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a b s t r a c t

This work explores the application of the recently developed Koopman operator approach for model
identification and feedback control of a hydraulic fracturing process. Controlling fracture propagation
and proppant transport with precision is a challenge due in large part to the difficulty of constructing
approximate models that accurately capture the characteristic moving boundary and highly-coupled
dynamics exhibited by the process. Koopman operator theory is particularly attractive here as it offers
a way to explicitly construct linear representations for even highly nonlinear dynamics. The method
is data-driven and relies on lifting the states to an infinite-dimensional space of functions called
observables where the dynamics are governed by a linear Koopman operator. This work considers
two problems: (a) fracture geometry control, and (b) proppant concentration control. In both cases, an
approximate linear model of the corresponding dynamics is constructed and used to design a model
predictive controller (MPC). The manuscript shows that in the case of highly nonlinear dynamics, as
observed in the proppant concentration, use of canonical functions in the observable basis fails. In
such cases, a priori system knowledge can be leveraged to choose the required basis. The numerical
experiments demonstrate that the Koopman linear model shows excellent agreement with the real
system and successfully achieves the desired target values maximizing the oil and gas productivity.
Additionally, due to its linear structure, the Koopman models allow convex MPC formulations that
avoid any issues associated with nonlinear optimization.

Published by Elsevier Ltd.

1. Introduction

Over the past two decades, the natural gas from shale plays
has been one of the fastest growing total primary energy con-
tributors in the United States; it has risen from less than 1%
of domestic gas production in 2000 to over 20% by 2010 [1].
Although shale gas has been produced for years from shales with
natural fractures, the recent shale boom has been primarily due
to the use of two technologies: horizontal drilling and hydraulic
fracturing. Typically, shale formations are characterized by low
matrix permeabilities (≤ 0.01 − 0.0001 mD) and hence pre-
clude the use of conventional drilling techniques. Therefore, the
recovery of shale oil and gas in commercial quantities is eco-
nomically viable by creating extensive artificial fractures around
wellbores [2]. Specifically, in the fracturing process, a mixture of
water, sand and chemicals is injected into the horizontal borehole
of the well at very high pressure to fracture the shale rocks and
release the gas. The created fractures facilitate the extraction of
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oil and gas by providing high conductivity pathways from the
formation to the wellbore while the proppant (sand whose per-
meability is very high compared to the surrounding rock) trapped
inside the fracture walls at the end of the process increases the
formation permeability within the stimulated reservoir volume.
Thus, the final fracture conductivity is paramount in maximizing
the productivity of the stimulated well, which is the ultimate goal
of a fracturing process in practice.

The final fracture conductivity chiefly depends on two factors:
propped fracture geometry and proppant distribution throughout
the fracture at the end of pumping. In order to achieve a high
fracture conductivity, it is essential to create fractures with the
desired geometry as well as achieve uniform proppant concen-
tration throughout the fracture at the end of pumping operation.
Traditionally, during the planning stage, an optimization-based
methodology called Unified Fracture Design (UFD) is used for the
design of optimal hydraulic fracturing treatments [3,4]. Specifi-
cally, based on the total quantity and properties of the proppant
to be injected, reservoir properties and drainage area, UFD de-
termines the optimal fracture dimensions such as the fracture
half-length and fracture width that maximizes the well produc-
tivity index. Once, a desired geometry is decided, during the
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implementation stage, the fracture geometry is adjusted by vary-
ing the flow rate of the injected proppant. Simultaneously, the
spatial distribution of the proppant concentration across the frac-
ture is regulated by varying the inlet proppant concentration
(i.e., pumping schedule). However, the problem with control-
ling these petroleum systems is that the mathematical models
used to describe them are very complex due to highly-coupled
nonlinear system dynamics and parametric uncertainty. Solving
these forward problems at very fine scales is computationally
very expensive and becomes prohibitive in the case of (optimal)
controller design where such forward problems need to be solved
iteratively.

Owing to this, initial efforts viewed the fracturing process as
an open-loop problem where the pumping schedule followed a
pre-determined power-law which assumed a constant leak-off
and does not take into account practical constraints [5]. To deal
with its limitations, researchers also leveraged exhaustive for-
ward simulations which were used to adjust the pumping sched-
ule iteratively until the desired fracture geometry and fracture
conductivity were achieved. This approach outperforms Nolte’s
pumping schedule at the expense of computational resources [6,
7]. In recent years, several works successfully considered the
closed-loop operation of the hydraulic fracturing process by using
model-based predictive controllers that take advantage of feed-
back measurements to compensate for minor model uncertainty
and disturbances [8–10]. The performance of these real-time
control schemes highly depends on the availability of computa-
tionally efficient approximate models capable of capturing the
nonlinear process behavior. However, a nonlinear trajectory can
explore many regions of the state space, and therefore, different
portions of such a trajectory can be associated with distinct
regimes. Moreover, the hydraulic fracturing process is charac-
terized by a moving boundary; the fracture propagates in the
horizontal direction with time. In such systems, it has been pre-
viously shown that traditional model approximation methods
may fail to accurately capture the dynamics [11–13]. This was
attributed to the fact that the spatial domain of interest as well
as the dominant spatial pattern of the system changes with
time. To deal with this, the research works mentioned above
attempted to tailor the models to capture various portions of the
system’s trajectory using multiple temporally local models. How-
ever, obtaining optimal clustering of temporal domain requires
solving a large scale mixed integer nonlinear programming prob-
lem which is computationally expensive, although it is solved
offline. Additional efforts have been made to enlarge their range
of applicability [14]. Nevertheless, these temporally local models
suffer from generalizability on the entire state space; in other
words, they predict poorly when used in the operating regions
that are significantly different from the training ones.

