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ABSTRACT
In this paper, a two-level deep learning framework is presented to
model human information foraging behavior with search engines.
A recurrent neural network architecture is designed using LSTM
as the base unit to explicitly consider the temporal and spatial de-
pendencies of information scents, the key concept in Information
Foraging Theory. The target is to predict several major search be-
haviors, such as query abandonment, query reformulation, number
of clicks, and information gain. The memory capability and the
sequence structure of LSTM allow to naturally mimic not only what
users are perceiving and performing at the moment but also what
they have seen and learned from the past during the search dy-
namics. The promising results indicate that our information scent
models with different input variations were better, compared to
the state-of-the art neural click models, at predicting some search
behaviors. When incorporating the knowledge from a previous
query in the same search session, the prediction of current query
abandonment, pagination, and information gain has been improved.
Compared to the well known neural click models that model search
behaviors under a single search query thread, this study takes a
broader view to consider an entire search session which may con-
tain multiple queries. More importantly, our model takes the search
result relevance pattern on the Search Engine Results Pages (SERP)
as a whole as the information scent input to the deep learning
model, instead of considering one search result at each step. The
results have insights on the impact of information scents on how
people forage for information, which has implications for designing
or refining a set of design guidelines for search engines.
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1 INTRODUCTION
Nowadays information technologies have created more informa-
tion than any of us can realistically process. In order to cope with
vast amount of information available online, many people rely on
their perception of information value or just their intuition to guide
them click on, read through, follow up, or allocate attention on
different information sources. Such information seeking behavior
is modeled by the well-known Information Foraging Theory [32],
which borrowed concepts from animals’ foraging for food in Biol-
ogy to understand information seekers’ acquisition of information.
This Theory uses the concept of information scent to mimic the
concept of food odor that animals use when foraging for food. Most
previous studies, e.g., [8, 37], quantified information scent of each
individual information item in a "flat" or "cumulative" way without
considering the order effect of information scent along the informa-
tion seeking process. However, temporal information was shown
important to improve performance of user click models for Web
searches [19]. Compared to the well-known neural click models, for
example [5, 6, 38], which have adopted the "micro-level" view, focus-
ing on user interactions under one query, we will design a two-level
deep learning framework to model and predict both query-level
and session-level interactions, by encoding information scent along
the process under the guidance of Information Foraging Theory.
In addition, instead of predicting just a binary click behavior, we
will extend the target variables to other major search behavioral
variables, either binary or numeric, such as query reformulation,
number of clicks, and information gain.

Specifically, we operationalize the concept of information scent
as the perceived relevance of a search result on Search Engine
Results Pages (SERP). We designed a recurrent neural network ar-
chitecture using LSTM as the the base unit to explicitly consider
the temporal and spatial aspects of the relevance scores on a SERP.
Our target is to predict several major search behaviors, such as
query abandonment, number of clicks, and information gain. The
memory capability and the sequence structure of LSTM [13] allow
us to naturally mimic not only what users are perceiving and per-
forming at the moment but also what they have seen and learned
from the past during the search dynamics. In this architecture, a
recurrent neural net is used to encode the SERP results’ relevance
scores and their positions. We then used another recurrent net to
capture the learning effect of users. We showed that our model
"remembers" and "forgets" like a human: the model memories the
influence of a scanned item from past and that knowledge fades
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away over time. Prior work models the learning effect as frequency
counts such as number of clicks, which does not take into account
the "remembering" and "forgetting" effect during a sequence.

The contribution of the study is: to our best knowledge, this
study is the first to design a two-level (both query level and session
level) neural network architecture to test the Information Foraging
Theory.

2 LITERATURE REVIEW
This study connects three threads of work, Information Foraging
Theory and its role in understanding search behavior, deep learning
models for human behavior, and well-know click models.

2.1 Information Foraging Theory and Search
Behavior

Information foraging theory (IFT) by the study [32] is a framework
borrowed from the optimal foraging theory in Biology to under-
stand information seekers’ "stay" or "leave" decisions when facing
today’s flux of information. The goal of the decision is to maximize
the information gain and minimize the cost of the forager. During
the navigation between information patches, imperfect informa-
tion at intermediate locations is used to make such a decision. Such
intermediate imperfect information is a key concept in IFT, called
information scent. For example, on a web page, information scent
may be represented by link descriptors, images, preceding headings,
and page arrangements.

