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Abstract. Wind velocity measurements of wakes generated by utility-scale wind turbines
were performed with the University of Texas at Dallas (UTD) mobile LiDAR station for wind
farms in flat and complex terrains. Single-wake LiDAR measurements are clustered according
to incoming wind speed at hub height and atmospheric stability regime through the wind shear
exponent. Ensemble statistics of the LIDAR data shows that the velocity field in the near-wake is
mainly affected by the rotor thrust coefficient, while atmospheric stability is the prevailing factor
governing wake recovery. For the wind farm in complex terrain, the wind field is significantly
affected by the local orography, showing either local speed-up or low-velocity regions. The
analysis of the SCADA data corroborates the occurrence of these wind features and enables
quantifying their effects on the wind plant performance.

1. Introduction

Power losses due to turbine wake interactions represent a major concern for the wind energy
industry. Average power losses about 10-20% have been reported for large offshore wind farms
[1], while short-term power losses can even exceed 80% of the expected value for single turbines
in onshore wind farms under specific wind conditions, with a total loss on AEP of 2.4% and 4%
during nighttime stable and daytime convective regimes, respectively [2]. Therefore, accurate
modeling of wakes and their interactions is of utmost importance for design and operations of
wind parks [3, 4, 5]. Previous works highlighted the important role of atmospheric stability in the
wake evolution and recovery [2, 6, 7]. Indeed, the surface heat flux can act as turbulence source
(sink) during daytime unstable conditions (nighttime stable conditions) and, thus, promote
(delay) turbulent mixing and wake recovery.

More recently, large wind farms have been built on complex terrains [8] where the interaction
of the atmospheric boundary layer with orography generates a variety of micro-scale phenomena
such as speed-up, recirculation zones, internal waves, low momentum streaks and local flow
distortion [9]. The investigation of these flow features is extremely complicated due to the large
Reynolds number, the irregular topography, the uncertain boundary conditions and the influence
of Coriolis and buoyancy forces.

With the aim of investigating wind turbine wake morphology and wake interactions, we
performed two LiDAR campaigns: the first experiment took place at a wind farm in North
Texas installed over a flat terrain, while the second campaign was carried out for a wind farm
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in complex terrain located in North-East Colorado. For the first experiment, the daily cycle of
the atmospheric stability is the driving factor for wake evolution, while for the tests in complex
terrain, a sharp escarpment surrounding the wind farm gives rise to local speed-up and low
momentum regions that significantly affect wind turbine performance.

This paper is structured as follows: the sites of the experiments and the instrumentation are
described in section 2. The LiDAR data post-processing and clustering are reported in section 3
together with the main results for the flat-terrain wind farm. In section 4, experimental evidences
of the effects of topography on the flow pattern in complex terrain is provided, also including
the quantification of power and energy losses via SCADA-data analysis. Finally, concluding
remarks are given in section 5.

2. Experimental setup and site description

Our experimental strategy consists in collecting a statistically-significant amount of LiDAR
data under a broad range of atmospheric and turbine-operative conditions to perform a cluster
analysis of wind turbine wakes. To this aim, the UTD mobile LiDAR station was deployed
in two wind farms: one in Texas over flat terrain and another one in Colorado over complex
terrain (Fig. 1). The LiDAR station includes a WindCube 200S pulsed scanning Doppler wind
LiDAR, two Campbell Scientific CSAT3 sonic anemometers and a remotely controlled station
for monitoring, scan implementation and data acquisition. More details about the experimental
equipment can be found in [2].

The first LIDAR campaign was conducted from August 2015 to March 2017 in a wind farm
in North Texas consisting of 25 Siemens SWT-2.3-108 wind turbines (Table 1). The turbines are
arranged in three rows oriented along the East-West direction, perpendicularly to the prevailing
wind direction. Sonic anemometers are mounted on a meteorological (met) tower at heights
of 36 m, 60 m and 80 m, which provide data for calculating the wind shear exponent and
air density correction according to IEC standard [10]. Moreover, 10-minute statistics (mean,
standard deviation, minimum, maximum) of operational data are collected and stored from the
SCADA.