In this work, we investigate an alternative approach where
we employ Koopman operator theory to generate data-driven
models that approximate the hydraulic fracturing dynamics. It is
particularly attractive because of its ability to provide (nearly)
globally valid linear models. To be more specific, the Koopman
linear models are often valid in a larger domain unlike local mod-
els whose validity is, in general, limited by the training data [15].
It was first introduced by B. O. Koopman in 1931 [16], where
he showed that any finite-dimensional nonlinear system has an
equivalent infinite-dimensional linear representation in the space
of (all possible) functions of the system states. In this function
space, the evolution of the system is governed by an infinite-
dimensional linear operator. This operator theoretic approach is
fundamentally different from classical approaches in the sense
that instead of using the state vectors in a state space, it lifts
the system (nonlinear transformation) to the space of observables
(measures) using a basis of nonlinear functions and is analyzed

there. In addition to the system evolution being linear in the lifted
space, the operator theoretic approach facilitates the data-driven
analysis of dynamical systems. In particular, recent advances in
numerical techniques such as generalized Fourier and Laplace
analysis [17], Dynamic Mode Decomposition (DMD) [18,19] and
Extended Dynamic Mode Decomposition (EDMD) [20] have been
successful in efficiently computing finite-dimensional approxima-
tions to the Koopman operator from time-series data, obtained
from simulations or experiments. Since its revival by Mezić [21],
there has been an increased interest in the Koopman operator ap-
proach, and it has seen practical implementation in a broad range
of applications [22–25]. Apart from system identification, the
Koopman operator has been successfully applied in the context of
nonlinear stability analysis [26,27], state estimation [28–30] and
control of nonlinear dynamical systems [31–40].

Our contribution in this work is demonstrating, on a non-
trivial engineering application of hydraulic fracturing, the data-
driven Koopman method for constructing linear models that can
be readily used within a predictive control framework to max-
imize the productivity of a fractured well. To do so, we first
apply the Koopman-based system identification method to create
a dynamic model of the fracturing process and verify that it
captures the system’s true dynamic behavior. Then, we design
a model predictive controller (MPC) using the model obtained
in the previous step. Since the developed models are linear in
the space of observable functions, the predictive controller when
formulated in this space will lead to a standard convex optimiza-
tion problem which allows for extremely fast solutions compared
to the original nonlinear problem. We consider two case studies
of varying complexities: first, we apply the approach to regulate
fracture geometry by considering only the fracture propagation
dynamics governed by a partial differential equation (PDE). As
a more sophisticated case study, we consider the simultane-
ous fracture propagation and proppant transport to determine
the optimal pumping schedule that achieves uniform proppant
concentration throughout the fracture at the end of operation.
The overall dynamic model describing rock deformation, fluid
flow, and proppant transport is a set of highly-coupled nonlinear
equations defined over a time-dependent spatial domain making
it considerably more complex than fracture propagation alone.
Therefore, this calls for careful curating of the Koopman basis
and we show how a priori system knowledge can be incorporated
during system identification in choosing appropriate observable
functions.

The rest of this paper is organized as follows: In Section 2,
we present some preliminaries on the Koopman operator and
describe its utilization for model identification and MPC design.
In Section 3, we briefly describe the dynamic model represent-
ing the simultaneous fracture propagation and proppant trans-
port during a hydraulic fracturing process. Section 4 discusses
the application of Koopman operator theory to the hydraulic
fracturing process. Specifically, two different control problems
with different complexities are presented. The results of applying
the Koopman system identification technique to the simulated
data are summarized and the performance of the model predic-
tive controllers is studied. In Section 5, concluding remarks and
perspectives are provided.

2. Preliminaries

In this section, we present some preliminaries on the Koop-
man operator theory and its application for model identification
and controller synthesis.
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2.1. Koopman operator

Consider a discrete controlled nonlinear dynamical system
given below:

xk+1 = F (xk, uk) (1)

where xk ∈ X ⊆ Rn is the state of the system, uk ∈ U ⊆ Rm is the
input, F is the flow map that evolves the system states forward
in time, and k ∈ Z represents the time step such that tk = k∆
where ∆ is the sampling time.

Let us define a set of scalar-valued observables that are func-
tions of the states and the inputs, g : X×U → R. Each observable
is an element of an infinite-dimensional function space G which,
for example, can be defined by the Lebesgue square-integrable
functions, G = ℓ2(X × U,R), or other appropriate spaces [41]. In
this infinite-dimensional function space, the flow of the system
is governed by the Koopman operator, K : G → G that defines
the dynamics of observables g ∈ G along the trajectories of the
system as:

Kg ≜ g ◦ F (2)

By definition, the Koopman operator is linear even though the
underlying dynamical system is nonlinear. For all g1, g2 ∈ G and
all α, β ∈ R, it satisfies

K(αg1 + βg2) = (αg1 + βg2) ◦ F
= (αg1 ◦ F ) + (βg2 ◦ F )
= αKg1 + βKg2

(3)

The system identification method described below exploits
the fact that any finite-dimensional nonlinear system can be
equivalently represented using an infinite-dimensional linear sys-
tem by transforming the traditional state space to the space of
functions (observables) of the system’s states and inputs. Please
note that the Koopman operator has originally been proposed
for autonomous dynamical systems, and it can be adopted to
controlled systems by considering joint observations of state and
input, i.e., K for the above system Eq. (1) can be considered
as the classical Koopman operator for the augmented system,
x+

= F (x, u) and u+
= S(u) where S(u) indicates a forward

shift operator of a known input signal. This is just one way to
adopt the Koopman operator to controlled systems, and for more
generalizations the readers can refer to [31,42,43].