The concept of information scent has been suggested to explain
a user’s web search behavior on SERPs [8, 9, 37]. Card et al. [7]
developed the Web Behavior Graphs, suggesting the role played by
information scent as a driver in the process of information seeking.
Cutrell and Guan [9] found that positions of relevant search results
influenced search behavior and suggested the use of information
scent for future work. Following their suggestions, Wu et al. [37]
conducted a controlled user study to understand the effect of in-
formation scent on search behavior on a desktop search system.
SERPs with different information relevance levels and patterns
were presented to the users. They found that participants viewed
documents in lower positions when more relevant search results
were present. The participants also abandoned their search earlier
if relevant search results were only shown later on the SERPs. They
also found that search behavior also depended on personality, such
as the level of NFC (Need for Cognition), a cognitive scale that mea-
sures the extent to which a person enjoys a challenging task that
requires cognitive thinking. As a follow-up study, Ong et al. [30]
developed a user study with similar manipulations on information
scent levels and patterns to compare search behavior on mobile
devices and desktop search systems. It showed that search behav-
iors on mobile and desktop were measurably different. For example,
mobile participants achieved higher search accuracy than desktop
participants for tasks with increasing numbers of relevant search
results. Overall, both an increased number and better positioning of
relevant search results improved the ability of participants to locate
relevant results on both desktop and mobile. Participants spent
more time and issued more queries on desktop, but abandoned
less and saved more results on mobile devices. In another recent
study [2] that tried to measure the quality of a SERP, a measure

based on Information Foraging Theory was proposed: experienced
utility, which accounted for the heterogeneity of search results and
naturally connected how to model search with how to evaluate
search. Through an experiment with 1,000 popular queries issued
to a major search engine, the measure of experienced utility has
demonstrated more accurate reflection of observed behaviors.

These studies have inspire this study of using information scent
to predict search behavior. Most of these studies are based on user
studies where the number of users, the search scenarios, and the
possibility of information scent manipulations are limited. In this
study, we will go beyond to work on a large amount of search
logs collected from a well-known search engine that represents
a natural search behavior "in the wild". With assistance of deep
learning models, we are able to test Information Foraging Theory in
a scalable and natural way for human information foraging process.

2.2 Deep Learning Models to Understand
Human Behavior

Based on the recent success on deep learning techniques in ma-
chine translation and speech recognition, there has been a few
studies that leverage deep learning techniques to model human in-
teractions and predict some human behavior. Most of these models
have demonstrated better performance than the traditional machine
learning models that require sophisticated feature engineering pro-
cess. For example, Li et al. [18] in Google Research designed a neural
network architecture based on LSTM model to predict how much
time was needed for a user to find an item from a menu on a user
interface (UI). In the online education area, Jo et al. [15] used the stu-
dents’ click logs harvested from the Massive Open Online Courses
(MOOCs) platform, and exploited the temporal dynamics of student
behaviors via a LSTM neural network in order to first encode stu-
dent behavior and then predict their final learning outcomes in the
course. LSTM model has also been applied in the e-commerce area
to encode customers’ shopping actions in a sequence and predict
the purchase outcome of the sequence. Using clickstream data gen-
erated during live shopping sessions, Toth et al. [35] adopted LSTM
to predict three shopping outcomes: purchase, abandoned shopping
cart, and browse-only. Their experiments have shown better predic-
tion performance than Markov models. In summary, these studies
have marked milestones of applying deep learning algorithms in
modeling and predicting human behavior, especially those behav-
iors that are of sequence nature. Inspired by these studies, we will
design a neural network structure using LSTM as the basic unit to
encode and decode human search behaviors with search engines.

