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Abstract

Background: Many studies that aim to identify gene biomarkers using statistical methods and
translate them into FDA-approved drugs have faced challenges due to lack of clinical validity
and methodological reproducibility. Since genomic data analysis relies heavily on these
statistical learning tools more than before, it is vital to address the limitations of these
computational techniques.

Methods: Our study demonstrates these methodological gaps among most common statistical
learning techniques used in gene expression analysis. To assess the classification ability and
reproducibility of statistical learning tools for gene biomarker detection, six state-of-the-art
machine learning models were trained on four different cancer data retrieved from The Cancer
Genome Atlas (TCGA). Standard performance metrics including specificity, sensitivity,
precision, and F1 score were evaluated to investigate the classification ability. For analysis of
reproducibility, the identifiability of gene classifiers was examined by quantifying the
consistency of the chosen classifier genes.

Results: Among the six state-of-the-art machine learning methods, the random forest had the best
classification ability overall. Very few genes were selected by multiple methods, which suggests
poor identifiability and reproducibility of statistical learning methods for gene expression data.
Our results demonstrated the challenges of reproducing discoveries from gene expression
analysis due to the inherent differences that exist in statistical machine learning methods.

Conclusion: Since statistical machine learning models can have large variations in high-
dimensional settings such as analysis of gene expression data, transparent analysis procedures
including data preprocessing, model parameterization, and evaluation and choice of interpretable
models are required for clinical validity and utility.
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1. Introduction

Over the last decade, the goal of identifying gene biomarkers for precision medicine and
clinical decision making and translating them into FDA-approved drugs has yielded limited
results with significant federal investment in data-driven biomarker related research grants [1,2].
Despite these major investments, only a handful of new single-gene product biomarkers have
been translated to FDA-approved clinical practice [3]. Among various reasons, the major
challenges in gene biomarker detection may be attributed to the assumption of homogeneity in
highly heterogenous human populations [4,5] as well as reproducibility of results from
biomarker studies [6]. In this study, we focus on a major obstacle in translating gene biomarkers
into clinical practice: a lack of methodological reproducibility induced by the large number of
variabilities in statistical learning methods used in gene biomarker detection. We note that
inconsistent gene expression classifiers is an emerging and important issue in bioinformatics [7].
However, in this data science-anchored age of genomic data analysis, it is crucial that we
continue to address the limitations of these computational techniques as our research relies on
them more than before. The goal of this work is to demonstrate the methodological gaps of the
most common statistical learning techniques used in gene expression analysis using publicly-
available data from The Cancer Genome Atlas (TCGA) and show the inherent variability that is
unaccounted for in selecting one computational method over another.

Given that finding molecular abnormalities that cause cancer is critical for developing
and implementing treatments, TCGA [8] provides genomic data such as RNA-Seq, miRNA-Seq,
and methylation on 33 cancer types collected from more than 11,000 patients’ tissue samples
over 12 years since 2006. Many studies have utilized TCGA data to understand biological
processes associated with cancer, to identify differentially expressed genes, to characterize
molecular and genomic features of cancer, and finally to provide insights into potential
treatments for cancer. In general, RNA-Seq transcriptome data are better suited for identifying
transcriptomic changes associated with human cancers [9]. However, analyses of RNA-seq
suffer from high dimensionality challenges, where there are more than 10,000 genes associated
with one tissue sample from a subject, but far few samples. To address the high dimensionality
and advance our understanding of cancer, including finding potential therapeutic targets,
statistical and machine learning techniques and the accessible nature of TCGA data has been
particularly useful in various studies.