2.2. System identification using EDMD

The Koopman operator theory is conceptually developed on
the infinite-dimensional function space G. However, it is not
practically feasible unless we can determine finite-dimensional
approximations to the Koopman operator without a great loss in
accuracy. To do this, consider a finite-dimensional subspace Ḡ ⊂

G spanned by a set of basis functions φ(x, u) = [φ1(x, u), φ2(x, u),
. . . , φNφ(x, u)]T . Now, any observable function ψ ∈ Ḡ can be
represented as a linear combination of these basis functions as
follows:

ψ = c1φ1 + c2φ2 + · · · + cNφφNφ = cTφ (4)

For these functions in Ḡ, we seek to generate the finite-
dimensional approximation of the Koopman operator, denoted as
K ∈ RNφ×Nφ . Because, typically Ḡ is not invariant with respect to
K, there is a residual term which is minimized in the L2-norm
sense via linear regression [44]. Intuitively, if these observables ψ
represent the system’s outputs (or equivalently, sensor measure-
ments), a cost function to be minimized in an optimal control
problem, or nonlinear constraints, then the evolution of these
‘‘nonlinear’’ observables can now be analyzed using a linear

system via K . This is done by carrying a nonlinear transformation
of the system states (outputs) to the so-called ‘‘lifted’’ space using
the set of Nφ basis functions.

In its most general form, the Koopman linear system is pre-
sented as follows:

φ(xk+1, uk+1) = K (xk, uk)φ(xk, uk) (5)

where φ ∈ RNφ and usually Nφ ≫ n. For the augmented state
(x, u), the above formulation will admit any nonlinear dynam-
ical system. However, as the dimension of the original system
increases, the number of basis functions to be considered can
grow to infeasible levels. So, to make the computations tractable
and amenable in the case of predictive controller design (please
see Section 2.3 for more details), the simplifications described
below are introduced in the structure of the nonlinear transfor-
mation [34].

Specifically, the objective is to identify a linear dynamical
system of the following form (similar to a linear time invariant
state space model) in the space of observables using time-series
data generated by the control system Eq. (1).

φ(xk+1) = Aφ(xk) + Buk (6)

For this purpose, we use the recently developed EDMD algorithm.
To construct a finite dimensional approximation to the Koopman
operator for the controlled system in Eq. (1), the EDMD algorithm
requires

1. a time-series data set of Nt snapshot pairs satisfying the
dynamical system in Eq. (1) which can be organized in the
following matrices.

X = [x1, x2, . . . , xNt ], Y = [y1, y2, . . . , yNt ],

U = [u1, u2, . . . , uNt ]
(7)

Note that we use yk instead of xk+1 here because the data
above need not be temporally ordered as long as it satisfies
yk = F (xk, uk).

2. a library of nonlinear basis functions {φ1, φ2, . . . , φNφ }

whose span is Ḡ ⊂ G.

The EDMD algorithm then seeks to solve a least-squares problem
to obtain K which is the transpose of the finite-dimensional
approximation to the Koopman operator, K:

min
K

Nt∑
k=1

∥φ(yk, uk) − Kφ(xk, uk)∥2
2 (8)

In order to obtain the form described in Eq. (6), the following sim-
plification can be introduced into the formulation. Since we are
not interested in predicting the future values of inputs, without
loss of generality we can assume that

φ(x, u) =

[
φ(x)
u

]
, φ(y, u) =

[
φ(y)
u

]
(9)

which is to say that the nonlinear observable functions are ap-
plied to the system states alone and not the inputs. Suppose that
N nonlinear functions are used to lift the states to the observable
space and the m system inputs are added separately to the basis
as shown in Eq. (9), we have Nφ = N+m. To obtain the evolution
of lifted states, we can then disregard the last m components of
each of the terms in Eq. (8), decompose the Koopman matrix as
K = [A, B] and use only the first N rows in K , which leads to the
following minimization problem

min
A,B

Nt∑
k=1

∥φ(yk) − Aφ(xk) − Buk∥
2
2 (10)
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The practical solution to the above equation is obtained by using
regularization via a truncated singular value decomposition and
the value of K that minimizes Eq. (10) is given by

KN := [A, B] = φXYφ
†
XX (11)

where † denotes the pseudoinverse, and the matrices are com-
puted as

φXX =

[
φX
U

][
φX
U

]T
, φXY = φY

[
φX
U

]T
φX =[φ(x1), . . . , φ(xNt )], φY = [φ(y1), . . . , φ(yNt )]

(12)

with

φ(xk) =

⎡⎢⎣φ1(xk)
...

φN (xk)

⎤⎥⎦ (13)

Please note that any solution to Eq. (11) is a solution to
Eq. (10), and the formulation of Eq. (11) has an advantage of being
independent of the number of data samples Nt . Therefore, the
Koopman linear system obtained using the above algorithm will
be in the form of the controlled linear dynamical system given by
Eq. (6), where φ ∈ RN is the lifted state in the observable space,
and A ∈ RN×N and B ∈ RN×m are the matrices that describe the
system dynamics in the lifted space.

The Koopman linear system Eq. (6), derived using the above
algorithm, governs the evolution of the basis φ in the lifted space.
With the use of these basis functions, all observables of interest
ψ ∈ Rnψ can be determined (refer to Eq. (4)) by simply using a
matrix of coefficients as ψ(xk) = Cφ(xk), where C ∈ Rnψ×N . In
summary, the basis functions are first evolved linearly using the
Koopman operator, and the value of (required) observable is then
computed by linearly combining these basis functions. In reality,
not all observables can be contained in the span of the chosen
subspace (recall, we are only using a finite-dimensional truncated
function space). Thus, the matrix C must be chosen such that the
projection of ψ onto the span{φ1, . . . , φN} is minimized in the
L2-norm sense as below:

min
C

Nt∑
k=1

∥ψ(xk) − Cφ(xk)∥2
2 (14)

When dealing with dynamical systems, since the goal is sta-
bility analysis or controller synthesis, it is advantageous to re-
produce the state dynamics. Therefore, the observable of interest
here is the state itself, ψ = x. In such cases, we can assume that
the basis also contains the state observable, i.e., [φ1, . . . , φn]

T
= x.

In particular, such a set of basis functions is said to be state-
inclusive, and typically the solution to matrix C in Eq. (14) is trivial
and can be obtained by C = [In, 0N−n].

