

Cite this: DOI: 10.1039/c9mt00199a

A comprehensive mechanistic model of iron metabolism in *Saccharomyces cerevisiae*†

Paul A. Lindahl

The ironome of budding yeast (*circa* 2019) consists of approximately 139 proteins and 5 nonproteinaceous species. These proteins were grouped according to location in the cell, type of iron center(s), and cellular function. The resulting 27 groups were used, along with an additional 13 nonprotein components, to develop a mesoscale mechanistic model that describes the import, trafficking, metallation, and regulation of iron within growing yeast cells. The model was designed to be simultaneously mutually autocatalytic and mutually autoinhibitory – a property called autocatinhitory that should be most realistic for simulating cellular biochemical processes. The model was assessed at the systems' level. General conclusions are presented, including a new perspective on understanding regulatory mechanisms in cellular systems. Some unsettled issues are described. This model, once fully developed, has the potential to mimic the phenotype (at a coarse-grain level) of all iron-related genetic mutations in this simple and well-studied eukaryote.

Received 4th August 2019,
Accepted 9th September 2019

DOI: 10.1039/c9mt00199a

rsc.li/metallooms

Introduction

Anyone who has contemplated developing a biochemical model describing the mechanism of virtually any process in a cell soon realizes the practical impossibility of the task. Cellular processes are enormously complicated and modeling them at the biochemical level requires huge amounts of kinetic and mechanistic information much of which is unavailable. I discovered this when considering how to model iron metabolism in budding yeast, *S. cerevisiae*. A popular alternative is to collect and organize existing metabolic/stoichiometric data into genome-scale bioinformatic models.^{1,2} A recent stoichiometric model of the yeast metabolic network, including iron metabolism, involves 963 genes.³ Using bioinformatics methods, the ironome in human cells was found to involve 398 genes; 48% encode heme proteins, 35% encode mononuclear Fe and Fe–O–Fe proteins, and 17% encode iron–sulfur clusters (ISCs).⁴ Such models are related to those I seek, but my objective goes beyond a statistical analysis; it is to obtain *mechanistic* insight at the systems' level analogous to that gained by viewing a busy metropolis from an altitude of 30 000 ft.

Here I develop a model using published data relevant to iron metabolism in yeast. I focused on iron because of my background in this area, as well as the critical importance of this transition metal ion for all eukaryotic cells. Iron is found in the

mitochondrial respiratory complexes used to generate cellular energy, as well as in enzymes that replicate and repair DNA, synthesize lipids, proteins, amino acids, and nucleotides.

By manually searching the literature, I identified 139 proteins and 5 nonprotein iron species in *S. cerevisiae* that are intimately involved in iron metabolism – the *ironome* *circa* 2019 (Table S1, ESI†). For each species, gathered information included the type of iron center, cellular location, and physiological role. I then organized the proteins into 27 groups and constructed the model (Table S2, ESI†). Grouping simplified the ironome and made it amenable for modeling. Thirteen nonproteinaceous components were added to complete the so-called “40-component” model. The model was designed to be mutually autocatalytic and autoinhibitory – a combination coined *autocatinhitory*. I expand on this modeling principle below.

1. The iron proteome

Cell wall and plasma membrane

Under normal aerobic conditions, environmental iron is in the Fe^{III} oxidation state, whereas in anaerobic environments, it is generally Fe^{II}. Iron is imported into yeast *via* three pathways. In the nonreductive Fe^{III} pathway, Fe^{III} ions bind to foreign siderophore chelators in the environment and are imported into the cell *via* receptors **Arn1**, **Arn2**, **Arn3** and **Arn4**.^{5,6} Cell-wall mannoproteins **Fit1**, **Fit2**, and **Fit3** promote uptake of Arn-associated siderophore-ferric chelators.^{5–9} When exponentially growing yeast cells shift to stationary phase, the cell wall accumulates iron in a magnetically-ordered Fe^{III} form.¹⁰ Under iron-deficient conditions, expression of these receptors

Departments of Chemistry and of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-3255, USA. E-mail: Lindahl@chem.tamu.edu

† Electronic supplementary information (ESI) available: Table S1 is a list of the ironome proteins. Table S2 is a list of model components. See DOI: 10.1039/c9mt00199a

and mannoproteins is induced by the Aft1/2-dependent iron regulon (see below).

The reductive Fe^{III} import pathway involves proteins **Fet3**, **Ftr1**, and **Fre1**. Environmental Fe^{III} is reduced to Fe^{II} by the NADPH-dependent ferrireductase **Fre1** and is then reoxidized by the O_2 -dependent multicopper oxidase **Fet3**.^{11–14} **Ftr1** is a permease which translocates the resulting Fe^{III} ions (channelled from **Fet3**) into the cytosol where they are reduced to the Fe^{II} state.^{5,15–18} The characteristics of the resulting cytosolic Fe^{II} species have not been established, but the model described below assumes a low-molecular mass (LMM) species called $\text{Fe}_{\text{cyt}}^{\text{II}}$. The only iron-containing protein composing the high-affinity import system is **Fre1**, which contains two interacting heme b centers.⁵ This “bis-heme” motif is probably also present in other metalloreductases including **Fre2**, **Fre3**, **Fre4**, **Fre5**, **Fre7**, and **Fre8**. The Fe^{II} import pathway involves permeases **Fet4** and **Smf1**. **Fet4** expression increases under hypoxic conditions whereas **Smf1** expression is not O_2 -sensitive.^{19–21}

Cytosol

The Cytosolic Iron–sulfur Assembly (CIA) proteins in the cytosol assemble $[\text{Fe}_4\text{S}_4]$ clusters and install them to various apo-protein targets. The “early” CIA complex is composed of **Cfd1** and **Nbp35** both of which are P-loop NTPases in the MinD family. An $[\text{Fe}_4\text{S}_4]$ cluster assembles at the interface of a **Cfd1** homodimer²⁰ (or **Cfd1:Nbp35** heterodimer) analogous to the $[\text{Fe}_4\text{S}_4]$ cluster that bridges the subunits of the iron protein of nitrogenase – another MinD family protein.²² **Nbp35** also binds an $[\text{Fe}_4\text{S}_4]$ cluster at its dimer interface. These clusters are labile and one or both of them transfer to downstream targets. **Nbp35** subunits bind an additional permanent $[\text{Fe}_4\text{S}_4]$ cluster.^{23–25}

The iron and sulfur substrates used to assemble clusters on the early CIA complex are also unknown. Lill and coworkers have suggested a sulfur-containing substrate called X-S that is related to glutathione persulfide.²⁶ Balk and coworkers suggested that X-S is glutathione polysulfide.²⁷ Both groups propose that X-S is exported from mitochondria through the inner membrane (IM) transporter **Atm1** (see below). One implication of this is that the iron substrate used for ISC assembly would originate from the cytosol – probably from $\text{Fe}_{\text{cyt}}^{\text{II}}$. In contrast, Li and Cowan hypothesize that X-S is an $[\text{Fe}_2\text{S}_2]$ cluster with four glutathiones coordinated as exoligands.²⁸ The structure of the binding site on **Atm1** suggests that X-S is related to glutathione, though other molecules are also possible.²⁷ Pain and coworkers discovered a 500–1000 Da sulfur-containing species that is exported from intact mitochondria in an **Atm1**-dependent fashion.²⁹ They subsequently reported that mitochondria also export an Fe–S intermediate through **Atm1** and presented evidence that the iron in the intermediate originates from mitochondria;³⁰ it’s exciting to consider that this might be Cowan’s $[\text{Fe}_2\text{S}_2]$ cluster.

Dre2 binds the early CIA complex and catalyzes the transfer of electrons from NADPH to the complex during CIA-dependent $[\text{Fe}_4\text{S}_4]$ assembly. Physically associated with **Dre2** is the flavoprotein **Tah18**.^{31–33} This complex catalyzes the transfer of electrons from NADPH (which is bound to **Tah18**) to an

undetermined substrate during CIA-dependent $[\text{Fe}_4\text{S}_4]$ assembly. Although the mechanism of $[\text{Fe}_4\text{S}_4]$ cluster assembly on the CIA complex is unestablished, a popular assumption is that two $[\text{Fe}_2\text{S}_2]^{2+}$ clusters bind to each subunit of **Cfd1** (and/or **Nbp35**) and are reductively coupled to form a bridging $[\text{Fe}_4\text{S}_4]^{2+}$ cluster; the simplified reaction would be $2[\text{Fe}_2\text{S}_2]^{2+} + 2\text{e}^- \rightarrow [\text{Fe}_4\text{S}_4]^{2+}$. The required electrons in this reaction would be delivered by **Tah18** and **Dre2**. **Dre2** reportedly contains 1 $[\text{Fe}_2\text{S}_2]$ cluster and 1 $[\text{Fe}_4\text{S}_4]$ cluster, though there is some uncertainty.³⁴ **Dre2** clusters originate from either **Grx3** homodimers or **Grx3:Bol2** heterodimers (see below).²³ Metallation of **Dre2** does not involve the CIA machinery, which only installs $[\text{Fe}_4\text{S}_4]$ clusters, implying either that **Dre2** exclusively contains $[\text{Fe}_2\text{S}_2]$ clusters or that it contains a CIA-independent $[\text{Fe}_4\text{S}_4]$ cluster.

The “late” CIA complex consists of proteins **Cia1**, **Cia2**, and **Mms19**; none contains an iron center. This complex transfers $[\text{Fe}_4\text{S}_4]$ clusters from the early CIA complex to the apo forms of various target proteins in the cytosol. **Nar1** links the early CIA complex to the late complex; it contains a permanent $[\text{Fe}_4\text{S}_4]$ cluster and a second cluster which is surface-exposed and unstable.^{31–33}

Cytosolic proteins **Lto1** and **Yae1** adapt the late CIA complex such that it can install $[\text{Fe}_4\text{S}_4]$ clusters into **Rli1**, a multifunctional protein that helps export ribosomes from the nucleus and is essential for other processes related to protein biosynthesis.³⁴

Like **Rli1**, **Dph1**, **Dph2**, **Dph3**, and **Dph4** are also involved in protein biosynthesis, albeit indirectly. **Dph1** and **Dph2** are radical-SAM enzymes that contain $[\text{Fe}_4\text{S}_4]$ clusters. They form a heterodimeric complex that modifies a histidine residue on Translation Elongation Factor 2.³⁵ **Dph3** coordinates an Fe^{II} ion and uses it to donate electrons to SAM clusters in the **Dph1:Dph2** complex.^{35–37} **Dph3** functions with **Cbr1**, a cytochrome b_5 reductase that helps link the metabolic state of the cell to protein translation. **Dph4** is a J-protein cochaperone that reversibly binds an Fe^{II} ion at a cysteine-rich site.³⁸ **Dph4** associates with the large ribosomal subunit and also functions in ribosome biogenesis.³⁹ The $[\text{Fe}_4\text{S}_4]$ clusters in these proteins are likely metallated by the CIA.

Elp3 is the catalytic subunit (histone acetyl-transferase) of the elongator complex of RNA polymerase II which helps the enzyme switch from initiation to elongation mode; it also contains a radical-SAM $[\text{Fe}_4\text{S}_4]$ cluster.^{40–46} The elongator complex also modifies wobble uridines in tRNAs without which mRNA translation would be inefficient.

The CIA also installs $[\text{Fe}_4\text{S}_4]$ clusters into **aLeu1**, **aGlt1**, and **aMet5** (the prefix *a* refers to apo-forms), cytosolic proteins involved in amino acid biosynthesis. **Leu1** (isopropylmalate isomerase) catalyzes the synthesis of branched-chain amino acids leucine, isoleucine, and valine.⁴⁷ **Glt1** catalyzes the synthesis of glutamate.^{48,49} **Met5** (the β subunit of sulfite reductase) catalyzes the reduction of sulfite to hydrogen sulfide thereby allowing synthesis of cysteine and methionine.^{50–52} **Met5** contains an $[\text{Fe}_4\text{S}_4]$ cluster linked through a bridging cysteinate to a siroheme ring. Sirohemes are like hemes but require an enzyme (**Met8**) other than ferrocheletase to install Fe^{II} .^{53,54} The source of the installed Fe^{II} ion is unknown but the model below assumes it to be $\text{Fe}_{\text{cyt}}^{\text{II}}$.

Other cytosolic iron proteins are involved in nucleic acid biochemistry. The $[\text{Fe}_4\text{S}_4]$ -containing **Ade4** (glutamine phosphoribosylpyrophosphate amidotransferase) is involved in purine biosynthesis.^{55,56} The O_2 -dependent Fe^{II} -containing **Bna1** (3-hydroxyanthranilate 3,4-dioxygenase) helps synthesize pyrimidine nucleotides.⁵⁷ **Tyw1** is a radical-SAM $[\text{Fe}_4\text{S}_4]$ protein that helps synthesize wybutosine-modified tRNA, a modification that increases the accuracy of protein synthesis. **Tyw1** expression is stimulated by **Yap5** under high-iron conditions (see below).^{58,59}

Rnr2 is the small R_2 subunit of ribonucleotide reductase. It helps convert ribonucleotides into their deoxy counterparts; each subunit contains an $[\text{Fe}-\text{O}-\text{Fe}]$ center.^{60–62} The iron-free R_1 subunit resides in the cytosol whereas R_2 toggles between the cytosol and the nucleus to control activity – which is an exclusive property of the $(R_1)_2(R_2)_2$ heterotetrameric complex. Under healthy iron-replete conditions, R_2 is mainly in the nucleus whereas under iron-deficiency or other forms of stress, it shifts to the cytosol and stimulates activity. This behavior reveals the critical need for the cell to express this iron-containing enzyme under iron-deficient conditions when so many other iron-containing proteins are degraded so as to economize cellular iron. Assembly of the R_2 $[\text{Fe}-\text{O}-\text{Fe}]$ centers does not involve the **CIA**^{63,64} but the assembled center is probably reduced by NADPH *via* **Dre2** and **Tah18**.⁶⁰ Ribonucleotide reductase and other $[\text{Fe}-\text{O}-\text{Fe}]$ proteins are thought to be metallated by **Grx3/4** proteins;^{64–66} however, in our model they are metallated by $\text{Fe}^{\text{II}}_{\text{cyt}}$ (see below).

Also in the cytosol are **Grx3** and **Grx4**, monothiol glutaredoxins that form dimers with bridging $[\text{Fe}_2\text{S}_2]$ clusters.⁶⁷ Clusters are bound to each subunit through a single cysteine residue; the other external coordinating ligand is the sulfur of glutathione. **Grx3/4** are involved in a signaling pathway that leads from mitochondria to the nucleus. This pathway controls expression of the *iron regulon* genes (see below). **Bol2** forms a heterodimer with **Grx3** or **Grx4** which also contains a bridging $[\text{Fe}_2\text{S}_2]$ cluster with glutathione coordination. In fact, most **Grx3** in the cell is bound to **Bol2** as a heterodimer.^{65,66} Eventually, the bridging $[\text{Fe}_2\text{S}_2]$ cluster is passed to **Aft1/2**, transcription factors that control expression of the iron regulon. **Grx4** binds to **Aft1/2** promoting dissociation from promotors and repressing expression of the iron regulon. The $[\text{Fe}_2\text{S}_2]$ cluster on **Grx3/4** is likely transferred to **Dre2**^{65,66} whereas the cluster on **Bol2** may transfer to the **CIA** for reductive coupling.^{66–68}

The cytosol also contains heme proteins, many of which are involved in diminishing reactive oxygen species (ROS). **Ctt1** is a heme-b-containing catalase that catalyzes the disproportionation reaction $2\text{H}_2\text{O}_2 \rightarrow \text{O}_2 + 2\text{H}_2\text{O}$.^{69,70} **Cta1** is another heme-b-containing catalase (but located in peroxisomes) that catalyzes the same reaction, degrading H_2O_2 that has been generated during fatty acid β -oxidation.⁷¹ **Yhb1** is flavohemoglobin, also called NO dioxygenase. This heme-b-containing enzyme is located in the cytosol (and mitochondrial IMS) when cells grow aerobically, but is located in the mitochondrial matrix under anoxic conditions. It catalyzes the O_2 -dependent oxidation reaction $\text{NO} + \text{O}_2 + \text{e}^- \rightarrow \text{NO}_3^-$ and is part of the cell's

detoxification system.⁷² **Yhb1** works with catalase to maintain low levels of NO and peroxynitrite, both of which can be toxic.^{73–76} The last heme-containing protein that helps diminish ROS is **Ccp1**, cytochrome *c* peroxidase. This mitochondrial IMS enzyme catalyzes the reduction of peroxide $\text{H}_2\text{O}_2 + 2\text{e}^- + 2\text{H}^+ \rightarrow 2\text{H}_2\text{O}$, using electrons from cytochrome *c*.

Nucleus

The CIA installs $[\text{Fe}_4\text{S}_4]$ clusters into numerous nuclear proteins, *all* of which help replicate and repair DNA. **Ntg2** is an endonuclease III and a DNA glycosolase that is involved in base-excision repair; it excises oxidatively-damaged pyrimidine bases.^{34,77–84} **Dna2** is a nuclease and helicase. It helps mature Okazaki fragments and maintain telomeres.^{60,85–87} **Rad3** is a helicase involved in DNA excision repair and transcription.^{34,88–91} **Chl1** is a helicase involved in sister chromatid cohesion and heterochromatin organization.³⁴ **Pri2** is the large subunit of the heterodimeric DNA primase which catalyzes the synthesis of short RNA primers that help initiate DNA replication.^{92,93} It also helps DNA polymerase α (**Pol1- α**), another $[\text{Fe}_4\text{S}_4]$ -containing nuclear enzyme, transition from RNA to DNA synthesis.^{34,92,94–102} The catalytic subunit of DNA polymerase II ϵ A (**Pol2**) appears to contain an $[\text{Fe}_4\text{S}_4]$ cluster (there is some uncertainty).^{32,103,104} The catalytic subunit of $[\text{Fe}_4\text{S}_4]$ -containing DNA polymerase δ (**Pol3**) takes over synthesis from **Pol1- α** to complete each Okazaki fragment;¹⁰⁵ it primarily synthesizes the lagging strand.^{34,99} $[\text{Fe}_4\text{S}_4]$ -containing **Rev3**, the catalytic subunit of DNA polymerase ζ ,⁹⁹ possesses $5' \rightarrow 3'$ polymerase activity¹⁰⁶ and is involved in the post-replication repair of DNA.

