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HIGHLIGHTS

® To assign and verify (J, K,, K.) and v quantum numbers to rovibrational energy levels.
® To fit flexible rotor rotational constants to experimental and theoretical rovibrational energy level data.

® To interpolate and extrapolate missing energy level data.
® To assess the quality and consistency of the rovibrational data.

ABSTRACT

A J-dependent rotational Hamiltonian method is presented for analyzing rovibrational spectra. The method is designed to: assign/verify (J, K,, K.) and v quantum
numbers to rovibrational energy levels; fit flexible rotor rotational constants to experimental/theoretical rovibrational energy level data; interpolate/extrapolate
missing energy level data; assess the quality/consistency of the rovibrational data. The method resembles the standard “effective Hamiltonian” approach (Watson,
1967, 1968) except that the rotational constants themselves depend on J, which provides a number of advantages. The method is applied here to three molecules:

HO,, O3, and H,0.

1. Introduction

Comprehensive and highly accurate vibrational and rovibrational
energy level data for poly-atomic molecules is of vital importance for
many cross-disciplinary applications—e.g., molecular astrophysics, re-
mote sensing, and chemical reaction dynamics, to name a few. To ob-
tain such high-resolution data numerically is extremely difficult—e-
specially when the total angular momentum quantum number, J, is
large [1-3]. For large J or system dimensionality d, there are a great
many such states to compute, especially as one approaches the dis-
sociation limit where the high density of states introduces additional
computational challenges. To simplify such calculations, approximation
methods that in some sense separate rotational and vibrational motions
are used, such as helicity conserving (HC) and J-shifting (JS) methods
[3-12]. The HC method, which ignores Coriolis coupling is considered a
mild adiabatic approximation, for which the vibrational quantum states
depend parametrically on the rotational quantum numbers [4-6].

In contrast, the JS method presumes a purely additive form for the
rovibrational energy levels, in which a symmetric rigid rotor form is
used for the rotational energy contribution [3,7-12], i.e.
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8" & BTy + BoJy + B.J, = BoJ” + (B, — By)J.. a
Thus,

El% = E, + E}Y, where
E' = ByJ(J + 1) + (B, — By)K2 2

In Eq. (2) above, ES; is the approximate JS rovibrational energy, E,
is the vibrational energy of the vibrational parent state v, and Ejg' is the
rotational energy—i.e., an eigenvalue of Eq. (1). Since both 7% and 7
commute with ﬁ;ym’ the E}' can be labeled by the corresponding
“good” quantum numbers, J and K. The two rotational constants, By,
and B;, do not depend on J and K—although in some more flexible
treatments, they are allowed to depend on v. Also, either rotational
constant may be larger than the other, thereby accommodating both
prolate and oblate rotor situations.

In a recent paper, Petty and Poirier [10] examined the performance
of various JS methods, which vary mostly with respect to how the ro-
tational constants B, and B, are chosen. In particular, they considered
the (theory-based) Simple and Simple (R) methods, a vibrational-state-
dependent (VSD) method [12-15], and various rotational-state-depen-
dent (RSD) methods: EP, modEP, geoEP, geoEP (R). These all were
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applied to the HO, triatomic molecule—considered to be highly chal-
lenging, especially at high J, where substantial Coriolis coupling ren-
ders the standard JS approximation highly inaccurate. The authors
found that the modEP method performs well across all v, J, and K
values, compared to other JS-type methods. For example, root-mean
square deviations (RMSDs) obtained for (v =0, J = 10) and (v = 3,
J = 100) HO, rovibrational levels [10,16] are 2.69 and 153 cm ™!, re-
spectively.

These RMSDs represent the best performance that can reasonably be
obtained for this system using any JS-type approximation. On the other
hand, they are still quite high, if the goal is something like spectro-
scopic accuracy—i.e., sub-wavenumber or better. To some extent, this
reflects the fact that JS was born in the chemical physics commu-
nity—specifically, in the context of computing thermal rate constants
for chemical reactions, where high accuracy is not required (though JS
has also been applied to rovibrational spectra [8-16]).

