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Abstract 
 
Background: Many studies that aim to identify gene biomarkers using statistical methods and 
translate them into FDA-approved drugs have faced challenges due to lack of clinical validity 
and methodological reproducibility. Since genomic data analysis relies heavily on these 
statistical learning tools more than before, it is vital to address the limitations of these 
computational techniques.  
 
Methods: Our study demonstrates these methodological gaps among most common statistical 
learning techniques used in gene expression analysis. To assess the classification ability and 
reproducibility of statistical learning tools for gene biomarker detection, six state-of-the-art 
machine learning models were trained on four different cancer data retrieved from The Cancer 
Genome Atlas (TCGA). Standard performance metrics including specificity, sensitivity, 
precision, and F1 score were evaluated to investigate the classification ability. For analysis of 
reproducibility, the identifiability of gene classifiers was examined by quantifying the 
consistency of the chosen classifier genes.  
 
Results: Among the six state-of-the-art machine learning methods, the random forest had the best 
classification ability overall. Very few genes were selected by multiple methods, which suggests 
poor identifiability and reproducibility of statistical learning methods for gene expression data. 
Our results demonstrated the challenges of reproducing discoveries from gene expression 
analysis due to the inherent differences that exist in statistical machine learning methods. 
 
Conclusion: Since statistical machine learning models can have large variations in high-
dimensional settings such as analysis of gene expression data, transparent analysis procedures 
including data preprocessing, model parameterization, and evaluation and choice of interpretable 
models are required for clinical validity and utility.  
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1. Introduction 
 

Over the last decade, the goal of identifying gene biomarkers for precision medicine and 
clinical decision making and translating them into FDA-approved drugs has yielded limited 
results with significant federal investment in data-driven biomarker related research grants [1,2]. 
Despite these major investments, only a handful of new single-gene product biomarkers have 
been translated to FDA-approved clinical practice [3]. Among various reasons, the major 
challenges in gene biomarker detection may be attributed to the assumption of homogeneity in 
highly heterogenous human populations [4,5] as well as reproducibility of results from 
biomarker studies [6]. In this study, we focus on a major obstacle in translating gene biomarkers 
into clinical practice: a lack of methodological reproducibility induced by the large number of 
variabilities in statistical learning methods used in gene biomarker detection. We note that 
inconsistent gene expression classifiers is an emerging and important issue in bioinformatics [7]. 
However, in this data science-anchored age of genomic data analysis, it is crucial that we 
continue to address the limitations of these computational techniques as our research relies on 
them more than before. The goal of this work is to demonstrate the methodological gaps of the 
most common statistical learning techniques used in gene expression analysis using publicly-
available data from The Cancer Genome Atlas (TCGA) and show the inherent variability that is 
unaccounted for in selecting one computational method over another.  

Given that finding molecular abnormalities that cause cancer is critical for developing 
and implementing treatments, TCGA [8] provides genomic data such as RNA-Seq, miRNA-Seq, 
and methylation on 33 cancer types collected from more than 11,000 patients’ tissue samples 
over 12 years since 2006. Many studies have utilized TCGA data to understand biological 
processes associated with cancer, to identify differentially expressed genes, to characterize 
molecular and genomic features of cancer, and finally to provide insights into potential 
treatments for cancer. In general, RNA-Seq transcriptome data are better suited for identifying 
transcriptomic changes associated with human cancers [9]. However, analyses of RNA-seq 
suffer from high dimensionality challenges, where there are more than 10,000 genes associated 
with one tissue sample from a subject, but far few samples. To address the high dimensionality 
and advance our understanding of cancer, including finding potential therapeutic targets, 
statistical and machine learning techniques and the accessible nature of TCGA data has been 
particularly useful in various studies.  
 Among those studies that apply machine learning algorithms to TCGA datasets, some 
studies introduced new methods to identify key driver genes more effectively, while others 
applied existing machine learning approaches. For example, a new method called DriverML that 
integrated Rao’s score and supervised machine learning approach to identify cancer driver genes 
outperformed some of the existing methods [10]. Another study demonstrated a method to 
efficiently combine different types of molecular data and identify dominant biological processes 
active in tumor [11]. On the other hand, studies also used existing machine learning models such 
as the support vector machine (SVM)-recursive feature elimination and forward-SVM to screen 
differentially expressed genes and predict overall survival [12], to infer gene-interactions of a 
subset of genes extracted from TCGA dataset using graphical models [13], or to compare 
performances of machine learning techniques in predicting survival and metastasis outcomes in 
cancer [14]. The SVM method was also used to successfully classify adjacent normal and cancer 
samples in seven different cancer types using a subset of differentially expressed genes [9]. 
Moreover, TCGA data was used to validate differentially expressed genes in stage I papillary 
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thyroid carcinoma and normal adjacent tissues sequenced by RNA-Seq [15]. Some studies tried 
to resolve prevailing problems within gene expression data including interpretability and missing 
data by identifying minimal set of biomarkers to classify cancer status and different subtypes of 
cancer [16] or by applying imputation techniques to address missing values in important clinical 
features and dimensionality reduction techniques to reduce computational cost while maintaining 
good performance [17].  