Among those studies that apply machine learning algorithms to TCGA datasets, some
studies introduced new methods to identify key driver genes more effectively, while others
applied existing machine learning approaches. For example, a new method called DriverML that
integrated Rao’s score and supervised machine learning approach to identify cancer driver genes
outperformed some of the existing methods [10]. Another study demonstrated a method to
efficiently combine different types of molecular data and identify dominant biological processes
active in tumor [11]. On the other hand, studies also used existing machine learning models such
as the support vector machine (SVM)-recursive feature elimination and forward-SVM to screen
differentially expressed genes and predict overall survival [12], to infer gene-interactions of a
subset of genes extracted from TCGA dataset using graphical models [13], or to compare
performances of machine learning techniques in predicting survival and metastasis outcomes in
cancer [14]. The SVM method was also used to successfully classify adjacent normal and cancer
samples in seven different cancer types using a subset of differentially expressed genes [9].
Moreover, TCGA data was used to validate differentially expressed genes in stage I papillary



thyroid carcinoma and normal adjacent tissues sequenced by RNA-Seq [15]. Some studies tried
to resolve prevailing problems within gene expression data including interpretability and missing
data by identifying minimal set of biomarkers to classify cancer status and different subtypes of
cancer [16] or by applying imputation techniques to address missing values in important clinical
features and dimensionality reduction techniques to reduce computational cost while maintaining
good performance [17].

In this study, we conducted a comprehensive analysis of state-of-the-art supervised
statistical and machine learning models, including deep learning models, and quantified
variability and reproducibility of results from these models. By doing so, we demonstrate these
machine learning approaches from the perspectives of interpretability, clinical relevance,
performance, reproducibility, as well as general utility.

2. Materials and methods
2.1 TCGA data

TCGA contains 33 different cancer types and several different technical platforms. Of the
33 cancer types, we selected bladder urothelial carcinoma (BLCA), breast invasive carcinoma
(BRCA), liver hepatocellular carcinoma (LIHC), and lung adenocarcinoma (LUAD) to explore
data with different sample sizes and to consider the extent to which data are separable between
the normal and tumor cases. Considering different sample sizes and separability allows for
examining how these factors affect the performance of various machine learning methods. To
determine the separability of normal and tumor cases, we performed principal component
analyses (PCAs) on all available datasets (See Appendix A Figure Al) in the TCGA2STAT [18]
library in R environment. Although TCGA data can be obtained from another source such as the
Genomic Data Commons (GDC) which may include more samples, the data can be more easily
accessed via the TCGA2STAT library in the R environment and are already preprocessed and
formatted to be ready for statistical analyses [18]. Each subject in the dataset is labeled as tumor
or normal, allowing for a binary classification problem. Among different data platforms built in
the TCGA2STAT library, we chose RNA-Seq data with reads per kilobase of transcript per
million mapped reads (RPKM) to acquire normalized counts (See Appendix B Table B1). Genes
that had all zero values across all samples or had less than 10 RPKM reads across all samples
were removed. Even after removing those genes, the number of genes in the data was still more
than 18,000 maintaining high dimensionality (19,518 genes for the BLCA, 20,404 genes for the
BRCA, 18,274 genes for LIHC, and 19,870 genes for the LUAD).

2.2 Techniques

Various statistical and machine learning techniques used as part of our reproducibility
analyses are listed in Table 1 along with their respective R packages and references. To
demonstrate the extent of reproducibility attained in using the selected machine learning
techniques, the following same tasks was performed using each model: (1) predict the label of
interest and (2) produce a classifier (i.e., conduct feature selection to select a final model). The
models were evaluated and assessed based on these two tasks, but rather than comparing and
contrasting each to find the optimal classifiers — a task that has been extensively conducted in the



past — we focused more on the consistency and reproducibility of each of them. The overall
workflow is summarized in Figure 1.

The ability of whether a model can perform feature selection is also noted in Table 1.
Features selection is of particular importance since we want to determine which gene is
important to predict the status of each patient and to measure consistencies of machine learning
models. Although random forests, deep neural networks, and gradient boosting machine do not
perform signed feature selection, we used functions in randomForest package [19] and h20
package [20] to compute the variable importance and sort the importance measures to see which
genes are selected frequently or considered important in constructing the model.

Table 1.