To do better, one should examine other methods, as developed in
the spectroscopic community. Here, the standard approach is the “ef-
fective Hamiltonian” (eH) method, developed by Watson and others
[17-20]. To begin with, the eH method does not assume a symmetric
form for the rotational kinetic energy, but rather, an asymmetric form.
Thus, the quantum number K is replaced with new labels, (K,, K.).
Likewise, there are now three rotor constants, A, B, C, instead of two
(see Section 2 for further details). In general, the increased flexibility
leads to much better fits with the data, although there are theoretical
reasons why a symmetric rotor form may be natural for triatomic sys-
tems in Jacobi coordinates [21]. Additionally however, the eH ap-
proach adopts a flexible rotor form, for which higher-order (than

A A A
quadratic) terms in J,, J,, J are also included.

With such a generalization of EfZ (or really H, Jrzt) in Eq. (2), true

spectroscopic accuracy is generally possible with as few as 6th order, or
at most 8th order, terms in the effective rotational Hamiltonian—e-
specially if the various rotational constants are taken to be v-dependent.
On the other hand, there are theoretical complexities, e.g. introduced
by the constraint f; +7 yz +7, ZZ =hmJ{J + l)f . Furthermore, for some
simple molecules such as H,O above ~10,000 cm ™2, the fits are still
notoriously poor—motivating such complicated developments as the
use of Pade approximants [22,23], but still with limited improvement
in performance.

There thus remains a great demand for accurate and reliable
methods that can better estimate rovibrational energy levels of poly-
atomic molecules, or can otherwise be used to verify or assign labels to
both experimental and theoretical spectroscopic data. To this end, in
this paper, we generalize eH still further, by introducing a dependence
on the quantum number J into all flexible rotor parameters. The new “J-
dependent rotational Hamiltonian method” (J-drH) gives much better
estimates of rovibrational energy of poly-atomic molecules than HC and
JS, and also improves upon eH in various ways that will be discussed in
Section 2. More generally, it can also be directly applied as presented
here, to molecules of arbitrary size.

2. Theory and computational details

While formally the rovibrational molecular Hamiltonian cannot be
decoupled into separable vibration and rotation contributions, there are
certainly many strategies for doing so  approximately
[3,5,6,10,11,17-20,24-29]. One common approach uses the asym-
metric rigid rotor Hamiltonian,

~ ~2 A2 ~2

Hy < AT, + BT, + CJ., 3)
as an effective rotational Hamiltonian. As is standard practice, the in-
dividual vector components, (a, b, c), are reordered from the original
(x, y, z) in order to ensure A > B > C for both prolate and oblate si-

tuations. The z component (denoting the rotational constant that is
“most different” from the others) is then associated with either a or c,
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depending on whether the rotor is more prolate or oblate.

Note that Hy no longer commutes with any of the angular mo-
mentum vector components. As a consequence, K is no longer a good
quantum number, for any vector component (although J remains a
good quantum number). Nevertheless, K, and K, can still be used as
labels for the asymmetric-top rotational energy levels, E,ﬁuku. This is
done in the standard fashion, according to energetic ordering of the
(27 + 1) levels for a given J [27]. The Eéa k. are then added to the pure
vibrational eigenenergies, E,, to obtain approximate rovibrational en-
ergies, B x, ~ E, + Ef i,

In Eq. (3), the rotational constants, (A, B, C), may be fixed, or—for
improved accuracy—they may be chosen to depend on the vibrational
parent state, v. Even better approximations may be obtained with a
flexible rotor Hamiltonian, for which higher-order centrifugal distortion
terms are added—typically only quartic, but sometimes sextic and
higher [17,20,26,27]. Note that beyond second order, not all monomial
terms are independent, even when a consistent operator-ordering con-
vention is used. In the eH approach, it is thus necessary to specify a
convention for “reducing” the flexible rotor Hamiltonian down to some
subset of non-redundant terms [18-20]. This reduction procedure can
get rather complicated, especially at higher orders, and is certainly not
unique. Moreover, the optimally fit rotational Hamiltonian parameters
that one subsequently obtains—for both the rigid rotor and higher-
order contributions—turn out to depend (slightly) on the reduction
convention used.