In this study, we conducted a comprehensive analysis of state-of-the-art supervised 
statistical and machine learning models, including deep learning models, and quantified 
variability and reproducibility of results from these models. By doing so, we demonstrate these 
machine learning approaches from the perspectives of interpretability, clinical relevance, 
performance, reproducibility, as well as general utility.  
 
2. Materials and methods 
 
2.1 TCGA data 
 

TCGA contains 33 different cancer types and several different technical platforms. Of the 
33 cancer types, we selected bladder urothelial carcinoma (BLCA), breast invasive carcinoma 
(BRCA), liver hepatocellular carcinoma (LIHC), and lung adenocarcinoma (LUAD) to explore 
data with different sample sizes and to consider the extent to which data are separable between 
the normal and tumor cases. Considering different sample sizes and separability allows for 
examining how these factors affect the performance of various machine learning methods. To 
determine the separability of normal and tumor cases, we performed principal component 
analyses (PCAs) on all available datasets (See Appendix A Figure A1) in the TCGA2STAT [18] 
library in R environment. Although TCGA data can be obtained from another source such as the 
Genomic Data Commons (GDC) which may include more samples, the data can be more easily 
accessed via the TCGA2STAT library in the R environment and are already preprocessed and 
formatted to be ready for statistical analyses [18]. Each subject in the dataset is labeled as tumor 
or normal, allowing for a binary classification problem. Among different data platforms built in 
the TCGA2STAT library, we chose RNA-Seq data with reads per kilobase of transcript per 
million mapped reads (RPKM) to acquire normalized counts (See Appendix B Table B1). Genes 
that had all zero values across all samples or had less than 10 RPKM reads across all samples 
were removed. Even after removing those genes, the number of genes in the data was still more 
than 18,000 maintaining high dimensionality (19,518 genes for the BLCA, 20,404 genes for the 
BRCA, 18,274 genes for LIHC, and 19,870 genes for the LUAD). 
 
2.2 Techniques 
  

Various statistical and machine learning techniques used as part of our reproducibility 
analyses are listed in Table 1 along with their respective R packages and references. To 
demonstrate the extent of reproducibility attained in using the selected machine learning 
techniques, the following same tasks was performed using each model: (1) predict the label of 
interest and (2) produce a classifier (i.e., conduct feature selection to select a final model). The 
models were evaluated and assessed based on these two tasks, but rather than comparing and 
contrasting each to find the optimal classifiers – a task that has been extensively conducted in the 
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past – we focused more on the consistency and reproducibility of each of them. The overall 
workflow is summarized in Figure 1. 

The ability of whether a model can perform feature selection is also noted in Table 1. 
Features selection is of particular importance since we want to determine which gene is 
important to predict the status of each patient and to measure consistencies of machine learning 
models. Although random forests, deep neural networks, and gradient boosting machine do not 
perform signed feature selection, we used functions in randomForest package [19] and h2o 
package [20] to compute the variable importance and sort the importance measures to see which 
genes are selected frequently or considered important in constructing the model. 
 
Table 1.  
Techniques, references, package interface, and feature selection ability. 
Method Ref. Package Interface Feature Selection 
Lasso [21] glmnet [22] Yes 
Elastic Net [23] glmnet [22] Yes 
Support Vector Machine (SVM) [24] e1071 [25] No 
Random Forests (RF) [26] randomForest [19] No 
Artificial Neural Networks (ANN) [27] h2o [20] No 
Gradient Boosting Machines (GBM) [28] h2o [20] No 
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Figure 1. 
The overall workflow of the analysis in this study. TCGA RNA-Seq data were used as input, and 
three regression models – the lasso, elastic net, and SVM – random forest, ANN, and GBM were 
trained. Then, comprehensive evaluations across input, models, and output were performed. Each 
model was evaluated based on 4 different performance metrics, and its identifiability was assessed 
based on the gene classifiers or important genes. 
 
