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Abstract—Graph analytics is being increasingly used for an-
alyzing large scale networks representing entities and relation-
ships in many domains. Various distributed graph processing
frameworks have been developed to deliver scalable performance
for evaluation of individual iterative graph queries. In practice
though, we may need to evaluate many queries. In this paper
we develop MultiLyra, a distributed framework that efficiently
evaluates a batch of graph queries. To deliver high performance,
this system is designed to amortize the communication and
synchronization costs of distributed query evaluation across mul-
tiple queries. Our experiments with MultiLyra for four iterative
algorithms on a cluster of four 32-core machines show the fol-
lowing. Basic batching technique for amortizing communication
and synchronization costs yield maximum speedups ranging from
3.08× to 5.55× across different batch sizes, algorithms and input
graphs. After employing optimizations that improve scalability
of expensive phases and perform reuse across the distributed
computation, the improved maximum speedups range from 7.35×
to 11.86×. MultiLyra also delivers superior scalabilty than the
Quegel batch processing system.

Index Terms—Distributed Graph Processing, Query Batching,
Reuse, Redundancy Elimination.

I. INTRODUCTION

Graph analytics is employed in many domains (e.g., social
networks [8], web graphs, brain networks etc.) to uncover
insights by analyzing high volumes of connected data. It has
been observed that real world graphs are often large (Twitter
- TT has 2 billion edges and 52.6 million vertices). Also,
iterative graph analytics requires repeated passes over the
graph till algorithm converges to a stable solution. As a result,
in practice, iterative graph analytics workloads are highly
data- and/or compute-intensive. Therefore, there has been a
great deal of interest in developing efficient graph analytics
systems for shared memory (e.g., Galois [11], Ligra [12])
and distributed platforms (e.g., Pregel [10], GraphLab [9],
GraphX [5], PowerGraph [1], PowerLyra [2], ASPIRE [14],
[15]). Of these, systems that are aimed at distributed comput-
ing platforms are the most scalable.

While the performance of graph analytics has improved
greatly due to advances in aforementioned systems, much
of this research has focussed on developing highly parallel
algorithms for solving a single iterative graph analytic query
(e.g., SSSP(s) query computes shortest paths from a single
source s to all other vertices in the graph). However, in practice
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users can be expected to request solutions to multiple queries
(e.g., multiple SSSP queries for different source vertices).

In this paper we address optimized evaluation of a batch of
queries by amortizing the communication and synchronization
costs of distributed evaluation. We present a general graph
analytics framework, MultiLyra, aimed at evaluating a batch
of vertex queries for different source vertices of a large graph.
For example, for SSSP algorithm, we may be faced with the
following batch of queries:

{SSSP(s1), SSSP(s2), · · · · · · SSSP(sn)}.
Our Basic algorithm maintains a unified list of active ver-

tices and, when considering a single active vertex, it performs
integrated processing of all queries in each phase (e.g., Gather,
Apply, Scatter) of the distributed computation. Thus, when
an active vertex is processed, all of its actions for all the
queries in the batch are performed together. This approach
leads to amortization of overhead costs across a batch of
queries. We identify the least scalable phases of Basic and,
to overcome their performance limitation, we develop two
additional algorithms – Finished Query Tracking (FQT) and
Inactive Query Tracking (IQT). These algorithms eliminate
unnecessary processing associated with completed and inactive
queries to improve upon Basic. Finally, we incorporate a Reuse
optimization where results from earlier batches of queries are
used to accelerate the execution of later batches of queries.

Experiments with power law graphs and multiple graph
algorithms show that MultiLyra can accelerate evaluation
of queries significantly. The Basic batching technique for
amortizing communication and synchronization costs yields
maximum speedups ranging from 3.08× to 5.55× across
different algorithms and input graphs. After further employing
optimizations focused at expensive and less scalable phases of
the distributed implementation, the improved resulting maxi-
mum speedups range from 7.35× to 11.86×. The combination
of IQT and Reuse yields the best overall performance.

Finally we compare the performance of MultiLyra with
Quegel [17], the only other system that is capable of batched
processing of iterative queries. Our results show that MultiLyra
outperforms Quegel substantially due to its superior scalability.

In Section II we present the detailed design of MultiLyra
including Basic, FQT and IQT, and Reuse algorithms. Section
III carries out a detailed evaluation. Concluding remarks are
given in Section IV.
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II. MULTILYRA: BATCHED PROCESSING

During distributed graph processing the input graph is
partitioned among the multiple machines and each machine is
responsible for carrying out the updates of vertices that reside
locally. The machines communicate to exchange needed vertex
values and synchronize between iterations before continuing
to the next iteration. The combined memories of multiple
machines are able to hold large graphs and the large number of
cores made available by multiple machines enhance the degree
of parallelism delivering scalability.

Since the PowerLyra [2] system has the most sophisticated
graph partitioning strategy, we build MultiLyra by generalizing
PowerLyra to handle a batch of queries. While PowerLyra
is based upon bulk-synchronous parallel [13] model of com-
putation, our approach also applies to systems that employ
the asynchronous computation model such as Grace [16],
[18], Aspire [14], and Coral [15]. The graph partitioning
technique guarantees that all incoming edges for the low-in-
degree vertices are local to the same machine on which the
vertex resides and hence computation is performed locally.
For balancing the computation across machines for high-in-
degree vertices, incoming edges are distributed across multiple
machines. The vertices along the borders of graph partitions
are replicated creating masters and mirrors where the former
reside where the partition containing them resides and the
latter reside on other machines to which subsets of edges have
been distributed.