Techniques, references, package interface, and feature selection ability.
Method Ref. Package Interface Feature Selection
Lasso [21] glmnet [22] Yes
Elastic Net [23] glmnet [22] Yes
Support Vector Machine (SVM) [24] el071 [25] No
Random Forests (RF) [26] randomForest [19] No
Artificial Neural Networks (ANN) [27] h2o0 [20] No
Gradient Boosting Machines (GBM) [28] h20 [20] No
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Figure 1.

The overall workflow of the analysis in this study. TCGA RNA-Seq data were used as input, and
three regression models — the lasso, elastic net, and SVM — random forest, ANN, and GBM were
trained. Then, comprehensive evaluations across input, models, and output were performed. Each
model was evaluated based on 4 different performance metrics, and its identifiability was assessed
based on the gene classifiers or important genes.

2.3 Study design

To evaluate classification ability of the models, training and validation were evaluated
using accuracy metrics including test errors, sensitivity, specificity, precision, and F1 score on
the final, cross-validated model for each algorithm (See Table 2). The identifiability assessment
is based on the consistency throughout classifiers and variables selected by some important
measures. We iterated the ‘sampling scheme’ to determine how stable the selected genes in the
final gene classifiers were depending on what portion of the data was touched in training the
model. For each iteration, the training set was created by random sampling of 60% from each
group — tumor and normal, and the remaining was used as the test set. The training and test data
were different at each iteration, but they were the same across different methods by setting the
same seed number for random sampling. For deep learning models, instead of repeating the
sampling scheme, models were trained with different configurations (See Table 3). Genes with
high importance measures were examined for model identifiability.

Table 2.

Summary of Evaluation Metrics
Evaluation Calculation
Metrics
Test error 1 R

- Z O # vi)
ie{Test}

Specificity TN

TN + FP
Sensitivity TP

TP + FN
Precision TP

TP + FP
F1 score 2TP

2TP + TN + FP + FN

Note: n is a test sample size, ¥, is a predicted label (normal or tumor), and y; is a true label. TP stands for true positive, TN true
negative, FP false positive, and FN false negative.

Table 3.

ANN and GBM models with different configurations.
Method # of Nodes # of Trees Learning Rate Bag Fraction
ANNI1 200 - - -
ANN2 500 - - -




GBM1 0.1
GBM2 1,000 0.01 0.5
GBM3 0.001

A three-fold cross-validation (CV) was performed to tune parameters in each model. The
number of trees in the random forests was chosen to be 500 after examining error versus the
number of trees plot generated by initial fitting of the random forests model. Also, more details
about prespecified parameter values for the random forest model as well as the hyperparameter
values used by regression models (the lasso, elastic net, and SVM) are provided (See Appendix
C Table C1).

2.4 Computing Environment

All analyses were conducted using the R statistical software (R version 3.5.3) [29] and
the University of Arizona’s High Performance Computing (HPC) environment. All packages
have been listed with their specific R package implementation, and for reproducibility of results
from this study, the source code for all the analyses has been deposited on GitHub:
aykim127/Assess_Reproducibility ML TCGA.

3. Results
3.1 Separability using PCA

Among available TCGA RNA-Seq data retrieved from the TCGA2STAT library in R, 11
datasets had both normal and tumor cases. In order to select appropriate datasets for this study,
we performed PCA on all of these 11 datasets (See Appendix A Figure Al for the PCA results of
these 11 datasets). Based on 2-dimensional visualizations of the first two components from PCA
results, the normal and tumor groups were moderately separable in the BLCA and BRCA data,
not separable in the LIHC data, and separable in the LUAD data (Fig. 2).
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Figure 2.

The 2D plots of the first two components from the principal component analysis results. (a)
There is a large overlap between the normal and tumor groups for the BLCA data, but there are
also some cases that are separable. (b) Two groups are moderately separable for the BRCA data,
and there are many cases outside of the overlapping region. (¢) All normal cases are inside the
elliptical region of the tumor group for the LIHC data. Based on this PCA result, the LIHC data
is considered as a non-separable case. (d) The LUAD data is a separable case, since there is only
one normal case that touches the boundary of the elliptical region for the tumor group.