The second experimental campaign was carried out from May to December 2018 in a wind
farm located in North-East Colorado, including 221 Mitsubishi MWT-1000-61 and 53 GE slel.5
wind turbines, for an overall installed capacity of 300.5 MW (Table 1). All the generators are
installed on a relatively flat plateau protruding from the surrounding plain by roughly 80 m.
The detailed topographic map with a resolution 10 m x 7 m, provided by the U.S. Geological
Survey [11], is shown in Fig. 2, along with the farm layout. The turbines rows are approximately
aligned perpendicularly to the NW-SE direction, the latter being the prevailing wind direction,
as indicated by the site wind rose in Fig. 2 c.

Two met-towers are installed in the northern side of the power plant, which are equipped

Figure 1. Deployments of the UTD mobile LiDAR station: a) wind farm in North Texas; b)
Escarpment surrounding the wind farm in Colorado; ¢) wind farm in Colorado.
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SWT-2.3-108 MWT-1000-61 | GE slel.5
Terrain type Flat Complex Complex
Rated power kW] 2300 1000 1500
Cut-in wind speed [m/s] | 3-4 3.5 3.5
Cut-out wind speed [m/s] | 25 25 25
Rated wind speed [m/s] 11-12 13.5 14
Type Variable speed-pitch | Variable pitch Variable speed-pitch
Hub height [m] 78.4 69 80
Rotor diameter [m] 108 61.4 7

Table 1. Technical specifications of the wind turbines under investigation.
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Figure 2. Wind farm in Colorado: a) topographic map; b) turbines monitored with the LiDAR,;
c¢) wind rose from both met towers. The wind sectors with shaded colors represent regions with
potential wake interactions.

with two anemometers and directional vanes at two heights (50 m and 80 m for the met-tower
#1, 50 m and 69 m for the met-tower #2, as indicated in Fig. 2). Pressure and temperature
probes are also installed at a single height. Meteorological data are stored in terms of average,
standard deviation, maximum and minimum values for sampling periods of 10 minutes. SCADA
data (wind speed, nacelle orientation, power, RPM, blade pitch) are recorded for each turbine
and stored with the same time resolution and format of the met-data. For the entire duration
of the deployment, the LiDAR was installed at the origin of the reference system of Fig. 2 a and
remained operative for 197 days.

3. Wind farm on flat terrain

More than 9000 single wake planar-position indicator (PPI) scans were collected, post-processed
and clustered according to the density-corrected incoming wind speed (see [10]) and wind shear
exponent before calculating ensemble statistics of the wake velocity field. Doppler LiDAR is a
one-dimensional instrument measuring the radial velocity, which is the projection of the wind
speed along the direction of the LiDAR laser beam. Provided an estimation of the wind direction,
0. , which is obtained directly from the LiDAR data, we can calculate a proxy for the horizontal
streamwise velocity, which is denoted as equivalent velocity:

Ueqg ~ Vo /| [cosg cos(6 — 6,)], (1)
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where ¢ and 6 are the elevation and azimuthal angles, respectively, of the LiDAR laser beam.
For this study, 0,, is approximated with the wake direction, which is estimated through the linear
fitting of the wake centers measured at various downstream locations. The elevation angle for
the PPI scans, ¢, was set typically between 3° and 4° (occurrence 77%), seldom in the range
2°-3° (occurrence 7.5%) or 4°-5° (occurrence 15.5%).

In order to remove effects of wind variability on the wake analysis, the LIDAR velocity fields
are normalized by the incoming vertical profile of the horizontal wind speed of the respective
PPI scan, U;, = eq/Uso, where the freestream vertical profile, Uy, is evaluated from the
LiDAR measurements not affected by the wakes. The transverse position of the wake center at
each downstream location is estimated by fitting U, with a Gaussian function. Since U, is a
function of the wake direction (Eq. 1), and U, is post-processed to estimate the wake direction,
an iterative procedure is then implemented to estimate both U, and 6,,. Convergence of this
iterative method is achieved when consecutive iterations produce a modification of #,, lower than
0.1°. The PPI scans are subsequently analyzed within a reference frame with the z-direction
coincident with the 6,,-direction.

