Journal on Satisfiability, Boolean Modeling, and Computation 11 (2019) 133-154

SAT Competition 2018

Marijn J. H. Heule* marijn@heule.nl
Computer Science Department

Carnegie Mellon University

Pittsburgh, United States

Matti Jirvisalo' matti.jarvisalo@helsinki.fi
HIIT, Department of Computer Science

University of Helsinki

Finland

Martin Suda’ martin.suda@cvut.cz
Czech Institute of Informatics, Robotics, and Cybernetics

Czech Technical University in Prague

Czech Republic

Abstract

The SAT Competition series, which started in 2002, is arguably one of the central
driving forces of SAT solver development and its benchmark suites have been used in
evaluations of hundreds of research papers. This article provides an overview of the 2018
edition of the SAT Competitions, including the competition tracks and rules, benchmark
submission and selection, and the results of the competition focusing on the best-performing
solvers.

KeEYwoRrDS: SAT, Boolean satisfiability, empirical evaluation, solvers, benchmarks

Submitted November 2018; revised April 2019; published September 2019

1. Introduction

The effectiveness of applying Boolean satisfiability (SAT) solvers, i.e., implementations
of decision procedures for the propositional satisfiability problem, in solving real-world in-
stances of complex search and optimization problems at large has within the last two decades
progressed to a point where SAT can be called one of the success stories of modern computer
science. Not restricted to solving “mere” NP-complete decision problems, SAT solvers are
today routinely used iteratively as “real-world NP oracles”, or core search procedures, in
a variety of different complex algorithmic approaches to search and optimization problems
with beyond-NP complexity. Seeking further runtime improvements over the current state-
of-the-art SAT solver implementations is strongly motivated by the overall impact even
minor improvements may have for a range of SAT solver application scenarios.

* Supported by the National Science Foundation (NSF) under grant CCF-1813993

t Financially supported by Academy of Finland (grants 276412 and 312662)

I Supported by the ERC Consolidator grant AI4REASON 649043, ERC Starting grant SYMCAR 639270,
and the Austrian research project FWF S11409-N23.

(©2019 10S Press, SAT Association and the authors.



M. HEULE ET AL.

The SAT Competition series [9], which started in 2002, is arguably one of the central
driving forces of SAT solver development. The main goals of the competition series are to
support and provide further incentives for the quest for further runtime improvements in
SAT solvers, and to provide a yearly snapshot of the performance of the various current
SAT solver implementations on heterogenous sets of benchmarks. A further important
contribution of the SAT Competitions is the compilation of the benchmark suites made
available to the research community. Indeed, the benchmark suites have developed into de
facto instance collections for the scientific evaluation of general SAT solving techniques in
research papers.

The year 2018 marks the 12th edition of the SAT Competition series, continuing close to
two decades of tradition in SAT competitions and related competitive events for SAT solvers.
A brief overview of the history of these events is provided in Table 1'. The organizers of the
competition are yearly selected/invited each year externally by either the SAT conference
organizers or the SAT Association. SAT Competition 2018 was organized as part of the 2018
FLoC Olympic Games in conjunction with the 21st International Conference on Theory and
Applications of Satisfiability Testing (SAT 2018), which took place in Oxford, UK, as part
of the 2018 Federated Logic Conference (FLoC).

This article provides an overview of SAT Competition 2018. In particular, we give
details on how the competition was organized, including an overview of its rules for par-
ticipation and the competition tracks (among other details); and describe the benchmark
selection procedures used for establishing the 2018 benchmark suites. Furthermore, we give
an overview of the results of the competition, focusing on the best-performing solvers in
each competition track.

Beyond what is described in this article, the SAT Competition 2018 website

http://sat2018.forsyte.tuwien.ac.at/

provides further details on the competition, access to the 2018 benchmark suites, as well as
full solver logs for the participating solvers for further analysis. Moreover, the proceedings
of SAT Competition 2018 [8] include 1-2 page solver descriptions, written by the solver
developers, on each of the participating solvers, as well as benchmarks descriptions by
authors of new benchmarks for 2018.

2. Overview of SAT Competition 2018

In this section, we describe the 2018 SAT Competition in terms of the competition tracks,
requirements for participation, ranking criteria, input/output and proof formats, as well as
the computing infrastructure used for executing the competition.

2.1 Competition Tracks

SAT Competition 2018 was composed of four competition tracks, a Main Track and special
tracks focusing on Random SAT and parallel solving, as well a “No-Limits” Track with very
few requirements for participation.

1. For discussion on the relation of the SAT Competition series with other related solver competitions, we
refer the interested reader to [2].