3.2 Classification ability

Classification abilities were computed based on the test error, specificity, sensitivity,
precision, and F1 score. The results from the best model among the lasso, elastic net, SVM, and
random forest, and the best model among various deep learning models were visualized for each
dataset. For the BLCA data, the random forest model was the best (test error = 0.083, specificity
= (0.885, sensitivity = 0.584, precision = 0.978, and F1 score = 0.663) among the lasso, elastic
net, SVM, and random forest, and for deep learning models, ANN2 was the best (Fig. 3). All
datasets had the similar patterns of specificity, sensitivity, precision, and F1 score. Specificity
and precision were relatively high, whereas sensitivity and F1 score were relatively low
suggesting that the proportions of correctly classified groups in all methods were relatively low.
Except for the BLCA data, little variation in different model fits from 30 iterations was observed
(See Appendix D for detailed results) and was confirmed by overlapping lines in the figures.
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Classification abilities of selected models measured by specificity, sensitivity, precision, and F1
score for the BLCA data: (a) random forest and (b) ANN2. For the random forest model,
different colors represent different model fits from 30 iterations of random sampling.



3.2 Model identifiability

To examine the model identifiability, we selected a list of genes that had non-zero
coefficients in the lasso and the elastic net models or higher importance measures in the random
forests, ANN, and GBM (Table 4) and investigated the consistency in gene selection across all
models. Genes selected by the lasso and elastic net were almost identical. For ANN models, even
though only 10 genes were listed in Table 4, these genes had scaled importance of all above 0.9,
and furthermore, all genes had scaled importance close to 0.6 or above. On the other hand, GBM
models commonly selected C130rf36 gene. SFTPC gene was the only gene that was commonly
selected by multiple methods including the lasso, elastic net, and random forests for the LUAD
data (See Appendix E Tables E1-E3 for the results of the BLCA, BRCA, and LIHC data).

Table 4.

Model identifiability results for the LUAD data. The numbers next to gene names indicate the
number of times that a gene had non-zero coefficient values among 30 iterations for the lasso and
elastic net and the number of times that a gene was one of genes with top Gini index measure
among 30 iterations for the random forest. For deep learning models, the listed genes were top
genes according to their scaled importance measures.

Methods Selected Genes

Lasso SFTPC(30), SCGB1A1(12), SFTPA1(4)

Elastic Net SFTPC(30), SCGB1A1(12), SFTPA1(4)

RF SFTPC(13), LIMS2(10), EMP2(9), CLIC5(9), ITLN2(7), FAM189A2(7),

STX11(6), PYCR1(6), CAV1(6)S

ANN ANNI1 | C9orf4, ELMO1, SF3A1, TP53INP2, COQS5, WDHD1, NCRNA00176,
ADRAI1A, CPLX4, POMT2

ANN2 | C7orf23, HCP5, EBF3, MAPK12, MKS1, NFE2L1, ANAPCI1, HES7,
SLC37A1, CYP46A1

GBM GBM1 | Cl13o0rf36

GBM2 | C13o0rf36

GBM3 | C13o0rf36

4. Discussion

There has been a growing interest in biomarker research for precision medicine [30], and
consequently, the volume of literature devoted to biomarker identification and characterization
has been expanding in parallel [2]. Although gene expression microarray data has been the major
tool in traditional biomarker research, RNA-Seq data has emerged as a popular source for
biomarker identification, given their reproducible nature and high-resolution expression [31] For
example, RNA-Seq data has been shown to be capable of successfully identifying biomarker
signatures for different types of cancer using TCGA as one source of data [32]. Despite the
capability and advantages of the RNA-Seq data, one challenging aspect of biomarker
identification using this type of data is that among more than 10,000 genes in these RNA-Seq
data, only a small subset of DNA biomarkers will be related to specific diseases [33]. To identify
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this subset of biomarkers, various statistical and machine learning algorithms [9,32], including
deep learning methods [34], that are capable of feature selection or measuring importance of
these features have been widely adopted. However, these models tend to have low stability of
feature selection due to high dimensionality of gene expression data and low sample size of
clinical datasets [33]. In addition, deep learning models suffer from overfitting and high variance
for such high dimensional and low sample size data [35], and they are usually more difficult to
interpret and to understand the algorithms built inside the model, thereby limiting their
effectiveness especially in the medical domain [36], where human experts’ understanding of
results from these models can be critical. Furthermore, even if a model identifies a marker as
important, it may not be clinically relevant as one study has shown that only a handful of 150
identified biomarkers associated with tongue squamous cell carcinoma are found to be clinically
valid [37].