2.3 Well-Known Click Models
In recent years there are a few IR studies experimenting with deep
learning techniques to model sequential dependency in search ac-
tivities and predict search behavior. For example, Zhang et al. [39]
used a RNN structure to predict users’ advertisement click behavior
in a sponsored search system under the hypothesis that users’ ads
click probability depends on their ads browsing behavior in the
past, such as the timing of the first click on an ads and the dwell
time on the ads. Williams and Zitouni [36] adopted LSTM to model
the number of user interactions and the nature of those interactions
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to distinguish the good and bad query abandonment. Their model
performed significantly better than other baselines.

For click behavior, Borisov et al. [5] proposed a LSTM-based
neural click model to predict user clicks on search engine results.
They represented users’ information need (query) and the informa-
tion available to the user with a vector state, which was initialized
with a query, and then iteratively updated based on subsequent
interactions. This neural click model demonstrated better perfor-
mance than the traditional probabilistic graphical model (PGM)
that needed a predefined set of rules. In a follow-up study in 2018
[6], they further designed a click sequence model (CSM) with an
attention mechanism that aimed to predict the order in which a
user would click the search results. The goal was one step forward
compared to most machine learning models that were to predict
an un-ordered set of results a user would click on. As the result,
CSM has achieved a comparable results to those standard machine
learning models for predicting the un-ordered set of results, but
with the additional prediction of the order of those clicks. Built
on Borisov et al’s models, Yu et al. [38] proposed an approach to
representing query and documents in a lower-dimensional space,
and deployed different weight matrices at each layer of the RNN
model to address the so-called position bias [10, 16]. They achieved
better model performance as well as less computational cost.

These studies’ positive results suggest the effectiveness of deep
learning models, especially the LSTM-based RNN structure, in mod-
eling and predicting search behaviors in the information retrieval
field. As mentioned in the Introduction section, this work built on
and extend these previous studies by constructing neural network
models for a search sessions that may contain multiple queries.
Also, instead of just using click behavior pattern as input, this
work considers result relevance pattern, as the information scent,
to input into the deep learning models, under the guidance of In-
formation Foraging Theory. In addition, instead of predicting just
a binary click behavior, this work will extend the target to other
major search behavioral variables, either binary or numeric, such
as query reformulation, number of clicks, and information gain.

3 DEEP LEARNING OF INFORMATION
FORAGING PROCESS

We propose a two-level deep learning framework to describe human
information foraging process. The "goodness" of the description is
represented as the model performance of using information scent
sequence as input to predict some important search behavioral
variables.

3.1 Target Behavioral Variables
The six search behavioral variables we are interested in are:

• Query Abandonment (qry_abandon): a binary variable;
describing whether a user abandons the query without any
interaction with the SERP returned by the query

• Query Reformulation (qry_reform): a binary variable;
describing whether a user re-issues another query after an
original query

• Pagination (pagination): a binary variable; describingwhether
a user goes beyond the first SERP and paginates to the next
page

• Number of Clicks (num_clicks): a numeric variable; the
total number of items the user has clicked for a query

• ClickDepth (click_depth): a numeric variable; the deepest
rank that the user has clicked for a query

• Information Gain (info_gain): a numeric variable; the
DCG (Discounted Cumulative Gain) value based on the
clicked results

These six behavioral variables are commonly used in describing
search behaviors [4, 14, 24–27, 29, 33, 34, 37]. The former three
possess some "sequential" nature, reflecting a action based upon
not only what the user is seeing at the moment but also what they
have seen in the past. In contrast, the latter three have some "cumu-
lative" nature, representing the aggregate "memory capability" of
the search behavior . Both groups of behaviors capture the heuris-
tics that the Information Foraging Theory describes. We want to
further investigate which group of these variables our LSTM neural
network is able to better predict.

3.2 Proposed Deep Learning Framework
We propose a two-level deep learning modeling framework as pre-
sented in Figure 1, to represent the information foraging process.
Both levels follow a encoder-decoder structure. The lower-level
captures the user-information interaction under each query, includ-
ing the user search style, query formulation, scanning the SERP
returned by the query, clicking on the result items, deciding on
whether to reformulate another query, etc. The upper level de-
scribes the user’s session-level actions. It is worth mentioning that
a search session is defined as a series of search activities driven by
one search goal. One search session may contain one or multiple
search query threads.