Tpa1 is the only iron-containing DNA-repair enzyme that does not contain an $[\text{Fe}_4\text{S}_4]$ cluster. This 2-oxoglutarate-dependent Fe^{II} -containing dioxygenase catalyzes the oxidative demethylation of DNA during the repair of methyl-base lesions.¹⁰⁷ It also hydroxylates a proline on a ribosomal protein. **Tpa1** helps terminate translation efficiently by degrading mRNA and interacting with translation release factors and the poly(A)-binding protein.

The remaining iron-associated proteins in the nucleus are all involved in regulation. **Aft1** and **Aft2** are transcription factors that regulate expression of the iron regulon. They toggle between the nucleus and cytosol according to whether an $[\text{Fe}_2\text{S}_2]$ cluster is bound. This depends, in turn, on the ISC activity in mitochondria. When that activity is high, **Aft1/2** are metallated (by **Grx3/4**, **Bol2** complexes) which promotes their translocation to the cytosol and halts expression of iron regulon genes. When mitochondrial ISC activity is low, **Aft1/2** in their apo-forms shift into the nucleus and stimulates iron regulon expression.^{6,108–113} **Aft1/2** controls expression of genes encoding **Fet3**, **Fet4**, **Fet5**, **Hmx1**, **Ftr1**, **Fth1**, **Fre1**, **Fre2**, **Fre3**, **Fre4**, **Fre5**, **Fre6**, **Arn1**, **Arn2**, **Arn3**, **Arn4**, **Fit1**, **Fit2**, **Fit3**, **Isu1**, **Smf3**, **Mrs4**, **Grx4**, **Cth1**, and **Cth2**.^{111,114}

Although the last two proteins on this list, paralogs **Cth1** and **Cth2**, do not bind iron, they are intimately involved in iron metabolism. **Cth1/2** promote decay of mRNA transcripts that encode nonessential iron-containing proteins associated with the TCA cycle (**Sdh4**), the mitochondrial electron transport chain (ETC), heme biogenesis (**Hem15**), and heme utilization

(Ccp1).¹¹⁵ The decay of these targets during iron deficiency allows the cell to economize iron by shifting to fermentation which does not require iron. Cth1/2 bind mRNA transcripts in the nucleus and shuttle them to the cytosol for degradation.¹¹⁶ Cth2 also promotes decay of an inhibitor of ribonucleotide reductase, which stimulates ribonucleotide reductase activity.^{62,115,117} Cth2 also promotes decay of its own mRNA; this autoinhibition allows respiration to recover quickly if and when iron-sufficiency is reestablished.

Yap5 promotes transcription of Ccc1, Grx4, and Tyw1 genes.^{58,118,119} Ccc1 is an iron-importer on the vacuolar membrane (see below), Grx4 is involved in the Aft1/2 signal-transduction pathway (see above), and Tyw1 increases the efficiency of protein synthesis. Under iron-replete conditions, Yap5 binds two $[\text{Fe}_2\text{S}_2]$ clusters and undergoes a conformational change that activates transcription.¹²⁰ Activation involves two Yap5 monomers forming a dimer that opens and closes like a clam in response to changing intracellular iron levels.^{58,118-122}

When cells switch from fermentation to respiration, heme levels rise, and this stimulates **Hap1** expression (and expression of the Hap2/3/4/5 complex). Hap1 is a nuclear transcription factor that binds heme b; this stimulates expression of heme-associated genes¹²³ including those involved in respiration (Cyc1, Cyc7, Cyt1, and Cyb2), the synthesis of ergosterol, and the expression of superoxide dismutase.¹²⁴ One Hap1-dependent genes encodes Rox1 which represses heme synthesis. Heme and O_2 levels are correlated. This is partially but not entirely explained by the requirement of O_2 in multiple heme synthesis steps. The heme-activated Hap2/3/4/5 complex promotes respiration.

Mitochondrial matrix

The epicenter of iron metabolism in the cell is the mitochondrial ISU machinery that is used to synthesize $[\text{Fe}_2\text{S}_2]$ clusters. Cysteine desulfurase (**Nfs1**) uses a sulfur atom from cysteine to generate a persulfide group at an active-site cysteine residue on the protein.¹²⁵ Iron-free **Isd11** and **Acp1** (the acyl-carrier protein involved in fatty acid biosynthesis) bind and stabilize Nfs1. Scaffold proteins **Isu1** and **Isu2** bind the {Nfs1:Isd11:Acp1} complex independently and receive the terminal sulfur *via* a mobile loop that swings the persulfide into position. $[\text{Fe}_2\text{S}_2]$ clusters are assembled on Isu1/2 using Nfs1-derived sulfur and a mitochondrial Fe^{II} pool called $\text{Fe}^{\text{II}}_{\text{mit}}$. Yeast frataxin homolog 1 (**Yfh1**) also binds the {Nfs1:Isd11:Acp1:Isu1/2} complex and stimulates the sulfur-transfer activity from Nfs1 to Isu1/2.¹²⁶ Yfh1 may also donate Fe^{II} ions to Isu1/2.¹²⁷ Under Yfh1-deficient conditions, mitochondria accumulate large quantities of iron in the form of Fe^{III} nanoparticles (**NP**) while generating large amounts of ROS.^{128,129}

The bridging sulfide ions of $[\text{Fe}_2\text{S}_2]$ clusters are two-electrons more reduced than the sulfur atoms that are transferred onto the scaffold from the persulfide arriving on the mobile loop. The needed electrons are donated by NADPH *via* the $[\text{Fe}_2\text{S}_2]$ -containing ferredoxin **Yah1** and its flavin-containing partner ferredoxin reductase **Arh1**.¹³⁰ Installing the cluster on Yah1 involves an autocatalytic reaction in which Yah1 helps catalyze the ISU-dependent metallation of aYah1, forming Yah1

as the product. Assembled $[\text{Fe}_2\text{S}_2]$ clusters are transferred from Isu1/2 to apo-glutaredoxin 5 (**aGrx5**) in a reaction involving the DnaJ-type chaperone **Jac1**, HSP70-class chaperone **Ssq1**, and nucleotide exchange factor **Mge1**.¹³¹ Cluster-containing Isu1/2 bind Jac1 and ATP-bound Ssq1,¹³² whereas Mge1 swaps ADP on Ssq1 with fresh ATP in preparation for the next transfer. As with other monothiol glutaredoxins, dimeric Grx5 coordinates a $[\text{Fe}_2\text{S}_2]$ cluster between its two subunits.⁶⁶ Grx5-bound clusters are probably transferred to mitochondrial matrix proteins aYah1, aBol1, aBol3, aSdh2, and aBio2.

Isa1, **Isa2**, and **Iba57** form a complex that helps build $[\text{Fe}_4\text{S}_4]$ clusters in the mitochondrial matrix.¹³³ These clusters are likely generated by the reductive coupling of two $[\text{Fe}_2\text{S}_2]$ clusters donated by holo Grx5 dimers. The reaction probably occurs at the Isa1:Isa2 heterodimer interface. Iba57 doesn't bind clusters; rather it recruits apo-target proteins to the complex and helps transfer assembled $[\text{Fe}_4\text{S}_4]$ clusters onto them. Target proteins include aAco1, aLip5, aSdh2, aBio2, and aIsa1/2. This last metallation reaction is again autocatalytic. Isa1/2 contain permanent $[\text{Fe}_4\text{S}_4]$ clusters, and fully metallated Isa1/2 is probably used to metallate apo-Isa1/2. The absence of Isa1, Isa2 or Iba57 causes defects in respiratory complex assembly and lipoic acid biosynthesis indicating that proteins involved in these processes are Isa1/2 targets.¹³³⁻¹³⁷

Bol1, **Bol3**, and **Nfu1** help the ISA complex transfer $[\text{Fe}_4\text{S}_4]$ clusters to target proteins.¹³³⁻¹³⁷ Bol1 and Bol3 each contain $[\text{Fe}_2\text{S}_2]$ clusters bridged between two subunits and coordinated by glutathione, similar to the arrangement in holo-dimeric glutaredoxins.^{66,138} These clusters are donated by Grx5. Nfu1 homodimers contain a permanent bridging $[\text{Fe}_4\text{S}_4]$ cluster which is donated by ISA.^{66,138} Bol1, Bol3 and Nfu1 help transfer transient $[\text{Fe}_4\text{S}_4]$ clusters (also donated by ISA) onto aSdh2 and aLip5. Nfu1 helps ISA transfer a cluster to aAco1, aLip5, and aISA. Nfu1 works somewhat independently of Bol1/3, but all act late in cluster assembly.

The mitochondrial matrix houses two $[\text{Fe}_4\text{S}_4]$ -containing enzymes that are involved in amino acid biosynthesis, namely homoaconitase **Lys4**¹³⁹⁻¹⁴¹ and dihydroxyacid dehydratase **Ilv3**.^{47,142,143} Ilv3 is involved in valine biosynthesis. Lys4 converts homocitrate to homoisocitrate in the lysine biosynthetic pathway. The Lys4 gene is expressed only under iron-sufficient conditions.

Numerous iron-containing proteins of the matrix are involved in the TCA (tricarboxylic acid) cycle. Both isoforms of aconitase (**Aco1** and **Aco2**) catalyze the conversion of citrate to isocitrate, and both contain $[\text{Fe}_4\text{S}_4]$ cluster active sites. The **Sdh2** subunit of succinate dehydrogenase contains an $[\text{Fe}_4\text{S}_4]$, $[\text{Fe}_3\text{S}_4]$, and $[\text{Fe}_2\text{S}_2]$ cluster, whereas the **Sdh3** and **Sdh4** subunits together share a heme b center.⁶⁶ Although not part of the TCA cycle, biotin synthase (**Bio2**) participates in a reaction that impacts this cycle – inserting sulfur into dethiobiotin to form biotin.¹⁴⁴ Bio2 contains 1 $[\text{Fe}_4\text{S}_4]$ and 1 $[\text{Fe}_2\text{S}_2]$ cluster, the latter of which donates the sulfur used in this reaction. As such, Bio2 is a substrate rather than a catalyst; the cluster needs to be rebuilt after each sulfur transfer. Biotin is a coenzyme of numerous mitochondrial carboxylases⁹ which help produce cellular energy, and in certain cases, feed the TCA cycle.

Lipoic acid synthase **Lip5** is a mitochondrial matrix protein that, like biotin synthase, is a substrate in a biosynthetic reaction, in this case of lipoic acid.¹⁴⁵ Lip5 contains a radical-SAM [Fe₄S₄] cluster and a second [Fe₄S₄] cluster that donates the sulfide ion in the reaction. Lipoic acid is a coenzyme for mitochondrial enzymes that catalyze the oxidative decarboxylation of pyruvate, α -ketoglutarate, and branched-chain α -keto acids.

Mitochondrial inner membrane (IM) and intermembrane space (IMS)

Mrs3 and **Mrs4** are paralogous high-affinity iron importers on the IM.¹⁴⁶ These iron-free proteins contain a tunnel through which iron passes from the cytosol to the matrix. A membrane potential is required for iron transport. **Rim2** is a low-affinity iron importer on the IM.¹⁴⁷ Cytosolic iron is transported through Rim2 (as are pyrimidine nucleotides). Deleting Mrs3/4 and Rim2 causes defects in ISC and heme biosynthesis.^{147,148}

Most iron-related processes in the IM are associated with respiration. Two iron-containing enzymes help synthesize Coenzyme Q (QH₂). **Coq6** is a heme-b-containing monooxygenase that hydroxylates a tyrosine ring^{149–152} using electrons from NADPH *via* Yah1 and Arh1.¹⁵³ The [Fe–O–Fe]-containing 5-demethoxyubiquinone hydroxylase **Coq7** converts 5-demethoxy Q6 to 5-demethyl Q6. Coq7 expression is inhibited during fermentation and stimulated during respiration.^{154,155}

Three subunits of respiratory complex cytochrome *bc*₁ contain iron centers. **Cyt1** contains cytochrome *c*₁, **Cob1** contains two heme b centers called *b*_H and *b*_L, and **Rip1**, the Rieske subunit, contains an unusual [Fe₂S₂] cluster coordinated by two histidine residues and two cysteines.¹⁵⁶ Cytochrome *bc*₁ catalyzes the oxidation of QH₂ and reduction of cytochrome *c*. The Rip1 subunit is exposed to the IMS where it reduces cytochrome *c* during catalysis. **ROS** is generated by one or more of these respiratory complexes.¹⁵⁷

The only subunit of respiratory complex cytochrome *c* oxidase that contains iron is **Cox1**; it contains 1 heme a redox center and 1 heme a₃:Cu_B active site. The enzyme catalyzes the reduction of O₂ by cytochrome *c*. Assembly of cytochrome *c* oxidase requires three iron-associated proteins. **Cox10** (heme o synthase) binds heme b and converts it to heme o. **Cox15** (heme a synthase), converts heme o into heme a which is then installed into Cox1.^{157,158} Cox15 is a O₂-dependent monooxygenase that is reduced by NADPH *via* Yah1 and Arh1.^{156,159,160} It binds two hemes, including heme b and heme o. **Mss51** is a heme b-containing Cox1 chaperone on the IM which activates Cox1 mRNA for translation. Mss51 is regulated by heme and/or O₂ levels and it regulates cytochrome *c* oxidase assembly.⁴⁷

Cyc1 and **Cyc7** are isoforms of cytochrome *c* in the IMS. Their expression is diminished under heme-deficient conditions due to Hap1 regulation.¹⁶¹ The heme c centers in these proteins are installed by cytochrome *c* lyase (**Cyc2**) which uses heme b as a substrate. Cytochrome *c* is a substrate for two other iron-containing enzymes in the IMS, including cytochrome *c* peroxidase (**Ccp1**) and L-lactate cytochrome *c* oxidoreductase (**Cyb2**). The former enzyme *oxidizes* cytochrome *c* as it reduces H₂O₂ to water while the latter *reduces* cytochrome *c* as it

oxidizes lactate to pyruvate. This allows yeast to respire using lactate.¹⁶² **Dld1** is D-lactate ferricytochrome *c* oxidoreductase, a heme b-containing enzyme located on the mitochondrial IM. Its expression is regulated by heme levels ala Hap1. Dld1 also catalyzes the oxidation of lactate to pyruvate using cytochrome *c* as the electron acceptor.¹⁶³

Hem15 (ferrochelatase) is an IM protein that installs Fe^{II} into porphyrin rings to generate heme b.¹⁶⁴ Its Fe^{II} binding site faces the matrix, implying that Fe^{II}_{mit} is used as substrate in this process. Heme synthesis is inhibited under hypoxic conditions, as two enzymes in the heme biosynthetic pathway require O₂ as a substrate.^{5,48,50,51,124,161,164}

Atm1 is an ATP-dependent transporter in the IM that may export the unidentified sulfur-containing X–S species discussed above from mitochondria to cytosol; however, there is some uncertainty regarding its function.^{26,165–169} **Mmt1** and **Mmt2** may also export mitochondrial iron but there is also some uncertainty here as well.^{170–172}

Vacuoles

These organelles store iron under iron-replete conditions. **Ccc1** is an iron importer on the vacuolar membrane the expression of which is controlled by Yap5.^{58,173,174} The multicopper oxidase **Fet5**, permease **Fth1**, and ferrireductase **Fre6** together function as an O₂-dependent iron exporter on the vacuolar membrane.^{175,176} These three proteins are paralogs to Fet3, Ftr1, and Fre1, respectively, on the plasma membrane. Expression of both groups of proteins are controlled by the Aft1/2-dependent iron regulon.^{13,177}

Vacuoles typically store iron as Fe^{III} polyphosphates.¹⁷⁸ Mobilization of Fe^{III} requires reduction to the Fe^{II} state followed by export *via* the {Fet5:Fth1:Fre6} complex. Electrons used for reduction are provided by NADPH *via* Fre6, which, like Fre1, contains a bis-Heme b center.¹⁴ Fet5 and Fth1 do not house permanent iron centers, but Fe^{II} in the vacuole presumably binds to Fet5 prior to becoming oxidized to Fe^{III} and passing through Fth1. **Smf3**, another iron exporter on the vacuolar membrane, is a member of the Nramp family of metal transporters and is not under the control of Aft1/2.^{113,176} Like Fet4, Smf3 expression is stimulated under hypoxia.¹⁷⁹

Endoplasmic reticulum (ER)

Most iron-containing proteins in the ER are involved in synthesizing membrane components including ergosterol and sphingolipids. **Ole1** (Δ^9 fatty acid desaturase) is an integral ER membrane enzyme that catalyzes the synthesis of a mono-unsaturated fatty acid (oleoyl-CoA) starting from a saturated fatty acid (stearoyl-CoA). This reaction, which inserts a double bond into a fatty acyl chain, requires NADPH and O₂. **Ncp1** (NADP-cytochrome P450 reductase) probably transfers reducing equivalents from NADPH to Ole1. Ole1 contains an [Fe–O–Fe] center and a cytochrome *b*₅ domain which is exposed on the cytosol side of the ER membrane.^{180–183,205}

Sur2 (sphinganine C4-hydroxylase) catalyzes the O₂-dependent oxidation of sphinganine.^{184–186} Like Ole1, it is an ER membrane protein containing an [Fe–O–Fe] center. However, it lacks a

fused cytochrome b_5 domain. Thus, it may use Ncp1 and **Cyb5** (cytochrome b_5) to receive electrons from NADPH.^{187,188} Cyb5 is bound to the ER membrane but faces the cytosol. It contains a heme b center with two histidine axial ligands.¹⁸⁹

Scs7 (sphingolipid α -hydroxylase) is another integral ER membrane enzyme that houses an [Fe–O–Fe] center as well as a fused cytochrome b_5 center.¹⁸³ Scs7 adds a hydroxyl group to the α -carbon of a ceramide substrate to generate a sphingolipid.