134 15T


http://sat2018.forsyte.tuwien.ac.at/

SAT COMPETITION 2018

Table 1. History of SAT Competitions and related SAT solver evaluations

year \ competition \ ref \ Organizers

2002 | SAT Competition | [14] | Edward A. Hirsch, Daniel Le Berre, Laurent Simon

2003 | SAT Competition | [4] | Daniel Le Berre, Laurent Simon

2004 | SAT Competition | [5] | Daniel Le Berre, Laurent Simon

2005 | SAT Competition Daniel Le Berre, Laurent Simon

2006 SAT Race Carsten Sinz

2007 | SAT Competition Daniel Le Berre, Olivier Roussel, Laurent Simon

2008 SAT Race Carsten Sinz

2009 | SAT Competition Daniel Le Berre, Olivier Roussel, Laurent Simon

2010 SAT Race Carsten Sinz

2011 | SAT Competition Matti Jarvisalo, Daniel Le Berre, Olivier Roussel

2012 SAT Challenge [2] | Adrian Balint, Anton Belov, Matti Jarvisalo, Carsten Sinz
2013 | SAT Competition Adrian Balint, Anton Belov, Marijn Heule, Matti Jarvisalo
2014 | SAT Competition Anton Belov, Daniel Diepold, Marijn Heule, Matti Jarvisalo
2015 SAT Race Tomas Balyo, Carsten Sinz, Markus Iser, Armin Biere
2016 | SAT Competition | [3] | Marijn Heule, Matti Jarvisalo, Tomas Balyo

2017 | SAT Competition Marijn Heule, Matti Jarvisalo, Tomas Balyo

2018 | SAT Competition Marijn Heule, Matti Jarvisalo, Martin Suda

Main Track was the track for sequential SAT solvers as the main focus of the competition.
In terms of benchmarks, the focus was on solving structured, non-random benchmark
instances. Solvers participating in the Main Track were required to provide certificates
in both satisfiable and unsatisfiable cases. Participation in a sub-track of the Main
Track for “Glucose hacks” was encouraged. For the purposes of setting a concrete
(although ad-hoc) limit on how much changes would be required to the base solver
and still be considered a “hack”, a solver was considered a “Glucose hack” if the edit
distance between its sources and the sources of the Glucose 3.0 SAT solver was smaller
than 1000 non-space characters. In the past, several advances required only a dozen
or so new or modified lines. Such advances fit easily in the 1000 character limit.

Random SAT Track was the track for SAT solvers aimed at efficiently providing satis-
fying truth assignments to randomly generated satisfiable instances. Since 2013 there
has been no random UNSAT track due to a lack of interest (as witnessed by lack of
participation).

Parallel Track was the track of parallel SAT solvers designed to make use of multiple
CPUs or CPU cores.

No-Limits Track was a special track where (in contrast to the other tracks) solver source
code and solution certificates were not required, and the solvers were judged solely
based on their “yes” /“no” answers. In particular, this track was designed for, e.g., port-
folio solvers—combining two or more (core) SAT solvers developed by different groups
of authors—as well as closed-source solvers (including industrial participation).

Jsam 135



M. HEULE ET AL.

2.2 Requirements for Participation

The following strict requirements were imposed on participation in the competition.

The source code of submitted SAT solvers had to be made available (licensed for research
purposes) except for the solvers participating only in the No-Limits Track. The open source
policy was strictly enforced; any submission that contained binary code was disqualified. A
1-2 page system description was required for each solver submission, including a list of all
authors of the system and their present institutional affiliations, and providing details of any
non-standard algorithmic techniques (e.g., heuristics, simplification/learning techniques,
etc.) and data structures, as well as references to relevant literature (be they by the authors
themselves or by others). The authors of a solver in the solver description had to match
the authors listed in the submission system.

SAT solvers had to conform to DIMACS input/output requirements (see Section 2.4).
Solvers were required to output a satisfying truth assignments in case of a satisfiable instance
in all tracks expect for “no-limits”. Additionally, unsatisfiability certificates (proofs) were
required for the Main Track in the DRAT (Delete Resolution Asymmetric Tautologies)
format (see Section 2.5).

Each Main Track participant (team) was required to submit 20 new benchmark instances
(not seen in previous competitions). At least 10 of those benchmarks were expected to be
“Interesting”: not too easy (solvable by MiniSAT 2.2 in a minute) or too hard (unsolvable
by the participant’s own solver within one hour on a computer similar to the nodes of
the StarExec cluster (see Section 2.6) on which the track was run). We used MiniSAT
2.2 for checking the “not too easy” requirement as this solver is generally perceived as a
representative solver of state-of-the-art a decade ago.

Each participant was restricted to be an author of at most four different sequential
solvers, two different parallel solvers, and one Glucose Hack Sub-Track solvers. Two solvers
were considered different as soon as their sources differed or the compilation options were
different. The organizers of SAT Competition 2018 were not allowed to compete in any of
the tracks.