The framework architecture builds on two important capabilities
of LSTM [12]. First, it is capable of "reading in" a sequence of input
and encoding it as a certain representation. This encoding process
considers the temporal and spatial features of the input which are
believed useful in predicting search behavior than the "flat" features.
Second, the model is capable of mimicking users’ "remembering"
and "forgetting" effects of previous learning on the current move.
Such learning effect is believed to play an important role in human
behavior. The details of the two levels are introduced in below.

3.2.1 Modeling and Predicting Query-Level Interactions. Query-
level interactions include the behaviors under one query, which is
part of a search session that may contain multiple queries. Under-
standing the query-level interactions is essential for understanding
the entire search session. Our neural network structure follows the
encoder-decoder structure to encode the information scents on a
SERP and predict the query-level interactions.

Encoder. The aim of the encoder is to represent the search re-
sults’ information scents on a SERP as well as other important
information, and pass the representation to the decoder.

We describe three sets of representations, each built on the pre-
vious. Set 1 (SCENT) will encode only the information scent on the
first SERP to predict search behavior, as the idea of most of the lab-
based user studies. Set 2 (SCENT+QUERY) extends Set 1 by consider-
ing the query intent of the searcher. Set 3 (SCENT+QUERY+SEARCHER)
extends Set 2 by incorporating the person’s search style through
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Figure 1: Proposed deep learning framework to represent information foraging process

examining all their historic behaviors recorded in a large amount
of log dataset.

Set 1 (SCENT): As in the encoder structure shown in Figure 2, the
input of the encoder is the sequence of the raw relevance scores
of the first SERP returned by the query. ri represents the rele-
vance score of the search result at position i . The sequence of
(e1s , e2s , ...eNs , ) represent the LSTM chain for the encoder, where
each eis is one LSTM computation unit. hi denotes the hidden state
of each LSTM computation unit after reading in ri as well as the
output from previous LSTM unit ei−1s . N denotes the number of
search results on the SERP. The final hidden state hN is then used
to represent the overall information scent distribution on this SERP
and is passed to the decoder for behavior prediction.
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Figure 2: Deep learning model with Set 1 input at the query
level

Set 2 (SCENT+QUERY): The second set of representation extends
Set 1 by considering the query intent, as in Figure 3. The represen-
tation used in Set 1 ignore potentially useful information about this
particular query. Set 2 incorporates such query intent information
by aggregating all the interactions by different users but under this
same query q. In another words, we represent the intent of this
query q by its aggregate click patterns observed on SERPs gener-
ated by the query q, especially the click patterns on the first three
ranks, which are the most important positions on a SERP. Since
there are 23 = 8 possible click patterns for the first three positions,
we represent the query q with a vector of size 8. In each component

of the vector q, we store the number of times a particular click
pattern was observed on SERPs generated by the query q.
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Figure 3: Deep learning model with Set 2 input at the query
level

Set 3 (SCENT+QUERY+SEARCHER): The third set of representa-
tion extends Set 2 by considering the searcher’s search behavior
style information, as in Figure 4. For example, people were found
to exhibit their Web navigation style as Web returner or Web ex-
plorer [3]. Aula et al. [1] categorized information seekers into "eco-
nomic" or "exhaustive" styles based on their approach to evaluating
search results on Web Pages. In a similar way, the depth-first and
breadth-first strategies have been observed by Klockner et al. [17]
to understand individual differences. These notions of differentiat-
ing people’s search behaviors are quite useful for this study, and
therefore we will encode such information as input of the deep
learning models.

Set 3 allows us to collect behavioral information of this particular
user from a large amount of search sessions issued by this person.
Similar to the representation method of the query q, we represent
the searcher u by their click patterns,observed on SERPs under
this user u, especially the click patterns on the first three positions.
Since there are 23 = 8 possible click patterns, we represent the user
u with a vector of size 8, the same size of q. In each component of
the vector u, we store the number of times a particular click pattern
was observed on SERPs requested by this user u.