2.3. Koopman model predictive control

In this section, we briefly describe how the Koopman linear
model obtained in Eq. (6) is used within an MPC scheme. In
an MPC controller, an optimization problem is solved repeatedly
over finite prediction horizons with respect to control inputs
and predicted outputs of the system and a feedback behavior is
achieved by taking process measurements as the initial condition.
Typically, for nonlinear systems this is a nonconvex optimization
problem due to the nonlinear dynamics. For the system in Eq. (1),

the MPC problem at sampling time step k is given by

Minimize
uk,...,uk+Np−1∈U

Np−1∑
i=1

xTk+iQxk+i + uT
k+iRuk+i + xTk+Np

QNpxk+Np

s.t xk+i = F (xk+i−1, uk+i−1), i = 1, . . . ,Np

xk = xmeasured
k

c(xk+i) ≤ b, i = 1, . . . ,Np

u ≤ u ≤ u

(15)

where the cost matrices Q ,QNp ∈ Rn×n and R ∈ Rm×m are positive
semi-definite matrices, Np is the prediction horizon, xmeasured

k is the
state measured at time tk = k∆ where ∆ is the sampling time
during the closed-loop operation, c : Rn

→ Rnc are nonlinear
functions used to define the state constraints, b ∈ Rnc is a
constant vector and u and u denote the lower and upper bounds,
respectively, on the manipulated inputs.

In contrast to the above nonlinear optimization problem, in
the Koopman MPC framework a convex quadratic optimization
problem (QP) is solved instead via lifting to the observable func-
tions space. At time step k, the predictions of the system trajec-
tory are initialized from the lifted state φk = φ(xk). Similarly, the
objective function and the state constraints are all transformed
to the lifted space. In this lifted space, the original nonlinear
equation is replaced by the linear dynamics obtained in Eq. (6).
Additionally, any nonlinear constraints associated with the sys-
tem can be absorbed in the basis and therefore predicted in a
linear manner through Eq. (6). For simplicity, if we consider the
following output mapping φ

φ =

[
φ̄(x)
c(x)

]
(16)

where φ̄ ∈ RN−nc are some nonlinear functions in the lifted
space, the nonlinear state constraints in x then translate to linear
constraints in φ, i.e., c(x) = Eφ(x) where E = [0n Inc ]

T . Based
on the above transformations, the Koopman MPC, in discrete
formulation, solves the following QP problem at time step k of
the closed-loop operation.

Minimize
uk,...,uk+Np−1∈U

Np−1∑
i=1

φT
k+iQφk+i + uT

k+iRuk+i + φT
k+Np

QNpφk+Np

s.t φk+i = Aφk+i−1 + Buk+i−1, i = 1, . . . ,Np

φk = φ(xmeasured
k )

Eφk+i ≤ b, i = 1, . . . ,Np

u ≤ u ≤ u

(17)

This feature of incorporating all nonlinearities within the ob-
servable basis is one of the main attractions of the Koopman
operator approach. For example, in our previous work, the same
idea was used to propose a stabilizing Lyapunov-based MPC for-
mulation for nonlinear systems [40]. It can be further extended
to translate any nonlinear objective functions such as those ob-
served in Economic MPC formulations [45] to convex quadratic
functions.

Remark 1. It is emphasized that the convex MPC presented in
Eq. (17) is only an approximation of the original nonlinear MPC
problem in Eq. (15). But, nonlinear MPC problems are typically
np-hard whereas the presented convex QP is polynomial time
solvable and as long as the predictions are accurate, we expect
the solution of the linear MPC problem to be close to the optimal
solution of the nonlinear MPC problem. Please note that the
rigorous quantification of approximation errors in the Koopman
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operator is still an actively researched area with several results
available for the convergence of the EDMD algorithm under some
assumptions [44,46,47].

Remark 2. Regarding the stability of the closed-loop system,
the Koopman methodology presents an exciting avenue to de-
velop stabilizing feedback controllers. Specifically, the Lyapunov
theory can be naturally extended to analyze the stability of the
resulting closed-loop system. Several successful results exploring
this can be found in the following works [26,39,40]. One idea is
to design a stabilizing control framework by explicitly including
Lyapunov constraints within the MPC problem and show that the
stability properties of the linear system (in the observable space)
are inherited by the original nonlinear system under certain
assumptions. Please note that a rigorous stability analysis of the
closed-loop system is out of scope of this work and will be the
subject of future research.

3. Dynamic model of hydraulic fracturing

Typically, a hydraulic fracturing process consists of two sub-
processes: fracture propagation and proppant transport. The cor-
responding dynamic model is obtained using lubrication theory
(fluid momentum) and elasticity equation (rock deformation).
We consider one of the classic 2D hydraulic fracturing models,
known as the Perkins–Kern–Nordgren (PKN) model [48,49]. This
model is usually applied to the cases of long fracture length
(hundreds of meters in length, shown as the x-axis in Fig. 1),
constant height (y-axis) and a small width (z-axis). The rock bed
in which the fractures propagate is assumed to be a homogeneous
elastic formation characterized by a constant Young’s modulus
E and Poisson’s ratio ν. Since the fracture length is considered
much larger compared to other dimensions, the net pressure is
independent of the y-axis making the cross-section elliptical, the
most defining feature of the PKN model.

3.1. Fracture propagation

A brief description of the equations governing the fracture
propagation is presented below. The fluid flow rate inside the
fracture is determined by the following equation for flow of
a Newtonian fluid in an elliptical section using the lubrication
theory.
dP
dx

= −
64µqx
πHW 3 (18)

where P is the net pressure, µ is the fracturing fluid viscosity, qx is
the local flow rate in the horizontal direction x, H is the constant
fracture height and W is the width of the fracture.