Although there are many studies aimed at identifying a set of genes that are crucial to
cancer prevention and early diagnosis, many of the preclinical cancer studies, including those
published in top-tier journals could not be reproduced [38]. One major reason for non-
reproducibility was due to inappropriate use of statistics [38]. Since machine learning algorithms,
are popular in gene identification studies, assessing the reproducibility of these models calls for
significant attention among the scientific community. In this study, the classification ability,
model identifiability, and reproducibility of state-of-the-art statistical machine learning and deep
learning models were assessed.

The low stability of feature selection and the problem of model identifiability were
apparent from our results. As we iterated the random sampling process, the input data to train
models were changed, selecting different genes and resulting inconsistency in gene classifiers.
Depending on the portion of data used as the training set, different subsets of genes were
selected, or none of genes was selected more than the half of the total iteration times based on
their importance measures. For the ANN models, genes were not differentiated by the
importance measures. There was no overlap among the gene classifier across all methods for all
datasets included in this study, and this suggests low stability of feature selection in machine
learning and deep learning models in applications to high-dimensional data. The high
dimensionality of our data also has an impact on the classification ability suggested by overall
low sensitivity. The overall classification ability did not improve even for the BRCA data, which
is almost 30 times and 10 times larger than the LIHC data and the BLCA data, respectively.
When data is high dimensional, the model predictability and classification accuracy can be
lowered by overfitting, which occurs when the model is over trained on the training dataset and
properly, and even perfectly classifies the training labels but not the test dataset due to lack of
generalization capability [39].

Overall, the classification ability was roughly the same and most of selected models
poorly performed for the chosen dataset. The ratio of the number of events to the number of
predictor variables knowns as Events Per Variable (EPV) is a factor that can affect the
performance of binary logistic regression analysis, and 10 EPV rule has been widely adopted in
many studies [40]. Although 10 EPV rule has not been fully supported by many findings, the
data used in this study have EPV much below 10 in addition to small sample sizes compared to
the number of predictor variables. The low EPV together with the overall small sample sizes
could have led to overall poor performances of chosen models.

For all four datasets, most of deep learning models did not perform well. Considering the
fact that the BRCA data alone took more than 3 hours to train 3 different GBM models, these
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deep learning models were not efficient and did not provide performance gains (See Appendix
F). Deep learning models have been popular choices for studies related to classification or
prediction problems in biomedicine, but the larger question is whether such models are
appropriate for various sample sizes. Despite high prediction accuracy, most deep learning
models are black-box models and are not as interpretable as penalized regression models with
explicit mathematical formulations. In order for deep learning models to have more effectiveness
in the medicine, models that have the ability to interpret the decisions and underlying algorithms
explicitly [36], while maintaining a high-level of prediction accuracy are needed.

This study is limited by the naive assumption of gene independence, since genes form
complex mechanistic networks that represent their roles and biological functions that they
regulate. However, if techniques do not agree in the simple scenario where genes are treated as
identically and independently distributed, then it will be highly unlikely to attain unity with
much more difficulty in the complex task of inferring a gene network. Another limitation of this
study is the class imbalance within the dataset, which can make the model prediction biased by
allowing models choose the majority class to achieve higher prediction accuracy in that majority
class. We could match tumor and normal pairs, but it would have greatly decreased the sample
sizes of all four datasets. Furthermore, to increase stability and performance of our models by
reducing the size of data, we could have selected a subset of genes and trained our models.
However, if we were to subset genes arbitrarily, clinical relevance of those selected genes may
not be justified, and therefore, we chose to limit the parameter search space instead by setting
specific values for some parameters.