Decoder. The decoder is to predict a probability for a behavior
given an information scent distribution. If the behavior is described
by a binary variable, like query abandonment, the decoder will label
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Figure 4: Deep learning model with Set 3 input at the query
level

a "yes" or "no" based on whether the predicted probability is above
or below 50%. If the behavior is represented by a numeric variable,
such as number of clicks, the decoder will predict a value for this
variable.

We will implement the decoder using a three-layer fully con-
nected neural network. The result of the three-layer neural network
will be passed to a Softmax layer, which calculates the probability
or the value for each behavioral variable.

Since we have six target behavioral variables with two types
(binary and numeric) in this study, we propose to use two different
loss functions. For the binary behavioral variables, we will the cross-
entropy loss function. The overall loss for the training dataset is
defined as the average of the loss value for each record. For the
numeric behavioral variables, we will use Root Mean Square Error
(RMSE) as the loss function.

3.2.2 Modeling and Predicting Session-Level Interactions. Model-
ing and predicting session-level interaction is to connect the models
of query-level interactions as building blocks.

Encoder. With each query-level encoder LSTM chain es , we are
able to concatenate them as the input of a session-level encoder. In
that sense, a series of LSTM chains, (e1, e2, e3, ..., es ), as presented in
Figure 5, will be fed into an encoder, represented as (Q1,Q2, ...,Qs ),
where each Qs is a LSTM computation unit, similar to eis in the
query-level encoder. The outcome of each Qs will be passed to a
classifier for behavior prediction.

Decoder. Similar to the query-level decoder, this session-level
decoder is also to predict a user’s query-level behavior, but to put
them in a sequence context. Specifically, in order to predict the
current query-level behaviors, the decoder reads in not only the
hidden state generated by the current query’s encoder, but also the
hidden state and actions from a previous query encoder. In that
sense, the behaviors under the current query are actually under the
cumulative influence of the previous queries, which more precisely
reflects the nature of user interaction in a multi-query search ses-
sion, than the traditional neural click models. The loss function in
the session level is defined as a sum of the loss function for each
query-level classifier.

4 EXPERIMENTS
In this section, we will introduce the dataset used in this work as
well as our deep learning model implementation details.
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Figure 5: Deep learning model at the session-level

4.1 Search Log Dataset
Data used for training the deep learning framework is from Yahoo!.
It contains one-month search logs. The search logs contain two
parts, as summarized in Table 1: 1) queries, corresponding SERPs,
and clicks, and 2) relevance judgments on the first ten results for
each query. The relevance judgments by the corporate research
team have added the research value of this dataset. The two parts
are joined by the combination of a query and a search result.

Table 1: Description of the search log dataset

Data Field Description

PART 1

query The query (de-identified as a code)
submitted by a searcher

cookie An anonymized version of a user
identifier

time stamp The UNIX time when the query
was submitted

url (10 columns) The top 10 result links of that query
number of clicks The total number of clicks during

that search session
clicked position (19 columns) The position of each click
elapsed time (19 columns) The elapsed time between the query

submission time and a click time

PART 2
query The same with the query in Part 1
url a result link
judgment five-grade judgment on relevance:

0 means very irrelevant and 4
means very relevant

The joined data contains 80,779,266 records. After removing the
records whose judgment scores were incomplete for the top ten re-
sults, there were 1,930,932 records left. These were the final dataset
on which our deep learning models were constructed. As descrip-
tive statistics, 13.20% of the queries were abandoned, 2.44% were
reformulated, and 3.93% led to pagination beyond the first page.
These low percentages suggest the unbalanced distribution of the
positive and negative cases for each binary behavioral variable. All
the distributions for the number of clicks, click depth, and informa-
tion gain roughly follow a power law distribution, suggesting that
most searchers clicked very few results at fairly high ranks with a
little information gain, in line with other studies, such as [31].

The search logs have provided us with the cookie information,
which is the anonymized user identifiers. The recorded interactions
of different sessions interleaved together and they were ordered
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according to their time stamps. In this study, a session is defined
as a series of actions conducted by one person (identified by one
cookie identifier) at certain continuous period of time, and differ-
ent sessions are assumed independent of each other in this study.
Generally, researchers use consecutive actions that fall into a time
range between 5 to 60 minutes as a session [21, 22]. This study
follows the idea in [20, 25, 28] to separate a session as a series of
consecutive actions from the same user identifier with no period of
inaction greater than 30 minutes.