Apart from the No-limits Track, participants were not allowed to submit portfolio SAT
solvers. For SAT Competition 2018, a combination of two or more (core) SAT solvers
developed by different groups of authors was considered a portfolio solver. The reason for
this rule is twofold. First, the organizers wanted to prevent situations where participants
implement only an algorithm selection tool that calls existing solvers by other authors.
Although research in algorithm selection is useful, it is not the focus of this competition.
Second, the organizers wanted to encourage the SAT community to invest more effort into
developing new solver code bases and thus to counter the current trend in which the vast
majority of solvers is built on top of MiniSAT.

2.3 Rankings, Awards, and Disqualification Criteria

Solvers were ranked using a PAR-2 score based on a 5000-second timeout.? For the Main
Track, in case a proof of unsatisfiability could not be validated within 20 000 seconds (see
Section 2.5), the benchmark was considered not solved.

2. A PAR-2 score of a solver is defined as the sum of all runtimes for solved instances plus 2 times timeout
for each unsolved instance. The lowest score wins.

136 15T



SAT COMPETITION 2018

Table 2. Overview of the tracks, benchmarks, and solvers

Track Benchmarks Solvers Limits Cluster
Main 400 main 41 5000s, 1 core, 24 GB  StarExec
(sequential) app + crafted 20000s DRAT
Parallel 400 main 21 5000s / 64 GB TACC
24 cores / 48 threads
Random SAT (planted) k-SAT 10 5000s / 24 GB  StarExec
No-limits 400 main 34 5000s / 24 GB  StarExec
SAT formula SAT output UNSAT formula DRAT proof
penf 47 p cnf 4 8
1 2-30 v-1240 1 2-30 -10
-1-2 30 s SATISFIABLE -1-2 30 d-1240
2 3-40 2 3-40 20
-2 -3 40 -2 -3 40 0
-1-3-40 -1 -3-40
1 3 40 1 3 40
-1 2 40 -1 2 40
1-2-40

Figure 1. Small example formulas in the DIMACS CNF format together with an example output
for a satisfiable formula and a proof for an unsatisfiable formula

In total 3 x 8 prizes were distributed (1st prize, 2nd prize, and a 3rd prize): The
Glucose Hack Track (SAT4+UNSAT), Main Track (SAT, UNSAT, SAT+UNSAT), Parallel
Track (SAT, UNSAT, SAT+UNSAT), and Random (SAT) Track. We did not award any
solvers in the No-Limits Track as the top solvers in that track performed worse compared to
the Main Track with more restrictive rules for participation on the same benchmark suite.

Disqualification A solver was disqualified if the solver produced a wrong answer, i.e.,
if the solver reported UNSAT on an instance that was proven to be SAT by some other
solver, or it reported SAT and provided a wrong certificate. A solver disqualified from the
competition was not eligible to win any awards. Disqualified solvers were marked as such
on the competition results page. A solver could be withdrawn from SAT Competition 2018
only before the deadline for the submission of the final versions. After this deadline no
further changes or withdrawals of the solvers were allowed.

2.4 Input and Output Format

Ever since the first SAT Competition in 2002, the input format has been the DIMACS
CNF (conjunctive normal form) format, the de facto standard input format for SAT solvers
today. Formulas in DIMACS CNF start with a problem description line p cnf followed
by the number of variables and the number of clauses. Each subsequent line consists of
either a comment (line starts with c) or a clause. Clauses are lists of integers with positive

Jsam 137



M. HEULE ET AL.

integers denoting positive literals and negative integers denoting negative literals. Clause
lines terminate with 0. Figure 1 shows two example formulas.

The output format is as follows. The solver prints either a line s SATISFIABLE or a
line s UNSATISFIABLE depending on the satisfiability of the formula. In case the formula
is satisfiable, it should also emit a satisfying assignment on one or more lines starting
with v, with the literals satisfied by the truth assignment listed on the lines, and the last
of these lines ending with 0. For example, both the single line v -1 2 -4 3 0 and the
two consecutive lines v -1 -4 and v 2 3 0 represent the same truth assignment over four
variables indexed from 1 to 4, assigning the variables indexed with 2 and 3 to true and
the variables indexed with 1 and 4 to false. For unsatisfiable formulas, the solvers needs to
provide a proof of unsatisfiability, as described next.

2.5 Proof Checking

Proof logging and validation became mandatory for the UNSAT tracks in 2013 and for
the Main track(s) of the SAT Competitions since 2014. The 2013 SAT Competition also
demonstrated the importance of proof checking: one of the stronger solvers (in terms of
the number of instances solved) and the winner of the Hard-combinatorial (SAT+UNSAT)
track, BreakIDGlucose, turned out to be buggy after the competition. The solver did not
produce a wrong answer during the competition, but a parsing bug caused it to immedi-
ately claim UNSAT on eight hard instances. These instances could no longer be solved by
BreakIDGlucose after a bug fix.