5. Conclusion

This study assessed the reproducibility and veracity of the state-of-the-art statistical machine
learning models by quantifying classification ability and model identifiability using high
dimensional TCGA data. Model selection and feature selection are open-ended questions in
statistics and machine learning, as no one model can guarantee to recover the true signal nor
guarantee universal optimal performance. Our results showed that since various machine
learning techniques use different underlying algorithms to make prediction and perform feature
selection, it is difficult for the end-users to reproduce discoveries from the genomic data analysis
and to choose proper models. Hence, it is important to conduct transparent analyses in the
research community, especially in the field of biomedicine, to provide end-users with the means
to select the most appropriate tools for their task. Furthermore, more transparency-driven
reproducibility studies must be conducted to improve reliability and provide a more honest
evaluation of the capabilities of machine learning models especially in the task of biomarker
discovery.
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Summary Table

What was already known on the topic:
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Non-reproducibility of cancer studies is prevalent, and often connected to inappropriate
use of statistical methods.

Different types of machine learning algorithms have been adopted to identify gene
classifiers for various types of cancer, but no one algorithm can guarantee to recover the
true signal or universal optimal performance.

What this study added to our knowledge:

The consistency and reliability of state-of-the-art machine learning techniques were
assessed by a case study using TCGA data, and the limitation of these machine learning
algorithms was demonstrated by evaluations of model performance and identifiability.
Genomics data analysis relies heavily on these statistical learning methods more than
before, so it is important to acknowledge and address the limitations of these
computational techniques.

Acknowledgements

The results published or shown here are in whole or part based upon data generated by
the TCGA Research Network: https://www.cancer.gov/tcga.

The authors would like to acknowledge the University of Arizona’s High-Performance
Computing (HPC) for providing the space and computing hours to conduct our
simulation studies and analyses.

References

[1]
[2]

[3]

[4]
[5]
[6]
[7]
[8]

[9]

S.F. Terry, Obama’s precision medicine initiative, Genet. Test. Mol. Biomarkers. 19
(2015) 113-114. doi:10.1089/gtmb.2015.1563.

A.S. Ptolemy, N. Rifai, What is a biomarker? Research investments and lack of clinical
integration necessitate a review of biomarker terminology and validation schema, Scand.
J. Clin. Lab. Invest. 70 (2010) 6—14. doi:10.3109/00365513.2010.493354.

S.R. Zaim, Q. Li, A.G. Schissler, Y.A. Lussier, Emergence of pathway-level composite
biomarkers from converging gene set signals of heterogeneous transcriptomic responses,
in: Pacific Symp. Biocomput., World Scientific Publishing Co. Pte Ltd, 2018: pp. 484—
495. doi:10.1142/9789813235533 0044.

D.C. Wang, X. Wang, Systems heterogeneity: An integrative way to understand cancer
heterogeneity., Semin. Cell Dev. Biol. 64 (2017) 1-4. doi:10.1016/j.semcdb.2016.08.016.
E.A. Mroz, J.W. Rocco, The challenges of tumor genetic diversity., Cancer. 123 (2017)
917-927. doi:10.1002/cner.30430.

L.M. McShane, In Pursuit of Greater Reproducibility and Credibility of Early Clinical
Biomarker Research, Clin. Transl. Sci. 10 (2017) 58—60. doi:10.1111/cts.12449.

J. Massagué, Sorting Out Breast-Cancer Gene Signatures, N. Engl. J. Med. 356 (2007)
294-297. doi:10.1056/NEJMe068292.

J.N. Weinstein, E.A. Collisson, G.B. Mills, K.R. Mills Shaw, B.A. Ozenberger, K. Ellrott,
I. Shmulevich, C. Sander, J.M. Stuart, The Cancer Genome Atlas Pan-Cancer analysis
project, 2013. doi:10.1038/ng.2764.