Each PPI scan is associated with synchronized 10-minute averaged SCADA and met tower
data, from which it is possible to retrieve parameters, such as the density-corrected normalized
wind speed, Uy, and wind shear exponent, . In this study, five clusters based on incoming
wind speed are selected by using the following boundary values: 0.35, 0.53, 0.71, 0.85, 1, 1.14.
These values have been selected to single out the wake variability as a function of wind turbine
settings and, in turn, power and thrust.

Similarly to a previous LiDAR experiment performed at the same wind farm under
investigation [2], the atmospheric stability regime is characterized through the wind shear
exponent, «. Specifically, convective conditions are characterized by a < 0.2, while stable
conditions by o > 0.3. Wind conditions between these two classes (0.2 < a < 0.3) are
classified as neutral conditions and not analyzed in order to sharpen the results as a function
of atmospheric stability. The shear exponent is calculated through the met-tower data with the
wind speed measured at two different heights, namely 60 m and 80 m, as follows:

a = log(Uz/Uy)/log(z2/21). (2)

LiDAR wake measurements are clustered as function of the incoming wind speed at hub
height measured by the SCADA and wind shear exponent. Ensemble statistics of the wake
velocity field for each cluster are then calculated through the Barnes’ scheme [13, 14|, which can
be considered as a spatial-averaging technique to generate a mean wake velocity field from the
scattered LIDAR data (see Fig. 3).

To project the inclined PPI data into the horizontal plane at hub height, the Cartesian
reference frame of the LIDAR measurements is converted into a cylindrical reference frame with
unchanged z-direction. The radial coordinate is calculated with sign in order to discern the two

sides of the wake, as follows:
p= Wb Ty, 3)
‘y - yc’

where g, is the transverse coordinate of the wake center. For each grid point (z;,r;), the average
velocity field is calculated through the Barnes’ scheme as follows:
— >t Usy(n, i) wie () wpe ()
Ugy(zj i) = 5 (4)
> k=1 wk(@5)wy(r:)
where n is the total number of LIDAR samples falling within the grid cell with centroid (x;,r;),
while the streamwise weighting function is given by:

_ (zjfzk)2
wi(z;) =€ 2% (5)
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Figure 3. Non-dimensional PPI data of the cluster with U}, € [0.71, 0.85] and « € [0.3, 0.55].

and the radial weighting function is:

_ (ri=rp)?
wy(ri) =e 27 (6)

The standard deviation of the two weighting functions is set equal to the respective grid
resolutions, dr and dr, multiplied by a factor § = 2.8, which has been selected upon sensitivity
analysis. The statistical significance of the ensemble statistics is ensured after the rejection of
grid nodes exhibiting standard error on the weighted mean higher than 0.04.

In Fig. 4, the ensemble average of the wake velocity profiles calculated at two different
downstream locations and for convective and stable stability regimes are reported. First, for
x = 1.75 D and convective conditions, the typical Gaussian-like profile of the wake velocity field,
which is typically used for wake models, is observed [15]. Such smooth Gaussian trend is not
clearly obtained for the stable conditions where a slightly lower velocity deficit is detected on the
side with negative values of the radial position (turbine rotation is in the positive x-direction).
Considering that LiDAR measurements acquired during the occurrence of significant wind veer
have been removed for the present data analysis, we would speculate that this flow feature is the
result of the very low incoming atmospheric turbulence intensity (< 5%) and the swirling flow
induced by the turbine rotation in the near-wake. Indeed, this asymmetry in the wake velocity
profiles is practically not observed for the downstream location of x = 5 D where the swirling
velocity in the wake is practically completely decayed [16, 17, 18].

The main variability in the wake velocity deficit is inferred by the incoming wind speed and,
thus, the different values of the rotor thrust coefficient [2]. For operations between cut-in and
rated wind speed (0.35 < Uy, < 0.85, region two of the power curve), the turbines should
operate with a constant thrust coefficient in order to maximize power capture. However, we
observe that for the first velocity cluster (0.35 < U, < 0.53), a lower velocity deficit is observed
with respect to the other two clusters of region two of the power curve (0.53 < U}, < 0.85).
This indicates that in proximity of the cut-in wind speed the turbine blades do not operate at
the maximum aerodynamic efficiency and thrust coefficient. In contrast, the velocity profiles
for the other two clusters in region two look very similar. For incoming wind speed between
rated and cut-off wind speed, namely region three of the power curve, a gradual reduction of the
velocity deficit is observed, which is clearly due to the increased blade pitch angle and reduction
of the thrust coefficient in order to maintain the power capture at rated value.
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Figure 4. Ensemble-averaged wake velocity field: (a) = 1.75 D under convective conditions;
(b) = 1.75 D under stable conditions; (¢) z = 5 D under convective conditions; (d) x =5 D
under stable conditions.