Mpo1 is an Fe^{II}-containing dioxygenase in the ER membrane that catalyzes the oxidation of a 2-hydroxy fatty acid.¹⁹⁰ Unlike the other biosynthetic enzymes just discussed, Mpo1 helps *degrade* a membrane component rather than synthesize one.

Starting from squalene, ergosterol biosynthesis requires four iron-containing enzymes as well as abundant O₂ and NADPH.¹⁹¹⁻¹⁹⁹ **Cyp51** (Cytochrome P450 lanosterol C-14 α -demethylase) catalyzes the synthesis of 4,4-dimethyl fecosterol from lanosterol.¹⁹⁵ It is a key enzyme for ergosterol biosynthesis and is essential for aerobic growth. Cyp51 is tethered on the ER membrane but it faces the cytosol; it contains a heme b center with a cys axial ligand. It is likely metallated by Dap1 (see below). Ncp1 is required for Cyp51 activity.²⁰⁰⁻²⁰²

Erg25 (C-4 methylsterol monooxygenase 1) catalyzes a C-4 demethylation reaction that requires O_2 and NADPH. This ER membrane protein contains an [Fe–O–Fe] center.

Erg3 (sterol C5(6)-desaturase) is in the fatty acid hydroxylase superfamily. It adds a double bond at positions 5 and 6 of Δ -7 sterols in an O_2 -dependent reaction. Its [Fe–O–Fe] center accesses the cytosol. Like other iron-containing enzymes in the ER, Erg3 is reduced by NADPH *via* Ncp1 and Cyb5.^{181,189,203,204}

Erg5 (sterol C-22(23) desaturase) is a cytochrome P450 enzyme that catalyzes formation of a double bond during ergosterol biosynthesis,^{206,207} probably using Ncp1 as a reductant. Ergosterol biosynthesis is inhibited under hypoxic conditions.²⁰⁸⁻²¹⁰

Dap1 is a heme-binding protein that activates, stabilizes, and regulates cytochrome P450s in the ER. It lacks a membrane spanning sequence (suggesting that it is not membrane bound) and may be involved more generally in heme trafficking and/or inserting hemes into various target apo-proteins. Dap1 binds heme b using a tyrosine axial ligand.^{17,195,196,211} Hemes are synthesized in the mitochondria and must be trafficked to the ER; Dap1 may be involved in this.

Hmx1 (heme oxygenase) is an ER enzyme that catalyzes the degradation of hemes. This releases Fe^{II} into the cytosol.^{12,108,212} The reaction involves NADPH and O_2 . Hmx1 binds heme b with one axial histidine ligand. The Hmx1 gene is part of the Aft1/2 iron regulon and is activated under iron deficient conditions. This implies that the Fe^{II} released during heme degradation serves to relieve cellular iron deficiency. It also implies that heme-dependent processes are *not* essential for cell survival.

Yno1 is an NADPH oxidase on the ER membrane.²¹³ This bis-heme b containing enzyme is related to the Fre proteins, but it is not a ferrireductase. Rather, it catalyzes the synthesis of ROS from NADPH + O₂, perhaps in a signaling capacity.

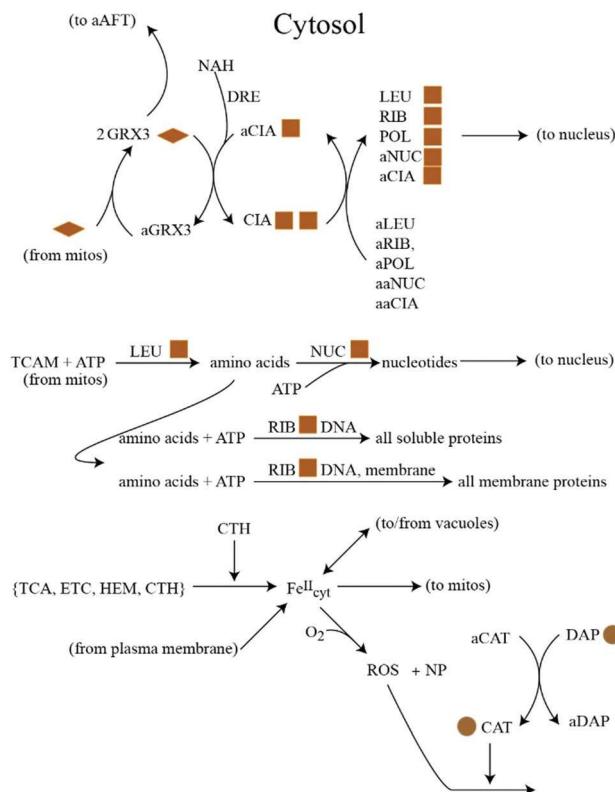
Grx6 is a monothiol glutaredoxin located in the ER, Golgi, and/or vacuole.^{67,214,215} Like other Grx proteins, Grx6 contains

an $[\text{Fe}_2\text{S}_2]$ cluster that bridges the two subunits and coordinates two glutathiones and two cysteinyl protein residues. Grx6 is associated with the early secretory pathway.¹⁹³ It has glutathione-S-transferase and glutathione-dependent oxidoreductase activities.²¹⁵⁻²¹⁹ Grx6 regulates the glutathionylation of proteins in the ER and Golgi, and controls the ratio of oxidized and reduced glutathione to protect the cell against oxidative stress.

2. Model components and description

The developed model assumes *S. cerevisiae* cells that are growing exponentially on three nutrients – acetyl-coenzyme A, O₂, and non-siderophore environmental iron (Fe^{III} or Fe^{II} depending on the O₂ concentration). The modeled cell consists of exactly 40 components including 27 protein groups and 13 nonprotein components (Table S2, ESI†). It produces two waste products (CO₂ and iron nanoparticles). Each protein group is named with 3–4 capital letters or numbers whereas individual protein components have the first letter capitalized and others lower case. **FET3** is a group; Fet3 is a member of that group. Components are indicated in bold when introduced.

The plasma membrane includes two protein groups, **FET3** and **FET4**, and a nonprotein component called **MEMBRANE** (Fig. 1). **FET3** imports nutrient $\text{Fe}^{\text{III}}_{\text{env}}$ *via* the reductive pathway. Some of its members are in the cell wall rather than on the plasma membrane, but the iron content of the wall is insignificant under exponential growth conditions,¹⁰ and so any iron metabolism associated with it is ignored in the model. **FET3** expression is controlled by the **AFT**-dependent iron regulon.


Fig. 1 Model scheme highlighting the iron-related processes in the plasma, vacuolar, and ER membranes. Brown dots represent heme groups. Refer to text for details for Fig. 1–5. The prefix *a* refers to apo-forms.

The product of FET3 activity is $\text{Fe}_{\text{cyt}}^{\text{II}}$. FET3 and other membrane-bound proteins are synthesized from a component called **AMINO ACIDS** at rates that depend on the concentration of: (a) AMINO ACIDS; (b) a model component called **DNA**; (c) a model component called **RIB** (ribosomes) and (d) **MEMBRANE**. Soluble proteins have the same dependencies except not on **MEMBRANE**. FET3 contains a bis-heme b center (due to the member Fre proteins) installed by **DAP**. Other substrates for FET3 activity include a model component called **NAH** (representing both NADPH and NADH) and O_2 . The iron-free group FET4 imports nutrient $\text{Fe}_{\text{env}}^{\text{II}}$, generating $\text{Fe}_{\text{cyt}}^{\text{II}}$. FET4 expression increases under hypoxic conditions when $\text{Fe}_{\text{env}}^{\text{II}}$ dominates.

Vacuoles contain three protein groups called CCC, FET5, and SMF. The latter two are functionally analogous to FET3 and FET4, respectively. CCC is on the vacuolar membrane where it imports $\text{Fe}_{\text{cyt}}^{\text{II}}$ and generates a nonproteinaceous component called $\text{Fe}_{\text{vac}}^{\text{II}}$. CCC is positively controlled by AFT, in that expression is stimulated (rather than inhibited) under iron-replete conditions. FET5 is also on the vacuolar membrane where it reduces $\text{Fe}_{\text{vac}}^{\text{III}} \rightarrow \text{Fe}_{\text{vac}}^{\text{II}}$ and exports iron from the vacuole into the cytosol as $\text{Fe}_{\text{cyt}}^{\text{II}}$. Like FET3, FET5 is regulated by AFT such that expression increases under iron-deficient conditions. Also like FET3, FET5 requires O_2 for activity, and it contains a bis-heme b center that is metallated by DAP. SMF is a low-affinity iron exporter that is not controlled by AFT and is repressed under aerobic conditions.¹⁷⁹ It functions similarly to FET4 to generate $\text{Fe}_{\text{cyt}}^{\text{II}}$.

The cytosol includes nine protein groups called **DRE**, **GRX**, **CIA**, **LEU**, **RIB**, **NUC**, **CAT**, **DAP**, and **CTH** (Fig. 2). DRE transfers reducing equivalents from NAH to various targets including CIA and NUC. DRE contains two $[\text{Fe}_2\text{S}_2]$ clusters and is metallated by GRX. GRX receives clusters from the mitochondria *via* ATM, and donates them to aDRE, aaFT, and aCIA. The CIA has permanent $[\text{Fe}_4\text{S}_4]$ clusters as well as a transient $[\text{Fe}_4\text{S}_4]$ cluster that is assembled by the reductive coupling of two $[\text{Fe}_2\text{S}_2]$ clusters donated by GRX. The electrons used in coupling come from NAH *via* DRE. CIA has two apo forms including aaCIA, which is *fully* devoid of iron centers, and aCIA which contains the permanent clusters but not the transient one.

One discounted scenario was to have the CIA use $\text{Fe}_{\text{cyt}}^{\text{II}}$ and a sulfur-only X-S build $[\text{Fe}_4\text{S}_4]$ clusters *de novo*. Another discounted scenario was to include a second ISU system in the cytosol analogous to that in mitochondria (see below) and to have this system generate $[\text{Fe}_2\text{S}_2]$ clusters that would be used as substrates for the CIA. Our selection was based on the strength of evidence, popularity in the literature, overall simplicity, and compatibility with known chemistry. Some components of an ISU system are indeed found in the cytosol²²⁰ but their cellular role in that location needs to be better established. Assembling $[\text{Fe}_2\text{S}_2]$ clusters is an O_2 -sensitive process such that the low O_2 environment of the mitochondrial matrix²²¹ may be required. The recently reported X-ray diffraction structure of the Cfd1 dimer²²² and the phylogenetic connection of this protein to the iron protein of nitrogenase suggest that the bridging $[\text{Fe}_4\text{S}_4]$ cluster is assembled from the merger of two pre-formed $[\text{Fe}_2\text{S}_2]$ fragments bound to each monomer. An analogous $[\text{Fe}_4\text{S}_4]$

Fig. 2 Model scheme highlighting the iron-related processes in the cytosol. Brown diamonds, $[Fe_2S_2]$ clusters; squares, $[Fe_4S_4]$ clusters. The prefix *aa* refers to apo-forms that are metallated in two steps.

cluster that bridges the two subunits of the nitrogenase iron protein dissociates into $[\text{Fe}_2\text{S}_2]$ clusters under oxidizing conditions;²²³ the same chemistry may operate in reverse for the CIA.

Returning to the model, the CIA transfers its transient $[\text{Fe}_4\text{S}_4]$ cluster to aLEU, aRIB, aNUC, aPOL, and aaCIA. The requirement for the CIA to metallate itself is an autocatalytic relationship (discussed below). LEU catalyzes the synthesis of AMINO ACIDS from the component **TCAM** (the metabolite of the TCA cycle). This reaction is part of anabolism and requires **ATP**. LEU contains $[\text{Fe}_4\text{S}_4]$ clusters and an iron-bound siroheme. As mentioned above, RIB is required for ribosome biosynthesis and protein translation. It is especially essential because it helps synthesize *all* proteins in the cell, including itself (another autocatalytic relationship). RIB contains $[\text{Fe}_4\text{S}_4]$ clusters and Fe^{II} centers.

NUC catalyzes the synthesis of a model component called **NUCLEOTIDES** from **AMINO ACIDS**. This protein group contains an $[\text{Fe}_4\text{S}_4]$ cluster, an $[\text{Fe}-\text{O}-\text{Fe}]$ center, and an Fe^{II} site. According to the model, the cluster is installed by the CIA whereas the other centers are metallated by $\text{Fe}_{\text{cyt}}^{\text{II}}$. Assembling an $[\text{Fe}-\text{O}-\text{Fe}]$ center from the Grx3 $[\text{Fe}_2\text{S}_2]$ cluster^{43,44,51,63,64,191,192} seems unlikely since simple Fe^{II} ions can assemble this center *in vitro*.²²⁴

CAT catalyzes the degradation of ROS. It contains heme b₅₆₂ centers and an [Fe₂S₂] cluster. The heme centers are installed by DAP, the heme chaperone. To account for the diverse cellular locations of CAT members, the CAT group may degrade ROS generated at any location in the cell.

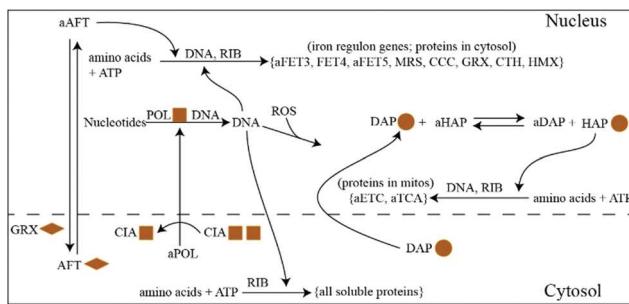
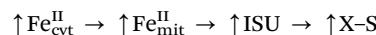


Fig. 3 Model scheme highlighting the iron-related processes in the nucleus.


CTH degrades the respiration-related groups TCA, ETC, HEM, and CTH (promoting its own degradation is autoinhibitory); it also stimulates NUC activity. CTH is a member of the iron regulon; its expression during iron-deficiency helps shift the cell to fermentation mode and economize cellular iron. Cytosolic CTH is presumed to degrade the above proteins regardless of their location.

The nucleus includes protein groups **AFT**, **HAP**, and **POL** (Fig. 3). The first two are involved in homeostatic regulation while the last is involved in DNA replication and repair. Transcription factor AFT regulates iron traffic into the cell, iron movement into and out of vacuoles, and iron movement into mitochondria. It does this by regulating expression of iron regulon genes FET3, FET4, FET5, CTH, MRS, and HMX. AFT also regulates expression of CCC and GRX even though they are not part of the iron-regulon (due to membership of Yap5 in the AFT group). AFT has dual localization in the cytosol and nucleus, depending on whether it is apo (aAFT) or cluster-bound (AFT). Accepting a $[\text{Fe}_2\text{S}_2]$ cluster from GRX shifts the equilibrium towards the cytosol which prevents expression of the iron regulon. Under iron-deficient conditions, insufficient GRX is present such that most AFT is aAFT; this form translocates to the nucleus and promotes expression of the iron regulon (shutting-down expression of CCC). This homeostatic regulatory system responds to iron deficiency by...

- $\uparrow \text{FET3} \rightarrow \uparrow \text{Fe}_{\text{cyt}}^{\text{II}}$.
(read *increasing FET3 expression causes an increase in $[\text{Fe}_{\text{cyt}}^{\text{II}}]$*)
- $\uparrow \text{FET5} \rightarrow \uparrow \text{Fe}_{\text{cyt}}^{\text{II}}$.
- $\uparrow \text{MRS} \rightarrow \downarrow \text{Fe}_{\text{cyt}}^{\text{II}} \rightarrow \uparrow \text{mitochondrial } \text{Fe}_{\text{mit}}^{\text{II}}$.
- $\uparrow \text{HMX} \rightarrow \uparrow \text{Fe}_{\text{cyt}}^{\text{II}}$.
- $\uparrow \text{CTH} \rightarrow$ degrades nonessential respiration-related proteins, economizing cellular iron, and $\uparrow \text{Fe}_{\text{cyt}}^{\text{II}}$ or $\uparrow \text{Fe}_{\text{mit}}^{\text{II}}$.
- $\downarrow \text{CCC} \rightarrow \uparrow \text{Fe}_{\text{cyt}}^{\text{II}}$.

Overall, there is a coordinated response of the AFT system to iron-deficiency – namely to increase $\text{Fe}_{\text{cyt}}^{\text{II}}$, even though $\text{Fe}_{\text{cyt}}^{\text{II}}$ is not considered to be “sensed” directly by the cell.²²⁵ Cellular iron deficiency is thought to be sensed by the rate/extent by which ISU-generated $[\text{Fe}_2\text{S}_2]$ clusters (*i.e.* X-S) exit the mitochondria, bind to aAFT, and deactivate the iron regulon. However, for this mechanism to function properly there must be a causal connection between the concentration of $\text{Fe}_{\text{cyt}}^{\text{II}}$ and the rate/extent of X-S export into the cytosol. I hypothesize that *the rate of X-S exported from mitochondria is controlled by the*

concentration of $\text{Fe}_{\text{mit}}^{\text{II}}$ which is, in turn, controlled by the concentration of $\text{Fe}_{\text{cyt}}^{\text{II}}$. These connections close an autoinhibitory loop (see below). Without the causal chain

operating in healthy cells, an increase in $\text{Fe}_{\text{cyt}}^{\text{II}}$ could not be sensed by mitochondrial ISC activity or by AFT. In this case, $\text{Fe}_{\text{cyt}}^{\text{II}}$ would increase unceasingly, and the cell would be dysregulated (as is observed in many ISC mutants, in which case the causal connection $\uparrow \text{Fe}_{\text{mit}}^{\text{II}} \rightarrow \uparrow \text{ISU}$ is lost).

Returning to the model, HAP is a transcription factor that controls expression of heme-associated proteins involved in respiration. When bound with model component **heme b** (and in the presence of O_2), HAP stimulates expression of ETC. Switching from fermentation to respiration in aerobic conditions increases heme levels, and this activates HAP which stimulates expression of heme-requiring respiratory proteins.