After grouping the 1,930,932 records into sessions, we obtained
1,873,942 search sessions. The majority (98.01%) of the search ses-
sions only contained one single query, suggesting that search ses-
sions "in the wild" tended to be brief.

4.2 Model Configuration & Hyper-Parameters
For the query-level encoder, N took the value of 10 since each SERP
of the big name search engine contained 10 search results. Since
the search sessions with more than 2 queries were too few (less
than 0.1%) to train a deep learning model, s took the value of 2 for
the session level encoder.

Both neural network models (query-level and session-level) were
trained byminimizing the defined loss functions Lbinary , Lnumer ic ,
and Lsession respectively. ADAM optimizer was adopted with the
learning rate of 0.01. To achieve best model performance, we applied
the activation function to the first layer neurons in the decoder net
to do the non-linear transformation. After several rounds of experi-
ments, we found that ReLU [23] usually did better in classification
models and Tanh in regression models for our tasks. Therefore we
applied ReLu for the binary variable prediction and Tanh for the
numeric prediction. Each model was trained 1,000 epochs and the
one with the lowest loss value was saved for future test.

As common practice in machine learning, we randomly sam-
pled 80% of the dataset as the training set and the remaining 20%
as the test set. The unbalanced distribution of those binary tar-
get behavioral variables was a potential problem for training the
model, since most common prediction algorithms would minimize
the overall error rate rather than paying special attention to the
minority cases. In this study, for those binary target behavioral
variables, we adopted the method of under-sampling the majority
cases [11] to make both types of cases roughly balanced at each
query level in the training dataset. The test set remained untouched.
For those numeric behavioral variables, we did not have the un-
balanced distribution problem and therefore we split the original
dataset into the 80% for training and 20% for test.

5 RESULTS
Model results are reported at both query and session levels. Ac-
curacy and F-measure were selected as the model performance
metrics for the binary behavioral variables whereas Pearson corre-
lation coefficient and RMSE (Root Mean Square Error) were selected
for model performance for those numeric behavioral variables. In
addition to our proposed information scent models (IFMs), we also
selected two state-of-the-art deep learning models as the baseline:
RBNN∗ from [38], which is a rank-biased neural network model
and has the best performance in several variations of such models;

and NCMLSTM
QD+Q+D from [5], which is a neural click model and con-

siders complete information from a SERP including query document
pairs, the query, and the documents.

5.1 Query-Level Model Performance
The model performance for binary query-level behaviors is sum-
marized in Table 2. Overall speaking, at least one variation of our
information scent models (IFM) has improved the prediction accu-
racy and F-measure compared to those baseline models, suggesting
the effectiveness of IFMs. Focusing on those three variations of
IFMs, we find that incorporating the information scent, query, as
well as searchers’ behavioral style information (Set 3) has helped
performance on both query abandonment and pagination. However,
IFM including only the information scent and query information
(Set 2) has the best performance for query reformulation, indicating
people’s decision on query reformulation does not rely much on
each individual’s search behavioral style. If the F-measure is broken
down by precision and recall, we find that all the five models are
better at precision than recall, resulting in a moderate value of
F-measure. The finding is in line with other click models that are
better at recognition than being complete [5, 6].

It is worth noting that information scents alone as input without
any other information could achieve reasonable accuracy and F-
measure, especially for query abandonment and pagination. The
reasonable performance speaks to the fact that information scent
matters in directing people’s search behavior. Another interesting
finding is that all the five models performed relatively better for
query abandonment and pagination, but relatively worse for query
reformulation, suggesting that query reformulation is more elusive
or hard to predict.