J-drH provides a substantial simplification in that the J blocks are
treated independently—which is legitimate, because both the flexible
and rigid rotor Hamiltonians are block-diagonal with respect to the
rigorous quantum number J. At the level of individual J blocks, then,
we have the following useful relation,

Ti+T,+ T =10+ DT, “

where T is the identity matrix, and (x, y, z) an appropriate permuta-
tion of (a, b, c), as discussed.

From Eq. (4), together with other arguments [17,20], it can be
shown that any flexible rotor Hamiltonian may be uniquely expanded in
the form

TR 4 T
2pmtn ’

B = 2nhe C({)’O)J[] + 1]7 + D) Clum

m,n

5)

where 73 = yz —72)/2, m and n are both even nonnegative integers,
and in the final summation, m + n > 0. Note that all of the C(J,M) have
cm ™! units. For a prolate rotor [i.e. (x, ¥, z) = (c, b, a)l, expansion
of Eq. (5) to second order and comparison with Eq. (3) reveals the
following associations with the conventional rotational constants:
C = [Ciho) — Cdhoy/2] B = [Cipg) + Choy/2]; A = [Cihoy + Cio ]

Eq. (5) has the advantage that any term can be easily included or
excluded from the summation at any order—which is not true for eH. In
any event, for an almost prolate rotor such as HO,, with z = a, it is
generally more effective to expand further in n than in m. In comparison
with an eH expansion, there are significantly fewer terms (i.e., fitting
parameters) up to a given order (m + n). Nevertheless, RMSDs (for
optimal fits of the EVjKaKc to a reference energy level dataset) are sig-
nificantly reduced in the J-drH case, specifically because the parameters
C(]m,,,) are now J-dependent.

In practice, the optimal C(]m,,,) values themselves do not change
much with J, except for the smallest J or largest (m + n) values [see,
e.g., Table 2]. Furthermore, the slowly-varying J dependence of the
C({m) is usually smooth and monotonic, and can itself be easily and
accurately fit to simple functional forms. Likewise, the J dependence of
the RMSDs is also smooth and monotonic. This presents two natural
uses for the J-drH methodology. The first is to predict rovibrational
energy levels, for missing J values from within (interpolation) or
without (extrapolation) the J range of the dataset. Preliminary results
suggest that such predictions may routinely be able to achieve
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spectroscopic accuracy, although the prediction avenue is not pursued
in the present paper.

The second application—which is considered here—is to determine
spectroscopic labels for the individual rovibrational levels of the da-
taset. Specifically, we seek a reliable means of providing v and (K,, K.)
labels, based solely on the energy levels themselves—i.e., without
having to resort to a cumbersome wavefunction analysis [30]. The
procedure is as follows:

1. For each subset of the dataset corresponding to specific values for J
and other rigorous symmetry quantities (such as parity), assign
tentative v and (K,, K,.) labels (with the latter based on energetic
ordering, as discussed).

2. Based on these assignments, for each separate (v, J) pair, perform
an optimal fit of a given flexible rotor form [Eq. (5)] with a suffi-
cient number of terms to reduce RMSD and individual level dis-
crepancies to well below the level spacing for the given J.

3. If any labels are misassigned, this will immediately become clear,
because the RMSD for the corresponding (v, J) will be much larger
than for other nearby J values. Likewise, the optimal C(]mm values
will not fit the pattern for nearby J values.

4. Having thus narrowed things down to the problematic (v, J),
identify problematic v and (K,, K.) assignments by examining the
individual (2J + 1) (or fewer, depending on symmetry) energy level
deviations.

5. If necessary, reassign, and repeat.

As a pedagogical example, in Fig. 1, we present data for the
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Fig. 1. Deviations between “exact” computed rovibrational energy levels of
(v =0, J=20) SO, vs. eight-parameter J-drH fits: (a) all levels are correctly
assigned; (b) one level (marked by the green box) is misassigned.