POL helps replicate and repair DNA. It contains $[\text{Fe}_4\text{S}_4]$ clusters which are metallated in the cytosol by the CIA. POL converts NUCLEOTIDES into DNA during both replication and repair. DNA is easily damaged by ROS which is generated mainly as a side-product of respiration.

The mitochondrial matrix contains four protein groups called **ISU**, **ISA**, **TCA**, and **LYS** (Fig. 4). ISU catalyzes the assembly of $[\text{Fe}_2\text{S}_2]$ clusters using $\text{Fe}_{\text{mit}}^{\text{II}}$ as substrate. ISU contains a permanent $[\text{Fe}_2\text{S}_2]$ cluster (metallated by ISU in an autocatalytic manner) and a transient $[\text{Fe}_2\text{S}_2]$ cluster that is transferred to various target proteins.

ISA helps assemble $[\text{Fe}_4\text{S}_4]$ clusters and deliver them to target proteins. This group contains permanent $[\text{Fe}_4\text{S}_4]$ and $[\text{Fe}_2\text{S}_2]$ clusters, as well as a site for two $[\text{Fe}_2\text{S}_2]$ clusters that are reductively coupled to form a transient $[\text{Fe}_4\text{S}_4]$ cluster. The $[\text{Fe}_2\text{S}_2]$ clusters are donated by ISU and the formed transient $[\text{Fe}_4\text{S}_4]$ cluster is transferred to aTCA, aLYS, and aaISA (another autocatalytic process). TCA represents enzymes of the TCA cycle.

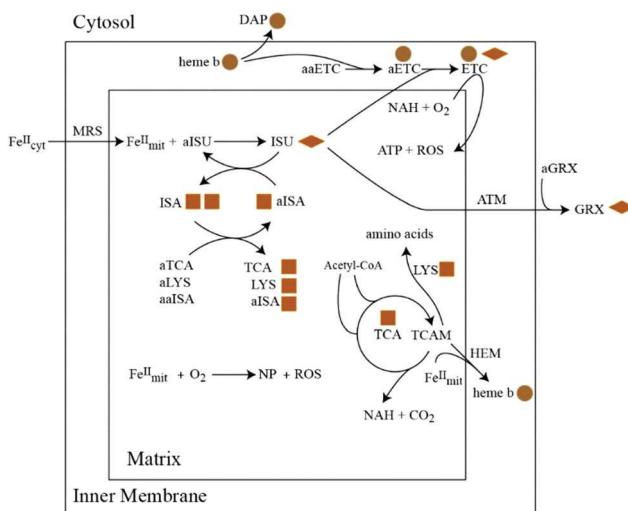
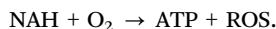
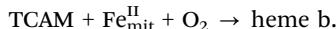


Fig. 4 Model scheme highlighting the iron-related processes in the mitochondria.


This group receives $[\text{Fe}_4\text{S}_4]$ clusters from ISA and $[\text{Fe}_2\text{S}_2]$ clusters from ISU. TCA and TCAM both catalyze the reaction

(Note: model reactions are not balanced). TCA contains $[\text{Fe}_2\text{S}_2]$, $[\text{Fe}_3\text{S}_4]$ and $[\text{Fe}_4\text{S}_4]$ clusters; thus, aTCA is metallated by both ISU and ISA. aLYS receives two $[\text{Fe}_4\text{S}_4]$ clusters from ISA; LYS catalyzes the synthesis of AMINO ACIDS from TCAM.


There are four protein groups in the mitochondrial IM, including **MRS**, **ATM**, **ETC**, and **HEM**. MRS imports $\text{Fe}_{\text{cyt}}^{\text{II}}$ into the matrix where it becomes $\text{Fe}_{\text{mit}}^{\text{II}}$. MRS does not contain a permanent iron center. Iron import into mitochondria depends on the mitochondrial membrane potential. Since this property is not included in the model, the concentration of ETC (which should be proportional to membrane potential) is included as a catalytic influence (Table S2, ESI†). ATM is an IM exporter of $[\text{Fe}_2\text{S}_2]$ clusters, passing them from ISU in the matrix to GRX in the cytosol. This is an ATP-requiring process.

ETC catalyzes the (unbalanced) reaction

It contains heme centers, an $[\text{Fe}-\text{O}-\text{Fe}]$ center and a $[\text{Fe}_2\text{S}_2]$ cluster. Hemes are metallated by heme b, the $[\text{Fe}_2\text{S}_2]$ cluster is installed by ISU, and the $[\text{Fe}-\text{O}-\text{Fe}]$ center is metallated by $\text{Fe}_{\text{cyt}}^{\text{II}}$.

HEM catalyzes the (unbalanced) reaction

Heme b is used directly to metallate aETC, but it is bound to DAP for transport to other cellular regions.

The ER contains 2 protein groups **MEM** and **HMX** (Fig. 1). MEM is a membrane-bound group that catalyzes the synthesis of **MEMBRANE** from acetyl-CoA in an NAH- and O_2 -requiring reaction. MEM contains heme b and $[\text{Fe}-\text{O}-\text{Fe}]$ centers. The heme b sites are metallated by DAP and the $[\text{Fe}-\text{O}-\text{Fe}]$ sites are metallated by $\text{Fe}_{\text{cyt}}^{\text{II}}$.

HMX is heme oxygenase anchored to the ER membrane. Under iron-deficient conditions, it degrades MEM, CAT, and other heme-containing groups (ETC) to generate $\text{Fe}_{\text{cyt}}^{\text{II}}$ and economize iron. HMX is a member of the AFT-dependent iron regulon.

Fe^{II} ions play important roles in the model. $\text{Fe}_{\text{cyt}}^{\text{II}}$ is imported from the plasma membrane and sent to mitochondria and vacuoles. It reacts at the interface between the cytosol and the ER and diffuses into the nucleus and mitochondrial IMS. $\text{Fe}_{\text{cyt}}^{\text{II}}$ metallates proteins that contain either mononuclear Fe^{II} or $[\text{Fe}-\text{O}-\text{Fe}]$ sites. $\text{Fe}_{\text{cyt}}^{\text{II}}$ reacts with O_2 to generate ROS and nanoparticles (NP). $\text{Fe}_{\text{cyt}}^{\text{II}}$ converts to $\text{Fe}_{\text{mit}}^{\text{II}}$ when it is imported into the mitochondrial matrix. $\text{Fe}_{\text{mit}}^{\text{II}}$ is a substrate for ISC assembly and for heme b biosynthesis.^{100,101,111,112,226,227} Like $\text{Fe}_{\text{cyt}}^{\text{II}}$, $\text{Fe}_{\text{mit}}^{\text{II}}$ can react with O_2 to generate ROS and NP. When $\text{Fe}_{\text{cyt}}^{\text{II}}$ is imported into vacuoles, it becomes $\text{Fe}_{\text{vac}}^{\text{II}}$, which is oxidized to $\text{Fe}_{\text{vac}}^{\text{III}}$. Mobilization of $\text{Fe}_{\text{vac}}^{\text{III}}$ is initiated by reduction to the $\text{Fe}_{\text{vac}}^{\text{II}}$ state^{228,229} which promotes export into the cytosol.

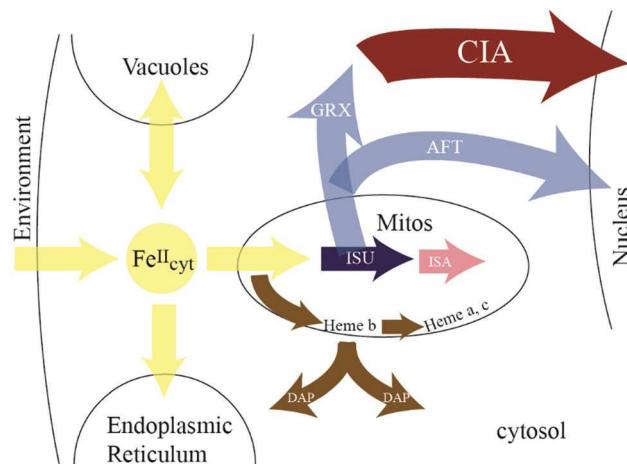
Nutrient acetyl-CoA is a substrate of 3 reactions: the synthesis of **MEMBRANES**, the TCA cycle, and the synthesis of TCAM

(reflecting anaplerotic reactions that serve to fill-up TCA metabolites to counterbalance their utilization in various anabolic processes). This last reaction is required because TCAM is consumed by the synthesis of AMINO ACIDS, NUCLEOTIDES, and hemes. The NAH generated by the TCA cycle is used to synthesize ATP.

Nutrient O_2 enters the cell at a defined rate and is used for respiration in mitochondria, and for dioxygenase and hydroxylase reactions in the ER to generate oxidized/unsaturated fatty acids. It is used in the high-affinity iron import pathway on the plasma membrane and in corresponding iron transport pathway from the vacuolar lumen to the cytosol. O_2 also reacts with $\text{Fe}_{\text{cyt}}^{\text{II}}$ and $\text{Fe}_{\text{mit}}^{\text{II}}$ to generate ROS and NP. ROS damages the cell by reacting with DNA and MEMBRANES.

3. Analysis of the model

Some general conclusions and themes are evident from the model, as listed below.


1. Iron import *via* plasma membrane and iron export *via* vacuoles are synchronized. Both membranes contain reductive Fe^{III} and non-reductive Fe^{II} pathways that are regulated by the iron status of the cell and by O_2 . The two systems operating on two different membranes must function synchronously. Under iron-deficient aerobic conditions, the reductive systems (FET3 and FET5) dominate and both serve to increase $\text{Fe}_{\text{cyt}}^{\text{II}}$. Under iron-deficient hypoxic conditions, the non-reductive systems (FET4 and SMF) dominate, and both again serve to increase $\text{Fe}_{\text{cyt}}^{\text{II}}$. The opposite would happen under iron-replete conditions.

2. The cell economizes iron by shifting from respiration to fermentation. No iron-containing proteins involved in fermentation were identified whereas respiration uses iron extensively. Thus, the cell could switch from respiration to fermentation to economize iron during period of iron scarcity. Respiration-related iron is *unessential* as long as a fermentable carbon source is available.

3. Essential iron flows from the cytosol, through the mitochondrial ISU system, then through the CIA, and finally into the nucleus (summarized in Fig. 5). This is the most important traffic flow of iron in the cell, as the cell cannot survive without the $[\text{Fe}_4\text{S}_4]$ -containing enzymes that help replicate and repair DNA. This is ironic since the biochemical roles of those ISCs are largely unknown. Such clusters might pass charge along the DNA for long-range signaling^{230,231} but this is controversial²³² and perhaps simplistic given the diversity of nuclear enzymes that contain these clusters.

4. $[\text{Fe}_2\text{S}_2]$ clusters flow out of the mitochondria and into the cytosol *via* the “GRX highway” which splits into CIA and AFT branches. After the split, some $[\text{Fe}_2\text{S}_2]$ clusters are trafficked to the CIA (the essential branch) for conversion to $[\text{Fe}_4\text{S}_4]$ clusters, while others are sent to the AFT regulatory branch.

5. In the mitochondria, the “ISU highway” splits into an ISA branch and a cytosol branch leading to GRX and CIA highways. The rate of production of mitochondrial $[\text{Fe}_2\text{S}_2]$ clusters is regulated by the AFT system.

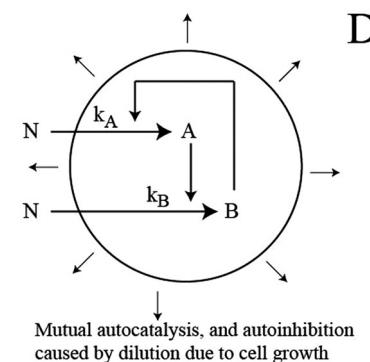
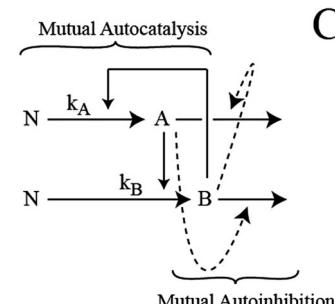
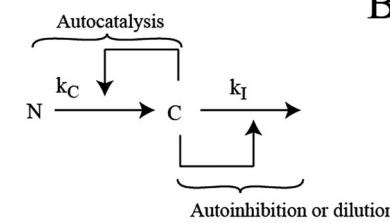
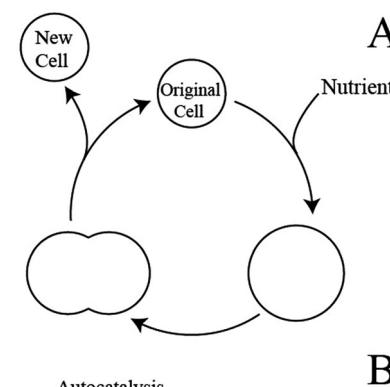





Fig. 5 Major traffic patterns of iron flow in yeast. Cytosolic iron plays a major role in distributing iron the cell; $\text{Fe}^{II}_{\text{cyt}}$ enters the cell from the plasma membrane and is trafficked to three major locations including the mitochondria, vacuoles and endoplasmic reticulum. Mitochondria play a major role in iron trafficking; the iron the flows into this organelle is converted into $[\text{Fe}_2\text{S}_2]$, hemes, and $[\text{Fe}_4\text{S}_4]$ clusters. Much of that iron is installed into mitochondrial respiratory complexes, but some hemes are $[\text{Fe}_2\text{S}_2]$ clusters are exported through the DAP and GRX “highways”. The GRX pathway splits with a portion going to the CIA for conversion into $[\text{Fe}_4\text{S}_4]$ clusters and passage to the nucleus. This is the most critical flow of iron in the cell. Flow along the GRX pathway branches to AFT which is associated with iron regulation.

6. Heme b originates in mitochondria and splits; one branch converts to hemes a and c which are installed into mitochondrial respiratory proteins. The other branch flows heme b out of the organelle and into the cytosol (the DAP highway) for distribution to non-mitochondrial targets. DAP may be the chaperone used but further evidence is needed. Hemes are regulated by O_2 , iron content, and metabolic mode (fermentation *vs.* respiration). Hemes are the major prosthetic groups in respiration-related proteins. Under iron-starved conditions, CTH will shut-down production of heme-containing proteins and HMX will degrade hemes to economize iron for essential DNA-related processes.

7. $\text{Fe}^{II}_{\text{cyt}}$ is the central iron species in the cell. $\text{Fe}^{II}_{\text{cyt}}$ is distributed to all other compartments in the cell. It used to metallate proteins with mononuclear iron and $[\text{Fe}-\text{O}-\text{Fe}]$ centers. $\text{Fe}^{II}_{\text{cyt}}$ is strongly regulated by transport processes in the plasma membrane and vacuoles, which undoubtedly impacts the rate/efficiency of these metallation reactions. $\text{Fe}^{II}_{\text{cyt}}$ is imported into mitochondria where $\text{Fe}^{II}_{\text{mit}}$ serves as feedstock for ISC and heme biosynthesis. $\text{Fe}^{II}_{\text{cyt}}$ is dynamically stored in vacuoles.

8. Autocatalysis is an essential property of growing and dividing cells. Cells are *autocatalysts* because they catalyze their own synthesis from nutrients. This can be translated into a chemical reaction involving nutrient N and cell C (Fig. 6, panel A). One daughter cell can be viewed as the parent and catalyst for the reaction, while the other daughter cell can be viewed as the product. This property causes exponential growth of cells under conditions of unlimited nutrients. The molecular-level mechanisms responsible for it involve biochemicals in the cell

Fig. 6 Simple and mutual autocatalysis and autocatinhitory mechanisms. Panel A shows a cell growing and dividing, which can be transformed into the simple chemical reaction shown in Panel B. Here, N is nutrient and C represents all components of the cell considered as a group. There may be specific autoinhibitory reactions or nonspecific autoinhibition due to cell growth/dilution. Panel C illustrates a mutual autocatinhitory reaction in which two components (A and B) are mutual autocatalysts and mutual autoinhibitory agents. In this example, A catalyzes both the synthesis and degradation of B, and vice versa. Panel D illustrates a simple mutual autocatinhitory system in which the cell grows at an exponential rate \propto that depends on both [A] and [B] but does not otherwise include specific autoinhibitory reactions.

operating together as a *mutual autocatalyst*. Cell models that possess this property should be more accurate and realistic than those that don't.

Mutual autocatalysis can be identified by a causal chain that connects arrows head-to-tail, starting with an increase in one component and ending with an increase in the same component. In these autocatalytic loops (ACLs), horizontal arrows indicate reactions and vertical or U-shaped arrows indicate catalytic influences. To identify an ACL in the system shown in Fig. 6C, follow a causal chain initiated by an increase in either component, *e.g.* A. If the chain eventually leads to a further increase in A, it is an ACL; here $\uparrow A \rightarrow \uparrow B \rightarrow \uparrow A$ (read as *an increase in A causes an increase in B which causes a further increase in A*). For B, the ACL is $\uparrow B \rightarrow \uparrow A \rightarrow \uparrow B$. Mutual autocatalysis is lost when the catalytic influence of A or B is removed.

9. Autoinhibition is an essential property of homeostatically regulated cells in which a perturbation in any component from its “set-point” concentration will eventually cause it to return to its set-point. To achieve this property, each component must be part of an *autoinhibitory* loop (AIL). In AILs, a causal chain initiated by an *increase* in one component will eventually cause a *decrease* in the same component. Reaction networks occurring within exponentially growing cells are *guaranteed* to have an AIL because the ODE for each component C_i will include a dilution term that is proportional to the particular component,^{233,234} as follows.

$$\frac{d[C_i]}{dt} = \underbrace{k[*][*] \dots}_{\text{chemical terms}} - \underbrace{\alpha[C_i]}_{\text{dilution terms}}$$

The inclusion of the dilution term immediately leads to an AIL of the form $\uparrow [C_i] \rightarrow \downarrow [C_i]$ (this is not technically a loop since it involves just one species). There may be other more specific and more powerful AILs than those associated with dilution.