Since PowerLyra, and consequently MultiLyra, is based
upon PowerGraph [1], it employs the GAS (Gather-Apply-
Scatter) model to divide the distributed computation into
phases. The three conceptual phases, namely Gather, Apply,
and Scatter, are executed during each iteration in the GAS
model. Algorithm 1 shows the five steps in processing a batch
of queries in each iteration of MultiLyra – we first describe the
three main phases (Gather-Batch, Apply-Batch and Scatter-
Batch) and then explain the responsibility of the two other
phases (Exch-Batch and Recv-Batch). Next we present the
details of the phases for our Basic batching algorithm that
maintains a single combined active list such that a vertex is
active if it is active for at least one of the queries in the batch
being evaluated.

Gather-Batch - In the gather phase, all active vertices on
each machine collect the required data from their predecessors,
in parallel. More specifically, each active vertex goes through
all incoming edges from its predecessors to collect vertex
and/or edge data as required for all queries in the running batch
of the graph algorithm (see Algorithm 2). In this phase, mirrors
participate to carry out the task of collecting the remote data.
Before data gathering starts, in the Recv-Batch of Algorithm
1, the active masters send activation messages to their mirrors
and inform them to participate in the gather phase – we refer
to this communication as G-Active. After both master and
mirrors collect the data from their predecessors, mirrors send
back their portion of collected data to their master for all the
concurrent queries as one message in order to accumulate all

Algorithm 1 The GAS model in MultiLyra
1: function START(k , query list)
2: while !query list.empty() do
3: batch qlist ← get next k queries from query list
4: unified active list ← all q ∈ batch qlist
5: while !unified avtive list.empty() do
6: Exch-Batch()
7: Recv-Batch()
8: Gather-Batch()
9: Apply-Batch()

10: Scatter-Batch()
11: end while
12: end while
13: end function

Algorithm 2 Gather-Batch in Basic MaltiLyra
1: function GATHER-BATCH
2: for all master or mirror vertices v ∈ unified active list do
3: for in edge ∈ v.incoming edges() do
4: � gathering data for all queries
5: for all qid ∈ batch qlist do
6: G-Data[] ← G-Data[] + PredData(qid, in edge)
7: end for
8: end for
9: gathered data[v.id] ← G-Data[]

10: � sending gathered data for all queries
11: if v is a mirror of a remote master then
12: Send G-Data to master(v, G-Data[])
13: end if
14: end for
15: end function

the data at the host machine (i.e., the machine where the master
resides) for each query in the running batch – we refer to this
communication as G-Data. So, two messages per replica are
needed in this phase for each active vertex.

Apply-Batch - The data collected by the gather phase is
next used in the apply phase to compute the new vertex

Algorithm 3 Apply-Batch in Basic MultiLyra
1: function APPLY-BATCH
2: for master vertex v ∈ unified active list do
3: changed ← false
4: � computing data for all queries
5: for all qid ∈ batch qlist do
6: new value ← Compute(gathered data[v.id], qid)
7: if Change(v.data[qid], new value) is ture then
8: v.data[qid] ← new value
9: changed ← true � at least by one query

10: end if
11: end for
12: � update the mirrors and activate them for scatter
13: if !v.mirrors.empty() && changed then
14: � sending data for all queries
15: for all qid ∈ batch qlist do
16: message ← message ∪ v.data[qid]
17: end for
18: message ← message ∪ active
19: Send A-Mix to mirrors(v, message)
20: end if
21: end for
22: end function
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Algorithm 4 Building the unified active list for Basic MaultiLyra
1: � done for any master/mirror by Scatter-Batch
2: for any vertex v which got changed do
3: while s ∈ v.succ() do
4: s.mark ← true
5: end while
6: end for
7: � done for any marked mirror by Exch-Batch
8: for any mirror m which m.mark is true do
9: � mark the remote master

10: Send E-Active to master(m, active)
11: end for
12: � done for any marked master by Recv-Batch
13: for any master v which v.mark is true do
14: unified active list ← unified active list ∪ v
15: if !v.mirrors.empty() then
16: Send G-Active to mirrors(v);
17: end if
18: end for

data values for all queries in the executing batch using the
Compute function for the graph algorithm (see Algorithm 3).
To maintain consistency across the machines, when a vertex
value is updated by at least one of the queries, the vertex
values of all queries in the batch are sent to their mirrors in one
aggregated message to affect update. Note that all values must
be sent because the combined active list does not maintain
the list of queries for which the vertex value was updated. In
addition, the updated vertices inform their mirrors to further
participate in the scatter phase. This is done by sending an
active message along with the vertex data – we refer to this
communication as A-Mix. In this phase, each active master
sends one message for each of it’s mirrors including the vertex
data for all queries and an activation alert.

After Apply-Batch, it is time to generate the active list of the
next iteration. Generating the next active list process begins by
marking the vertices locally via Scatter-Batch in the current
iteration, then continues by exchanging active messages in
Exch-Batch, and finally terminates in Recv-Batch by adding
the marked vertices into the active list for the next iteration
(see Algorithm 4).

Scatter-Batch - Any updated vertices which have changed
at least for one of the queries during the apply phase (Algo-
rithm 3 – lines 7-10), mark their successors for processing
in the next iteration. This is done by the scatter phase in
which all the updated vertices go through their outgoing
edges in parallel and mark their local successors that can be
local masters or local mirrors of remote vertices (lines 1-6
of Algorithm 4). Actually, no communication happens in this
phase. As mentioned earlier in the previous phase, updated
masters send activation messages to their mirrors in order
to inform them to participate in the scatter process (A-Mix
in Apply-Batch contains such a message). This ensures that
remote successors will be activated in the next iteration.