All participants in the Main Track are required to emit proofs for unsatisfiable formulas.
Proof logging for most solvers is easy and comes down to simply writing to disc the clauses
that are learned and deleted. Proofs of unsatisfiability were to be emitted in the DRAT
format [16]. The DRAT format is syntactically the same as DIMACS, but extends it by
allowing clause deletion (lines with the prefix d). Figure 1 (right) shows an example. Clause
deletion in proofs of unsatisfiability is mostly to speed up proof validation.

The tool-chain used for proof validation was as follows. A SAT solver produces a proof
of unsatisfiability in the DRAT format. Afterwards the tool DRAT-trim [16] was used for
checking and optimizing this proof, deriving a so-called LRAT proof file. Finally, a formally-
verified tool, called ACL2check [6], was used for validating the LRAT proof as a correct proof
of unsatisfiability of the given formula. An unsatisfiable formula was considered solved
if ACL2check could validate the corresponding LRAT proof. Otherwise the formula was
considered unsolved by the solver in question.

2.6 Computing Environment

All the tracks except for the Parallel Track were run on the StarExec cluster [15], whose
nodes are equipped with Intel Xeon 2.4 GHz processors and 128 GB of memory. The time
limit enforced on each solver for solving an instance was 5000s (across all tracks). The
solvers were allowed to use up to 24 GB of RAM as in the previous year.

The Parallel Track was run separately on computers equipped with Dual Socket Xeon
E5-2690 v3 (Haswell), with 12 cores per socket (24 cores/node), 2.6 GHz processors and
64 GB DDR4-2133 (8 x 8 GB dual rank x8 DIMMS) main memory, and with hyperthreading
enabled, thus with 48 threads (logical CPUs) per node. Solvers were provided access to a

138 15T



SAT COMPETITION 2018

Table 3. Overview of the benchmarks submitted and used for the 2018 competition

contributor \ application \ used \ track
Adrian Balint Random k-SAT g-Planted Solutions 30 | Random
Tomas Balyo Hard Random Satisfiable Benchmarks 168 | Random
Armin Biere Divider and Unique Inverse Benchmarks 20 Main
Nicolas Breton (2017) Formal Verification Benchmarks from Systerel 20 Main
Jingchao Chen Relativized Pigeonhole Principle Formulas 20 Main
Shuwei Chen Hard 3-SAT benchmarks with cls/var-ratio 3.5 20 Main
Md Solimul Chowdhury GrandTour Puzzle 19 Main
Jo Devriendt k-Colorability Benchmarks 15 Main
Thorsten Ehlers Tree Decompositions 20 Main
Jannis Harder Reversing Elementary Cellular Automata 11 Main
Marijn Heule Chromatic Number of the Plane Graph Coloring 20 Main
Marijn Heule Uniform Random 3-SAT, 5-SAT, and 7-SAT 60 | Random
Jonathan Heusser Bitcoin 17 Main
Andrew Johnson Ringing Bells 20 Main
Rodrigue Konan Timetabling Benchmarks 12 Main
Jia Hui Liang Verifying Simple Floating-Point Programs 15 Main
Norbert Manthey Software Bounded Model Checking 19 Main
Valentin Mayer-Eichberger | Social Golfer Problem 14 Main
Ofer Strichman Course Scheduling Benchmarks 20 Main
Alexey Porkhunov Mutilated Chessboards and Cutting Cake 9 Main
Alexander Scheel Logical Cryptanalysis Benchmarks 20 Main
Mate Soos Almost Perfect Non-Linear S-box Finder 20 Main
Fan Xiao Polynomial Multiplication 19 Main
Aolong Zha Factoring Benchmarks 10 Main
Neng-Fa Zhou Mix of hard-combinatorial benchmarks 19 Main

32GB /tmp RAM disk to accelerate IO operations. However, any space taken in /tmp
would decrease the total amount of memory available on the node accordingly.

3. Benchmarks

One of the main goals of the competition is to assess which solvers perform best on a diverse
suite of benchmark formulas. Such a suite should also be balanced and representative of
the applications for which SAT solving is used in practice. Such objectives are not easy
to realize, which makes the selection of the benchmarks always somewhat controversial.
In 2018 the organizers wanted to counter one of the main flaws from the past: solvers
that are optimized for existing benchmarks. We dealt with the issue by selecting only new
instances for all benchmark suites. As a consequence, many new instances were required
and the organizers decided to make benchmark submission mandatory for participants of
the Main Track. The organizers intended to apply satisfiability-preserving transformations
in case benchmarks used in the previous competitions would have been used. Since no such
benchmarks were used, no transformations were applied.

Jsam 139



M. HEULE ET AL.

3.1 Benchmark Domains

Each participant of the Main Track was required to submit benchmark instances. Most
of the benchmarks used in the competition were received based on that rule. Table 3
provides an overview of the used benchmarks and their submitters. The first column lists the
contributor and, in case of multiple contributors, it lists the actual benchmark submitter.
The second column briefly describes the contributed benchmark family. The third and
fourth columns list the number of benchmarks used and the track in which the benchmarks
were used, respectively. For more details on the individual benchmark families, we refer the
interested reader to [8] which includes details as written by the authors of the benchmarks.