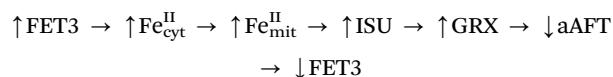
10. Autocatinhibition is a property of homeostatically regulated cells that are growing and dividing: autocatalysis and autoinhibition can occur in the same dynamical system,²³⁵ and we propose that this includes cellular systems. Mutual autocatalysis and mutual autoinhibition *occur simultaneously* in cells. Thus, models of cellular processes occurring within cells should include this property for greater accuracy and realism. In the simplest *autocatinhibitory* system (ACIS) of Fig. 6B, component C is both a catalyst for its own production and a catalyst of its own degradation. If the nutrient concentration is fixed and in excess, the ODE describing time-dependent changes in C might be

$$d[C]/dt = k_C[C] - k_I[C]^2.$$

The second-order dependence of [C] in the negative term arises because C is presumed to be both a first-order substrate and a catalyst for its own degradation. Note that the autoinhibitory chain does *not* loop-back onto C but flows outward from C. The sign of the horizontal reaction arrow must be reversed to create the loop $(\xleftarrow{k_2})$ but the direction of causality must also be reversed, becoming $\uparrow C \rightarrow \downarrow C$.


Either autocatalysis or autoinhibition can dominate depending on the rates of the reactions associated with the chains – or they can be balanced in which case the steady-state concentration of [C] would equal k_C/k_I . In the mutual autocatinhibitory system of

Fig. 6C, an increase in A will cause an increase in B which could either cause an increase in A (ACL dominates) or a decrease in A (AIL dominates), depending on rates.


Assessing whether a more complicated system is autocatinhibitory is more difficult. The difficulty can be diminished if cell growth is assumed (*e.g.* Fig. 6D); then the only assessment is whether the system is autocatalytic. One necessary condition for a group of chemicals to form a mutual autocatalytic system is that each considered species is related to the others. *A component of the system will influence another component of the system and be influenced by yet another component.* Symbolically, C_i would be a component of the system if

$$\uparrow C_j \rightarrow (\uparrow \text{ or } \downarrow) C_i \text{ and if } \uparrow C_i \rightarrow (\uparrow \text{ or } \downarrow) C_k$$

where C_j and C_k are known components of the system. Lacking a more rigorous assessment method, ACL's for each component were informally identified by tracing loops mentally. Using these criteria, the 40 components described above appear to be members of an ACIS (see Table S2 for sample influences, ESI†). Nutrients acetyl-CoA, O_2 , and environmental iron are not components of the ACIS because their rates of synthesis are not influenced by any component of the system. Waste products CO_2 and nanoparticles are not components of the ACIS because they do not influence any other components. I have selected FET3 to illustrate an ACL

In this loop, an increase in FET3 causes an increase in $Fe_{\text{cyt}}^{\text{II}}$, which causes an increase in $Fe_{\text{mit}}^{\text{II}}$, which causes an increase in ISU in mitochondria, which causes an increase in GRX in the cytosol which causes an increase in the CIA which causes an increase in POL which generates more DNA which allows more FET3 (as well as all other proteins in the cell) to be expressed. One AIL is

Here, an increase in FET3 has the same effect as above except that an increase in GRX also causes a *decrease* in AFT activity, which causes a decrease in FET3 (since the iron regulation will be turned-off).

Both processes operate simultaneously in the cell. Consider an exponentially growing cell that is just barely iron-sufficient such that both loops are operating at half-capacity. As the cell grows, new FET3 must be generated to maintain a constant concentration in the plasma membrane. If iron is limiting growth, then adding more iron will increase the ACL rate (and the cell will grow faster). Then, after excess iron enters the cell, the AIL rate will increase, shutting down excessive iron import. The opposite would happen if an iron chelator were added.

Only some components of the system will have a specific AIL pathway (*e.g.* the iron regulon) because only some processes are tightly regulated. Likewise, only some components (*e.g.* Yah1, CIA, ISA, RIB) have a direct specific ACL pathway. Perhaps such

components need to be activated or deactivated more quickly (as a burst) than do other components. Such behavior seems to be particularly important for the ISC assembly systems in the cell, implying the need for ultrasensitive regulation for this process.

There has been speculation, including from my lab²³⁶ regarding the species that is “sensed” by the cell in controlling the Aft1/2-dependent iron regulon. Prior to *ca.* 2004, cytosolic iron was presumed to be the sensed signal that controlled the iron regulon. Thereafter, the ISC activity of mitochondria and/or the rate of X-S export have been viewed as the signal. Cellular regulatory mechanisms are commonly interpreted from the perspective of engineering control theory in which a signal is monitored and compared to a set-point value. Any difference between the two is minimized by adjusting mechanical devices that increase or decrease the signal. However, considering the *chemistry* of AIL and ACL causal loops might be more accurate. This perspective implies that *there is no unique signal in regulatory processes – any member of the causal chain could be a signal*. For example, if the rate of ISC assembly limits the rate of the loop, as occurs in many ISC mutations (e.g. *Yfh1Δ*), *the rate of the entire loop will affect* – similar to how inhibition of any step of an enzyme catalytic cycle can slow the overall rate of catalysis (at steady state). Cytosolic Fe^{II}, mitochondrial ISC activity, and X-S are components of the same causal chains. A deletion that affects any component of that chain would cause the same phenotype. In my view, the search for sensed regulatory signals should be replaced by efforts to better understand loop mechanisms and kinetics.

The next step in developing the 40-component model will be to generate a set of ODEs that translate the chemistry developed here into a quantitative description of the flow of iron into the cell and into various cellular compartments. To integrate these ODEs, an entire set of kinetic parameters (rate constants and concentrations) must be employed, but many of these are unknown. If even approximately correct values can be found, the model should be able to simulate (to some degree) the phenotypes observed when *any* of the 139 proteins of the ironome are deleted which would be a novel achievement.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Science Foundation (MCB-1817389) and the National Institutes of Health (GM127021). I thank Dr Zhigang Zhang for his advice regarding mutual autocatalysis and autoinhibition, Dr Andrew Dancis for a critical reading of the manuscript, and the Lindahl lab members for helpful critical comments and discussion. I encourage readers to contact me with corrections, additions, or advice regarding the ironome or model.

Notes and references

- J. Förster, I. Famili, P. Fu, B. O. Palsson and J. Nielsen, Genome-scale reconstruction of the *Saccharomyces cerevisiae* metabolic network, *Genome Res.*, 2003, **13**, 244–253.
- R. Alves and A. Sorribas, *In silico* pathway reconstruction: Iron-sulfur cluster biogenesis in *Saccharomyces cerevisiae*, *BMC Syst. Biol.*, 2007, **1**, 10, DOI: 10.1186/1752-0509-1-10.
- D. Dikicioglu and S. G. Oliver, Extension of the yeast metabolic model to include iron metabolism and its use to estimate global levels of iron-recruiting enzyme abundance from cofactor requirements, *Biotechnol. Bioeng.*, 2019, **116**, 610–621.
- C. Andreini, V. Putignano, A. Rosato and L. Banci, The human iron-proteome, *Metallomics*, 2018, **10**, 1223–1231.
- J. Kaplan, D. M. Ward, R. J. Crisp and C. C. Philpott, Iron-dependent metabolic remodeling in *S. cerevisiae*, *Biochim. Biophys. Acta, Mol. Cell Res.*, 2006, **1763**, 646–651.
- C. C. Philpott and O. Protchenko, Response to iron deprivation in *Saccharomyces cerevisiae*, *Eukaryotic Cell*, 2008, **7**, 20–27.
- R. F. Hassett, D. S. Yuan and D. J. Kosman, Spectral and kinetic properties of the Fet3 protein from *Saccharomyces cerevisiae*, a multinuclear copper ferroxidase enzyme, *J. Biol. Chem.*, 1998, **273**, 23274–23282.
- O. Protchenko, T. Ferea, J. Rashford, J. Tiedeman, P. O. Brown, D. Botstein and C. C. Philpott, Three cell wall mannoproteins facilitate the uptake of iron in *Saccharomyces cerevisiae*, *J. Biol. Chem.*, 2001, **276**, 49244–49250.
- C. C. Philpott, O. Protchenko, Y. W. Kim, Y. Boretsky and M. Shakoury-Elizeh, The response to iron deprivation in *Saccharomyces cerevisiae*: expression of siderophore-based systems of iron uptake, *Biochem. Soc. Trans.*, 2002, **30**, 698–702.
- J. D. Wofford, J. Park, S. P. McCormick, M. Chakrabarti and P. A. Lindahl, Ferric ions accumulate in the walls of metabolically inactivating *Saccharomyces cerevisiae* cells and are reductively mobilized during reactivation, *Metallomics*, 2016, **8**, 692–708.
- R. D. Klausner and A. Dancis, A genetic approach to elucidating eukaryotic iron-metabolism, *FEBS Lett.*, 1994, **355**, 109–113.
- D. Kosman, J. Lee, A. Romeo and R. Hassett, The Mac1 Protein in *Saccharomyces cerevisiae* – a Homolog of Cu-Dependent Yeast Transcription Factors Is Required for Glucose Derepression and Peroxide Resistance, *FASEB J.*, 1994, **8**, A1449-A.
- E. M. Rees and D. J. Thiele, Identification of a vacuole-associated metalloreductase and its role in Ctr2-mediated intracellular copper mobilization, *J. Biol. Chem.*, 2007, **282**, 21629–21638.
- E. Lesuisse, M. CasterasSimon and P. Labbe, Evidence for the *Saccharomyces cerevisiae* ferrireductase system being a multicomponent electron transport chain, *J. Biol. Chem.*, 1996, **271**, 13578–13583.
- K. P. Shatwell, A. Dancis, A. R. Cross, R. D. Klausner and A. W. Segal, The FRE1 ferric reductase of *Saccharomyces*

cerevisiae is a cytochrome *b* similar to that of NADPH oxidase, *J. Biol. Chem.*, 1996, **271**, 14240–14244.

16 E. Georgatsou and D. Alexandraki, 2 distinctly regulated genes are required for ferric reduction, the first step of iron uptake in *Saccharomyces cerevisiae*, *Mol. Cell. Biol.*, 1994, **14**, 3065–3073.

17 D. J. Kosman, Molecular mechanisms of iron uptake in fungi, *Mol. Microbiol.*, 2003, **47**, 1185–1197.

18 A. Dancis, D. G. Roman, G. J. Anderson, A. G. Hinnebusch and R. D. Klausner, Ferric reductase of *Saccharomyces cerevisiae*—molecular characterization, role in iron uptake, and transcriptional control by iron, *Proc. Natl. Acad. Sci. U. S. A.*, 1992, **89**, 3869–3873.

19 R. F. Hassett, A. M. Romeo and D. J. Kosman, Regulation of high affinity iron uptake in the yeast *Saccharomyces cerevisiae*—role of dioxygen and Fe(II), *J. Biol. Chem.*, 1998, **273**, 7628–7636.

20 A. Cohen, H. Nelson and N. Nelson, The family of SMF metal ion transporters in yeast cells, *J. Biol. Chem.*, 2000, **275**, 33388–33394.

21 A. Naranuntarat, L. T. Jensen, S. Pazicni, J. E. Penner-Hahn and V. C. Culotta, The interaction of mitochondrial iron with manganese superoxide dismutase, *J. Biol. Chem.*, 2009, **284**, 22633–22640.

22 J. Lutkenhaus, The ParA/MinD family puts things in their place, *Trends Microbiol.*, 2012, **20**, 411–418.

23 D. J. A. Netz, A. J. Pierik, M. Stuempfig, U. Mühlenhoff and R. Lill, The Cfd1-Nbp35 complex acts as a scaffold for iron-sulfur protein assembly in the yeast cytosol, *Nat. Chem. Biol.*, 2007, **3**, 278–286.

24 D. J. A. Netz, A. J. Pierik, M. Stuempfig, E. Bill, A. K. Sharma, L. J. Pallesen, W. E. Walden and R. Lill, A bridging [4Fe-4S] cluster and nucleotide binding are essential for function of the Cfd1-Nbp35 complex as a scaffold in iron-sulfur protein maturation, *J. Biol. Chem.*, 2012, **287**, 12365–12378.

25 L. J. Pallesen, N. Solodovnikova, A. K. Sharma and W. E. Walden, Interaction with Cfd1 increases the kinetic lability of FeS on the Nbp35 scaffold, *J. Biol. Chem.*, 2013, **288**, 23358–23367.

26 V. Srinivasan, A. J. Pierik and R. Lill, Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1, *Science*, 2014, **343**, 1137–1140.

27 T. A. Schaedler, J. D. Thornton, I. Kruse, M. Schwarzlander, A. J. Meyer, H. W. van Veen and J. Balk, A conserved mitochondrial ATP-binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly, *J. Biol. Chem.*, 2014, **289**, 23264–23274.

28 J. W. Li and J. A. Cowan, Glutathione-coordinated 2Fe-2S cluster: a viable physiological substrate for mitochondrial ABCB7 transport, *Chem. Commun.*, 2015, **51**, 2253–2255.

29 A. Pandey, J. Pain, N. Dziuba, A. K. Pandey, A. Dancis, P. A. Lindahl and D. Pain, Mitochondria export sulfur species required for cytosolic tRNA thiolation, *Cell Chem. Biol.*, 2018, **25**, 738–748.

30 A. K. Pandey, J. Pain, A. Dancis and D. Pain, Mitochondria export iron-sulfur (Fe-S) and sulfur intermediates to the cytoplasm for Fe-S cluster assembly and tRNA thiolation in yeast, *J. Biol. Chem.*, 2019, **294**, 9489–9502.

31 J. Balk, J. D. A. Netz, K. Tepper, A. J. Pierik and R. Lill, The essential WD40 protein Cia1 is involved in a late step of cytosolic and nuclear iron-sulfur protein assembly, *Mol. Cell. Biol.*, 2005, **25**, 10833–10841.

32 R. Lill, R. Dutkiewicz, S. A. Freibert, T. Heidenreich, J. Mascarenhas, D. J. Netz, V. D. Paul, A. J. Pierik, N. Richter, M. Stuempfig, V. Srinivasan, O. Stehling and U. Mühlenhoff, The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron-sulfur proteins, *Eur. J. Cell Biol.*, 2015, **94**, 280–291.

33 E. Urzica, A. J. Pierik, U. Mühlenhoff and R. Lill, Crucial role of conserved cysteine residues in the assembly of two iron-sulfur clusters on the CIA protein Nar1, *Biochemistry*, 2009, **48**, 4946–4958.

34 V. D. Paul and R. Lill, Biogenesis of cytosolic and nuclear iron-sulfur proteins and their role in genome stability, *Biochim. Biophys. Acta, Mol. Cell Res.*, 2015, **1853**, 1528–1539.

35 M. Dong, Y. G. Zhang and H. N. Lin, Noncanonical radical SAM enzyme chemistry learned from diphthamide biosynthesis, *Biochemistry*, 2018, **57**, 3454–3459.

36 L. C. Mattheakis, F. Sor and R. J. Collier, Diphthamide Synthesis in *Saccharomyces cerevisiae*—Structure of the Dph2 Gene, *Gene*, 1993, **132**, 149–154.

37 W. Chen and K. Struhl, Yeast Messenger-RNA Initiation Sites Are Determined Primarily by Specific Sequences, Not by the Distance from the Tata Element, *EMBO J.*, 1985, **4**, 3273–3280.

38 A. Thakur, B. Chitoor, A. V. Goswami, G. Pareek, H. S. Atreya and P. D'Silva, Structure and mechanistic insights into novel iron-mediated moonlighting functions of human J-protein cochaperone, Dph4, *J. Biol. Chem.*, 2012, **287**, 13194–13205.

39 L. A. Kaschner, R. Sharma, U. K. Shrestha, A. E. Meyer and E. A. Craig, A conserved domain important for association of eukaryotic J-protein co-chaperones Jjj1 and Zuo1 with the ribosome, *Biochim. Biophys. Acta, Mol. Cell Res.*, 2015, **1853**, 1035–1045.

40 U. Dalwadi and C. K. Yip, Structural insights into the function of Elongator, *Cell. Mol. Life Sci.*, 2018, **75**, 1613–1622.

41 G. Otero, J. Fellows, Y. Li, T. de Bizemont, A. M. G. Dirac, C. M. Gustafsson, H. Erdjument-Bromage, P. Tempst and J. Q. Svejstrup, Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation, *Mol. Cell*, 1999, **3**, 109–118.

42 B. O. Wittschieben, G. Otero, T. de Bizemont, J. Fellows, H. Erdjument-Bromage, R. Ohba, Y. Li, C. D. Allis, P. Tempst and J. Q. Svejstrup, A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme, *Mol. Cell*, 1999, **4**, 123–128.

43 B. Huang, M. J. O. Johansson and A. S. Bystrom, An early step in wobble uridine tRNA modification requires the Elongator complex, *RNA*, 2005, **11**, 424–436.

44 K. Selvadurai, P. Wang, J. Seimetz and R. H. Huang, Archaeal Elp3 catalyzes tRNA wobble uridine modification at C5 via a radical mechanism, *Nat. Chem. Biol.*, 2014, **10**, 810–812.

45 C. Greenwood, L. A. Seltz, A. B. Dirac-Svejstrup and J. Q. Svejstrup, An iron-sulfur cluster domain in Elp3 is important for the structural integrity of elongator, *J. Biol. Chem.*, 2009, **284**, 141–149.

46 C. Paraskevopoulou, S. A. Fairhurst, D. J. Lowe, P. Brick and S. Onesti, The elongator subunit Elp3 contains a Fe₄S₄ cluster and binds S-adenosylmethionine, *Mol. Microbiol.*, 2006, **59**, 795–806.

47 I. C. Soto, F. Fontanesi, R. S. Myers, P. Hamel and A. Barrientos, A heme-sensing mechanism in the translational regulation of mitochondrial cytochrome *c* oxidase biogenesis, *Cell Metab.*, 2012, **16**, 801–813.