Exch-Batch - This phase is for actually sending the active
messages between machines to build the current iteration’s
active list. During the scatter phase in previous iteration, all
updated active vertices and their mirrors went through their

outgoing edges and marked their local neighbors (which can
be a master or a mirror) indicating that they must be active for
the next iteration for at least one of the queries. Now, in this
step, all the local mirrors that were marked during the previous
scatter phase, send an activation message to their master which
resides on a remote machine to mark and inform it of its
selection for the current iteration active list – we refer to this
communication as E-Active (see lines 7-11 of Algorithm 4).
Thus, the active list in each machine for the current iteration
is ready to be constructed in the next phase.

Recv-Batch - Now in this phase, all those masters which
were informed as being marked to be active, whether by local
vertices or through an E-Active message, are added to the
unified active list (see lines 12-18 of Algorithm 4). Further
in this phase, as mentioned in Gather-Batch, those masters
that need their mirrors to participate in the next gather phase
will send an activation message (G-Active) to their mirrors to
activate them for the gather phase.

A. Amortization Effects in Basic in MultiLyra

Previous subsection showed our algorithm for Basic Multi-
Lyra. Our Basic algorithm maintains a unified list of active
vertices and, when considering a single active vertex, it
performs integrated processing of all queries in each phase
(e.g., Gather, Apply, Scatter) of the distributed computation.
Thus, when an active vertex is processed, all of its actions
for all the queries in the batch are performed together. This
approach leads to amortization of overhead costs across the
batch of queries.

In GAS model each iteration makes multiple passes over
active vertices, one pass for each phase. Each iteration includes
multiple communications per each active vertex which is the
major source of overhead. At phase and iteration boundaries,
the machines must also synchronize adding to the overhead.
Finally, multiple threads running in parallel on each machine
must engage in locking and unlocking operations when updat-
ing shared data structures. These overheads coming from the
distribution and parallelism nature of the distributed frame-
works are shared between multiple queries simultaneously by
MultiLyra instead of executing queries one at a time.

Iteration-Sharing - In each iteration, for each of the
five phases, each machine loops over all its active vertices.
Going over all active vertices, and performing locking and
unlocking shared data structures for each active vertex, leads
to unavoidable overhead. Moreover, after each phase the ma-
chines need to be synchronized with barriers to guarantee that
previous phase has completed on all machines in the cluster
before continuing to the next phase. Likewise, at the end of
each iteration machines need to communicate to synchronize
before continuing to the next iteration. In MultiLyra, a batch
of queries which are running concurrently share iterations
together and in each phase when framework makes a pass over
the vertices, the work for all concurrent queries is performed
and by the end of an iteration all queries advance one iteration
toward their final convergence. Hence, the number of passes
over the vertices, the number of locking operations for shared
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data on a machine for parallel updates of vertices, and the
number of barriers between each phases are amortized across
the queries in the batch.

Communication - For each active vertex v there are five
communications in an iteration which are of two types. Three
communications in Active Category (i.e. G-Active, one in-
cluded in A-Mix, and E-Active) and two in the Data Category
(i.e. G-Data and one included in A-Mix). The first active
message (G-Active) is to enable mirrors of v to do gathering
during the gather phase, second active message (included in
A-Mix) is to enable the mirrors of v to do scattering during
the scatter phase, and the third one (E-Active) is to activate
the successors of v for the next iteration. The first message
in Data category (G-Data) is for sending the remote gathered
data by the mirrors of v to the master in order to use them
in apply phase, and the second message in this category
(included in A-Mix) is for updating the mirrors of v after
updating its value in the apply phase. By running a batch of
queries simultaneously in MultiLyra, communication cost in
each category is amortized across the concurrent queries.

Assume n queries are running concurrently on MultiLyra.
Let us consider vertex v that gets activated for the queries in
iteration i. In Active Category, each active message mentioned
above is sent only once for all queries. No matter how many
queries cause the vertex to be active, one single message is
enough to activate the vertex. Thus, not only the number
of communications but also the amount of communication
is amortized across the queries. In Data Category, the data
messages for all queries are merged together and a single
aggregated message is sent. Thus, the cost of communication
is amortized across the queries.

Table I shows the number of messages and their size in
each category for an active vertex v in a specific iteration i
for the following scenario. Assume vertex v is active for k
queries when a batch of n queries (n ≥ k) is running on Basic
MultiLyra, and let us compare it with the baseline PowerLyra
that runs queries one at a time. As shown in the first two
rows of Table I, since the size of communication in Active
category remains the same, there is reduction in number of
communications by a factor of k. Thus, Basic MultiLyra amor-
tizes the amount of communication in the Active Category.
For communication in Data Category, MultiLyra significantly
reduces the number of communications but can increase the
sizes of messages by up to a factor of n.

TABLE I
COMMUNICATIONS FOR AN ACTIVE VERTEX v IN A SPECIFIC ITERATION i.
n IS THE BATCH SIZE. k IS # OF QUERIES IN WHICH v IS ACTIVE. AND f IS #

OF QUERIES WHICH HAS FINISHED PRIOR TO THE ITERATION i.

#Active Size #Data Size
Baseline k*3 size of(Active) k*2 size of(Data)

Basic 3 size of(Active) 2 n*size of(Data)
FQT 3 size of(Active) 2 (n-f)*size of(Data)
IQT 3 size of(Active) 2 k*size of(Data)
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Fig. 1. Amount of wasteful work in five iterations of running a batch of three
queries (q1, q2, q3) concurrently for a vertex v on MultiLyra versions. Query
status 1 or 0 indicate whether vertex v is active or inactive for that query in
the current iteration and query status -1 indicates that query is finished.