Table 2: Query-level model performance for binary behav-
ioral variables

Model for Predicting qry_abandon Accuracy F-Measure
I FMSCENT 0.7066 0.6109

I FMSCENT+QU ERY 0.8027 0.6844
I FMSCENT+QU ERY+SEARCHER 0.8315 0.7035

NCMLSTM
QD+Q+D 0.7377 0.6223

RBNN ∗ 0.7954 0.6757
Model for Predicting qry_reform Accuracy F-Measure

I FMSCENT 0.5313 0.4224
I FMSCENT+QU ERY 0.7224 0.5856

I FMSCENT+QU ERY+SEARCHER 0.7015 0.5049
NCMLSTM

QD+Q+D 0.5549 0.4566
RBNN ∗ 0.6027 0.4677

Model for Predicting pagination Accuracy F-Measure
I FMSCENT 0.6218 0.3089

I FMSCENT+QU ERY 0.7344 0.4905
I FMSCENT+QU ERY+SEARCHER 0.8128 0.5027

NCMLSTM
QD+Q+D 0.8080 0.4727

RBNN ∗ 0.7822 0.4545

As to the numeric behavioral variables, the two baseline mod-
els have better performance than our IFM models for number of
clicks and click depth, probably because those baseline models are
click models especially for predicting whether a searcher will click
on each result, to which the number of clicks and click depth are
directly related. However, when predicting information gain, repre-
sented as the discounted cumulative gain of clicked results for each
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query, our IFM model with Set 3 (SCENT+QUERY+SEARCHER)
input has the best performance, because it considers not only the
click behavior, but also the relevance level of each clicked result.

All the Pearson correlation coefficients are significant at the
0.05 level. The medium effect (0.2478 to 0.4223) of Pearson corre-
lation and the relatively small RMSEs suggest that deep learning
approach is able to achieve a reasonable performance in predicting
the "cumulative" search behaviors beyond a "isolated" binary click
behavior.

Table 3: Query-level model performance for numeric behav-
ioral variables

Model for Predicting num_clicks Pearson Correlation RMSE
I FMSCENT 0.1379** 1.2877

I FMSCENT+QU ERY 0.1730** 1.0112
I FMSCENT+QU ERY+SEARCHER 0.1959** 0.9742

NCMLSTM
QD+Q+D 0.2478** 0.9889

RBNN ∗ 0.2326** 2.1355
Model for Predicting click_depth Pearson Correlation RMSE

I FMSCENT 0.1801** 2.0001
I FMSCENT+QU ERY 0.1900** 1.4496

I FMSCENT+QU ERY+SEARCHER 0.2859** 1.4545
NCMLSTM

QD+Q+D 0.3085** 1.6654
RBNN ∗ 0.3212** 1.3725

Model for Predicting info_gain Pearson Correlation RMSE
I FMSCENT 0.1953** 1.4444

I FMSCENT+QU ERY 0.3305** 1.2857
I FMSCENT+QU ERY+SEARCHER 0.4223** 0.9797

NCMLSTM
QD+Q+D 0.3210** 0.9996

RBNN ∗ 0.3118** 1.2538
Note: ** denotes that the correlation coefficient is significant at the 0.05 level.

5.2 Session-Level Model Performance
We will report the model performance broken down by the two
queries Q1 and Q2. It is worth attention that for the IFM models,
the prediction was sequential, meaning the prediction for the ac-
tions under Q2 was built on the knowledge of information scent
and actions on Q1. We will investigate whether the cumulative
knowledge that obtained from placing Q1 and Q2 in a temporal
sequence will help improve the prediction of the actions under Q2.

Since the two baseline models NCMLSTM
QD+Q+D and RBNN∗ do

not have the structure to incorporate session-level prediction, we
will only compare the results from the three variations of the
IFM models. The model performance for the binary behavioral
variables is presented in Table 4. Overall, we have seen great im-
provement of the model performance on Query 2, especially for
query abandonment and pagination. For the challenging behavioral
variable qry_reform, only IFMSCENT+QU ERY+SEARCHER has im-
provement on Query 2, and the improvement is dramatic. The
finding indicates the advantage of this "sequential" modeling, espe-
cially when incorporating information scent, query, and searcher
information, on the prediction of these binary search behavioral
variables based on knowledge of a previous query thread.

The model performance on the numeric variables is presented
in Table 5. Our IFM models are able to have better performance for
Q2 for information gain, but not for number of clicks or click depth,
suggesting once again the usefulness of previous query thread
knowledge is limited to situations considering not only clicks but
also relevance levels on the clicked results.