48 J. M. Guillamon, N. A. W. van Riel, M. L. F. Giuseppin and C. T. Verrips, The glutamate synthase (GOGAT) of *Saccharomyces cerevisiae* plays an important role in central nitrogen metabolism, *FEMS Yeast Res.*, 2001, **1**, 169–175.

49 B. Curti, M. A. Vanoni, E. Verzotti and G. Zanetti, Glutamate synthase: A complex iron-sulphur flavoprotein, *Biochem. Soc. Trans.*, 1996, **24**, 95–99.

50 A. Yoshimoto and R. Sato, Studies on yeast sulfite reductase I. Purification and characterization, *Biochim. Biophys. Acta*, 1968, **153**, 555–575.

51 A. Yoshimoto and R. Sato, Studies on yeast sulfite reductase 2. Partial purification and properties of genetically incomplete sulfite reductases, *Biochim. Biophys. Acta*, 1968, **153**, 576–588.

52 K. Kobayashi and A. Yoshimoto, Studies on Yeast Sulfite Reductase 4. Structure and Steady-State Kinetics, *Biochim. Biophys. Acta*, 1982, **705**, 348–356.

53 H. L. Schubert, E. Raux, A. A. Brindley, H. K. Leech, K. S. Wilson, C. P. Hill and M. J. Warren, The structure of *Saccharomyces cerevisiae* Met8p, a bifunctional dehydrogenase and ferrochelatase, *EMBO J.*, 2002, **21**, 2068–2075.

54 E. J. Samp, Possible roles of the mitochondria in sulfur dioxide production by lager yeast, *J. Am. Soc. Brew. Chem.*, 2012, **70**, 219–229.

55 L. Qin, X. Y. Gong, J. T. Xie, D. H. Jiang, J. S. Cheng, G. Q. Li, J. B. Huang and Y. P. Fu, Phosphoribosylamido-transferase, the first enzyme for purine de novo synthesis, is required for conidiation in the sclerotial mycoparasite *Coniothyrium minitans*, *Fungal Genet. Biol.*, 2011, **48**, 956–965.

56 P. Mantsala and H. Zalkin, Glutamine nucleotide-sequence of *Saccharomyces cerevisiae* Ade4 encoding phosphoribosylpyrophosphate amidotransferase, *J. Biol. Chem.*, 1984, **259**, 8478–8484.

57 R. Kucharczyk, M. Zagulski, J. Rytka and C. J. Herbert, The yeast gene YJR025c encodes a 3-hydroxyanthranilic acid dioxygenase and is involved in nicotinic acid biosynthesis, *FEBS Lett.*, 1998, **424**, 127–130.

58 L. T. Li, O. S. Chen, D. M. Ward and J. Kaplan, CCC1 is a transporter that mediates vacuolar iron storage in yeast, *J. Biol. Chem.*, 2001, **276**, 29515–29519.

59 V. Gudipati, K. Koch, W. D. Lienhart and P. Macheroux, The flavoproteome of the yeast *Saccharomyces cerevisiae*, *Biochim. Biophys. Acta, Proteins Proteomics*, 2014, **1844**, 535–544.

60 S. Puig, L. Ramos-Alonso, A. M. Romero and M. Martinez-Pastor, The elemental role of iron in DNA synthesis and repair, *Metallomics*, 2017, **9**, 1483–14500.

61 N. Sanvisens, A. M. Romero, C. G. Zhang, X. R. Wu, X. X. An, M. X. Huang and S. Puig, Yeast Dun1 kinase regulates ribonucleotide reductase small subunit localization in response to iron deficiency, *J. Biol. Chem.*, 2016, **291**, 9807–9817.

62 N. Sanvisens, M. C. Bano, M. X. Huang and S. Puig, Regulation of ribonucleotide reductase in response to iron deficiency, *Mol. Cell*, 2011, **44**, 759–769.

63 H. R. Li, M. Stumpfig, C. J. Zhang, X. X. An, J. Stubbe, R. Lill and M. X. Huang, The diferric-tyrosyl radical cluster of ribonucleotide reductase and cytosolic iron-sulfur clusters have distinct and similar biogenesis requirements, *J. Biol. Chem.*, 2017, **292**, 11445–11451.

64 U. Mühlenhoff, S. Molik, J. R. Godoy, M. A. Uzarska, N. Richter, A. Seubert, Y. Zhang, J. Stubbe, F. Pierrel, E. Herrero, C. H. Lillig and R. Lill, Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster, *Cell Metab.*, 2010, **12**, 373–385.

65 A. G. Frey, D. J. Palenchar, J. D. Wildemann and C. C. Philpott, A glutaredoxin center dot BolA complex serves as an iron-sulfur cluster chaperone for the cytosolic cluster assembly machinery, *J. Biol. Chem.*, 2016, **291**, 22344–22356.

66 M. A. Uzarska, V. Nasta, B. D. Weiler, F. Spantgar, S. Ciofi-Baffoni, M. R. Saviello, L. Gonnelli, U. Mühlenhoff, L. Banci and R. Lill, Mitochondrial Bol1 and Bol3 function as assembly factors for specific iron-sulfur proteins, *eLife*, 2016, **5**, e16673.

67 C. B. Chi, Y. J. Tang, J. H. Zhang, Y. N. Dai, M. Abdalla, Y. X. Chen and C. Z. Zhou, Structural and Biochemical Insights into the Multiple Functions of Yeast Grx3, *J. Mol. Biol.*, 2018, **430**, 1235–1248.

68 A. Kumanovics, O. S. Chen, L. T. Li, D. Bagley, E. M. Adkins, H. L. Lin, N. N. Dingra, C. C. Outten, G. Keller, D. R. Winge, D. M. Ward and J. Kaplan, Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis, *J. Biol. Chem.*, 2008, **283**, 10276–10286.

69 T. Nishimoto, M. Furuta, M. Kataoka and M. Kishida, Important role of catalase in the cellular response of the budding yeast *Saccharomyces cerevisiae* exposed to ionizing radiation, *Curr. Microbiol.*, 2015, **70**, 404–407.

70 Y. Q. Chen, X. G. Liu, W. Zhao, H. J. Cui, J. Ruan, Y. Yuan and Z. G. Tu, MET18 deficiency increases the sensitivity of yeast to oxidative stress and shortens replicative lifespan by inhibiting catalase activity, *BioMed Res. Int.*, 2017, **2017**, 7587395.

71 M. J. Mate, M. Zamocky, L. M. Nykyri, C. Herzog, P. M. Alzari, C. Betzel, F. Koller and I. Fita, Structure of catalase-A from *Saccharomyces cerevisiae*, *J. Mol. Biol.*, 1999, **286**, 135–149.

72 E. Hammi, E. Warkentin, U. Demmer, N. M. Marzouki, U. Ermler and L. Baciou, Active site analysis of yeast flavohemoglobin based on its structure with a small ligand or econazole, *FEBS J.*, 2012, **279**, 4565–4575.

73 K. Nilsson, G. Jager and G. R. Bjork, An unmodified wobble uridine in tRNAs specific for glutamine, lysine, and glutamic acid from *Salmonella enterica* Serovar Typhimurium results in nonviability—due to increased missense errors?, *PLoS One*, 2017, **12**, e0175092.

74 R. Sahoo, A. Bhattacharjee, U. Majumdar, S. S. Ray, T. Dutta and S. Ghosh, A novel role of catalase in detoxification of peroxy nitrite in *S. cerevisiae*, *Biochem. Biophys. Res. Commun.*, 2009, **385**, 507–511.

75 R. A. Helmick, A. E. Fletcher, A. M. Gardner, C. R. Gessner, A. N. Hvited, M. C. Gustin and P. R. Gardner, Imidazole antibiotics inhibit the nitric oxide dioxygenase function of microbial flavohemoglobin', *Antimicrob. Agents Chemother.*, 2005, **49**, 1837–1843.

76 N. Cassanova, K. M. O'Brien, B. T. Stahl, T. McClure and R. O. Poyton, Yeast flavohemoglobin, a nitric oxide oxidoreductase, is located in both the cytosol and the mitochondrial matrix, *J. Biol. Chem.*, 2005, **280**, 7645–7653.

77 I. Alseth, L. Eide, M. Pirovano, T. Rognes, E. Seeberg and M. Bjoras, The *Saccharomyces cerevisiae* homologues of endonuclease III from *Escherichia coli*, Ntg1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast, *Mol. Cell. Biol.*, 1999, **19**, 3779–3787.

78 P. M. Girard and S. Boiteux, Repair of oxidized DNA bases in yeast *Saccharomyces cerevisiae*, *Biochimie*, 1997, **79**, 559–566.

79 M. M. Thayer, H. Ahern, D. X. Xing, R. P. Cunningham and J. A. Tainer, Novel DNA-binding motifs in the DNA-repair enzyme endonuclease-III crystal-structure, *EMBO J.*, 1995, **14**, 4108–4120.

80 N. H. Thayer, C. K. Leverich, M. P. Fitzgibbon, Z. W. Nelson, K. A. Henderson, P. R. Gafken, J. J. Hsu and D. E. Gottschling, Identification of long-lived proteins retained in cells undergoing repeated asymmetric divisions, *Proc. Natl. Acad. Sci. U. S. A.*, 2014, **111**, 14019–14026.

81 R. G. M. Melo, A. C. Leitao and M. Padula, Role of OGG1 and NTG2 in the repair of oxidative DNA damage and mutagenesis induced by hydrogen peroxide in *Saccharomyces cerevisiae*: relationships with transition metals iron and copper, *Yeast*, 2004, **21**, 991–1003.

82 L. Augeri, Y. M. Lee, A. B. Barton and P. W. Doetsch, Purification, characterization, gene cloning, and expression of *Saccharomyces cerevisiae* redoxendonuclease, a homolog of *Escherichia coli* endonuclease III, *Biochemistry*, 1997, **36**, 721–729.

83 L. Eide, M. Bjoras, M. Pirovano, I. Alseth, K. G. Berdal and E. Seeberg, Base excision of oxidative purine and pyrimidine DNA damage in *Saccharomyces cerevisiae* by a DNA glycosylase with sequence similarity to endonuclease III from *Escherichia coli*, *Proc. Natl. Acad. Sci. U. S. A.*, 1996, **93**, 10735–10740.

84 C. F. Kuo, D. E. Mcree, R. P. Cunningham and J. A. Tainer, Crystallization and crystallographic characterization of the iron sulfur-containing DNA-repair enzyme endonuclease-III from *Escherichia coli*, *J. Mol. Biol.*, 1992, **227**, 347–351.

85 J. T. P. Yeeles, R. Cammack and M. S. Dillingham, An iron-sulfur cluster is essential for the binding of broken DNA by AddAB-type helicase-nucleases, *J. Biol. Chem.*, 2009, **284**, 7746–7755.

86 S. Pokharel and J. L. Campbell, Cross talk between the nuclease and helicase activities of Dna2: role of an essential iron-sulfur cluster domain, *Nucleic Acids Res.*, 2012, **40**, 7821–7830.

87 T. E. Messick, N. H. Chmiel, M. P. Golinelli, M. R. Langer, L. Joshua-Tor and S. S. David, Noncysteinyl coordination to the [4Fe-4S]²⁺ cluster of the DNA repair adenine glycosylase MutY introduced via site-directed mutagenesis. Structural characterization of an unusual histidinyl-coordinated cluster, *Biochemistry*, 2002, **41**, 3931–3942.

88 Y. L. Wu, J. A. Sommers, I. Khan, J. P. deWinter and R. M. Brosh, Biochemical characterization of Warsaw Breakage Syndrome helicase, *J. Biol. Chem.*, 2012, **287**, 1007–1021.

89 K. Gari, A. M. L. Ortiz, V. Borel, H. Flynn, J. M. Skehel and S. J. Boulton, MMS19 links cytoplasmic iron-sulfur cluster assembly to DNA metabolism, *Science*, 2012, **337**, 243–245.

90 M. A. Uzarska, J. Przybyla-Toscano, F. Spantgar, F. Zannini, R. Lill, U. Mühlenhoff and N. Rouhier, Conserved functions of *Arabidopsis* mitochondrial late-acting maturation factors in the trafficking of iron-sulfur clusters, *Biochim. Biophys. Acta, Mol. Cell Res.*, 2018, **1865**, 1250–1259.

91 A. Vo, N. M. Fleischman, M. J. Froehlich, C. Y. Lee, J. A. Cosman, C. A. Glynn, Z. O. Hassan and D. L. Perlstein, Identifying the protein interactions of the cytosolic iron-sulfur cluster targeting complex essential for its assembly and recognition of apo-targets, *Biochemistry*, 2018, **57**, 2349–2358.

92 S. Klinge, J. Hirst, J. D. Maman, T. Krude and L. Pellegrini, An iron-sulfur domain of the eukaryotic primase is essential for RNA primer synthesis, *Nat. Struct. Mol. Biol.*, 2007, **14**, 875–877.

93 B. E. Weiner, H. Huang, B. M. Dattilo, M. J. Nilges, E. Fanning and W. J. Chazin, An iron-sulfur cluster in the C-terminal domain of the p58 subunit of human DNA primase, *J. Biol. Chem.*, 2007, **282**, 33444–33451.

94 A. G. Baranovskiy, J. Y. Gu, N. D. Babayeva, I. Kurinov, Y. I. Pavlov and T. H. Tahirov, Crystal structure of the human Pol is an element of B-subunit in complex with the C-terminal domain of the catalytic subunit, *J. Biol. Chem.*, 2017, **292**, 15717–15730.

95 L. K. Zerbe and R. D. Kuchta, The p58 subunit of human DNA primase is important for primer initiation, elongation, and counting, *Biochemistry*, 2002, **41**, 4891–4900.

96 U. Hübscher, G. Maga and S. Spadari, Eukaryotic DNA polymerases, *Annu. Rev. Biochem.*, 2002, **71**, 133–163.

97 S. Vaithiyalingam, E. M. Warren, B. F. Eichman and W. J. Chazin, Insights into eukaryotic DNA priming from the structure and functional interactions of the 4Fe-4S cluster domain of human DNA primase, *Proc. Natl. Acad. Sci. U. S. A.*, 2010, **107**, 13684–13689.

98 L. L. Liu and M. X. Huang, Essential role of the iron-sulfur cluster binding domain of the primase regulatory subunit Pri2 in DNA replication initiation. *Protein & Cell*, 2015, **6**, 194–210.

99 A. G. Baranovskiy, A. G. Lada, H. M. Siebler, Y. B. Zhang, Y. I. Pavlov and T. H. Tahirov, DNA Polymerase delta and zeta Switch by Sharing Accessory Subunits of DNA Polymerase delta, *J. Biol. Chem.*, 2012, **287**, 17281–17287.

100 A. G. Baranovskiy, N. D. Babayeva, Y. B. Zhang, J. Y. Gu, Y. Suwa, Y. I. Pavlov and T. H. Tahirov, Mechanism of Concerted RNA-DNA Primer Synthesis by the Human Primosome, *J. Biol. Chem.*, 2016, **291**, 10006–10020.

101 M. A. Grodick, N. B. Muren and J. K. Barton, DNA charge transport within the cell, *Biochemistry*, 2015, **54**, 962–973.

102 A. R. Arnold, M. A. Grodick and J. K. Barton, DNA Charge Transport: from Chemical Principles to the Cell, *Cell Chem. Biol.*, 2016, **23**, 183–197.

103 R. Jain, E. S. Vanamee, B. G. Dzikovski, A. Buku, R. E. Johnson, L. Prakash, S. Prakash and A. K. Aggarwal, An iron-sulfur cluster in the polymerase domain of yeast DNA polymerase epsilon, *J. Mol. Biol.*, 2014, **426**, 301–308.

104 M. Hogg, P. Osterman, G. O. Bylund, R. A. Ganai, E. B. Lundstrom, A. E. Sauer-Eriksson and E. Johansson, Structural basis for processive DNA synthesis by yeast DNA polymerase epsilon, *Nat. Struct. Mol. Biol.*, 2014, **21**, 49–56.

105 A. G. Baranovskiy, H. M. Siebler, Y. I. Pavlov and T. H. Tahirov, Iron-Sulfur Clusters in DNA Polymerases and Primases of Eukaryotes, *Fe-S Cluster Enzymes, Pt B*, 2018, **599**, 1–20.

106 A. V. Makarova and P. M. Burgers, Eukaryotic DNA polymerase zeta', *DNA Repair*, 2015, **29**, 47–55.

107 A. Deepa, K. Naveena and R. Anindya, DNA repair activity of Fe(II)/2OG-dependent dioxygenases affected by low iron level in *Saccharomyces cerevisiae*, *FEMS Yeast Res.*, 2018, **18**, DOI: 10.1093/femsyr/foy014.

108 O. Protchenko and C. C. Philpott, Regulation of intracellular heme levels by HMX1, a homologue of heme oxygenase, in *Saccharomyces cerevisiae*, *J. Biol. Chem.*, 2003, **278**, 36582–36587.

109 J. C. Rutherford, S. Jaron and D. R. Winge, Aft1p and Aft2p mediate iron-responsive gene expression in yeast through related promoter elements, *J. Biol. Chem.*, 2003, **278**, 27636–27643.

110 M. Shakoury-Elizeh, J. Tiedeman, J. Rashford, T. Ferea, J. Demeter, E. Garcia, R. Rolfes, P. O. Brown, D. Botstein and C. C. Philpott, Transcriptional remodeling in response to iron deprivation in *Saccharomyces cerevisiae*, *Mol. Biol. Cell*, 2004, **15**, 1233–1243.

111 M. T. Martinez-Pastor, A. Perea-Garcia and S. Puig, Mechanisms of iron sensing and regulation in the yeast *Saccharomyces cerevisiae*, *World J. Microbiol. Biotechnol.*, 2017, **33**, DOI: 10.1007/s11274-017-2215-8.

112 C. E. Outten and A. N. Albetel, Iron sensing and regulation in *Saccharomyces cerevisiae*: Ironing out the mechanistic details, *Curr. Opin. Microbiol.*, 2013, **16**, 662–668.