B. FQT and IQT

In Basic MultiLyra, each phase acts on behalf of all the
queries in the batch for an active vertex. This is because a
unified active list is maintained that does not maintain the
list of queries for which the vertex has been activated. It also
does not know whether some queries have already finished. To
improve upon Basic, we develop two additional algorithms –
Finished Query Tracking (FQT) and Inactive Query Tracking
(IQT). These algorithms eliminate unnecessary work, both
computation and communication, associated with completed
queries and inactive vertices for queries respectively. The last
two rows of Table I show that the number of communications
in FQT and IQT remains the same when compared with Basic
while the message size is reduced in Data Category where f
indicates the number of queries in the batch which has finished
prior to the iteration. Table II shows the work performed by
FQT and IQT in terms of computation and communication and
compares it with Basic. Next we explain how the unnecessary
work is avoided by keeping track of status of each of the
queries.

Assume a batch of three queries q1, q2, and q3 are running
on MultiLyra for five iterations. Figure 1 shows five running
iterations of the three queries for an active vertex v indicating
whether a query does useful, wasteful, or no work during each
iteration for the vertex. Queries q1 and q2 finish at the end of
fourth and second iterations respectively, and q3 does not finish
in these five iterations. The status of each query is shown in
the figure for each iteration. Status 1 or 0 indicates that query
is active or inactive for vertex v and status -1 indicates that the
query has finished. Next, we present the detailed algorithms
of Apply-Batch and how the active list is constructed for both
IQT and FQT.

Algorithm 5 (a) and (b) show how FQT and IQT reduce
the amount of wasteful work both in computation and com-
munication. Unlike Basic, FQT has a loop only over the
unfinished queries in the running batch to do the actions by
using unfinished qlist in lines 5 and 17. FQT keeps track of
each unfinished query which has at least one changed vertex
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TABLE II
DIFFERENT VERSIONS OF MULTILYRA IMPLEMENTATION. (Q: NUMBER OF SIMULTANEOUS QUERIES; V: NUMBER OF VERTICES)

Version Description Active List Size Communication and Computation

Basic No query related V Both performed for
tracking performed All Queries

FQT Performs tracking of V+Q Both performed only for
Unfinished Queries Unfinished Queries

IQT
Performs tracking of

V*Q
Both performed only for

Active Queries Active Queries
for each Active Vertex of each Active Vertex

Algorithm 5 Modification in Apply-Batch algorithm for FQT (a) and IQT (b)
1: function APPLY-BATCH
2: for master vertex v ∈ unified active list do
3: changed ← false
4: � computing data only for unfinished queries
5: for qid ∈ unfinished qlist do
6: new value ← Compute(gathered data[v.id], qid)
7: if Change(v.data[qid], new value) is ture then
8: v.data[qid] ← new value
9: changed ← true � at least by an unfinished query

10: � deposit qid for building next unfinished qlist
11: Deposit Unfq(qid)
12: end if
13: end for
14: � update the mirrors and activate them for scatter
15: if !v.mirrors.empty() && changed then
16: � sending data only for unfinished queries
17: for all qid ∈ unfinished qlist do
18: message ← message ∪ v.data[qid]
19: end for
20: message ← message ∪ active
21: Send A-Mix to mirrors(v, message)
22: end if
23: end for
24: end function
25: (a)

1: function APPLY-BATCH
2: for master vertex v ∈ unified active list do
3: changed ← false
4: � computing only for those queries in which v is active
5: for all qid ∈ active qlist[v.id] do
6: new value ← Compute(gathered data[v.id], qid)
7: if Change(v.data[qid], new value) is ture then
8: v.data[qid] ← new value
9: changed ← true

10: � deposit qid for building next active qlist[v.id]
11: Deposit vidqid(v.id, qid)
12: end if
13: end for
14: � update the mirrors and activate them for scatter
15: if !v.mirrors.empty() && changed then
16: � sending only for those queries in which v is active
17: for all qid ∈ active qlist[v.id] do
18: message ← message ∪ v.data[qid]
19: end for
20: message ← message ∪ active
21: Send A-Mix to mirrors(v, message)
22: end if
23: end for
24: end function
25: (b)

by depositing its id (qid in line 11) to use later for building
the next unfinished qlist for the next iteration. Note, FQT
in Gather-batch also uses unfinished qlist for collecting and
sending data instead of all queries (using unfinished qlist on
line 5 of Algorithm 2 instead of batch qlist). Algorithm 6 (a)
on line 15 shows when unfinished qlist is constructed. The
following line makes sure that all machines in the cluster are
aware of this list before continuing to the Gather phase. This
requires exchange of only n bits as one single bit is set in each
iteration while n is the number of queries in the batch. Each
bit indicates whether the corresponding query has finished or
not. IQT in Algorithm 5 (b) reduces the unnecessary work
similarly; however, by using a list of active queries for each
single vertex (active qlist[v.id] at lines 5 and 17), it ensures
that computation and communication is performed only for
queries for which vertex v has been activated. Note, IQT
uses active qlist[v.id] also for collecting and sending data in
Gather Batch to ensure no wasteful work is done. In line 11
of Algorithm 5 (b), IQT keeps track of active queries for each
vertex by depositing a bit-set of active queries for each vertex.
Later in Exch-Batch, those local mirrors that need to send E-
Active to their master to mark them for next iteration must also

send the tracking information to the remote machine at which
master resides. It requires addition of n bits to the end of E-
Active message (see Algorithm 6 (b), line 11). Finally, now all
the machines have the tracking information, the active qlist is
constructed (line 16 of Algorithm 6 (b)).