Chemical Physics Letters 733 (2019) 136700

(v =10, J=20) rovibrational states of SO,—obtained using an eight-
parameter J-drH model, fit to theoretical results computed previously
[8]. In panel (a), deviations for the individual (2J + 1) = 41 levels are
roughly uniformly distributed across a very small range of ~ +1 X 107°
cm ™ L. These levels are correctly assigned. In contrast, panel (b) shows
the case where one of the 41 levels has been misassigned. Not only does
that level immediately stand out from the others, but in addition, all
deviations are orders of magnitude larger than in panel (a).

3. Results and discussion

The J-drH method is applied here to three molecular systems, HO,,
H,0, and O; for representative total angular momentum quantum
number values in the range J = 2-100. The HO, [10,16,31], and O3
[32] rovibrational energy levels were computed using the ScallT suite of
parallel codes [16]; for H,0, the MARVEL (Measured Active Rotational-
Vibrational Energy Levels) procedure [33-37] was applied to experi-
mental spectroscopic transition data [38].

3.1. Energy levels and rotational constants for HO,

Table 1 reports J-drH HO, rovibrational energy level RMSDs in
em ™}, for J = 10, 50, and 100, and for v = 0-3. Both a four-parameter
J-drH model [(m, n) = (0, 0), (2,0), (0,2), (0,4)] and an eight-parameter
model [4-param + (2,2), (2,4), (0,6), (0,8)] were considered. Note that
performance improves significantly from the latter to the former, in the
sense that RMSDs generally decrease by up to an order of magnitude or
so—except for the very largest J and v values. In general, RMSDs in-
crease with J.

J-drH performance for this system is extremely good, as evidenced
by the comparison with other methods also presented in Table 1. For
purposes of a fair comparison, we distinguish the “ab initio” JS methods
[Simple and Simple (R)] from the “semiempirical” JS methods [RSD
and VSD]. As the names imply, the former predict rotor constant values
without any knowledge of the actual experimental or theoretical
spectra, whereas the latter methods do exploit such information [10]. In
what follows, we describe only comparisons with the four-parameter J-
drH model.

The four-parameter J-drH model is found to be up to 2.5 orders of
magnitude more accurate than even the best JS-type approximations.
For (v = 0, J = 10), J-drH achieves a remarkable RMSD of 0.04 cm ™!,
which is 69x better than modEP, and much better than all other JS-type
methods (Table 1). For J = 10, the largest J-drH RMSD is 0.36 cm ™Y,
for v = 2. The corresponding modEP RMSD is 8.87 cm ™ 1.

For (v = 0, J = 50), J-drH achieves an RMSD of 0.069 cm ~*, which
is 340x smaller than modEP (RMSD = 23.4 cm™!), and much better
than all other JS-type methods (Table 1). For J = 50, the largest J-drH
RMSD is 0.135cm ™%, for v = 2. The corresponding modEP RMSD is
90.876 cm ™!, for v = 3.

For (v = 0, J = 100), J-drH achieves an RMSD of 2.25 cm ™!, which
is 60x smaller than modEP (RMSD = 136.87 cm '), and much better
than all other JS-type methods (Table 1). For J = 100, the largest J-drH
RMSD is 4.05cm™?, for v = 3. The corresponding modEP RMSD is
153.418 cm ™. Note that for the largest J values, all JS methods per-
form about equally poorly, with RMSD no better than about 100 cm ™.
J-drH thus represents an especially important improvement at large J.