113 F. Foury and D. Talibi, Mitochondrial control of iron homeostasis–A genome wide analysis of gene expression in a yeast frataxin-deficient strain, *J. Biol. Chem.*, 2001, **276**, 7762–7768.

114 J. C. Rutherford, S. Jaron and D. R. Winge, Aft1p and Aft2p mediate iron-responsive gene expression in yeast through related promoter elements, *J. Biol. Chem.*, 2003, **278**, 27636–27643.

115 L. A. Ramos-Alonso, A. M. O. A. Romero, M. A. Soler, A. Perea-Garcia, P. Alepuz, S. Puig and M. T. Martinez-Pastor, Yeast Cth2 protein represses the translation of ARE-containing mRNAs in response to iron deficiency, *PLoS Genet.*, 2018, **14**, DOI: 10.1371/journal.pgen.1007476.

116 S. V. Vergara, S. Puig and D. J. Thiele, Early recruitment of AU-rich element-containing mRNAs determines their cytosolic fate during iron deficiency, *Mol. Cell. Biol.*, 2011, **31**, 417–429.

117 S. Puig, S. V. Vergara and D. J. Thiele, Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency, *Cell Metab.*, 2008, **7**, 555–564.

118 L. Li, D. Bagley, D. A. Ward and J. Kaplan, Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast, *Mol. Cell. Biol.*, 2008, **28**, 1326–1337.

119 N. J. Pace, D. R. Pimental and E. Weerapana, An inhibitor of glutathione S-transferase Omega 1 that selectively targets apoptotic cells, *Angew. Chem., Int. Ed.*, 2012, **51**, 8365–8368.

120 N. Rietzschel, A. J. Pierik, E. Bill, R. Lill and U. Mühlhoff, The basic leucine zipper stress response regulator Yap5 senses high-iron conditions by coordination of [2Fe-2S] clusters, *Mol. Cell. Biol.*, 2015, **35**, 370–378.

121 L. T. Li, J. Kaplan and D. M. Ward, The glucose sensor Snf1 and the transcription factors Msn2 and Msn4 regulate transcription of the vacuolar iron importer gene CCC1 and iron resistance in yeast, *J. Biol. Chem.*, 2017, **292**, 15577–15586.

122 L. T. Li, R. Miao, S. Bertram, X. Jia, D. M. Ward and J. Kaplan, A role for iron-sulfur clusters in the regulation of transcription factor Yap5-dependent high iron transcriptional responses in yeast, *J. Biol. Chem.*, 2012, **287**, 35709–35721.

123 T. T. Zhang, P. L. Bu, J. Zeng and A. Vancura, Increased heme synthesis in yeast induces a metabolic switch from fermentation to respiration even under conditions of glucose repression, *J. Biol. Chem.*, 2017, **292**, 16942–16954.

124 L. Zhang, L. and A. Hach, Molecular mechanism of heme signalling in yeast: the transcriptional activator Hap1 serves as the key mediator, *Cell. Mol. Life Sci.*, 1999, **56**, 415–426.

125 A. Pandey, R. Golla, H. Yoon, A. Dancis and D. Pain, Persulfide formation on mitochondrial cysteine desulfurase: enzyme activation by a eukaryote-specific interacting protein and Fe-S cluster synthesis, *Biochem. J.*, 2012, **448**, 171–187.

126 C. L. Tsai and D. P. Barondeau, Human frataxin is an allosteric switch that activates the Fe-S cluster biosynthetic complex, *Biochemistry*, 2010, **49**, 9132–9139.

127 T. L. Stemmler, E. Lesuisse, D. Pain and A. Dancis, Frataxin and mitochondrial FeS cluster biogenesis, *J. Biol. Chem.*, 2010, **285**, 26737–26743.

128 E. Lesuisse, R. Santos, B. F. Matzanke, S. A. B. Knight, J. M. Camadro and A. Dancis, Iron use for haeme synthesis is under control of the yeast frataxin homologue (Yfh1), *Hum. Mol. Genet.*, 2003, **12**, 879–889.

129 M. Whitnall, Y. S. Rahmanto, M. L. H. Huang, F. Saletta, H. C. Lok, L. Gutierrez, F. J. Lazaro, A. J. Fleming, T. G. St. Pierre, M. R. Mikhael, P. Ponka and D. R. Richardson, Identification of nonferritin mitochondrial iron deposits in a mouse model of Friedreich ataxia, *Proc. Natl. Acad. Sci. U. S. A.*, 2012, **109**, 20590–20595.

130 H. Webert, S. A. Freibert, A. Gallo, T. Heidenreich, U. Linne, S. Amlacher, E. Hurt, U. Mühlenhoff, L. Banci and R. Lill, Functional reconstitution of mitochondrial Fe/S cluster synthesis on Isu1 reveals the involvement of ferredoxin, *Nat. Commun.*, 2014, **5**, 5013, DOI: 10.1038/ncomms6013.

131 R. Lill, B. Hoffmann, S. Molik, A. J. Pierik, N. Rietzschel, O. Stehling, M. A. Uzarska, H. Webert, C. Wilbrecht and U. Mühlenhoff, The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism, *Biochim. Biophys. Acta, Mol. Cell Res.*, 2012, **1823**, 1491–1508.

132 R. Dutkiewicz and M. Nowak, Molecular chaperones involved in mitochondrial iron-sulfur protein biogenesis, *J. Biol. Inorg. Chem.*, 2018, **23**, 569–579.

133 A. D. Sheftel, C. Wilbrecht, O. Stehling, B. Niggemeyer, H. P. Elsasser, U. Mühlenhoff and R. Lill, The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for [4Fe-4S] protein maturation, *Mol. Biol. Cell*, 2012, **23**, 1157–1166.

134 L. K. Beilschmidt, S. O. de Choudens, M. Fournier, I. Sanakis, M. A. Hograindeur, M. Clemancey, G. Blondin, S. Schmucker, A. Eisenmann, A. Weiss, P. Koebel, N. Messadeq, H. Puccio and A. Martelli, ISCA1 is essential for mitochondrial Fe₄S₄ biogenesis *in vivo*, *Nat. Commun.*, 2017, **8**, 15124.

135 C. Gelling, I. W. Dawes, N. Richhardt, R. Lill and U. Mühlenhoff, Mitochondrial Iba57p is required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes, *Mol. Cell. Biol.*, 2008, **28**, 1851–1861.

136 U. Mühlenhoff, N. Richter, O. Pines, A. J. Pierik and R. Lill, Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fe-4S] proteins, *J. Biol. Chem.*, 2011, **286**, 41205–41216.

137 D. Brancaccio, A. Gallo, M. Mikolajczyk, K. Zovo, P. Palumaa, E. Novellino, M. Piccioli, S. Ciofi-Baffoni and L. Banci, Formation of [4Fe-4S] Clusters in the Mitochondrial Iron-Sulfur Cluster Assembly Machinery, *J. Am. Chem. Soc.*, 2014, **136**, 16240–16250.

138 A. Melber, A. Vashisht, B. D. Weiler, R. Lill, J. A. Wohlschlegel and D. R. Winge, Role of Nfu1 and Bol3 in iron-sulfur cluster transfer to mitochondrial clients, *eLife*, 2016, **5**, e15991.

139 M. A. Wallace, L. L. Liou, J. Martins, M. H. S. Clement, S. Bailey, V. D. Longo, J. S. Valentine and E. G. Gralla, Superoxide inhibits 4Fe-4S cluster enzymes involved in amino acid biosynthesis–Cross-compartment protection by CuZn-superoxide dismutase, *J. Biol. Chem.*, 2004, **279**, 32055–32062.

140 E. Do, W. Park, G. Hu, M. Caza, J. W. Kronstad and W. H. Jung, The lysine biosynthetic enzyme Lys4 influences iron metabolism, mitochondrial function and virulence in *Cryptococcus neoformans*, *Biochem. Biophys. Res. Commun.*, 2016, **477**, 706–711.

141 M. E. Maragoudakis and M. Strassman, Homocitric acid accumulation by a lysine-requiring yeast mutant, *J. Biol. Chem.*, 1966, **241**, 695–699.

142 D. Brat, C. Weber, W. Lorenzen, H. B. Bode and E. Boles, Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast *Saccharomyces cerevisiae*, *Biotechnol. Biofuels*, 2012, **5**, DOI: 10.1186/1754-6834-5-65.

143 D. H. Flint, M. H. Emptage, M. G. Finnegan, W. G. Fu and M. K. Johnson, The role and properties of the iron-sulfur cluster in *Escherichia coli* dihydroxy-acid dehydratase, *J. Biol. Chem.*, 1993, **268**, 14732–14742.

144 U. Mühlenhoff, M. J. Gerl, B. Flauger, H. M. Pirner, S. Balser, N. Richhardt, R. Lill and J. Stolz, The iron-sulfur cluster proteins Isa1 and Isa2 are required for the function but not for the de novo synthesis of the Fe/S clusters of biotin synthase in *Saccharomyces cerevisiae*, *Eukaryotic Cell*, 2007, **6**, 495–504.

145 D. Pain and A. Dancis, A. Roles of Fe-S proteins: from cofactor synthesis to iron homeostasis to protein synthesis', *Current Opinion in Genetics & Development*, 2016, **38**, 45–51.

146 F. Foury and T. Roganti, Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain, *J. Biol. Chem.*, 2002, **277**, 24475–24483.

147 H. Yoon, Y. Zhang, J. Pain, E. R. Lyver, E. Lesuisse, D. Pain and A. Dancis, Rim2, a pyrimidine nucleotide exchanger, is needed for iron utilization in mitochondria, *Biochem. J.*, 2011, **440**, 137–146.

148 E. M. Froschauer, N. Rietzschel, M. R. Hassler, M. Binder, R. J. Schweyen, R. Lill, U. Mühlenhoff and G. Wiesenberger, The mitochondrial carrier Rim2 co-imports pyrimidine nucleotides and iron, *Biochem. J.*, 2013, **455**, 57–65.

149 M. J. Acosta, L. V. Fonseca, M. A. Desbats, C. Cerqua, R. Zordan, E. Trevisson and L. Salviati, Coenzyme Q biosynthesis in health and disease, *Biochim. Biophys. Acta, Bioenerg.*, 2016, **1857**, 1079–1085.

150 M. Acosta-Zaldivar, M. T. Andres, A. Rego, C. S. Pereira, J. F. Fierro and M. Corte-Real, Human lactoferrin triggers a mitochondrial- and caspase-dependent regulated cell death in *Saccharomyces cerevisiae*, *Apoptosis*, 2016, **21**, 163–173.

151 M. Ozeir, U. Mühlenhoff, H. Webert, R. Lill, M. Fontecave and F. Pierrel, Coenzyme Q biosynthesis: Coq6 is required for the C5-hydroxylation reaction and substrate analogs rescue Coq6 deficiency, *Chem. Biol.*, 2011, **18**, 1134–1142.

152 M. Ozeir, L. Pelosi, A. Ismail, C. Mellot-Draznieks, M. Fontecave and F. Pierrel, Coq6 is responsible for the C4-deamination reaction in Coenzyme Q biosynthesis in *Saccharomyces cerevisiae*, *J. Biol. Chem.*, 2015, **290**, 24140–24151.

153 F. Pierrel, O. I. Hamelin, T. Douki, S. Kieffer-Jaquinod, U. Mühlenhoff, M. Ozeir and R. Lill, R. and M. Fontecave, Involvement of mitochondrial ferredoxin and paraaminobenzoic acid in yeast Coenzyme Q biosynthesis, *Chem. Biol.*, 2010, **17**, 449–459.

154 A. Martin-Montalvo, I. Gonzalez-Mariscal, S. Padilla, M. Ballesteros, D. L. Brautigan, P. Navas and C. Santos-Ocana, Respiratory-induced coenzyme Q biosynthesis is regulated by a phosphorylation cycle of Cat5p/Coq7p, *Biochem. J.*, 2011, **440**, 107–114.

155 A. Kar, H. Beam, M. B. Borror, M. Luckow, X. L. Gao and S. L. Rea, CLD1 Reverses the ubiquinone insufficiency of mutant cat5/coq7 in a *Saccharomyces cerevisiae* model system, *PLoS One*, 2016, **11**, e0162165.

156 H. J. Kim, O. Khalimonchuk, P. M. Smith and D. R. Winge, Structure, function, and assembly of heme centers in mitochondrial respiratory complexes, *Biochim. Biophys. Acta, Mol. Cell Res.*, 2012, **1823**, 1604–1616.

157 C. L. Quinlan, A. L. Orr, I. V. Perevoshchikova, J. R. Treberg, B. A. Ackrell and M. D. Brand, Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions, *J. Biol. Chem.*, 2012, **287**, 27255–27264.

158 L. Hederstedt, Heme A biosynthesis, *Biochim. Biophys. Acta, Bioenerg.*, 2012, **1817**, 920–927.

159 M. H. Barros, C. G. Carlson, D. M. Glerum and A. Tzagoloff, Involvement of mitochondrial ferredoxin and Cox15p in hydroxylation of heme O, *FEBS Lett.*, 2001, **492**, 133–138.

160 M. H. Barros, F. G. Nobrega and A. Tzagoloff, Mitochondrial ferredoxin is required for heme A synthesis in *Saccharomyces cerevisiae*, *J. Biol. Chem.*, 2002, **277**, 9997–10002.

161 J. Ihrig, A. Hausmann, A. Hain, N. Richter, I. Hamza, R. Lill and U. Mühlenhoff, Iron regulation through the back door: iron-dependent metabolite levels contribute to transcriptional adaptation to iron deprivation in *Saccharomyces cerevisiae*, *Eukaryotic Cell*, 2010, **9**, 460–471.

162 A. K. O. Boubacar, S. Pethe, J. P. Mahy and F. Lederer, Flavocytochrome b(2): Reactivity of its flavin with molecular oxygen, *Biochemistry*, 2007, **46**, 13080–13088.

163 T. Lodi, A. Alberti, B. Guiard and I. Ferrero, Regulation of the *Saccharomyces cerevisiae* DLD1 gene encoding the mitochondrial protein D-lactate ferricytochrome c oxidoreductase by HAP1 and HAP2/3/4/5, *Mol. Gen. Genet.*, 1999, **262**, 623–632.

164 M. Gora, E. Grzybowska, J. Rytka and R. LabbeBois, Probing the active-site residues in *Saccharomyces cerevisiae* ferrochelatase by directed mutagenesis-*in vivo* and *in vitro* analyses, *J. Biol. Chem.*, 1996, **271**, 11810–11816.

165 J. Y. Lee, J. G. Yang, D. Zhitnitsky, O. Lewinson and D. C. Rees, Structural basis for heavy metal detoxification by an Atm1-Type ABC exporter, *Science*, 2014, **343**, 1133–1136.

166 R. Miao, H. Kim., U. M. K. Koppolu, E. A. Ellis, R. A. Scott and P. A. Lindahl, Biophysical characterization of the iron in mitochondria from Atm1p-depleted *Saccharomyces cerevisiae*, *Biochemistry*, 2009, **48**, 9556–9568.

167 T. Bedekovics, H. Q. Li, G. B. Gajdos and G. Isaya, Leucine Biosynthesis Regulates Cytoplasmic Iron-Sulfur Enzyme Biogenesis in an Atm1p-independent Manner, *J. Biol. Chem.*, 2011, **286**, 40878–40888.

168 T. Iwaki, Y. Fujita, N. Tanaka, Y. Giga-Hama and K. Takegawa, Mitochondrial ABC transporter Atm1p is required for protection against oxidative stress and vacuolar functions in *Schizosaccharomyces pombe*, *Biosci., Biotechnol., Biochem.*, 2005, **69**, 2109–2116.

169 M. Chloupkova, L. S. LeBard and D. M. Koeller, MDL1 is a high copy suppressor of ATM1: Evidence for a role in resistance to oxidative stress, *J. Mol. Biol.*, 2003, **331**, 155–165.

170 L. T. Li and J. Kaplan, Characterization of two homologous yeast genes that encode mitochondrial iron transporters, *J. Biol. Chem.*, 1997, **272**, 28485–28493.

171 L. T. Jensen, R. J. Sanchez, C. Srinivasan, J. S. Valentine and V. C. Culotta, Mutations in *Saccharomyces cerevisiae* iron-sulfur cluster assembly genes and oxidative stress relevant to Cu,Zn superoxide dismutase, *J. Biol. Chem.*, 2004, **279**, 29938–29943.

172 L. T. Li, R. Miao, X. Jia, D. M. Ward and J. Kaplan, Expression of the yeast cation diffusion facilitators Mmt1 and Mmt2 affects mitochondrial and cellular iron homeostasis: Evidence for mitochondrial iron export, *J. Biol. Chem.*, 2014, **289**, 17132–17141.

173 P. J. Lapinskas, S. J. Lin and V. C. Culotta, The role of the *Saccharomyces cerevisiae* CCC1 gene in the homeostasis of manganese ions, *Mol. Microbiol.*, 1996, **21**, 519–528.

174 D. D. Fu, T. Beeler and T. Dunn, Sequence, mapping and disruption of Ccc1, a gene that cross-complements the Ca²⁺-sensitive phenotype of Csg1 mutants, *Yeast*, 1994, **10**, 515–521.

175 L. J. Martins, L. T. Jensen, J. R. Simons, G. L. Keller and D. R. Winge, Metalloregulation of FRE1 and FRE2 homologs in *Saccharomyces cerevisiae*, *J. Biol. Chem.*, 1998, **273**, 23716–23721.

176 J. L. Urbanowski and R. C. Piper, The iron transporter fth1p forms a complex with the Fet5 iron oxidase and resides on the vacuolar membrane, *J. Biol. Chem.*, 1999, **274**, 38061–38070.

177 A. Singh, N. Kaur and D. J. Kosman, The metalloreductase Fre6p in Fe-Eflux from the yeast vacuole, *J. Biol. Chem.*, 2007, **282**, 28619–28626.