C. Reuse Optimization

This section describes the details of our online Reuse
optimization on top of IQT. Reuse includes three steps. First,
it extracts top high-centrality vertices during the run of the
first batch. As the second step, it picks the top five to run a
batch of five queries of the graph algorithm and maintains the
results distributed on each machine (each machine maintains
the results for it’s local vertices). Then in the third step, we
Reuse results of these five queries during the run of remaining
batches to accelerate the convergence of each query. Hence,
the remaining batches of queries will take advantage of the
superior speedup offered by Reuse. To do this, we added a
new phase named Reuse-Batch to the GAS model of MultyLira
between Apply-Batch and Scatter-Batch phases to perform
reuse for the remaining batches.
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Algorithm 6 Modification in algorithm of building the active list for FQT (a) and IQT (b)
1: � done for any master/mirror by Scatter-Batch
2: for any vertex v which got changed do
3: while s ∈ v.succ() do
4: s.mark ← true
5: end while
6: end for
7: � done for any marked mirror by Exch-Batch
8: for for any mirror m which m.mark is true do
9: � mark the remote master

10: Send E-Active to master(m, active)
11: end for
12: � done for any marked master by Recv-Batch
13: for for any master v which v.mark is true do
14: unified active list ← unified active list ∪ v
15: unfinished qlist ← Withdraw qid()
16: unfinished qlist.sync() � exchange one single bitset
17: if !v.mirrors.empty() then
18: Send G-Active to mirrors(v);
19: end if
20: end for
21: (a)

1: � done for any master/mirror by Scatter-Batch
2: for any vertex v which got changed do
3: while s ∈ v.succ() do
4: s.mark ← true
5: end while
6: end for
7: � done for any marked mirror by Exch-Batch
8: for for any mirror m which m.mark is true do
9: � mark the remote master

10: activeq bitset ← Withdraw vidqid(v.id)
11: Send E-Active to master(m, active + activeq bitset)
12: end for
13: � done for any marked master by Recv-Batch
14: for for any master v which v.mark is true do
15: unified active list ← unified active list ∪ v
16: active qlist[v.id] ← activeq bitset;
17: if !v.mirrors.empty() then
18: Send G-Active to mirrors(v);
19: end if
20: end for
21: (b)

SSSP
v.data[qid]=Min(v.data[qid], v.datahc[vhc.id]+vhc.data[qid])

SSWP
v.data[qid]=Max(v.data[qid], Min(v.datahc[vhc.id],vhc.data[qid]))

Viterbi
v.data[qid]=Max(v.data[qid], v.datahc[vhc.id]*vhc.data[qid])

Fig. 2. Reuse equations to update vertices in Reuse-Batch.

Reuse-Batch - When one of the extracted high-centrality
vertices, vhc, becomes active in an iteration then after Apply-
Batch computes the intermediate results for vhc on the host
machine, mh, the process of reuse in Reuse-Batch starts. In
this phase, each machine iterates over all its local vertices and
updates their current values towards faster convergence for
those queries for which vhc has been activate, qid. To do this
two pieces of data are required, the final result of vhc when
it was the source vertex of the query that was computed and
is being maintained on all machines, i.e. v.datahc[], and the
current value of vhc, i.e. vhc.data[]. Since mh has the current
value, it is responsible for sending the value to other machines
to ensure all the machines have required data for reuse process.
Note, there is no need to send intermediate data to machines
on which a mirror of vhc exists since it has already been sent
by Apply-Batch. Figure 2 shows the reuse equations for SSSP,
SSWP and Viterbi [7].

III. EXPERIMENTS

TABLE III
ITERATIVE GRAPH ALGORITHMS.

Algorithm Message Data Type
Single Source Shortest Path (SSSP) Unsigned int
Single Source Widest Path (SSWP) Unsigned int
Number of Paths (NP) Unsigned int
Viterbi (VT) [7] Float

TABLE IV
REAL WORLD INPUT GRAPHS.

Input Graph #Edges #Vertices #Queries
Twitter (TT) [3], [6] 2.0B 52.6M 1K
LiveJournal (LJ) [4], [8] 69M 4.8M 1K

Experimental Setup - For this work we implemented our
framework using PowerLyra [2] which improves upon Power-
Graph [1] via its hybrid partitioning method. In our evaluation
we consider four algorithms - Single Source Shortest Path
(SSSP), Single Source Widest Path (SSWP), Number of Paths
(NP), and Viterbi (VT) [7] (see Table III). We use two input
graphs listed in Table IV - one is billion edge graph (TT)
and one has tens of millions of edges (LJ). For each input
graph and for each algorithm, we generated 1024 queries.
The sources are unique and were selected randomly. All
experiments were performed on a cluster of four identical
machines. Each machine has 32 Intel Broadwell cores, 256
GB memory, and runs CentOS Linux release 7.4.1708.

We evaluate all the versions of batching discussed, namely
Basic, FQT, and IQT. We also implemented our Reuse al-
gorithm and performed its evaluation. Next we present our
experimental results.

A. Basic Batching

We ran 1024 queries for each input graph and algorithm on
the Basic version of MultiLyra for varying batch sizes and
compared their execution times with those of the baseline
PowerLyra framework that evaluates queries one at a time.
Table V shows the execution time, and the percentage spent
in each phase, for the baseline by running all the 1024 queries.
We use these times to compute speedups obtained by our
algorithms. In Basic, for each batch size k we ran 1024 queries
by dividing them into multiple batches of size k.
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TABLE V
RUNNING 1024 QUERIES ON THE NO-BATCHING BASELINE FRAMEWORK (POWERLYRA).