The fracture width (the minor axis of the ellipse) caused by the
pressure due to the fluid loading is calculated from the solution
of the plane strain condition (elasticity equation) as follows

W =
2PH(1 − ν2)

E
(19)

By taking into account the fracture volume changes and the
fluid leak-off into the surrounding reservoir, the continuity equa-
tion gives the (incompressible) fluid volume conservation as
∂A
∂t

+
∂qx
∂x

+ HU = 0 (20)

where A = πWH/4 is the cross-sectional area of the elliptic frac-
ture, and U(t) is the fluid leak-off rate per unit height during the
fracture propagation which is given by the Carter’s equation [2]

U =
2Cleak

√
t − τ (z)

(21)

where Cleak is the overall leak-off coefficient, t is the elapsed time
since fracturing was initiated, and τ (z) is the time at which a
specific fracture location gets exposed for the first time.

At the wellbore, the flow rate qz is specified, and at the fracture
tip L(t), the fracture is always closed (i.e., the width of the fracture
is zero). These lead to the following two boundary conditions:

qz(0, t) = Q0; W (L(t), t) = 0, (22)

where Q0 is the fluid injection rate at the wellbore. Initially, the
fracture is closed leading to the following initial condition:

W (z, 0) = 0 (23)

3.2. Proppant transport

To model proppant transport, it is assumed that the injected
proppant travels at the carrier fluid’s velocity along the horizontal
direction governed by advection while simultaneously settling at
the fracture bottom forming a proppant bank induced by gravity.
The following set of equations is used to describe the proppant
transport phenomenon.

The advection of the suspended proppant can be expressed as:

∂(WC)
∂t

+
∂

∂x
(WCVp) = 0

C(0, t) = C0(t) and C(x, 0) = 0
(24)

where C(x, t) is the volumetric proppant concentration inside the
fracture, C0(t) is the injected proppant concentration at the well-
bore. The interaction between the individual proppant particles
is assumed to be negligible because of the low proppant con-
centration. The drag and gravitational forces acting on proppant
particles are considered for proppant settling. The relationship
between the velocity of an individual proppant particle, Vp, the
velocity of the fluid, V , and gravitational settling velocity, Vs, is
given by [50]:

Vp = V − (1 − C)Vs (25)

The gravity-induced proppant settling velocity Vs can be com-
puted as [51]

Vs =
(1 − C)2(ρsd − ρf )gd2

101.82C18µ
(26)

where ρsd is the proppant particle density, ρf is the pure fluid
density, g is the gravitational acceleration constant, d is the
proppant diameter, and µ is the fracture fluid viscosity whose
relationship with concentration can be modeled through the fol-
lowing empirical expression [52]:

µ(C) = µ0

(
1 −

C
Cmax

)−α

(27)

where µ0 is the pure fluid viscosity, α is an exponent in the range
of 1.2 to 1.8, and Cmax is the maximum theoretical concentration
determined by Cmax = (1 − φ)ρsd where φ is the proppant bank
porosity. The evolution of proppant bank height, δ, by the settling
flux is described by [53],
d(δW )
dt

=
CVsW
(1 − φ)

(28)

where there is initially no proppant bank, so the initial condition
is that δ(z, 0) = 0. Please note that due to dilute suspension, as
long as the operation is carried out for a short period of time the
proppant bank height will remain much smaller than the fracture
height (δ ≪ H).

An important characteristic of the hydraulic fracturing process
is that as the fracture propagates in the lateral direction, the
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Fig. 1. The PKN fracture model considered in this work.

system boundary changes making the spatial domain of inter-
est time-dependent. An efficient coupling of multiple nonlinear
equations that describe the important physical phenomena in
hydraulic fracturing systems is essential to update important
variables at each time step. Due to the moving boundary nature
of the problem, the number of equations to be solved grows as a
fracture treatment continues, significantly increasing the compu-
tational requirements. Therefore, in this work we explore the use
of Koopman operator theory to determine a linear representation
of the nonlinear dynamics such that the use of established linear
control design methodologies becomes readily applicable.

4. Application to hydraulic fracturing

In practice, the ultimate goal of hydraulic fracturing is to
increase the productivity of a stimulated well which is influenced
by two important factors: fracture geometry and proppant con-
centration. Depending on the geological composition of the rock
formation, different fracture geometries with the same propped
volume may lead to different fracture productivities. For example,
in a high-permeability formation, a wide and short fracture is
preferred, while in a low-permeability formation, a narrow and
long fracture is preferred [3]. Additionally, when the pumping
is stopped, the suspended proppant settles and the surrounding
rock’s natural stress closes the fracture opening thereby trapping
the proppant inside. This trapped proppant provides a highly
conductive (permeable) channel for effective extraction of oil and
gas. Within this regard, here we consider two control problems
whose objectives are to achieve (1) desired fracture geometry
and (2) uniform proppant concentration at the end of pumping,
respectively.

4.1. Regulating fracture geometry

To demonstrate and evaluate the performance of the Koop-
man system identification method outlined in Section 2.2, we
first applied it to regulate the fracture propagation during a
hydraulic fracturing process. In the following, we describe in
detail the model identification, model performance evaluation
and controller design.

4.1.1. Koopman model identification
The first step in the system identification method is to collect

and construct the required data matrices. The fracture propaga-
tion dynamics can be obtained by solving part of the high-fidelity
model described by Eqs. (18)–(23). To deal with the nonlinearity

Fig. 2. Spatio-temporal evolution of fracture width. The red markers indicate
sensor placement for width measurements. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

and moving boundary nature, a novel in-house numerical scheme
based on a periodic remeshing strategy was used (we refer the
readers to [10] for more details). The values of various process
parameters used in our calculations were obtained from [8]: H =

20 m, µ = 0.56 Pa · s, E = 5 × 103 MPa, ν = 0.2, and Cleak =

6.3 × 10−5 m/s1/2. The fracture propagation was terminated at
135 m, and the spatial domain was discretized with each grid
point having a size of 0.3 m, resulting in a total of n = 451 points.
The spatio-temporal evolution of the fracture width for a sample
injection flow rate is shown in Fig. 2. It can be observed that the
growth rate of the fracture width is very high in the beginning but
it slows down with time. At the same time, the fracture length
grows steadily at a constant rate. The moving boundary nature of
the problem is evident in the above figure with the zero values at
a spatial point indicating that the fracture has not yet propagated
to that location.