2.3 Study design 
 

To evaluate classification ability of the models, training and validation were evaluated 
using accuracy metrics including test errors, sensitivity, specificity, precision, and F1 score on 
the final, cross-validated model for each algorithm (See Table 2). The identifiability assessment 
is based on the consistency throughout classifiers and variables selected by some important 
measures. We iterated the ‘sampling scheme’ to determine how stable the selected genes in the 
final gene classifiers were depending on what portion of the data was touched in training the 
model. For each iteration, the training set was created by random sampling of 60% from each 
group – tumor and normal, and the remaining was used as the test set. The training and test data 
were different at each iteration, but they were the same across different methods by setting the 
same seed number for random sampling. For deep learning models, instead of repeating the 
sampling scheme, models were trained with different configurations (See Table 3). Genes with 
high importance measures were examined for model identifiability. 

 
Table 2.  
Summary of Evaluation Metrics  
Evaluation 
Metrics 

Calculation 
 

Test error 1
𝑛 # (𝑦!& ≠ 𝑦")
"∈{%&'(}

 

Specificity 𝑇𝑁
𝑇𝑁 + 𝐹𝑃 

Sensitivity 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 

Precision 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 

F1 score 2𝑇𝑃
2𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

Note: 𝑛 is a test sample size, 𝑦!#  is a predicted label (normal or tumor), and 𝑦" is a true label. TP stands for true positive, TN true 
negative, FP false positive, and FN false negative. 

 
Table 3.  
ANN and GBM models with different configurations. 
Method # of Nodes # of Trees Learning Rate Bag Fraction 
ANN1 200 - - - 
ANN2 500 - - - 
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GBM1 - 
1,000 

0.1 
0.5 GBM2 - 0.01 

GBM3 - 0.001 
 

A three-fold cross-validation (CV) was performed to tune parameters in each model. The 
number of trees in the random forests was chosen to be 500 after examining error versus the 
number of trees plot generated by initial fitting of the random forests model. Also, more details 
about prespecified parameter values for the random forest model as well as the hyperparameter 
values used by regression models (the lasso, elastic net, and SVM) are provided (See Appendix 
C Table C1). 

 
2.4 Computing Environment 
 
 All analyses were conducted using the R statistical software (R version 3.5.3) [29] and 
the University of Arizona’s High Performance Computing (HPC) environment. All packages 
have been listed with their specific R package implementation, and for reproducibility of results 
from this study, the source code for all the analyses has been deposited on GitHub: 
aykim127/Assess_Reproducibility_ML_TCGA.  
 
3. Results 
 
3.1 Separability using PCA 
 
 Among available TCGA RNA-Seq data retrieved from the TCGA2STAT library in R, 11 
datasets had both normal and tumor cases. In order to select appropriate datasets for this study, 
we performed PCA on all of these 11 datasets (See Appendix A Figure A1 for the PCA results of 
these 11 datasets). Based on 2-dimensional visualizations of the first two components from PCA 
results, the normal and tumor groups were moderately separable in the BLCA and BRCA data, 
not separable in the LIHC data, and separable in the LUAD data (Fig. 2). 
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Figure 2. 
The 2D plots of the first two components from the principal component analysis results. (a) 
There is a large overlap between the normal and tumor groups for the BLCA data, but there are 
also some cases that are separable. (b) Two groups are moderately separable for the BRCA data, 
and there are many cases outside of the overlapping region. (c) All normal cases are inside the 
elliptical region of the tumor group for the LIHC data. Based on this PCA result, the LIHC data 
is considered as a non-separable case. (d) The LUAD data is a separable case, since there is only 
one normal case that touches the boundary of the elliptical region for the tumor group.  
 
 
 

(a) (b)

(c) (d)
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3.2 Classification ability 
 

Classification abilities were computed based on the test error, specificity, sensitivity, 
precision, and F1 score. The results from the best model among the lasso, elastic net, SVM, and 
random forest, and the best model among various deep learning models were visualized for each 
dataset. For the BLCA data, the random forest model was the best (test error = 0.083, specificity 
= 0.885, sensitivity = 0.584, precision = 0.978, and F1 score = 0.663) among the lasso, elastic 
net, SVM, and random forest, and for deep learning models, ANN2 was the best (Fig. 3). All 
datasets had the similar patterns of specificity, sensitivity, precision, and F1 score. Specificity 
and precision were relatively high, whereas sensitivity and F1 score were relatively low 
suggesting that the proportions of correctly classified groups in all methods were relatively low. 
Except for the BLCA data, little variation in different model fits from 30 iterations was observed 
(See Appendix D for detailed results) and was confirmed by overlapping lines in the figures. 
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Figure 3.  
Classification abilities of selected models measured by specificity, sensitivity, precision, and F1 
score for the BLCA data: (a) random forest and (b) ANN2. For the random forest model, 
different colors represent different model fits from 30 iterations of random sampling. 
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3.2 Model identifiability 
 

