

(a) ModelWin

S1? ?

!1

!2

r=1 r=-1
p

1-p

1-p

p

(b) ModelFail

Figure 1: MDPs of OPE domains.

Time-invariant MDPs We first test our methods on the
standard ModelWin and ModelFail models with time-
invariant MDPs, first introduced by Thomas and Brunskill
[2016]. The ModelWin domain simulates a fully observ-
able MDP, depicted in Figure 1(a). On the other hand,
the ModelFail domain (Figure 1(b)) simulates a partially
observable MDP, where the agent can only tell the differ-
ence between s1 and the “other” unobservable states. A
detailed description of these two domains can be found in
Appendix D. For both problems, the target policy π is to
always select a1 and a2 with probabilities 0.2 and 0.8, respectively, and the behavior policy µ is a
uniform policy.

We provide two types of experiments to show the properties of our marginalized approach. The first
kind is with different numbers of episodes, where we use a fixed horizon H = 50. The second kind
is with different horizons, where we use a fixed number of episodes n = 1024. We use MIS only
with observable states and the partial trajectories between them. Details about applying MIS with
partial observability can be found in Appendix C. While this approach is general in more complex
applications, for ModelFail, the agent always visits s1 at every other step and we can simply replace
π(a

(i)
t |s

(i)
t )

µ(a
(i)
t |s

(i)
t )

with π(a
(i)
2τ |s

(i)
2τ=?)

µ(a
(i)
2τ |s

(i)
2τ=?)

π(a
(i)
2τ−1|s

(i)
2τ−1)

µ(a
(i)
2τ−1|s

(i)
2τ−1)

for t = 2τ − 1 in (3.2).
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(a) ModelWin with differ-
ent number of episodes n.
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(b) ModelWin with differ-
ent horizon H .
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(c) ModelFail with differ-
ent number of episodes n.
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(d) ModelFail with differ-
ent horizon H .

Figure 2: Results on Time-invariant MDPs. MIS matches DM on ModelWin and outperforms IS/WIS
on ModelFail, both of which are the best existing methods on their respective domains.

Figure 2 shows the results in the time-invariant ModelWin MDP and ModelFail MDP. The results
clearly demonstrate that MIS maintains a polynomial dependence on H and matches the best
alternatives such as DM in Figure 2(b) and IS at the beginning of Figure 2(d). Notably, the IS
in Figure 2(d) reflects a bias-variance trade-off, that its RMSE is smaller at short horizons due to
unbiasedness yet larger at long horizons due to high variance.

Time-varying, non-mixing MDPs with continuous actions. We also test our approach in simu-
lated MDP environments where the states are binary, the actions are continuous between [0,1] and
the state transition models are time-varying with a finite horizon H . The agent starts at State 1. At
every step, the environment samples a random parameter p ∈ [0.5/H, 0.5− 0.5/H]. Any agent in
State 1 will transition to State 0 if and only if it samples an action between [p− 0.5/H, p+ 0.5/H].
On the other hand, State 0 is a sinking state. The agent collects rewards at State 0 in the latter half of
the steps (t ≥ H/2). Thus, the agent wants to transition to State 0, but the transition probability is
inversely proportional to the horizon H for uniform action policies. We pick the behavior policy to
be uniform on [0, 1] and the target policy to be uniform on [0, 0.5] with 95% total probability and 5%
chance uniformly distributed on [0.5, 1].
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Figure 3: Time-varying MDPs

Figure 3(a) shows the asymptotic convergence
rates of RMSE with respect to the number of
episodes, given fixed horizon H = 64. MIS
converges at a O(1/

√
n) rate from the very be-

ginning. In comparison, neither IS or MIS has
entered their asymptotic n−1/2 regime yet with
n ≤ 4, 096. SSD-IS does not improve as n gets
larger, because the stationary state distribution (a
point mass on State 0) is not a good approxima-
tion of the average probability of visiting State
0 for t ∈ [H/2, H]. We exclude DM because it
requires additional model assumptions to apply to continuous action spaces.

Figure 3(b) shows the Relative RMSE dependency inH , fixing the number of episodes n = 1024. We
see that as H gets larger, the Relative RMSE scales as O(

√
H) for MIS and stays roughly constant

for SSD-IS. Since the true reward vπ ∝ H , the result matches the worst-case bound of a O(H3)
MSE in Corollary 1. SSD-IS saves a factor of H in variance, as it marginalizes over the H steps, but
introduces a large bias as we have seen in Figure 3(a). IS and WIS worked better for small H , but
quickly deteriorates as H increases. Together with Figure 3(a), we may conclude that In conclusion,
MIS is the only method, among the alternatives in this example, that produces a consistent estimator
with low variance.
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Figure 4: Mountain Car with differ-
ent number of episodes.

Mountain Car. Finally, we benchmark our estimator on the
Mountain Car domain [Singh and Sutton, 1996], where an
under-powered car drives up a steep valley by “swinging” on
both sides to gradually build up potential energy. To construct
the stochastic behavior policy µ and stochastic evaluated policy
π, we first compute the optimal Q-function using Q-learning
and use its softmax policy of the optimal Q-function as eval-
uated policy π (with the temperature of 1). For the behavior
policy µ, we also use the softmax policy of the optimal Q-
function but set the temperature to 1.25. Note that this is a
finite-horizon MDP with continuous state. We apply MIS by
discretizing the state space as in [Jiang and Li, 2016].

The results, shown in Figure 4, demonstrate the effectiveness of
our approach in a common benchmark control task, where the
ability to evaluate under long horizons is required for success.
Note that Mountain Car is an episodic environment with a absorbing state, so it is not a setting
that SSD-IS is designed for. We include the the detailed description on the experimental setup and
discussion on the results in Appendix D.

6 Conclusions

In this paper, we propose a marginalized importance sampling (MIS) method for the problem of
off-policy evaluation in reinforcement learning. Our approach gets rid of the burden of horizon
by using an estimated marginal state distribution of the target policy at every step instead of the
cumulative product of importance weights.

Comparing to the pioneering work of Liu et al. [2018a] that uses a similar philosophy, this paper
focuses on the finite state episodic setting with an potentially infinite action space. We proved the
first finite sample error bound for such estimators with polynomial dependence in all parameters. The
error bound is tight in that it matches the asymptotic variance of a fictitious estimator that has access
to oracle information up to a low-order additive factor. Moreover, it is within a factor of O(H) of the
Cramer-Rao lower bound of this problem in [Jiang and Li, 2016]. We conjecture that this additional
factor of H is required for any estimators in the infinite action setting.

Our experiments demonstrate that the MIS estimator is effective in practice as it achieves substantially
better performance than existing approaches in a number of benchmarks.
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