Table 4: Session-level model performance (s = 2) for binary
behavioral variables

Accuracy F-Measure
Model for Predicting qry_abandon Q1 Q2 Q1 Q2

I FMSCENT 0.6733 0.7233 0.6103 0.6230
I FMSCENT+QU ERY 0.7946 0.8255 0.6533 0.6972

I FMSCENT+QU ERY+SEARCHER 0.8022 0.8754 0.6884 0.7172
Accuracy F-Measure

Model for Predicting qry_reform Q1 Q2 Q1 Q2
I FMSCENT 0.5800 0.5514 0.4876 0.3960

I FMSCENT+QU ERY 0.7745 0.7068 0.5044 0.6060
I FMSCENT+QU ERY+SEARCHER 0.6236 0.8023 0.4765 0.5528

Accuracy F-Measure
Model for Predicting pagination Q1 Q2 Q1 Q2

I FMSCENT 0.5267 0.6843 0.2241 0.4496
I FMSCENT+QU ERY 0.7055 0.7868 0.3877 0.5211

I FMSCENT+QU ERY+SEARCHER 0.6638 0.8854 0.4069 0.5762

Table 5: Session-level model performance (s = 2) for numeric
behavioral variables

Pearson Correlation RMSE
Model for Predicting num_clicks Q1 Q2 Q1 Q2

I FMSCENT 0.0905** 0.1875** 1.3654 1.1369
I FMSCENT+QU ERY 0.2007** 0.1553** 0.9998 1.4401

I FMSCENT+QU ERY+SEARCHER 0.2346** 0.1280** 1.2945 0.6754
Pearson Correlation RMSE

Model for Predicting click_depth Q1 Q2 Q1 Q2
I FMSCENT 0.1933** 0.1600** 2.4566 1.9340

I FMSCENT+QU ERY 0.2098** 0.1166** 1.2265 1.5273
I FMSCENT+QU ERY+SEARCHER 0.1777** 0.3258** 1.1098 1.8904

Pearson Correlation RMSE
Model for Predicting info_gain Q1 Q2 Q1 Q2

I FMSCENT 0.1368** 0.2045** 2.0561 1.2389
I FMSCENT+QU ERY 0.2477** 0.3945** 1.9766 1.1068

I FMSCENT+QU ERY+SEARCHER 0.4106** 0.4533** 1.3766 0.5623
Note: ** denotes that the correlation coefficient is significant at the 0.05 level.

6 DISCUSSION AND CONCLUSION
This study designed a two-level deep learning framework to model
users’ two-level action sequences: micro-level (query-level) and
macro-level (session-level). We used LSTM as the base model be-
cause of its memory capability and the sequence structure that
allow for natural mimic of not only what users are perceiving and
performing at the moment but also what they have seen and learned
from the past during the search dynamics. As the result, at the mi-
cro level, the information scent models were able to outperform
the baseline neural click models in predicting the behaviors that
require sequential scanning of search results. However, they have
not performed as well as the baseline models in predicting the "cu-
mulative" behaviors that are directly related to clicks. IFM models
are also better at predicting information gain which considers not
only clicks but also relevance scores of the clicked results.

At the macro level, by placing the current query in a sequence of
queries, and incorporating the knowledge of the previous query’s
information scent and actions, the current prediction has seen great
improvement for query abandonment, pagination, and information
gain. The improvement has not been seen on the elusive behavioral
variable, query reformation, as well as the "cumulative" click-related
variables such as number of clicks and click depth.
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One drawback of the deep learning model is that it is difficult to
interpret what the model has learned, such as what kind of informa-
tion scent distribution tends to lead to a query abandonment, query
reformulation, or more information gain. Therefore in near future
we plan to do some follow-up analysis on a simulated test dataset
with all possible permutations of the information scent distribution
on the first ten search results. For each permutation, we will apply
the trained deep learning model to predict a probability for those
behavioral variables. The average predicted variable probabilities
or values for different information scent levels and patterns could
offer some interpretability of our IFM models.
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