We also consider HO, rovibrational label assignments, and compare
with those from Petty et al. [10,16]. For J = 10, the new J-drH HO, state
labels match the Petty et al. labels (Table 3 of Ref. [16]) in every instance
except for three—these being one even parity (v = 1, K = 7, n = 26) and
two odd parity v =0, K=8,n=11 and v=1, K = 8, n = 28) states
(where n labels are from Petty et al.) For J = 50 with odd permutation
symmetry, labels agree with Petty et al. (Table 3 of Ref. [10]) except
four even parity states [v=0, K=8,n=12), v=1, K=5, n=19),
v=2,K=6,n=25),(v=1,K=7,n= 26)] and three odd parity states
[v=1,K=3,n=13),v=1,K=4,n=16), v=2,K=5,n=23)].
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Table 1
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RMSDs for HO,, in cm™?, obtained by fitting four- and eight-parameter J-drH models to (v, J) ScallT rovibrational levels, for vibrational parent state
v = (0, i, 0), i = 0-3, and for J = 10, 50, 100. A comparison with various JS-type methods is also provided. States are restricted as follows. For the JS methods, the
number of states considered (n) is {11, 8, 7, 4}, respectively, for v = {0, 1, 2, 3}. For the J-drH models, n is listed in Column 5.

J v J-drH ab initio JS RSD JS VSD JS
Four- Eight- n Simple Simple (R) modEP EP geoEP geoEP (R)
10 (0,0,0) 0.039 0.008 21 66.18 88.15 2.69 36.97 84.99 109.9 9.79
(0,1,0) 0.004 0.002 15 35.81 46.76 7.50 18.26 39.89 52.71 26.40
(0,2,0) 0.012 0.006 13 35.52 43.65 8.87 21.24 37.08 46.79 28.97
(0,3,0) 0.006 0.001 7 4.67 6.00 7.57 4.91 4.62 6.23 N/A
50 (0,0,0) 0.069 0.007 21 74.72 95.73 23.41 67.10 94.77 118.0 25.40
(0,1,0) 0.090 0.061 15 38.44 42.78 45.68 37.41 40.59 46.79 637.7
(0,2,0) 0.135 0.024 13 58.97 64.64 45.54 54.73 60.27 67.06 693.3
(0,3,0) 0.120 0.034 7 85.51 84.08 90.88 86.90 85.44 83.79 N/A
100 (0,0,0) 2.251 0.262 19 156.1 168.1 136.9 220.0 193.9 208.0 135.4
(0,1,0) 1.524 0.131 13 95.17 96.91 96.25 109.6 101.0 105.0 2424
(0,2,0) 0.936 0.803 7 76.85 77.08 80.05 82.81 77.98 79.97 2815
(0,3,0) 4.055 3.196 7 149.0 147.4 153.4 142.9 145.9 144.5 N/A
Table 2

J-drH parameters, traditional rotational constants, and RMSDs for HO,, in cm ™!, obtained by fitting four-parameter J-drH model to (v, J) ScallT rovibrational levels,
for vibrational parent state v = (0, 0, 0), and for J = 2, 3, 5, 6, and 10. Experimental rotational constants Ac,, Bexp, Cexp are also given [39,40].

7 v Coo Choy Cb Cio.a) A B c RMSD
2 (0,0,0) 1.09022 0.0645242 19.3699 —0.00467128 20.4601 1.1225 1.0580 5.10E—5
3 (0,0,0) 1.09041 0.0618367 19.3649 —0.00356997 20.4553 1.1213 1.0595 1.12E-3
5 (0,0,0) 1.09063 0.0623757 19.3650 —0.00361835 20.4556 1.1218 1.0594 6.33E—4
6 (0,0,0) 1.09027 0.0622214 19.3609 —0.00358974 20.4512 1.1214 1.0592 2.41E-3
10 (0,0,0) 1.09086 0.0621077 19.3471 —0.00342336 20.4380 1.1219 1.0598 3.88E—2

Acp = 203560, Begy = 11846, Coxp = 1.0565.

For higher J values, for which individual quantum states exhibit significant
probability across a broad range of K values, one can expect very different
state labels compared to those of Refs. [10,16]. On the whole, for J = 10
and 50, analysis of the label assignments using J-drH compared to modEP
reveals similar trends and general conclusions.