G Algorithm Exch-msg Recv-msg Gather Apply Scatter Sync Execution Time (s)

TT

SSSP 8.84% 8.57% 23.77% 36.42% 19.82% 2.57% 37,464
SSWP 9.38% 9.41% 27.56% 31.37% 19.11% 3.16% 51,331

NP 12.87% 9.87% 22.94% 31.57% 20.63% 2.11% 38,046
VT 8.94% 8.67% 23.77% 36.15% 19.74% 2.73% 36246

LJ

SSSP 8.97% 11.24% 14.53% 40.47% 11.85% 12.94% 12,125
SSWP 10.53% 12.09% 15.59% 35.95% 10.75% 15.10% 10,200

NP 9.95% 11.62% 14.10% 38.62% 14.04% 11.67% 7,648
VT 9.59% 11.60% 14.89% 38.40% 11.27% 14.25% 14287
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Fig. 3. Speedup (a) and the percentage of reduction in number of communications (b) when running 1K queries with different batch sizes for four
algorithms(SSSP, SSWP, NP and VT) on two input graphs, Twitter (TT) and LiveJournal (LJ)

The speedups obtained by Basic version of MultiLyra are
shown in Figure 3(a) as the batch size is varied from 2 to
1024. The Basic version delivers maximum speedups ranging
from 1.82× for SSWP to 4.61× for Viterbi on Twitter and
from 3.08× for NP to 5.55× for Viterbi on LiveJournal.

The most dominant performance obstacle in distributed
graph processing is the number of communications needed by
nodes in the cluster to exchange remote data for an iterative
algorithm. Figure 3(b) shows the percentage of reduction in
the number of communications when the batch size is varied
for Basic MultiLyra. In this figure, the line in red shows the
hypothetical ideal reduction achievable when the number of
communications is reduced by a factor equal to the batch
size. As we can see, reductions in number of communications
achieved by Basic are not far from the ideal with most
reduction observed in NP and the least reduction in SSWP.

From the data shown in Figure 3(a) we observe that initially
the speedup increases with batch size because the number of
communications between the machines in the cluster reduces.
Then, at some point the speedup reaches its peak and then
begins to slightly fall. To study this behavior, we collected
the times spent in each of the five phases described earlier
with the batch size that delivered the most speedup on average
for each algorithm. Table VI shows the percentage of total
execution time spent in each phase. Moreover, we collected
the time spent in each step for every algorithm on every input
graph when the number of simultaneous queries varies from

2 to 1024. A representative set of data is shown in Table VII
for the SSSP algorithm on both input graphs. From this data
we observe that the Apply phase takes more than half of the
execution time, 54% on average and it increases as the batch
size grows from 2 to 1024. Thus, Apply phase does not scale
well with batch size. Moreover, although Gather and Scatter
phases scale, they together still account for substantial part of
the execution cost.

This limited scalability of these phases can be understood as
follows. In Basic version of MultiLyra framework, all queries
in the batch (say n queries) use only one active list. Hence,
when a vertex becomes active, no matter due to which query,
the gather function in Gather phase will collect the data
needed for computation of all n queries and the update function
in Apply phase will do the computation for all of these queries.
The communications in Data Category also need to send the
data for all the queries both in Gather and Apply phases.

Furthermore, let us consider Table VIII that shows the
percentage of the total number of communications in Data
category in each Gather and Apply phases. It shows that,
on average, more than 82% of the total communications in
Data category are communicated in Apply phase and also
the last column shows that on average more than 75.9%
of all communications are in Data category. Thus, only by
improving communications in Data category can we help to
improve the scalability of the Apply phase.
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TABLE VI
PERCENTAGE OF TOTAL EXECUTION TIME SPENT IN EACH STEP FOR SELECTED BATCH SIZES USING BASIC MULTILYRA

G Algorithm #Batch Exch-msg Recv-msg Gather Apply Scatter Sync Speedup

TT

SSSP 256 1.50% 0.41% 21.83% 53.75% 19.33% 3.17% 4.44×
SSWP 128 1.31% 0.98% 38.00% 36.20% 20.03% 3.48% 1.82×

NP 32 2.12% 1.44% 18.95% 54.28% 20.88% 2.32% 3.57×
VT 128 1.34% 0.70% 23.67% 50.30% 20.63% 3.35% 4.61×

LJ

SSSP 256 1.24% 0.50% 9.72% 65.82% 5.06% 17.66% 5.35×
SSWP 128 1.50% 1.16% 13.52% 51.03% 5.66% 27.13% 3.53×

NP 32 3.00% 2.70% 9.26% 57.43% 5.61% 22.00% 3.08×
VT 128 1.24% 0.86% 9.42% 63.16% 5.48% 19.84% 5.55×

TABLE VII
PERCENTAGE OF TOTAL EXECUTION TIME SPENT IN EACH STEP FOR SSSP ON THE INPUT GRAPHS WHEN THE BATCH SIZE VARIES.