Because the hydraulic fracturing process takes place deep
below the earth’s surface, the availability of width measurements
at all the spatial locations is not guaranteed. In fact, the only
practically available measurements are the fracture length and
fracture width at the wellbore determined via the processed
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micro-seismic and downhole pressure data, respectively. There-
fore, in this work, we assumed only a partially observed system;
the average fracture width, Wavg (t), fracture length, L(t) and frac-
ture width at six uniformly spaced locations, [W1(t), . . . ,W6(t)],
obtained from the numerical experiment were considered as the
true process measurements, i.e., x(t) = [Wavg (t), L(t),W1(t),
. . . ,W6(t)]T ∈ R8.

The data required to construct the Koopman linear model was
collected from 100 simulated trajectories over varying operating
time periods with each numerical experiment terminated when
the fracture propagates to a total length of 135 m. A total of
1000 (synchronous) time samples per trajectory were used to
populate the required data matrices. Each trajectory starts with
the same initial condition given in Eq. (23), and was subjected to
an input signal generated randomly over each sampling time. The
manipulated inputs were bounded as {u, u} = {0.03, 0.06} m3/s.
This results in the data matrices X and Y of size 8 × 105 and the
matrix U of size 1×105. A 50% train–test split was then created to
partition the collected data set into training and validation sets.

Remark 3. Please note that in the case of a real hydraulic fractur-
ing process, the unmeasurable states such as local fracture width,
proppant concentration, etc. can be estimated by using the high-
fidelity model and a state observer such as Kalman Filter (see [9,
10] for reference). Alternatively, one can design a state estima-
tor directly for the Koopman linear model using linear observer
design methodologies [28,29]. When the high-fidelity model is
unknown, one can use classical system identification techniques
such as time-delayed measurements to construct the data ma-
trices required for Koopman operator approximation (see [19,
33]).

Once the data has been collected, the next step is to choose a
set of basis functions that span the Koopman subspace to which
the system dynamics are lifted. In this case, we chose a basis of
monomials of the system states with the total degree less than
or equal to 2 (all possible linear and bilinear combinations) as
follows:

φi(x) ∈

{ 8∏
j=1

xmj
j | (m1, . . . ,m8) ∈ Z+

0 ,

8∑
j=1

mj ≤ 2
}

H⇒ φ(x) = [1, Wavg , L, W1, . . . , W6, W 2
avg , WavgL, . . . , W 2

6 ]
T

(29)

where Z+

0 denotes the set of non-negative integers. Therefore,
the total number of functions in the basis {φi}

N
i=1 is equal to

N = 45. This choice was motivated by the presence of polynomial
terms in the governing equations. One observation here is that
when the order of the monomials is 1, they represent the states
themselves; in other words, this basis is state-inclusive. Conse-
quently, (any of) the original physical states can be recovered
by a trivial linear transformation of the lifted states back to the
state space as discussed in Section 2.2. For unknown systems,
there is no established way to select the dictionary although some
canonical choices like radial basis functions have been proposed
as a good starting point [20]. As a matter of fact, in the next
example we will see that a canonical basis like the polynomial
basis selected here fails to accurately capture the dynamics. In
such cases, system knowledge becomes paramount.

Using the collected data and the constructed basis φ, we deter-
mined approximate linear predictors for the fracture propagation
model described in Eqs. (18)–(23). We then evaluated its accuracy
by comparing the Koopman model predictions to each of the
validation data sets, one of which is shown in Fig. 3. From the
figure it can be seen that a relatively good agreement between
the true model and the identified linear model was achieved with

respect to the test data. To assess this quantitatively, goodness of
fit for the trajectory of system states starting from the same initial
condition subjected to random input profiles was calculated and
averaged over Ntotal = 100 simulations using the average relative
root mean squared error (RMSE) defined as:

RMSE =
∥x − x̂∥fro

∥x∥fro

Avg. RMSE =
1

Ntotal

Ntotal∑
i=1

RMSEi

(30)

where ∥ · ∥fro is the Frobenius norm. The RMSE details of the
validation experiments are presented in Table 1. Based on these
results, we can say that the Koopman model consistently captures
the real behavior of all eight measured states of the system.

Please note that the developed Koopman models are valid for
the fixed values of model parameters presented in the
manuscript. When the system parameters change, one has to
determine a newmodel in the new parameter space. For example,
in the case of a hydraulic fracturing process, when modeling two
different reservoirs, the parameters that are subject to change are
the rock properties such as Young’s modulus, porosity, permeabil-
ity, etc. Since the underlying flow physics remain the same, the
basis functions will be kept constant, and the Koopman matrices
will be computed independently for the reservoirs using the data
collected from each reservoir.

4.1.2. Closed-loop results
Now that an accurate model is identified, the Koopman-based

MPC presented in Section 2.3 was formulated to achieve the
desired geometry whose objective is to minimize the squared
deviation of the fracture length from its set-point at the end of
propagation. To prevent early termination of hydraulic fracturing
due to tip-screen out, the average fracture width at the end of the
operation must be greater than a pre-specified target value; this
is considered as the state constraint. So, the MPC controller solves
the following optimization problem of the closed-loop operation
at sampling time step k:

Minimize
uk,...,uT−1

(DφT − Ltarget )2

s.t φk+j = Aφk+j−1 + Buk+j−1, j = 1, . . . , T − k
φk = φ(xk)
EφT ≤ −Wtarget

u ≤ u ≤ u

(31)

where D ∈ R1×N and E ∈ R1×N are matrices that project the lifted
state back to the original state space to obtain fracture length
and average width, respectively, u and u denote the lower and
upper bounds, respectively, on the manipulated input (i.e., the
injection flow rate), Ltarget and Wtarget are the desired fracture
length and average width, respectively, k is the current time step,
and T denotes the total sampling time steps. The solution of this
problem defines a feedback control law u = u⋆(xk) where only
the first value is applied to the closed-loop system for the next
sampling time period t ∈ [tk, tk+1), and the procedure is repeated
until the end of operation.