3.2 Benchmark Selection

The differences between the top-3 solvers in the Main Track of the competition has been
small in recent years. This makes the benchmark selection procedure important. It also
makes it somewhat controversial as a different selection can easily change the winners. Over
the years several selection procedures have been used, each one with its own advantages
and disadvantages. Ideally, one wants the benchmark suite to be representative of the
applications for which SAT solvers are used and balanced to avoid creating a bias in favor
of one or more solvers. Additionally, the competition should also be interesting and most
benchmarks should not be too easy or too hard, otherwise either all solvers succeed on them
or none do.

One of the perceived problems in recent years has been that solvers optimize their
heuristics to perform well on existing benchmarks, in particular on satisfiable formulas.
One can tweak the heuristics in such a way that the solver is “lucky” to quickly solve
many existing instances. Various approaches have been proposed to counter this, including
shuffling the instances, but most of these approaches have their disadvantages. For example,
shuffling breaks the order of clauses, while this order can be useful for solving, as it can
provide some structure.

For 2018, we decided to construct a single benchmark suite consisting of 400 benchmarks
that was used for the Main Track, the Parallel Track, and the NoLimit Track. Furthermore,
in contrast to the previous editions of the competition series, we decided to select only
instances not seen in previous SAT competitions. Additionally, at most 20 benchmarks
from each contributor were used (apart from the benchmarks generated by the organizers).
The latter restriction was chosen to limit the influence of benchmark contributors—who in
most cases participated in the competition.

Both restrictions, only new benchmarks and at most 20 per contributor, left relatively
little room for benchmark selection. We also removed the easier submitted benchmarks,
i.e. those that were solvable by MiniSAT 2.2 in 10 minutes.® In case we had more than
20 benchmarks by a single contributor, we classified the benchmarks in three categories:
medium, hard, and very hard. A benchmark is in the medium category if the average
runtime of strong sequential solvers (in terms of the number of instances solved) from prior
competitions is less than an hour; a benchmark is in the hard category if the average
runtime of strong parallel solvers from prior competitions is less than an hour (wallclock
time); and very hard otherwise. For these strong sequential solvers, we selected one solver

3. This decision is not related to the “not too easy” requirement of benchmark submissions.

140 15T



SAT COMPETITION 2018

from each main code base: Glucsose, Lingeling, and CryptoMiniSAT. We randomly selected
20 instances with a 1/3 probability to be medium, hard, or very hard for each pick.

4. Competition Results

We turn to the results of SAT Competition 2018, focusing especially on the best-performing
solvers in each of the competition tracks.

4.1 Main Track

The Main Track is generally seen as the most prestigious track of the competition. This
track also attracts most participants: 41 solvers in 2018. Although the number of solvers is
high, the differences between most of them is small. The code base of a great majority of
the participating solvers originates from MiniSAT [7] which won the Industrial Track in the
2005 SAT Competition. The MiniSAT solver was improved by better prediction of useful
clauses, resulting in the solver Glucose [1] which won the Application Track in the 2011 SAT
Competition. Glucose in turn was improved by improving the decision heuristics, resulting
in the MapleSAT solver [11] which won the Main Track in the 2016. Finally, MapleSAT
was extended with inprocessing techniques [10] resulting in the solver Maple LCM [12], the
winner of the Main Track in 2017. Unsurprising, many solvers in the 2018 competition were
based on Maple_LCM.

Overviews of the results of the Main Track, focusing on the best-performing solvers,
are shown in Table 4 and Figure 2, with performance on SAT and UNSAT instances,
respectively, shown in Figure 3 and Figure 4, respectively. The winner of the Main Track was
the solver MapleLCMDistChronoBT by Vadim Ryvchin and Alexander Nadel, who added a
form of chronological backtracking [13] to Maple_LCM. Similar to the other improvements
in recent years, the use of occasional chronological backtracking appears especially useful
on satisfiable formulas. The overview of the Main Track, Table 4, shows that all the
solvers based on Maple solve a very similar number of unsatisfiable benchmarks, but the
difference is substantial for satisfiable benchmarks. The only solver that clearly solves more
unsatisfiable benchmarks is CaDiCal., which is based on a different code base originating
from the submitter.

Almost all proofs of unsatisfiability were validated within the 20 000-second time limit
and the 24-Gb memory limit. Most proofs that were not validated ran out of memory (96
times), while only a few ran out of time (8). As a consequence, the organizers plan to increase
the memory limit for future competitions. The number of runs for which the proof validation
timed out are shown in fourth column of Table 4. Proof validation for the top-10 solvers
timed out most frequently for the winner, meaning that MapleLCMDistChronoBT would
have been even stronger if all its proofs could have been validated within the validation time
limit. In the future, we want to eliminate the potential impact of proof validation on the
results by making the validation tools faster and/or by increasing the validation time limit
(subject to available computing resources). Although proof checking has some influence on
the scoring, it is a small price to pay to ensure that no solver will win due to a bug (see
Section 2.5).