178 T. Q. Nguyen, N. Dziuba and P. A. Lindahl, Isolated *Saccharomyces cerevisiae* vacuoles contain low-molecular-mass transition-metal polyphosphate complexes, *Metallomics*, 2019, **11**, 1298–1309.

179 L. T. Jensen and V. C. Culotta, Regulation of *Saccharomyces cerevisiae* FET4 by oxygen and iron, *J. Mol. Biol.*, 2002, **318**, 251–260.

180 A. G. Mitchell and C. E. Martin, A Novel Cytochrome B(5)-Like Domain Is Linked to the Carboxyl-Terminus of the *Saccharomyces cerevisiae* Delta-9 Fatty-Acid Desaturase, *J. Biol. Chem.*, 1995, **270**, 29766–29772.

181 B. G. Fox, K. S. Lyle and C. E. Rogge, Reactions of the diiron enzyme stearoyl-acyl carrier protein desaturase, *Acc. Chem. Res.*, 2004, **37**, 421–429.

182 T. M. Dunn, D. Haak, E. Monaghan and T. J. Beeler, Synthesis of monohydroxylated inositolphosphorylceramide (IPC-C) in *Saccharomyces cerevisiae* requires Scs7p, a protein with both a cytochrome b(5)-like domain and a hydroxylase/desaturase domain, *Yeast*, 1998, **14**, 311–321.

183 X. W. Wang and X. J. Chen, A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death, *Nature*, 2015, **524**, 481–484.

184 D. Haak, K. Gable, T. Beeler and T. Dunn, Hydroxylation of *Saccharomyces cerevisiae* ceramides requires Sur2p and Scs7p, *J. Biol. Chem.*, 1997, **272**, 29704–29710.

185 M. Tani and M. Toume, Alteration of complex sphingolipid composition and its physiological significance in yeast *Saccharomyces cerevisiae* lacking vacuolar ATPase, *Microbiology*, 2015, **161**, 2369–2383.

186 J. Idkowiak-Baldys, J. Y. Takemoto and M. M. Grilley, Structure-function studies of yeast C-4 sphingolipid long chain base hydroxylase, *Biochim. Biophys. Acta, Biomembr.*, 2003, **1618**, 17–24.

187 D. C. Lamb, D. E. Kelly, N. J. Manning, M. A. Kaderbhai and S. L. Kelly, Biodiversity of the P450 catalytic cycle: yeast cytochrome b(5)/NADH cytochrome b(5) reductase complex efficiently drives the entire sterol 14-demethylation (CYP51) reaction, *FEBS Lett.*, 1999, **462**, 283–288.

188 D. C. Lamb, D. E. Kelly, M. R. Waterman, M. Stromstedt, D. Rozman and S. L. Kelly, Characteristics of the heterologously expressed human lanosterol 14 alpha-demethylase (other names: P45014DM, CYP51, P45051) and inhibition of the purified human and *Candida albicans* CYP51 with azole antifungal agents, *Yeast*, 1999, **15**, 755–763.

189 G. Truan, J. C. Epinat, C. Rougeulle, C. Cullin and D. Pompon, Cloning and characterization of a yeast cytochrome b(5)-encoding gene which suppresses ketoconazole hypersensitivity in a NADPH-P-450 reductase-deficient strain, *Gene*, 1994, **142**, 123–127.

190 N. Seki, K. Mori, T. Kitamura, M. Miyamoto and A. Kihara, Yeast Mpo1 is a novel dioxygenase that catalyzes the alpha-oxidation of a 2-hydroxy fatty acid in an Fe²⁺-dependent manner, *Mol. Cell. Biol.*, 2019, **39**, 16, DOI: 10.1128/MCB.00428-18.

191 Y. C. Chang, C. M. Bien, H. Lee, P. J. Espenshade and K. J. Kwon-Chung, Sre1p, a regulator of oxygen sensing and sterol homeostasis, is required for virulence in *Cryptococcus neoformans*, *Mol. Microbiol.*, 2007, **64**, 614–629.

192 E. Rosenfeld and B. Beauvoit, Role of the non-respiratory pathways in the utilization of molecular oxygen by *Saccharomyces cerevisiae*, *Yeast*, 2003, **20**, 1115–1144.

193 J. H. Lee, K. Kim, F. H. Park, K. Ahn and C. J. Lim, Expression, characterization and regulation of a *Saccharomyces cerevisiae* monothiol glutaredoxin (Grx6) gene in *Schizosaccharomyces pombe*, *Mol. Cells*, 2007, **24**, 316–322.

194 V. F. Kalb, C. W. Woods, T. G. Turi, C. R. Dey, T. R. Sutter and J. C. Loper, Primary structure of the P450 lanosterol demethylase gene from *Saccharomyces cerevisiae*, *J. Mol. Cell Biol.*, 1987, **6**, 529–537.

195 J. X. Song, S. Z. Zhang and L. Lu, Fungal cytochrome P450 protein Cyp51: What we can learn from its evolution, regulons and Cyp51-based azole resistance, *Fungal Biol. Rev.*, 2018, **32**, 131–142.

196 R. J. Craven, J. C. Mallory and R. A. Hand, Regulation of iron homeostasis mediated by the heme-binding protein Dap1 (damage resistance protein 1) via the P450 protein Erg11/Cyp51, *J. Biol. Chem.*, 2007, **282**, 36543–36551.

197 B. C. Monk, T. M. Tomasiak, M. V. Keniya, F. U. Huschmann, J. D. A. Tyndall, J. D. O'Connell, R. D. Cannon, J. G. McDonald, A. Rodriguez, J. S. Finer-Moore and R. M. Stroud, Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer, *Proc. Natl. Acad. Sci. U. S. A.*, 2014, **111**, 3865–3870.

198 A. A. Sagatova, M. V. Keniya, R. K. Wilson, B. C. Monk and J. D. A. Tyndall, Structural insights into binding of the antifungal drug fluconazole to *Saccharomyces cerevisiae* lanosterol 14 alpha-demethylase, *Antimicrob. Agents Chemother.*, 2015, **59**, 4982–4989.

199 Z. H. Hu, B. He, L. Ma, Y. L. Sun, Y. L. Niu and B. Zeng, Recent Advances in Ergosterol Biosynthesis and Regulation Mechanisms in *Saccharomyces cerevisiae*, *Indian J. Microbiol.*, 2017, **57**, 270–277.

200 E. Lesuisse, M. Casteras-Simon and P. Labbe, Cytochrome P-450 reductase is responsible for the ferrireductase activity associated with isolated plasma membranes of *Saccharomyces cerevisiae*, *FEMS Microbiol. Lett.*, 1997, **156**, 147–152.

201 T. G. Turi and J. C. Loper, Multiple regulatory elements control expression of the gene encoding the *Saccharomyces cerevisiae* Cytochrome-P450, lanosterol-14-alpha-demethylase (Erg11), *J. Biol. Chem.*, 1992, **267**, 2046–2056.

202 M. E. Keniry, H. A. Kemp, D. M. Rivers and G. F. Sprague, The identification of PciI-interacting proteins that genetically interact with Cla(4) may indicate a link between G(1) progression and mitotic exit, *Genetics*, 2004, **166**, 1177–1186.

203 T. J. Poklepovich, M. A. Rinaldi, M. L. Tomazic, N. O. Favale, A. P. Turkewitz, C. B. Nudel and A. D. Nusblat, The cytochrome b(5) dependent C-5(6) sterol desaturase DES5A from the endoplasmic reticulum of *Tetrahymena thermophila* complements ergosterol biosynthesis mutants in *Saccharomyces cerevisiae*, *Steroids*, 2012, **77**, 1313–1320.

204 C. S. Ryu, K. Klein and U. M. Zanger, Membrane associated progesterone receptors: promiscuous proteins with pleiotropic functions—focus on interactions with cytochromes P450, *Front. Pharmacol.*, 2017, **8**, DOI: 10.3389/fphar.2017.00159.

205 Y. H. Bai, J. G. McCoy, E. J. Levin, P. Sobrado, K. R. Rajashankar, G. B. Fox and M. Zhou, X-ray structure of a mammalian stearoyl-CoA desaturase, *Nature*, 2015, **524**, 252–256.

206 B. A. Skaggs, J. F. Alexander, C. A. Pierson, K. S. Schweitzer, K. T. Chun, C. Koegel, R. Barbuch and M. Bard, Cloning and characterization of the *Saccharomyces cerevisiae* C-22 sterol desaturase gene, encoding a second cytochrome

P-450 involved in ergosterol biosynthesis, *Gene*, 1996, **169**, 105–109.

207 X. Y. Sun, W. Z. Wang, K. J. Wang, X. X. Yu, J. Liu, F. C. Zhou, B. G. Xie and S. J. Li, Sterol C-22 desaturase ERG5 mediates the sensitivity to antifungal azoles in *Neurospora crassa* and *Fusarium verticillioides*, *Front. Microbiol.*, 2013, **4**, DOI: 10.3389/fmicb.2013.00127.

208 G. Daum, G. Tuller, T. Nemec, C. Hrastnik, G. Balliano, L. Cattel, P. Milla, F. Rocco, A. Conzelmann, C. Vionnet, D. E. Kelly, S. Kelly, E. Schweizer, H. J. Schuller, U. Hojad, E. Greiner and K. Finger, Systematic analysis of yeast strains with possible defects in lipid metabolism, *Yeast*, 1999, **15**, 601–614.

209 D. M. Ward, O. S. Chen, L. T. Li, J. Kaplan, S. A. Bhuiyan, S. K. Natarajan, M. Bard and J. E. Cox, Altered sterol metabolism in budding yeast affects mitochondrial iron-sulfur (Fe-S) cluster synthesis, *J. Biol. Chem.*, 2018, **293**, 10782–10795.

210 M. Bard, D. A. Bruner, C. A. Pierson, N. D. Lees, B. Biermann, L. Frye, C. Koegel and R. Barbuch, Cloning and characterization of ERG25, the *Saccharomyces cerevisiae* gene encoding C-4 sterol methyl oxidase, *Proc. Natl. Acad. Sci. U. S. A.*, 1996, **93**, 186–190.

211 K. Ghosh, A. M. Thompson, R. A. Goldbeck, X. L. Shi, S. Whitman, E. Oh, Z. W. Zhu, C. Vulpe and T. R. Holman, Spectroscopic and biochemical characterization of heme binding to yeast Dap1p and mouse PGRMC1p, *Biochemistry*, 2005, **44**, 16729–16736.

212 D. Kim, E. T. Yukl, P. Moenne-Loccoz and P. R. O. de Montellano, Fungal heme oxygenases: Functional expression and characterization of Hmx1 from *Saccharomyces cerevisiae* and CaHmx1 from *Candida albicans*, *Biochemistry*, 2006, **45**, 14772–14780.

213 M. Rinnerthaler, S. Buttner, P. Laun, G. Heeren, T. L. Felder, H. Klinger, M. Weinberger, K. Stolze, T. Grousl, J. Hasek, O. Benada, I. Frydlova, A. Klocker, B. Simon-Nobbe, B. Jansko, H. Breitenbach-Koller, T. Eisenberg, C. W. Gourlay, F. Madeo, W. C. Burhans and M. Breitenbach, Yno1p/Aim14p, a NADPH-oxidase ortholog, controls extramitochondrial reactive oxygen species generation, apoptosis, and actin cable formation in yeast, *Proc. Natl. Acad. Sci. U. S. A.*, 2012, **109**, 8658–8663.

214 A. Izquierdo, C. Casas, U. Mühlenhoff, C. H. Lillig and E. Herrero, *Saccharomyces cerevisiae* Grx6 and Grx7 are monothiol glutaredoxins associated with the early secretory pathway, *Eukaryotic Cell*, 2008, **7**, 1415–1426.

215 N. Mesecke, S. Mittler, E. Eckers, J. M. Herrmann and M. Deponte, Two novel monothiol glutaredoxins from *Saccharomyces cerevisiae* provide further insight into iron-sulfur cluster binding, oligomerization, and enzymatic activity of glutaredoxins, *Biochemistry*, 2008, **47**, 1452–1463.

216 J. Puigpinos, C. Casas and E. Herrero, Altered intracellular calcium homeostasis and endoplasmic reticulum redox state in *Saccharomyces cerevisiae* cells lacking Grx6 glutaredoxin, *Mol. Biol. Cell*, 2015, **26**, 104–116.

217 M. Luo, Y. L. Jiang, X. X. Ma, Y. J. Tang, Y. X. He, J. Yu, R. G. Zhang, Y. X. Chen and C. Z. Zhou, Structural and biochemical characterization of yeast monothiol glutaredoxin Grx6, *J. Mol. Biol.*, 2010, **398**, 614–622.

218 M. Abdalla, W. A. Eltayb, A. A. El-Arabey, R. Mo, T. I. M. Dafaalla, H. I. Hamouda, E. A. Bhat, A. Awadasseid and H. A. A. Ali, Structure analysis of yeast glutaredoxin Grx6 protein produced in *Escherichia coli*, *J. Genes Environ.*, 2018, **40**, 15, DOI: 10.1186/s41021-018-0103-62.

219 M. Abdalla, Y. N. Dai, C. B. Chi, W. Cheng, D. D. Cao, K. Zhou, W. Ali, Y. X. Chen and C. Z. Zhou, Crystal structure of yeast monothiol glutaredoxin Grx6 in complex with a glutathione-coordinated [2Fe–2S] cluster, *Acta Crystallogr., Sect. F: Struct. Biol. Commun.*, 2016, **72**, 732–737.

220 K. S. Kim, N. Maio, A. Singh and T. A. Rouault, Cytosolic HSC20 integrates de novo iron-sulfur cluster biogenesis with the CIAO1-mediated transfer to recipients, *Human Mol. Genetics*, 2018, **27**, 837–852.

221 J. D. Wofford, N. Bolaji, N. Dziuba, F. W. Outten and P. A. Lindahl, Evidence that a respiratory shield in *Escherichia coli* protects a low-molecular-mass Fe^{II} pool from O₂-dependent oxidation, *J. Biol. Chem.*, 2019, **294**, 50–62.

222 O. Stehling, J. H. Jeoung, S. A. Freibert, V. D. Paul, S. Banfer, B. Niggemeyer, R. Rosser, H. Dobbek and R. Lill, Function and crystal structure of the dimeric P-loop ATPase CFD1 coordinating an exposed 4Fe-4S cluster for transfer to apoproteins, *Proc. Natl. Acad. Sci. U. S. A.*, 2018, **115**, E9085–E9094.

223 G. L. Anderson and J. B. Howard, Reactions with the oxidized iron protein of *Azotobacter vinlandii* nitrogenase-formation of a 2Fe center, *Biochemistry*, 1984, **23**, 2118–2122.

224 J. A. Cotruvo and J. Stubbe, Class I ribonucleotide reductases: metallocofactor assembly and repair in vitro and in vivo, *Annu. Rev. Biochem.*, 2011, **80**, 733–767.

225 O. S. Chen, R. J. Crisp, M. Valachovic, M. Bard, D. R. Winge and J. Kaplan, Transcription of the yeast iron regulon does not respond directly to iron but rather to iron-sulfur cluster biosynthesis, *J. Biol. Chem.*, 2004, **279**, 29513–29518.

226 S. P. McCormick, M. J. Moore and P. A. Lindahl, Detection of Labile Low-Molecular-Mass Transition Metal Complexes in Mitochondria, *Biochemistry*, 2015, **54**, 3442–3453.

227 M. J. Moore, J. D. Wofford, A. Dancis and P. A. Lindahl, Recovery of mrs3Δmrs4Δ *Saccharomyces cerevisiae* cells under iron-sufficient conditions and the role of Fe₅₈₀, *Biochemistry*, 2018, **57**, 672–683.

228 A. L. Cockrell, G. P. Holmes-Hampton, S. P. McCormick, M. Chakrabarti and P. A. Lindahl, Mössbauer and EPR study of iron in vacuoles from fermenting *Saccharomyces cerevisiae*, *Biochemistry*, 2011, **50**, 10275–10283.

229 J. Park, S. P. McCormick, A. L. Cockrell, M. Chakrabarti and P. A. Lindahl, High-spin ferric ions in *Saccharomyces cerevisiae* vacuoles are reduced to the ferrous state during adenine-precursor detoxification, *Biochemistry*, 2014, **53**, 3940–3951.

230 P. A. Sontz, N. B. Muren and J. K. Barton, DNA charge transport for sensing and signaling, *Acc. Chem. Res.*, 2012, **45**, 1792–1800.

231 E. O'Brien, M. E. Holt, M. K. Thompson, L. E. Salay, A. C. Ehlinger, W. J. Chazin and J. K. Barton, The [4Fe4S] cluster of human DNA primase functions as a redox switch using DNA charge transport, *Science*, 2017, **355**, DOI: 10.1126/science.aag1789.

232 A. G. Baranovskiy, N. D. Babayeva, Y. B. Zhang, L. Blanco, Y. I. Pavlov and T. H. Tahirov, Comment on "The [4Fe4S] cluster of human DNA primase functions as a redox switch using DNA charge transport", *Science*, 2017, **357**, DOI: 10.1126/science.aan2396.

233 I. V. Surovtsev, J. J. Morgan and P. A. Lindahl, Whole-cell modeling framework in which biochemical dynamics impact aspects of cellular geometry, *J. Theor. Biol.*, 2007, **244**, 154–166.

234 I. V. Surovtsev, Z. G. Zhang, P. A. Lindahl and J. J. Morgan, Mathematical modeling of a minimal protocell with coordinated growth and division, *J. Theor. Biol.*, 2009, **260**, 422–429.

235 S. Macesic, Z. Cupic and L. Kolar-Anic, Model of a nonlinear reaction system with autocatalysis and autoinhibition: Stability of dynamic states, *Hemisika Industrija*, 2012, **66**, 637–646.

236 J. D. Wofford and P. A. Lindahl, Mitochondrial iron-sulfur cluster activity and cytosolic iron regulate iron traffic in *Saccharomyces cerevisiae*, *J. Biol. Chem.*, 2015, **290**, 26968–26977.