To design the above MPC, the optimal fracture geometry
which will maximize the productivity of a stimulated well for a
given amount of proppant particles was obtained using the UFD
scheme. Specifically, the total mass of proppant to be injected was
taken as 48,000 kg over the entire treatment. For this specified
amount, the corresponding optimal fracture length and width
determined by UFD are Ltarget = 135 m and Wtarget = 5.4 mm,
respectively. Please refer to [10] for more details on these target
values. The control objective is to generate a fracture having a



32 A. Narasingam and J.S. Kwon / Journal of Process Control 91 (2020) 25–36

Fig. 3. The measured output of the system (black) superimposed with the predictions of the Koopman-based model (blue dotted) given the same initial condition
and control inputs.

Table 1
RMSE values of validation experiments.
Case Max. RMSE Min. RMSE Avg. RMSE

Fracture width 6.82 0.78 3.79
Proppant concentration 9.77 4.77 7.19

total length equal to Ltarget while keeping the average fracture
width greater than the optimal width Wtarget at the end of the
treatment.

Since the basis was state-inclusive, the matrices D and E
used in the objective function and state constraints are trivial.
Specifically, based on Eq. (29), D ∈ R1×N

= [0 1 01×N−2] and
E ∈ R1×N

= [01×2 1 01×N−3], where 01×j is a row matrix whose
elements are equal to 0, were used to determine fracture length
and average width, respectively. In the closed-loop simulation,
the sampling time ∆ between consecutive measurements was
considered to be 100 s and the total process duration to be 800 s;
thus, the injection schedule was partitioned into a total of T = 8
stages (i.e, k = 1, . . . , 8) with the duration of each step given
by the sampling time, ∆. In the beginning of each stage, the
state measurements were assumed to be available, which were
lifted to the Koopman subspace and used to predict the estimates
of the future states via the developed approximate model. The
optimization problem was then solved in a shrinking horizon
manner (since the control objective was to regulate the output
at final time) in this lifted space and the control inputs were
computed.

Starting from the initial point, the closed-loop simulation re-
sults from t = 0 to t = 800 s are shown in Fig. 4. Using
Koopman-based MPC controller, the closed-loop trajectory of the

fracture length was able to converge to its set-point at the end of
the treatment. Additionally, the average fracture width was able
to satisfy the state constraint to prevent tip-screen out.

4.2. Regulating spatial proppant concentration distribution

In this section, we consider the design of an optimal pumping
schedule by considering the coupled dynamics of fracture prop-
agation as well as proppant transport. The high fidelity model
is now described by Eqs. (18)–(28) and is considerably more
complex than the case of fracture propagation alone.

4.2.1. Koopman model identification
Similar to the previous example, the numerical experiment

was carried out for 100 random input profiles to collect the
concentration snapshots and construct the required data matrices
for system identification. The full-order solution of the proppant
concentration inside the fracture for a sample injected concen-
tration (u(t) = C0(t)) is shown in Fig. 5. It was assumed that the
spatial concentration data at the six uniform locations is available
as real time measurements, i.e., x ∈ R6. The manipulated inputs
were bounded as {u, u} = {0, 10} ppga where ppga denotes the
pounds of proppant per gallon of fracturing fluid. This results in
the data matrices X and Y of size 6×105 and the matrix U of size
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Fig. 4. Closed-loop trajectories of fracture length, average width and inputs
determined by the MPC.

Fig. 5. Spatio-temporal evolution of proppant concentration. The red markers
indicate sensor placement for measurements. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of
this article.)

1 × 105. A 50% train–test split was then created to partition the
collected data set into training and validation sets.

The next step is to choose a dictionary of observable functions
to form the Koopman basis. However, due to increased complex-
ity in the dynamics, the choice of basis functions for this case
study is not trivial. Several numerical experiments (the results
of which are not presented here) revealed that using a canonical
basis failed to accurately reproduce the concentration dynamics
observed here. Specifically, polynomial basis with an order up
to 5 and gaussian radial basis functions have been observed
to fail when used as Koopman basis. In such cases, it is really
helpful to incorporate any system knowledge to populate the

basis. Specifically, based on the concentration data available from
the numerical experiments, it can be observed that the system
closely resembles an empirical first-order plus dead time (FOPDT)
model. Since the fracture tip moves in the horizontal direction
as the process proceeds (moving boundary), there exists a time
delay in the proppant concentration injected at the wellbore
(input) to reach a particular location. This phenomenon has also
been verified in our previous work [54] where sparse regression
was used to develop an interpretable reduced-order model for
proppant concentration data. The sparse regression-based ROM
showed that the proppant concentration at a location inside the
fracture is a linear function of its neighboring locations. This
can be attributed to simultaneous fracture propagation and fluid
leak-off in the hydraulic fracturing process. More specifically, let
us suppose that the fracture has propagated to a location x. As
the proppant is transported to that location, its concentration
increases with time. The increase in concentration is also con-
tributed by the fluid leaking off into the surrounding reservoir. At
the same time, due to simultaneous fracture propagation, a new
spatial location, say the location x + 1, becomes available, which
facilitates the transport of the proppant away from the location x.
Therefore, the concentration at the location x is slightly decreased
or remains constant depending on the magnitude of the input.
This phenomenon can be clearly seen in the spatial concentration
profile shown in Fig. 5. Based on these observations, the Koop-
man basis was chosen using linear functions of the concentrations
at the six locations. Therefore, the total number of functions in
the basis {φi}

N
i=1 is equal to N = 6. Note that this is again a

state-inclusive basis.