Jsam 141



M. HEULE ET AL.

5000 T T T

T T T
CaDiCal default —+—
cmsb55-main glubreak —<—

cms55-main main —%
4500 cms55-main otherconf —
expMC_VSIDS_LRB_Switch_2500 default

MapleLCMDistChronoBT default —6—
Maple_CM default —@—
— A

Y —

+

4000 Maple_CM_Dist default
Maple_CM_ordUIP default
Maple_CM_ordUIP+ default

Maple_LCM_Scavel default
3500

3000

time limit (s)

2500
2000
1500

1000

S

500 = 1 | |
140 150 160 170 180 190 200 210 220 230 240

benchmarks solved

Figure 2. Cactus plot for the Main Track; solvers with 220 or more solved benchmarks.

142



SAT COMPETITION 2018

Table 4. The best 15 solvers from the Main Track ordered by the PAR-2 score. Additionally, the
number of solved (satisfiable and unsatisfiable) benchmarks is shown and the number of bench-
marks claimed to be unsatisfiable for which this claim could not be checked due to insufficient

resources.

PAR-2  Solved SAT/UNS unchecked Solver Name and Configuration
1857321 231 135/ 96 6 MapleLCMDistChronoBT, default
1872489 228 134/ 94 4 Maple_LCM _Scavel, default
1908304 224 125 / 99 1 Maple_CM, default
1931478 226 133/ 93 4 cmsbb-main, otherconf
1934450 224 125 / 99 1 Maple_CM_ordUIP, default
1936290 221 123 / 98 1 Maple_CM _Dist, default
1946689 224 130 / 94 4 cmsbb-main, glubreak
1947025 222 123 / 99 2 Maple_CM_ordUIP+, default
1961567 217 126 / 91 7 Maple_ LCM_Scavel 200, default
1964101 223 128 / 95 4 cmsH5-main, main
1978 764 218 120 / 98 2 Maple LCM+BCrestart_M1, default
1982469 218 120 / 98 1 Maple_LCM+BCrestart, default
1986048 227 120 / 107 2 CaDiCal,, default
1987577 216 125/ 91 3 expMC_LRB_VSIDS_Switch_2500, default
1996387 215 116 / 99 2 Maple_ LCM_M1, default

5000 T T T T
cms55-main glubreak
4500 + cms55-main main i
cms55-main otherconf
4000 | expMC_VSIDS_LRB_Switch_2500 default |
MapleLCMDistChronoBT default
Maple_LCM_Scavel default
3500 Maple_LCM_Scavel_200 default 1
()
= 3000 [ h
é
-ﬂg’ 2500 h
2000 i
1500 | .
1000 |- iR o .
POVt B o
500 \)\M\{'{T\Q TH‘T O | | |
60 70 80 90 100 110 120 130 140

benchmarks solved

Figure 3. Cactus plot for the Main Track; SAT only; solvers with 126 or more solved benchmarks.

IS

143



M. HEULE ET AL.

4500 T T T T T T T T
CaDiCal default ——
| MapleLCMDistChronoBT default —<— i
4000 Maple_CM default
Maple_CM_Dist default
3500 Maple_CM_ordUIP default -

Maple_CM_ordUIP+ default
Maple_LCM+BCrestart default
3000 Maple_LCM+BCrestart_M1 default
Maple_LCM_M1 default
2500

time limit (s)

2000

O 1 1
60 65 70 75 80 85 90 95 100 105 110
benchmarks solved

Figure 4. Cactus plot for the Main Track; UNSAT only; solvers with 96 or more solved bench-
marks.

Virtual best solver and its contributors In total, from the 400 benchmarks selected
there were 302 benchmarks solved by at least one solver. This is sometimes referred to as
the performance of the “virtual best solver” (VBS), referring to the idea of a perfect oracle
that could for each benchmark up front select one of the solvers that would succeed on
it (givene that at least one of the solvers succeeds). It is interesting to compare to what
degree individual solvers contribute to the performance of VBS. One possible way of doing
this is to take the set of solved benchmarks (in our case of size 302) and for each of them
distribute a “reward” of 1 point evenly among those solvers who solved that benchmark.
Thus if a particular solver is unique to solve a certain benchmark it receives the full 1 point
for it. However, if e.g. three solvers solve a certain benchmark, each of the three solvers
receives 1/3 points.

Table 5 lists the first five solvers of the Main Track according to this “VBS reward”.
We can see that from this perspective, CaDiCal. dominates other solvers by a large margin.
This essentially means that CaDiCaL was the most successful solver to solve many problems
that other solvers could not solve and is again likely related to CaDiCal. relying on an
independent code base.