L. Peng, X.W. Bian, D.K. Li, C. Xu, G.M. Wang, Q.Y. Xia, Q. Xiong, Large-scale RNA-

13



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]
[22]
[23]
[24]
[25]

[26]

Seq Transcriptome Analysis of 4043 Cancers and 548 Normal Tissue Controls across 12
TCGA Cancer Types, Sci. Rep. 5 (2015) 13413. doi:10.1038/srep13413.

Y. Han, J. Yang, X. Qian, W.C. Cheng, S.H. Liu, X. Hua, L. Zhou, Y. Yang, Q. Wu, P.
Liu, Y. Lu, DriverML: a machine learning algorithm for identifying driver genes in cancer
sequencing studies, Nucleic Acids Res. 47 (2019) e45. doi:10.1093/nar/gkz096.

T. Bismeijer, S. Canisius, L.F.A. Wessels, Molecular characterization of breast and lung
tumors by integration of multiple data types with functional sparse-factor analysis, PLoS
Comput. Biol. 14 (2018) 1-28. doi:10.1371/journal.pcbi.1006520.

R.Z. Dong, X. Yang, X.Y. Zhang, P.T. Gao, A.W. Ke, H. chuan Sun, J. Zhou, J. Fan, J.
bin Cai, G.M. Shi, Predicting overall survival of patients with hepatocellular carcinoma
using a three-category method based on DNA methylation and machine learning, J. Cell.
Mol. Med. 23 (2019) 3369-3374. doi:10.1111/jcmm.14231.

H. Zhao, Z.-H. Duan, Cancer Genetic Network Inference Using Gaussian Graphical
Models, Bioinform. Biol. Insights. 13 (2019) 117793221983940.
doi:10.1177/1177932219839402.

L. Tapak, N. Shirmohammadi-Khorram, P. Amini, B. Alafchi, O. Hamidi, J. Poorolajal,
Prediction of survival and metastasis in breast cancer patients using machine learning
classifiers, Clin. Epidemiol. Glob. Heal. (2018) 1-7. doi:10.1016/j.cegh.2018.10.003.

J. Han, M. Chen, Y. Wang, B. Gong, T. Zhuang, L. Liang, H. Qiao, Identification of
Biomarkers Based on Differentially Expressed Genes in Papillary Thyroid Carcinoma,
Sci. Rep. 8 (2018) 9912. doi:10.1038/s41598-018-28299-9.

M. Sherafatian, Tree-based machine learning algorithms identified minimal set of miRNA
biomarkers for breast cancer diagnosis and molecular subtyping, Gene. 677 (2018) 111-
118. doi:10.1016/j.gene.2018.07.057.

M.C. Rendleman, J.M. Buatti, T.A. Braun, B.J. Smith, C. Nwakama, R.R. Beichel, B.
Brown, T.L. Casavant, Machine learning with the TCGA-HNSC dataset: Improving
usability by addressing inconsistency, sparsity, and high-dimensionality, BMC
Bioinformatics. 20 (2019) 1-9. doi:10.1186/s12859-019-2929-8.

Y.W. Wan, G.I. Allen, Z. Liu, TCGA2STAT: Simple TCGA data access for integrated
statistical analysis in R, Bioinformatics. 32 (2016) 952-954.
doi:10.1093/bioinformatics/btv677.

A. Liaw, M. Wiener, Classification and Regression by randomForest, 2002.
http://www.stat.berkeley.edu/.

A. Candel, E. Ledell, A. Bartz, Deep Learning with H20, 2018. http://h20.ai/resources/
(accessed September 10, 2019).

R. Tibshirani, Regression Shrinkage and Selection Via the Lasso, J. R. Stat. Soc. Ser. B.
58 (1996) 267-288. doi:10.1111/5.2517-6161.1996.tb02080.x.

T. Hastie, J.Q. Stanford, Glmnet Vignette, 2016. http://cran.us.r-project.org (accessed
September 10, 2019).

H. Zou, T. Hastie, Regularization and variable selection via the elastic net, J. R. Stat. Soc.
Ser. B Stat. Methodol. 67 (2005) 301-320. doi:10.1111/5.1467-9868.2005.00503.x.