All of the above fits were restricted to a reduced set of states (i.e.,
fewer than 2J + 1). This was done in order to effect a fairer comparison
with the prior work [10]—although in reality, the present J-drH fits
were always less restricted than for the other methods, as indicated in
Table 1. In order to better address trends, a separate, unrestricted set of
J-drH fits was also conducted, for v = 0 and J < 10. RMSDs for the four-
parameter J-drH model, as well as fit coefficient values [i.e.,
Ciboy» Cdoy» Clbay» and Cfh 41 are shown in Table 2. Conventional ro-
tational constants, A, B, C, are also indicated. Experimental rotational
constants [39,40] are also indicated, and found to be quite close to the
fit values. In any event, C({M) values vary smoothly—and very lit-
tle—from one J to the next, which is the first major observed trend. The
second major trend is that RMSDs increase rapidly with J, also as ex-
pected.

3.2. Energy levels and rotational constants for H,0

In this section, J-drH is applied to analyze rovibrational energy le-
vels and rotational constant terms of H,O via a comparison with the
experimental rovibrational energy levels obtained using the MARVEL
procedure [38]. The computed RMSDs and rotational constant terms for
J = 2-5, 10, and 15, and for v = 0, obtained using four- and eight-
parameter models, are given in Tables 3 and 4, respectively. For (v = 0,

J = 2) using the four-parameter model, J-drH achieves an RMSD of
6.82E-04 cm ™!, which gradually increases with J, reaching 4.43 cm ™'
for (v = 0, J = 15). The corresponding eight-parameter model (v = 0,
J = 15) RMSD is 0.18 cm ™!, representing a 25x improvement.

Though not reported in the tables, the J = 15 RMSD can be sub-
stantially reduced still further, down to 0.023cm™?, by using a ten-
parameter model. This represents true spectroscopic accuracy, and is
therefore quite a significant achievement—given that other methods
such as eH fail in this context. More specifically, Polyanski and cow-
orkers found that standard Taylor-series eH expansions fail to converge
for (v = 0, J) H,0 beyond J = Jax = 5 [22]! Their solution was to in-
troduce Padé approximants, but even this required a sixty-parameter eH
expansion in order to achieve spectroscopic accuracy.

All in all, the results for H,O behave exactly as desired, with fit
coefficient values C(]m,n) changing little with J and even less with the
number of model parameters, except for the highest m + n values. More
importantly, RMSDs diminish very rapidly with increasing model order,
even up to J = 15.

3.3. Energy levels and rotational constants for O3

We also applied J-drH to analyze rovibrational energy levels and
rotational constant terms of the 1°0'°0'°0 (666) isotopologue of O, as
computed using a global potential energy surface [43] and the ScallT
suite of parallel codes [32]. More specifically, we computed RMSDs and
rotational constant terms for J = 2-5, and 10, and for v = 0-2, using
four- and six-parameter J-drH models, as listed in Tables 5 and 6.

From Table 5, we see that even with as few as four parameters—and
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Table 3
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J-drH parameters traditional and RMSDs for H,0, in cm ™!, obtained by fitting four-parameter model to (v, J) MARVEL rovibrational levels, for vibrational parent
state v = (0, 0, 0), and for J = 2-5, 10, 15. Experimental rotational constants Ac, Bexp, Cexp are also given [41,42].

J v Coor o o) Co A B ¢ RMSD
2 (0,0,0) 11.8931 5.2270 16.0106 -0.0315 27.9037 14.5066 9.2796 6.82E — 04
3 (0,0,0) 11.8863 5.2147 16.0382 -0.0307 27.9245 14.4937 9.2790 0.003
4 (0,0,0) 11.8777 5.1995 16.0671 -0.0295 27.9448 14.4775 9.2780 0.012
5 (0,0,0) 11.8676 5.1815 16.0942 -0.0282 27.9618 14.4583 9.2768 0.033
10 (0,0,0) 11.7984 5.0550 16.1150 -0.0211 27.9134 14.3259 9.2709 0.844
15 (0,0,0) 11.7010 4.8746 15.8687 -0.0153 27.5697 14.1383 9.2637 4.429
Acxp = 27.8761, Beyy, = 14.5074, Ceyp = 9.2877.
even for J as large as J = 10—J-drH RMSDs are only around .01 cm ™' Table 5