U [0.35, 0.53] | [0.53, 0.71] | [0.71, 0.85] | [0.85, 1] | [1, 1.14]
Convective B parameter | 0.5925 0.6849 0.6665 0.5102 0.4023
Stable B parameter - 0.7299 0.6664 0.5967 0.3848
Convective N parameter | 0.5842 0.5557 0.4113 0.4211 0.3491
Stable N parameter - 0.3102 0.2132 0.1837 0.1102

Table 2. Exponential fitting results of the minimum velocity deficit AUié‘q.

Already from Fig. 4, we can observe that the velocity deficit for convective conditions is lower
compared to cases with the same cluster of the incoming wind speed and stable atmospheric
conditions, which is the result of entrainment of ambient flow within the wake. Furthermore,
Fig. 4 ¢ and d show that after propagating the same distance downstream, the amount of the
reduction of wake deficit is larger for convective conditions. Effects of atmospheric stability on
downstream wake evolution are analyzed more in depth through Fig. 5, where the minimum
velocity deficit, AUE =1- min(@), is calculated for various downstream locations. An
exponential fitting is then carried out on the velocity deficit profiles as y = B(z/D)~", where
B is the velocity deficit at £ =1 D and N represents the downstream wake recovery rate. The
values obtained from the fitting procedure are reported in Table 2.

The analysis of the obtained fitting parameters confirms the enhancement of wake recovery
rate under convective conditions. However, a secondary effect on wake recovery rate is singled
out as a function of the incoming wind speed (Fig. 5). Given the atmospheric stability class, a
faster wake recovery is observed for operations in region two of the power curve, which occur
with a thrust coefficient close to the maximum value. In contrast, for operations in region three
of the power curve, the increasing blade pitch angle leads to a reduced thrust coefficient and
slower wake recovery due to the reduction of turbine added turbulence. This effect can be clearly
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Figure 5. Velocity deficit as a function of the downstream location for various clusters based
on incoming wind speed and atmospheric stability: (a) Convective conditions (0 < a < 0.2);
(b) Stable conditions (0.3 < a < 0.55). Markers represent the LiDAR data and the solid line
stands for exponential fitting of the corresponding data.

observed in Table 2, where higher values of the parameter N are estimated for region two of
the power curve. This wake feature is ascribed to a different level of mechanically-generated
turbulence, which is a result of the different axial shear and thrust coefficient of the wind turbine
rotor.

4. Wind farm on complex terrain

Full-angle PPI scans were performed to monitor the complex flow patterns evolving over the
topography at a wind farm in Colorado. Scans with elevation angle between 1° and 2°
are considered for this study with mean wind direction within the range [165° ,170°], which
corresponds to the prevailing southerly wind direction measured by the met-towers (Fig. 2c).
Thirteen PPI scans are processed in terms of U, following Eq. 1 and ensemble statistics are
calculated in LiDAR spherical coordinates. U, is then projected into the hub height horizontal
plane through the wind shear of Eq. 2.

The presence of velocity acceleration at the Northwestern escarpment is evident from the
LiDAR data reported in Fig. 6 a. The high-speed area around the turbines produces significantly
larger wind speed and, thus, power production, which is confirmed through the power analysis
in Fig. 8 a. Mitsubishi turbines in D array and General Electric turbine C16 (yellow dots in
Fig. 6 a), individually generate more power than the clusters at the Southeastern corner of
the layout (green dots in the same figure). Meanwhile, the Southeastern corner and central
arrays experience a remarkable distorted flow due to the southern escarpment surrounding the
site. This flow feature has been further investigated through a linear regression between the
conditionally-averaged hub-height wind-speed measured from the SCADA and wind velocity
measured by the LIDAR at an upstream distance from the turbine rotors of 2 D (Fig. 6 b).
The good correlation coefficient obtained from this analysis implies the good accuracy of the
ensemble averaged velocity map.