J.A K. Suykens, J. Vandewalle, Least squares support vector machine classifiers, Neural
Process. Lett. 9 (1999) 293-300. doi:10.1023/A:1018628609742.

E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer, A.W. Maintainer, The e1071 Package,
2005.

Breiman L., Machine Learning, 45(1), 5-32., Stat. Dep. Univ. California, Berkeley, CA

14



[27]

[28]
[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

94720. (2001). doi:10.1023/A:1010933404324.

J. Zurada, Introduction to artificial neural systems, 1992. http://www .jaicobooks.com/j/pdf
hed/j-878 artificial neural systems.pdf (accessed September 10, 2019).

J.H. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, 2001.

R. Ihaka, R. Gentleman, R: A Language for Data Analysis and Graphics, J. Comput.
Graph. Stat. 5 (1996) 299-314. doi:10.1080/10618600.1996.10474713.

F.S. Collins, H. Varmus, A new initiative on precision medicine, N. Engl. J. Med. 372
(2015) 793-795. doi:10.1056/NEJMp1500523.

H. Han, X. Jiang, Disease Biomarker Query from RNA-Seq Data, Cancer Inform. 13s1
(2014) CIN.S13876. doi:10.4137/CIN.S13876.

[.H. Wei, Y. Shi, H. Jiang, C. Kumar-Sinha, A.M. Chinnaiyan, RNA-Seq accurately
identifies cancer biomarker signatures to distinguish tissue of origin, Neoplasia. 16 (2014)
918-927. do0i:10.1016/j.ne0.2014.09.007.

W. Awada, T.M. Khoshgoftaar, D. Dittman, R. Wald, A. Napolitano, A review of the
stability of feature selection techniques for bioinformatics data, Proc. 2012 IEEE 13th Int.
Conf. Inf. Reuse Integr. IRI 2012. (2012) 356-363. doi:10.1109/IR1.2012.6303031.

C.A. Targonski, C.A. Shearer, B.T. Shealy, M.C. Smith, F.A. Feltus, Uncovering
biomarker genes with enriched classification potential from Hallmark gene sets, Sci. Rep.
9(2019) 9747. doi:10.1038/s41598-019-46059-1.

B. Liu, Y. Wei, Y. Zhang, Q. Yang, Deep Neural Networks for High Dimension, Low
Sample Size Data, in: Proc. Twenty-Sixth Int. Jt. Conf. Artif. Intell. {IJCAI-17}, 2017:
pp. 2287-2293. doi:10.24963/ijcai.2017/318.

A. Holzinger, C. Biemann, C.S. Pattichis, D.B. Kell, What do we need to build
explainable Al systems for the medical domain?, (2017) 1-28.
http://arxiv.org/abs/1712.09923.

A.A. Hussein, T. Forouzanfar, E. Bloemena, J. de Visscher, R.H. Brakenhoff, C.R.
Leemans, M.N. Helder, A review of the most promising biomarkers for early diagnosis
and prognosis prediction of tongue squamous cell carcinoma, Br. J. Cancer. 119 (2018)
724-736. d0i:10.1038/s41416-018-0233-4.

C.G. Begley, Six red flags for suspect work., Nature. 497 (2013) 433—434.
doi:10.1038/497433a.

M. Daoud, M. Mayo, A survey of neural network-based cancer prediction models from
microarray data, Artif. Intell. Med. 97 (2019) 204-214. doi:10.1016/j.artmed.2019.01.006.
M. van Smeden, J.A.H. de Groot, K.G.M. Moons, G.S. Collins, D.G. Altman, M.J.C.
Eijkemans, J.B. Reitsma, No rationale for 1 variable per 10 events criterion for binary
logistic regression analysis, BMC Med. Res. Methodol. 16 (2016) 163.
doi:10.1186/s12874-016-0267-3.

15