Glucose Hack Sub-Track Many improvements in SAT solvers are based on relatively
small changes of existing solvers. This resulted in the Glucose Hack Sub-Track, in which
participants were allowed to change only up to 1000 non-space characters of Glucose version
3.0. The sub-track started as the MiniSAT Hack Sub-Track in the 2013 SAT Competition.
Table 6 shows the overview of the results of this track, which was won by the solver GHack-
COMSPS. Notice again that the participants solve almost the same number of unsatisfiable

144 Jsam



SAT COMPETITION 2018

Table 5. The first 5 solvers by their contribution to the performance of the virtual best solver.

VBS Reward Solver Name and Configuration

19.52 CaDiCalL, default

11.87 MapleLCMDistChronoBT, default
8.95 Maple_LCM _Scavel, default

8.76 cmsb5-main, otherconf

8.50 Maple_CM _ordUIP+, default

Table 6. The results of the Glucose Hack Sub-Track (a sub-view of the Main Track) ordered by the
PAR-2 score. Unchecked reports on benchmarks claimed to be unsatisfiable but either the provided
proof was rejected by the checker (first number) or the checker did not confirm the result within the
given resources (second number). glucose3.0 (proofs) participated hors concours, being submitted
by the organizers as the baseline solver which the others in the category were trying to improve on.

PAR-2  Solved SAT / UNS (unchecked) Solver Name and Configuration

2205133 196 105 / 91 0/3 GHackCOMSPS _drup, ghack_drup
2246060 194 110 / 84 0/2 inIDGlucose, default

2962847 192 106 / 86 0/6  glumix, default

2379070 181 96 / 85 0/3 glucose-3.0_PADC_10, default
2425018 176 86 / 90 0/1 Glucose_Hack _Kiel fastBVE, default
2444829 174 85 / 89 0/0 glucose3.0, proofs

2489038 169 95 / 74 0/8 glucose-3.0_PADC_3, default
2933160 116 98 / 18 60 /0 gluHack, default

benchmarks, while they differ quite a bit in the number of solved satisfiable benchmarks. In
particular, GHackCOMSPS solved 20 more satisfiable and 2 more unsatisfiable benchmarks
than the base solver, Glucose 3.0.

4.2 No-Limits Track

The No-Limits Track was introduced originally for SAT Competition 2016 to allow partici-
pation of solvers for which the source code is not public (e.g. solvers developed in industry)
or which use techniques that are not easy to express in DRAT (e.g. pseudo-boolean rea-
soning). As the source code cannot be checked, solvers in this track were tested on new
benchmarks as solver authors could potentially include a lookup table for existing bench-
marks. Since only new benchmarks were used in all tracks of 2018, the same benchmark
suite was used for the Main Track and the No-Limits Track. This also facilitates a better
comparison of these tracks.

Overviews of the results of the No-Limits Track, focusing on the best-performing solvers,
are shown in Table 7 and Figure 5, with performance on SAT and UNSAT instance, shown
in Figure 6 and Figure 7, respectively. The most interesting result of the No-Limits Track
is that the strongest solver in this track has a higher (and thus worse) PAR-2 score than
the winner and runner-up of the Main Track. This was a consequence of the authors
of MapleLCMDistChronoBT and Maple_ LCM _Scavel not participating in this track. The

Jsam 145



M. HEULE ET AL.

5000 T T T T T T

CaDiCal default ——
4500 - cms55-nolimits-autotune-v19 default —<—
cms55-nolimits-otherconf-v20 default

4000 cms55-nolimits-v19 default 7
Maple_CM default
3500 Maple_CM_ordUIP default —6— -
Maple_CM_ordUIP+ default —@—
3000 ReasonLS default_nodrup —4&— i

Sparrow2Riss-2018 NOLIMIT —&—

time limit (s)

100 120 40 160 180 200 220 240
benchmarks solved

Figure 5. Cactus plot for the No-Limits Track; solvers with 222 or more solved benchmarks.

5000 T T T

CaDiCaL default —+—

4500  cms55-nolimits-autotune-v19 default —<—
cms55-nolimits-gluebreak-v19 default
4000 - cms55-nolimits-otherconf-v20 default
cms55-nolimits-v19 default

Maple_CM default —6—
3500 Maple_CM_Dist default —@— 7
Maple_CM_ordUIP default —&—
» 3000 - Maple_CM_ordUIP+ default —&— -
= ReasonLS default_nodrup —v—
£ o500 | ReasonLS_h default i
° Sparrow2Riss-2018 NOLIMIT
£ 2000 | .
1500 [ .
1000 - .
500 y i
'm“*&a
O: il L | | 1
20 40 60 80 100 120 140

benchmarks solved

Figure 6. Cactus plot for the No-Limits Track; SAT only; solvers with 120 or more solved bench-
marks.