Three years of SCADA and met-data (period 2016-2018) have been analyzed to quantify
the effect of topography and wake interactions on the wind farm performances. Following the
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Figure 6. LiDAR velocity measurements for the wind farm on complex terrain: (a) velocity
field retrieved over the horizontal plane at hub height. Black dashed lines mark wake trajectories.
Green dots and yellow dots represent the turbines sampled for SCADA comparison and black
crosses show 2-D-upstream locations; (b) linear regression between hub height velocity sampled
from LiDAR and SCADA. Each dot is colored by the power production. Green and yellow
dashed circles indicate turbine clusters with same colors than panel (a).

approach of [2], we define the percentage power loss of the ¢ — th turbine as:

_ Pfree,i(t) - P1<t)
Pfree,i(t)

where Py, is the ideal power capture of an isolated turbine operating under the considered
wind conditions. An equivalent definition of power loss for wind farms in complex terrain is
still debated in the wind energy community [19]. Among all the methods proposed in literature,
such as maximum power [20], upstream power [1], cluster analysis [19], we have selected the
power curve method as the most suitable for the present case [2]. According to this method,
the freestream power is estimated by injecting the free-stream velocity into the normalized
experimental power curve:

AP(t)

x 100 (7)

Pe
P = [i(Uf) (8)
rated,i

where Uy, is the density-corrected freestream velocity [10] and f;(U},,) is the experimental
power curve of the specific turbine. The advantages of this method are the statistical robustness,
easy implementation for large and irregular arrays and the applicability to farms including
different turbine models. Moreover, unlike techniques based on maximum power, the power
curve method is capable of identifying (as negative power losses) turbines over-performing due

to local flow speed-up.
The freestream velocity is defined as the average velocity measured by the nacelle-mounted
anemometers of the “unwaked” turbines. Values of velocity outside of the range [5 — th, 95 — th]
percentile have been discarded as likely outliers. In order to select the unwaked towers for such
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a vast and unstructured layout, we adopted the Jensen wake model [12] with quadratic wake
superposition [21]. The wake decay coefficient was calculated through the equation proposed
by [22] using the median turbulence intensity from both met towers (7' = 10.7%). Turbines
experiencing a velocity higher than 99% of the freestream velocity according to the Jensen model
are considered as unwaked.

Power losses as a function of time have been averaged, after excluding extreme values outside
of the range [5 — th, 95 — th] percentile. In the present work, only values of freestream belonging
to the region two are considered (specifically normalized velocity Uj;,;, € (0.3,1)). Cases having
an error on the mean based on the t-test higher than 5% of the rated power with 90% confidence
are flagged as statistically insignificant and excluded.

Fig. 7 a displays the power losses only for waked sectors. The Mitsubishi turbines at the center
of the plateau experience higher power losses (~ 5 — 10%) while, unexpectedly, the turbines
placed on the western escarpment produce on average more power than the estimated potential.
Interestingly, the power losses for unwaked wind sector (Fig. 7 b) reveal a quite different scenario,
with higher losses occurring for the Mitsubishi installed in proximity to the sharp western and
south-eastern escarpments. The four areas indicated in Fig. 7 have been selected for further
investigations. To better understand the dependence of the power harvesting on the wind
direction, the power losses have been bin-averaged in wind sectors of amplitude Af = 10°. Fig.
8 reports the directional power losses in the four selected regions. Fig. 8 a, which corresponds
to the D-row Mitsubishi turbines located close to the western escarpment, shows considerable
losses when the wind blows from West. Conversely, power gain is achieved for easterly winds.
This striking directional behavior of the power production is most likely the result of the local
topography. Apparently, the sharp western escarpment creates considerable flow disturbances
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Figure 7. Average percentage power losses for Uy, € (0.3,1): a) waked wind sectors; b)
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Figure 8. Directional power losses in specific areas of the wind farm. a) area I; b) area II; ¢)
area III, d) area IV. The dashed circles indicate 20% loss (or gain).

that reduce the power available at the rotor for westerly wind directions. On the other side,
the power gains occurring for the opposite wind sector suggest the presence of a speed-up that
builds up on the plateau far from the escarpment. We are currently verifying such hypothesis
through our LiDAR data and the preliminary results are encouraging.