To examine the model identifiability, we selected a list of genes that had non-zero 
coefficients in the lasso and the elastic net models or higher importance measures in the random 
forests, ANN, and GBM (Table 4) and investigated the consistency in gene selection across all 
models. Genes selected by the lasso and elastic net were almost identical. For ANN models, even 
though only 10 genes were listed in Table 4, these genes had scaled importance of all above 0.9, 
and furthermore, all genes had scaled importance close to 0.6 or above. On the other hand, GBM 
models commonly selected C13orf36 gene. SFTPC gene was the only gene that was commonly 
selected by multiple methods including the lasso, elastic net, and random forests for the LUAD 
data (See Appendix E Tables E1-E3 for the results of the BLCA, BRCA, and LIHC data).    

 
Table 4.  
Model identifiability results for the LUAD data. The numbers next to gene names indicate the 
number of times that a gene had non-zero coefficient values among 30 iterations for the lasso and 
elastic net and the number of times that a gene was one of genes with top Gini index measure 
among 30 iterations for the random forest. For deep learning models, the listed genes were top 
genes according to their scaled importance measures.  
 
Methods Selected Genes 
Lasso SFTPC(30), SCGB1A1(12), SFTPA1(4) 
Elastic Net SFTPC(30), SCGB1A1(12), SFTPA1(4) 
RF SFTPC(13), LIMS2(10), EMP2(9), CLIC5(9), ITLN2(7), FAM189A2(7), 

STX11(6), PYCR1(6), CAV1(6)S 
ANN ANN1 C9orf4, ELMO1, SF3A1, TP53INP2, COQ5, WDHD1, NCRNA00176, 

ADRA1A, CPLX4, POMT2 
ANN2 C7orf23, HCP5, EBF3, MAPK12, MKS1, NFE2L1, ANAPC1, HES7, 

SLC37A1, CYP46A1 
GBM GBM1 C13orf36 

GBM2 C13orf36 
GBM3 C13orf36 

 
4. Discussion 
 

There has been a growing interest in biomarker research for precision medicine [30], and 
consequently, the volume of literature devoted to biomarker identification and characterization 
has been expanding in parallel [2]. Although gene expression microarray data has been the major 
tool in traditional biomarker research, RNA-Seq data has emerged as a popular source for 
biomarker identification, given their reproducible nature and high-resolution expression [31] For 
example, RNA-Seq data has been shown to be capable of successfully identifying biomarker 
signatures for different types of cancer using TCGA as one source of data [32]. Despite the 
capability and advantages of the RNA-Seq data, one challenging aspect of biomarker 
identification using this type of data is that among more than 10,000 genes in these RNA-Seq 
data, only a small subset of DNA biomarkers will be related to specific diseases [33]. To identify 
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this subset of biomarkers, various statistical and machine learning algorithms [9,32], including 
deep learning methods [34], that are capable of feature selection or measuring importance of 
these features have been widely adopted. However, these models tend to have low stability of 
feature selection due to high dimensionality of gene expression data and low sample size of 
clinical datasets [33]. In addition, deep learning models suffer from overfitting and high variance 
for such high dimensional and low sample size data [35], and they are usually more difficult to 
interpret and to understand the algorithms built inside the model, thereby limiting their 
effectiveness especially in the medical domain [36], where human experts’ understanding of 
results from these models can be critical. Furthermore, even if a model identifies a marker as 
important, it may not be clinically relevant as one study has shown that only a handful of 150 
identified biomarkers associated with tongue squamous cell carcinoma are found to be clinically 
valid [37].  

Although there are many studies aimed at identifying a set of genes that are crucial to 
cancer prevention and early diagnosis, many of the preclinical cancer studies, including those 
published in top-tier journals could not be reproduced [38]. One major reason for non-
reproducibility was due to inappropriate use of statistics [38]. Since machine learning algorithms, 
are popular in gene identification studies, assessing the reproducibility of these models calls for 
significant attention among the scientific community. In this study, the classification ability, 
model identifiability, and reproducibility of state-of-the-art statistical machine learning and deep 
learning models were assessed.  