Spectroscopic accuracy is thus achieved much more readily, even, than
for HO, and H,O—reflecting the heavy and quite rigid structure of the
ozone molecule. On the other hand—and also quite unlike the other
molecules considered here—ozone RMSDs do not diminish appreciably,
neither as J is reduced, nor as the model order is increased. Re-
markably, an RMSD value of around .01 cm™! is always observed,
across all v and J values considered, and for both the four- and six-
parameter models (Table 6). Additionally, in the six-parameter fit, op-
timal values for even the intermediate C({,A) coefficient vary quite a bit
with (v, J). This situation indicates that the theoretical data has
~.01cm™ ! of “noise”. Indeed, convergence tests for the underlying ro-
vibrational spectroscopy calculations reveal a comparable level of nu-
merical accuracy [32]; nevertheless, J-drH provides a quite valuable
independent means of verification, based solely on the dataset itself.

4. Summary and conclusions

We have developed a new J-drH rovibrational state prediction and
labeling method, and applied it to rovibrational energy levels for three
separate triatomic systems: HO,, H,0, and Os. One of these (i.e. Hy0) is
experimental, and the other two are theoretical. Total angular mo-
mentum values are considered within the range J = 2-100; likewise,
several low-lying vibrational excitations are also considered. A range of
increasingly accurate J-drH models is used, with four, six, and eight
adjustable C(van) effective rotational Hamiltonian parameters. Although
only triatomic molecules are considered explicitly here, it should be
stressed that the method can be applied without modification to mo-
lecules of arbitrary size.

Model performance is measured using RMSDs of the fit rovibra-
tional energy levels. Generally speaking, RMSDs decrease as the
number of C(Jm,n) parameters in the J-drH model (i.e., the model order)
increases. Likewise, RMSDs tend to increase substantially with in-
creasing J and v values. Also, the pattern of RMSDs and fit Cf,
parameter values usually varies little with (v, J), and even less with
model order, except for the lowest J and highest m + n values. When
the above patterns are not observed, it can indicate either: (1) label
misassignments; (2) the limits of data quality. In particular, (1) is sig-
nalled locally, by individual (v, J) values (and even individual levels)
that “stand out” prominently from their neighbors, making them easy to
identify. This feature was used to correct some earlier “misassignments”

Table 4
J-drH parameters and RMSDs for H,O, in cm™
v = (0, 0, 0), and for J = 4, 5, 10, 15.

1

J-drH parameters and RMSDs for °0'®0'°0, in cm ™!, obtained by fitting four-
parameter model to (v, J) ScallT rovibrational levels, for vibrational parent
state v = (0, i, 0), i = 0-2, and for J = 2-5, 10.

J v Coo) Cho Co) Cio. RMSD
2 (0,0,0) 0.4204 —0.0401 3.1306 3.3770E—-03 9.67E—03
3 (0,0,0) 0.4193 0.0556 3.1513 —5.5700E - 04 9.66E—03
4 (0,0,0) 0.4197 0.0473 3.1478 —1.4200E - 04 9.19E-03
5 (0,0,0) 0.4197 0.0524 3.1493 —2.4600E — 04 0.011
10 (0,0,0) 0.4199 0.0499 3.1487 —2.1200E—04 0.013
2 (0,1,0) 0.4217 —0.0355 3.1771 5.1850E—-03 0.015
3 (0,1,0) 0.4182 0.0595 3.2042 —2.2700E—-04 0.013
4 (0,1,0) 0.4182 0.0466 3.2047 —2.4800E - 04 0.011
5 (0,1,0) 0.4183 0.0546 3.2054 —2.7600E — 04 0.017
10 (0,1,0) 0.4182 0.0507 3.2045 —2.3400E - 04 0.018
2 (0,2,0) 0.4191 —0.0378 3.2349 5.1900E—-03 0.014
3 (0,2,0) 0.4162 0.0599 3.2631 —3.9100E—-04 0.012
4 (0,2,0) 0.4163 0.0481 3.2620 —2.4100E—-04 0.011
5 (0,2,0) 0.4164 0.0554 3.2631 —3.0100E—04 0.016

in HO, (although these assignments were generally already understand
to be tentative). In contrast, (2) is signalled globally, by “flat” RMSDs.
These can occur either across the full range of (v, J) and model orders
considered (as is the case here for O3), or may manifest only beyond a
certain minimum order and/or below a certain maximum J value (as
observed in separate calculations not reported here).