G #Batch Exch-msg Recv-msg Gather Apply Scatter Sync Speedup

TT

2 3.18% 2.76% 27.50% 19.82% 45.97% 0.76% 0.51×
4 3.72% 2.99% 30.87% 21.50% 39.96% 0.96% 0.95×
8 2.75% 2.30% 27.69% 20.72% 45.56% 0.97% 1.26×

16 2.63% 1.98% 28.32% 27.00% 38.68% 1.38% 2.06×
32 2.18% 1.56% 25.87% 35.06% 33.50% 1.84% 2.94×
64 1.30% 1.08% 24.65% 42.01% 28.58% 2.36% 3.66×
128 1.25% 0.71% 24.27% 50.34% 20.50% 2.93% 4.37×
256 1.50% 0.41% 21.83% 53.75% 19.33% 3.17% 4.44×
512 1.39% 0.33% 20.66% 56.77% 17.84% 3.01% 4.36×

LJ

2 5.64% 7.19% 18.37% 37.56% 23.10% 8.14% 1.12×
4 4.95% 6.27% 20.46% 37.81% 22.30% 8.20% 1.74×
8 3.95% 4.75% 17.48% 40.88% 24.17% 8.77% 2.41×

16 3.25% 3.62% 15.07% 48.32% 19.19% 10.55% 3.42×
32 2.56% 2.43% 12.02% 54.89% 15.75% 12.34% 4.41×
64 1.86% 1.37% 10.42% 59.67% 12.52% 14.16% 4.91×
128 1.52% 0.82% 9.92% 66.79% 5.58% 15.37% 5.32×
256 1.24% 0.50% 9.72% 65.82% 5.06% 17.66% 5.35×
512 0.70% 0.36% 9.64% 66.79% 4.47% 18.04% 5.34×

1024 0.61% 0.45% 9.35% 68.63% 4.29% 16.66% 5.08×

In summary, based upon the above experiments with Basic,
we make two key observations. First, among all the phases the
Apply phase is the least scalable phase and it is responsible for
82% of Data communications on average; hence, it consumes
more than half of the execution time. Second, Apply phase
does not scale due to extra communications and computations
that can be removed by keeping track of status of the queries
that are running concurrently. This leads us to implementions
of the two versions of MultiLyra framework named FQT and
IQT described next.

B. FQT and IQT

To improve the Basic version, we studied the status of the
queries. To do this, we ran 1024 queries for each input graph
for all four algorithms and collected the finish time for each
query. Table IX shows the percentage of the total execution
time during which some queries have finished and they are
waiting for other queries to finish. The waiting time ranges
from around 36% for SSWP to 2.3% for SSSP on average for
the two input graphs. Finished Query Tracking (FQT) version
of MultiLyra framework utilizes this opportunity.

We repeated our experiment, running 1024 queries with
the selected batch sizes, to study the speedup of FQT and
compared it with Basic version, shown in the related rows
of Table X. As we expected from Table IX, SSWP takes
advantage of this version since it has 36% waiting time on
average for each finished query. But all other algorithms could

not utilize FQT due to their very small waiting times. Note,
in case of NP, removing less than 10% waiting time on
average was not enough to overcome the overhead of FQT.
As described in the previous section, FQT improves Basic
by not performing the required actions (i.e. computation and
communication) for already-finished queries. Since only SSWP
among the four algorithms had the long waiting time to offer,
it only could gain speedup from FQT.

FQT just knows whether a query is already finished or
not. To further improve over FQT, we implemented Inactive
Query Tracking (IQT) which kept track of the current active
queries for each vertex in an iteration. We repeated the same
experiment for IQT. Table X compares the speedup of IQT
over the baseline with speedups of other versions, i.e. FQT
and Basic. As we can see, IQT improves the speedup of the
algorithms substantially since IQT, as described earlier, can
remove the extra computations and communications not only
for finished queries but also for the inactive unfinished queries
per each active vertex in an iteration.

Among the four algorithms, NP is the only algorithm where
FQT and IQT do not deliver speedups. This is due to the
nature of NP where the vertex values always increase till they
hit a set upper limit and converge. Consequently, most of the
queries are active in each iteration for active vertices and few
opportunities exist for FQT and IQT to exploit.
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TABLE VIII
PERCENTAGE OF THE NUMBER OF COMMUNICATION IN DATA CATEGORY NEEDED IN

GATHER AND APPLY PHASES.

G Algo. #Batch Gather Apply #Data Comm. (% of Total)

TT

SSSP 256 19.70% 80.30% 2.34 ×109 (73.26%)
SSWP 128 31.55% 68.45% 12.04 ×109 (66.08%)

NP 32 22.10% 77.90% 11.71 ×109 (70.25%)
VT 128 19.16% 80.84% 4.02 ×109 (73.52%)

LJ

SSSP 256 9.97% 90.03% 0.69 ×109 (85.03%)
SSWP 128 16.45% 83.55% 1.39 ×109 (71.61%)

NP 32 10.96% 89.04% 2.29 ×109 (82.52%)
VT 128 9.53% 90.47% 1.41 ×109 (85.49%)

TABLE IX
THE PERCENTAGE OF TIME ON AVERAGE FOR WHICH A

COMPLETED QUERY PERFORMS WASTEFUL PROCESSING.

G Algo. #Batch Waiting Time (%)

TT

SSSP 256 0.66%
SSWP 128 39.79%

NP 32 0.89%
VT 128 0.76%

LJ

SSSP 256 4.00%
SSWP 128 32.10%

NP 32 17.61%
VT 128 5.99%

TABLE X
IQT AND FQT IN DETAILS FOR THE SELECTED BATCH SIZES AND THEIR SPEEDUP OVER THE BASELINE (TABLE V).