The low stability of feature selection and the problem of model identifiability were 
apparent from our results. As we iterated the random sampling process, the input data to train 
models were changed, selecting different genes and resulting inconsistency in gene classifiers. 
Depending on the portion of data used as the training set, different subsets of genes were 
selected, or none of genes was selected more than the half of the total iteration times based on 
their importance measures. For the ANN models, genes were not differentiated by the 
importance measures. There was no overlap among the gene classifier across all methods for all 
datasets included in this study, and this suggests low stability of feature selection in machine 
learning and deep learning models in applications to high-dimensional data. The high 
dimensionality of our data also has an impact on the classification ability suggested by overall 
low sensitivity. The overall classification ability did not improve even for the BRCA data, which 
is almost 30 times and 10 times larger than the LIHC data and the BLCA data, respectively. 
When data is high dimensional, the model predictability and classification accuracy can be 
lowered by overfitting, which occurs when the model is over trained on the training dataset and 
properly, and even perfectly classifies the training labels but not the test dataset due to lack of 
generalization capability [39].  

Overall, the classification ability was roughly the same and most of selected models 
poorly performed for the chosen dataset. The ratio of the number of events to the number of 
predictor variables knowns as Events Per Variable (EPV) is a factor that can affect the 
performance of binary logistic regression analysis, and 10 EPV rule has been widely adopted in 
many studies [40]. Although 10 EPV rule has not been fully supported by many findings, the 
data used in this study have EPV much below 10 in addition to small sample sizes compared to 
the number of predictor variables. The low EPV together with the overall small sample sizes 
could have led to overall poor performances of chosen models. 

For all four datasets, most of deep learning models did not perform well. Considering the 
fact that the BRCA data alone took more than 3 hours to train 3 different GBM models, these 
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deep learning models were not efficient and did not provide performance gains (See Appendix 
F). Deep learning models have been popular choices for studies related to classification or 
prediction problems in biomedicine, but the larger question is whether such models are 
appropriate for various sample sizes. Despite high prediction accuracy, most deep learning 
models are black-box models and are not as interpretable as penalized regression models with 
explicit mathematical formulations. In order for deep learning models to have more effectiveness 
in the medicine, models that have the ability to interpret the decisions and underlying algorithms 
explicitly [36], while maintaining a high-level of prediction accuracy are needed. 

This study is limited by the naïve assumption of gene independence, since genes form 
complex mechanistic networks that represent their roles and biological functions that they 
regulate. However, if techniques do not agree in the simple scenario where genes are treated as 
identically and independently distributed, then it will be highly unlikely to attain unity with 
much more difficulty in the complex task of inferring a gene network. Another limitation of this 
study is the class imbalance within the dataset, which can make the model prediction biased by 
allowing models choose the majority class to achieve higher prediction accuracy in that majority 
class. We could match tumor and normal pairs, but it would have greatly decreased the sample 
sizes of all four datasets. Furthermore, to increase stability and performance of our models by 
reducing the size of data, we could have selected a subset of genes and trained our models. 
However, if we were to subset genes arbitrarily, clinical relevance of those selected genes may 
not be justified, and therefore, we chose to limit the parameter search space instead by setting 
specific values for some parameters. 

 
5. Conclusion 
  
This study assessed the reproducibility and veracity of the state-of-the-art statistical machine 
learning models by quantifying classification ability and model identifiability using high 
dimensional TCGA data. Model selection and feature selection are open-ended questions in 
statistics and machine learning, as no one model can guarantee to recover the true signal nor 
guarantee universal optimal performance. Our results showed that since various machine 
learning techniques use different underlying algorithms to make prediction and perform feature 
selection, it is difficult for the end-users to reproduce discoveries from the genomic data analysis 
and to choose proper models. Hence, it is important to conduct transparent analyses in the 
research community, especially in the field of biomedicine, to provide end-users with the means 
to select the most appropriate tools for their task. Furthermore, more transparency-driven 
reproducibility studies must be conducted to improve reliability and provide a more honest 
evaluation of the capabilities of machine learning models especially in the task of biomarker 
discovery.  
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What was already known on the topic: 
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• Non-reproducibility of cancer studies is prevalent, and often connected to inappropriate 
use of statistical methods. 

• Different types of machine learning algorithms have been adopted to identify gene 
classifiers for various types of cancer, but no one algorithm can guarantee to recover the 
true signal or universal optimal performance. 
 

What this study added to our knowledge: 
 

• The consistency and reliability of state-of-the-art machine learning techniques were 
assessed by a case study using TCGA data, and the limitation of these machine learning 
algorithms was demonstrated by evaluations of model performance and identifiability. 

• Genomics data analysis relies heavily on these statistical learning methods more than 
before, so it is important to acknowledge and address the limitations of these 
computational techniques.  
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