Generally speaking, J-drH achieves spectroscopically small RMSDs
with remarkably few model parameters, even for challenging anhar-
monic systems such as HO,. The performance is orders of magnitude
better than for all JS methods, including modEP, which was recently
found to be the best of the JS class for this molecule [10]. J-drH also
presents a number of advantages over the traditional spectroscopic eH
approach, including: unique expansion coefficients; complete flexibility
in the fit parameters; fewer parameters needed to achieve spectroscopic
accuracy. As an additional advantage over eH: once the 2J + 1 levels for
a given (v, J) are obtained, there is never a need to refit at a later date
when more data (e.g. at higher J) becomes available. J-drH could
therefore also be of service, e.g., in efforts to standardize data in
spectroscopic information systems.

, obtained by fitting eight-parameter model to (v, J) MARVEL rovibrational levels, for vibrational parent state

J v S0 S0 G Co Ceo G Cie e RMSD

4 (0,0,0) 11.8754 5.2041 16.0940 ~0.0323 ~5.2115E— 03 9.9623E—05 1.2835E—04 —5.8142E—07

5 (0,0,0) 11.8631 5.1843 16.1509 ~0.0330 —5.2334E—03 9.9164E—05 1.2485E— 04 —4.8005E— 07 1.26E—05
10 (0,0,0) 11.7687 5.0332 16.5793 ~0.0327 ~5.3961E— 03 9.6972E—05 8.6124E—05 —1.2854E—07 7.99E—03
15 (0,0,0) 11.6283 4.8076 17.0440 ~0.0287 ~5.1762E— 03 5.7252E— 05 4.4638E - 05 —2.9477E-08 0.178
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Table 6
J-drH parameters and RMSDs for 1°0'°0'°0, in cm ™!, obtained by fitting six-parameter model to (v, J) ScalIT rovibrational levels, for vibrational parent state
v=(0,i,0),i = 0-2, and for J = 3-5, 10.
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J v Cbo) Cho ) Cio Coe e RMSD
3 (0,0,0) 0.4200 0.0556 3.1307 4.6725E—04 —2.8054E— 04 —1.8190E-05 8.39E—03
4 (0,0,0) 0.4200 0.0473 3.1307 4.0170E—04 —-1.0412E-03 3.7342E-05 7.40E—03
5 (0,0,0) 0.4197 0.0524 3.1532 —4.7833E~-05 9.5532E - 05 —2.1690E— 06 0.011
10 (0,0,0) 0.4197 0.0499 3.1489 —1.9091E-06 —2.2139E-07 1.7641E—09 0.012
3 (0,1,0) 0.4183 0.0595 3.2023 3.8535E —04 —3.4031E—-05 —1.2094E - 06 0.013
4 0,1,0) 0.4182 0.0466 3.2045 7.2444E 05 —5.2354E— 05 2.0772E-06 0.011
5 0,1,0) 0.4182 0.0546 3.2117 —1.8745E-03 1.1829E—-04 —2.5723E-06 0.016
10 (0,1,0) 0.4182 0.0506 3.2054 —2.6193E—04 2.3423E-07 —3.7988E—10 0.018
3 (0,2,0) 0.4165 0.0599 3.2524 2.8327E—03 —1.4935E— 04 —9.2583E— 06 0.012
4 (0,2,0) 0.4164 0.0481 3.2542 3.5321E-03 —4.8730E— 04 1.7595E - 05 0.011
5 (0,2,0) 0.4163 0.0554 3.2693 —1.9496E—03 1.2494E - 04 —2.7525E— 06 0.015
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