G Algo. #Batch V Exch-msg Recv-msg Gather Apply Scatter Sync Speedup Basic

TT

SSSP 256 FQT 1.19% 0.39% 18.89% 51.53% 25.05% 2.95% 4.26× 4.44×IQT 1.52% 2.74% 32.66% 31.56% 27.38% 4.14% 6.45×
SSWP 128 FQT 1.65% 1.18% 35.92% 31.99% 25.00% 4.25% 2.30× 1.82×IQT 1.95% 3.20% 45.18% 16.94% 28.06% 4.67% 2.65×

NP 32 FQT 1.88% 1.28% 27.87% 48.33% 18.61% 2.03% 3.17× 3.57×IQT 2.37% 1.97% 30.18% 47.00% 16.62% 1.85% 2.90×
VT 128 FQT 1.23% 0.68% 21.98% 49.48% 23.25% 3.38% 4.52× 4.61×IQT 1.83% 2.41% 34.14% 31.94% 25.62% 4.05% 5.98×

LJ

SSSP 256 FQT 1.13% 0.49% 8.84% 64.72% 8.23% 16.58% 5.25× 5.35×IQT 1.80% 1.97% 16.17% 43.14% 8.32% 28.60% 9.14×
SSWP 128 FQT 1.67% 1.24% 14.17% 47.81% 6.87% 28.23% 3.91× 3.53×IQT 1.90% 3.95% 19.91% 25.84% 8.26% 40.14% 5.39×

NP 32 FQT 2.99% 2.67% 10.41% 56.80% 5.40% 21.72% 3.03× 3.08×IQT 2.83% 3.49% 10.33% 57.28% 5.08% 20.97% 2.89×
VT 128 FQT 1.37% 0.86% 8.83% 63.23% 6.04% 19.68% 5.47× 5.55×IQT 1.58% 4.15% 15.09% 41.25% 8.22% 29.70% 8.92×

C. IQT + Reuse

This subsection presents experimental results of our Online
Reuse technique on top of IQT evaluated in the previous
subsection. To enable reuse, when the first batch of queries,
are executed using IQT, the top five high-centrality vertices
are identified based upon the number of updates and scatters
they experience. Prior to running the remaining batches of
queries, we generated an extra small batch of queries using the
five extracted vertices and ran it on IQT to store their result
in order to reuse them during the run of remaining queries.
Hence, the remaining batches of queries took advantage of the
superior performance offered by Reuse.

Figure 4 compares Reuse speedup with FQT and IQT. Using
Reuse optimization on top of IQT gives 8.04× and 11.06×
speedups on average across the different graph algorithms on
the input graphs Twitter (TT) and LiveJournal (LJ) respectively
for running 1024+5 queries – more detailed data is given in
Table XI. Please note that the data for Reuse is presented
for three algorithms where Reuse optimization can be safely
applied; the fourth algorithm is omitted because application of
Reuse to NP is unsafe.

D. IQT Batching Vs. Quegel Batching

Quegel [17] is the only other graph processing system
that has been designed to simultaneously evaluate a batch of
iterative graph queries. By sharing computing and memory

0

2

4

6

8

10

12

SSSP SSWP VT SSSP SSWP VT

LJ TT

Sp
ee

du
p

FQT IQT Reuse

Fig. 4. Reuse vs. FQT and IQT

resources across multiple queries whose evaluation is over-
lapped via pipelining, Quegel optimizes the evaluation of a
batch of queries. Since it does not integrate the data messages,
the number of communications remain the same. While its
focus is on evaluating point-to-point queries [19] (e.g., shortest
path from vertex v to vertex w), it can be easily adapted
to evaluate point-to-all queries (e.g., SSSP). We carried out
this adaptation and then compared the performance of Quegel
batching with our IQT batching.

The speedups obtained by IQT batching over Quegel batch-
ing are given in Table XII for different batch sizes. As we
can see, the speedups of IQT over Quegel increase as batch
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TABLE XI
PERCENTAGE OF TOTAL EXECUTION TIME SPENT IN EACH STEP FOR SELECTED BATCH SIZES USING IQT + REUSE

AND COMPARING THE SPEEDUP WITH IQT ALONE.

G Algorithm #Batch Exch-msg Recv-msg Gather Apply Reuse Scatter Sync IQT+Reuse IQT

TT
SSSP 256 1.84% 2.60% 37.59% 23.45% 3.26% 26.81% 5.26% 8.08× 6.45×
SSWP 128 2.05% 3.09% 44.98% 11.61% 2.90% 25.92% 9.46% 7.35× 2.65×

VT 128 1.90% 2.29% 37.64% 22.11% 3.40% 26.78% 6.31% 8.69× 5.98×

LJ
SSSP 256 1.56% 1.91% 17.97% 33.72% 2.95% 7.94% 33.94% 10.26× 9.14×
SSWP 128 2.02% 3.33% 18.38% 16.92% 3.70% 7.54% 48.10% 11.86× 5.39×

VT 128 1.71% 3.86% 17.03% 31.54% 2.99% 8.58% 34.29% 11.07× 8.92×

TABLE XII
SPEEDUPS OF IQT BATCHING OVER QUEGEL BATCHING

ON A FOUR MACHINE CLUSTER.

G Algo. #Batch IQT Speedup

LJ

SSSP
16 1.97×
32 2.83×
64 3.89×

SSWP
16 1.61×
32 2.75×
64 4.34×

NP
16 3.38×
32 4.23×
64 4.61×

VT
16 2.29×
32 3.86×
64 5.33×

size is increased. This is expected, as Quegel’s performance
remains steady with batch size while IQT has been designed
so phases of MultiLyra scale in performance with batch size
giving improved performance.

IV. CONCLUSION

In this paper we presented the MultiLyra system, a gen-
eralization of the PowerLyra system to enable efficiently
evaluation of a batch of iterative graph queries. MultiLyra’s
query evaluation methodology (Basic) and added optimiza-
tions (IQT and Reuse) yield significant speedups. By amor-
tizing the communication, synchronization and computation
costs across multiple queries, MultiLyra delivers maximum
speedups ranging from 7.35× to 11.86× across four iterative
graph algorithms and multiple input graphs on a cluster of four
32-core machines. Finally, scalability of batching supported by
MultiLyra is far superior to that of Quegel.
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