Selection of Fig. 8 b includes Mitsubishi turbines installed close to the sharpest portion of
the eastern escarpment and exhibits analogous features. Fig. 8 ¢ highlights how in the center
of the plateau the losses are dominated by turbine-to-turbine wake interactions, although these
turbines share with the D row the power gain for easterly wind directions. Finally, the selected
area in Fig. 8 d, corresponding to General Electric turbines facing west, sheds more light on
the effect of topography on the flow within this wind farm. Here, in fact, turbine-to-turbine
wake interaction is the only source of power loss, while a significant speed-up seems to occur
for south-easterly wind. This confirms the possible acceleration that the plateau imparts to the
flow in that wind sector. Surprisingly, the losses created by the escarpment and clearly observed
in panel Fig. 8 b for a similar orientation are not present. The only difference between these two
arrays is represented by the turbine model and hub height (GE turbines are 11 m taller than
Mitsubishi). This is consistent with the formation of low momentum pockets generated by the
escarpment that are confined at lower heights, thus affecting only the shortest turbines of row
D.

A relevant quantity in the context of wind farm efficiency is the yearly energy loss. It is
defined based on the dimensional power losses as:

AE; = 3" APy (6;) - p(6:) - 8760 [MWh/y] (9)
J

10
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GE MHI Escarpment
Waked -18796 (-6.4%) | 37952 (+4.72%) | ...
Unwaked | -6775 (-2.3 %) | 7486 (4+0.9%) 3032 (+4.2%)

Table 3. Yearly energy losses in MWH/y for different turbine models and for the turbines
affected by the escarpment (D20-26 and H34-47). The value in brackets is the relative energy
losses with respect to the total annual energy production of the specific cluster of turbines.

where p(6;) is the probability of occurrence of the wind direction in the sector §; =A#0/2, whereas
the dimensional power losses APy, ; are simply defined as the numerator of Eq. 7. The yearly
energy losses (or gain) are reported in Table 3 for three clusters of turbines: General Electric,
Mitsubishi and “Escarpment turbines”. It is noteworthy how the speed-up detected for westerly
winds significantly enhances the power capture of the GE turbines. The beneficial effect of
topography overcomes the unavoidable turbine-to-turbine losses, as already observed in Fig. 8
d. On the other hand, the Mitsubishi turbines experience significant energy losses due to wake
interaction as high as the 4% of their total energy yield, a value that is in agreement with
previous studies [2, 5]. Still, losses from ideally unwaked wind sector represent 1% of the total
energy production. Finally, we focused our attention to the turbines that appear to be more
affected by the presence of the escarpment, specifically D20 to D26 and D34 to D47. In order
to single out the detrimental effect of the escarpment, the losses reported in the third column
of Table 3 consider only the western wind sector for D row and the eastern for H row. Based on
the present model, the proximity to the escarpment is associated with an energy loss of more
than 4% of the total production on an annual basis.

5. Conclusion

LiDAR campaigns were carried out at two wind farms over flat and complex terrain. The
first campaign encompasses more than 9,000 LiDAR PPI scans and simultaneous freestream
measurements from met-tower and SCADA including hub height velocity and shear exponent.
Upon non-dimensionalization and realignment of the PPI data, and via categorization of
freestream parameters, we are able to generate clustered wake profiles through Barnes’ scheme.

Reduction in near-wake velocity deficit due to the turbine setting is singled out, together
with a faster wake recovery in convective/low shear exponent wind conditions. As a secondary
trend, high thrust coefficient in region two of the power curve contributes to an enhanced wake
recovery due to the wake-generated turbulence.

In the complex terrain, ensemble-averaged PPI scans show evidences of the speed up
from topography and distortion on the velocity field, which is corroborated through a linear
regression analysis against SCADA data. Freestream velocity and turbine power losses are
estimated by coupling LiDAR and SCADA data. The power losses of the turbines in proximity
of the escarpment reveal unexpected trend in power production due to the speed-up effect
and disturbances from topography, while power losses of central arrays are related to wake
interactions. The conditional sampling analysis of prevailing wind directions has further
addressed such feature for downstream speed-up and upstream disturbances, where the latter is
responsible for about 4% energy losses for the Mitsubishi turbines in proximity of the escarpment.
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