φi(x) ∈

{ 6∏
j=1

x
mj
j | (m1, . . . ,m6) ∈ Z+

0 ,

6∑
j=1

mj = 1
}

H⇒ φ(x) = [C1 C2 · · · C6]
T

(32)

However, the complexity of this system actually lies in the way
that the input is handled, not in the states themselves. If a simple
linear basis was used without proper handling of the input, the
obtained result failed to accurately represent the system. Since it
takes different times for the inlet concentration to reach different
locations inside the fracture, this time delay in the input variable
was incorporated into the model implicitly by constructing 6
auxiliary inputs (i.e., one for each location) based on the time it
takes for the inlet concentration to reach the specific location, u ∈

R6. The numerical values for input time-delays were determined
from the simulation data.

The validation results of the identified Koopman linear model
are shown in Fig. 6. It can be seen from the figure that the
Koopman model was able to identify the measured concentration
dynamics fairly accurately. This was further verified from the low
Avg. RMSE value of 7.19% when 100 trajectories were validated
with different inputs. Please refer to Table 1 for more details.

4.2.2. Closed-loop results
Based on the optimal length and width computed in the pre-

vious example in Section 4.1, a target concentration can be com-
puted as follows:

Ctarget =
Mprop

HLtargetWtarget
= 9.5 ppga (33)

The control objective is to achieve the above concentration Ctarget
uniformly throughout the fracture. There are several constraints
associated with the problem. The input profile should increase
monotonically to follow the practical implementation in the field
(C0,k ≤ C0,k+1). A material constraint given by 2Q0∆

∑
C0,k =

Mprop is also required to ensure the required amount of proppant
is injected into the fracture. All these constraints are introduced



34 A. Narasingam and J.S. Kwon / Journal of Process Control 91 (2020) 25–36

Fig. 6. The measured output of the system (black) superimposed with the predictions of the Koopman-based model (blue dotted) given the same initial condition
and control inputs.

into the MPC problem as linear constraints in a similar manner
as described in Section 2.3. The following optimization problem
was then solved over the prediction horizon, and the first step of
the solution was applied to the high-fidelity model in a sample-
and-hold fashion, and the procedure repeated at every sampling
time until the end of treatment.

Minimize
uk,...,uT−k

(DφT − Ctarget )TQ (DφT − Ctarget )

s.t φk+j = Aφk+j−1 + Buk+j−1, j = 1, . . . , T − k
φk = φ(xk)
Guu ≤ 0
Gmu = Mprop

u ≤ u ≤ u

(34)

where D is the identity matrix in this example. The cost matrix
Q was taken to be identity. The input constraint matrix Gu ∈

RT−k×T−k is an upper bi-diagonal matrix with Gu(j, j) = 1,Gu(j, j+
1) = −1 ∀j = 1, . . . , T − k. Essentially, this constraint specifies
that the injected concentration at a time step k + 1 is greater
than or equal to that of k, i.e., an increasing input profile. This
constraint was used to obtain a practical pumping schedule, one
that closely resembles the field. The material constraint vector
Gm is given by Gm ∈ R1×T

= 2Q0∆ ∗ 11×T where 11×j denotes a
row vector whose elements are equal to 1. This constraint ensures
that the total mass of injected proppant, given by the cumulative
input concentration, is equal to the pre-specified value of Mprop.

The results of the Koopman-based MPC are presented in Fig. 7.
From the figure it can be seen that the derived controller was able
to regulate the final proppant concentration to the pre-specified
target value throughout the fracture. The pumping schedule (i.e.,
the input concentration profile required to achieve the desired

proppant concentration) for the corresponding process parame-
ters over the entire operation time is shown in Fig. 7b. Please
note that the developed approximate models considered only
measurements at 6 (out of 451) locations; in the control problem,
we do not necessarily require knowledge of the entire system
state but only of some observations which are used in the con-
troller. We see that even by using partial observations, the linear
model was able to control the PDE fairly accurately. Moreover,
the dimension of the optimization problem is reduced because
instead of using a high-dimensional discretization and a higher
order time integrator, we use a matrix vector product to predict
the dynamics of the observed states.

5. Conclusions

In this work, we successfully applied the Koopman operator
theory for system identification and feedback control of a hy-
draulic fracturing process. We studied two cases: (1) fracture
propagation and (2) proppant transport. The results showed that
in both the examples presented, the generated linear models
were able to accurately predict the evolution of all the observed
states and resulted in a very small Avg. RMSE value (3.79% and
7.19%) over 100 trajectories with different inputs. One major
difference in the examples is in the choice of the Koopman basis.
In the case of fracture propagation, since the dynamics were
relatively simple, a canonical basis like the bilinear basis functions
was able to accurately capture the observed dynamics. However,
the case of proppant concentration is more sophisticated where
the dynamics are highly coupled and nonlinear. In such cases, it
is observed that a priori process knowledge can be leveraged to
select the required basis of observables. Additionally, sparse re-
gression based dictionary identification can be used as a precursor
to obtain the most relevant functions in the basis.
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Fig. 7. Final proppant concentration and input trajectories of the closed-loop
process determined by the MPC.

The obtained Koopman models for both the cases were then
used to design feedback controllers to regulate the fracture geom-
etry and proppant concentration. Due to the superior predictive
capabilities of the linear models, the derived controllers achieved
their corresponding control objectives; the final desired frac-
ture length while satisfying the constraint on average fracture
width and uniform proppant concentration at the end of the
fracturing treatment. Moreover, because of its linear structure,
the Koopman model resulted in a convex quadratic MPC problem
that is amenable to be solved using any of the available linear
MPC solvers. Although, future work in this direction will need to
certify these controllers, providing guarantees on stability, and a
rigorous quantification of error and uncertainty bounds, the cur-
rent work shows the potential of the operator-theoretic frame-
work for approximation and control of chemical and petroleum
engineering processes.
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