146



5000 T T T T T
BreaklDGlucoseSEL default —+—
4500 CaDiCal default —<— -
cms55-nolimits-autotune-v19 default
4000 F cmsS5-nolimits-otherconf-v20 default N
cms55-nolimits-v19 default
3500 |- Maple_CM default —S— i
. Maple_CM_Dist default —@—
) Maple_CM_ordUIP default —&—
£ 3000 - Maple_CM_ordUIP+ default —&— 7
= ReasonLS default_nodrup —v—
(0]
1S

2000

1500

1000

500

2500

SAT COMPETITION 2018

benchmarks solved

100

110

Figure 7. Cactus plot for the No-Limits Track; UNSAT only; solvers with 99 or more solved

benchmarks.

Table 7. The best 15 solvers from the No-Limits Track ordered by the PAR-2 score.

PAR-2  Solved SAT / UNS Solver Name and Configuration

1875448 229 129 / 100  ReasonLsS, default_ND

1890452 227 127 /100  Maple_CM, default

1915985 230 130 / 100  cmsb5-nolimits-otherconf-v20, default

1935934 226 126 / 100  cms55-nolimits-v19, default

1943354 223 122 /101  Maple_.CM_ordUIP+, default

1943988 220 120 / 100  Maple_CM Dist, default

1946 595 222 122 /100 Maple_.CM_ordUIP, default

1958979 230 122 /108  CaDiCalL, default

1959258 231 140 / 91  Sparrow2Riss-2018, NOLIMIT

1960117 222 123 / 99  cmsb5-nolimits-autotune-v19, default

1967312 221 123 / 98  cmsb5-nolimits-gluebreak-v19, default

1986412 216 123 / 93  MapleCOMSPS_LRB_VSIDS_2_ND, LRB_VSIDS_2_.ND
2016132 214 118 / 96  COMiniSatPS_Pulsar ND, ND

2079101 210 117/ 93  MapleCOMSPS_LRB_VSIDS_ND, LRB_VSIDS_ND
2090919 208 116 / 92  smallsat, default

IS

147



M. HEULE ET AL.

Table 8. The results of the Random Track ordered by the PAR-2 score. (Recall that all benchmarks
in the track are satisfiable.)

PAR-2 Solved Solver Name and Configuration
687420 188  Sparrow2Riss-2018, NOLIMIT
901 550 165  gluHack, default
902011 165  glucose-3.0_.PADC_10_ND, default
902244 165  glucose-3.0_.PADC_3_ND, default
904 236 165 expGlucoseSilent, default
946 811 163 CPSparrow, default

1035064 155 dimetheus, randomsat

1198881 138  probSAT, RANDOM

1280179 129  YalSAT, default

1747096 81 lawa, default

organizers therefore decided not to award any of the solvers in the No-Limits Track as
winning this track only makes sense if a solver can outperform all solvers in the Main
Track, which need to produce certificates for both satisfiability and unsatisfiability (and
need to make the source code available). A comparison between solvers that participated
in both the No-Limits Track and the Main Track shows that their PAR-2 scores are very
similar. This indicates that the overhead of proof logging is very small.

4.3 Random SAT Track

The Random SAT Track was somewhat different in 2018 compared to prior SAT Compe-
titions, although this was unintended. The script for the small uniform random k-SAT
formulas at the phase transition failed to generate the instances, which was discovered only
after the competition results were finalized. As a consequence no such formulas were in-
cluded in the benchmark set of this track. Thereby the benchmark set consists of large
uniform random k-SAT formulas below the phase transition and, furthermore, non-uniform
random k-SAT formulas contributed by Adrian Balint and Tomas Balyo.

An overview of the results of the Random SAT Track are shown in Table 8 and Figure 8.
The results are surprising as CDCL solvers outperformed local search solvers in this track.
It is well known that CDCL solvers cannot compete at all with local search solvers on
small uniform random k-SAT formulas at the phase transition. Yet, apparently, CDCL
solvers perform relatively stronger when non-uniformly yet still random k-SAT instances
are included in the benchmark set.

Notice that solvers perform very differently on random SAT problems (see Figure &)
compared to structured SAT problems (see Figure 3). On random SAT problems hardly
any formulas are solved after 1000 seconds (out of 5000 seconds), while on structured SAT
problems many instances are solved between 1000 and 5000 seconds. This suggests that
there could be quite some room for improvement on random SAT instances, for example by
completely changing the search strategy every 1000 seconds.

148 15T



time limit (s)

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

SAT COMPETITION 2018

0 20

40

CPSparrow default —+—
dimetheus randomsat —x<—
expGlucoseSilent default

glucose-3.0_PADC_10_NoDRUP default
- glucose-3.0_PADC_3_NoDRUP default
gluHack default —6—
lawa default —@—

\V4

probSAT RANDOM —4A&—
Sparrow2Riss-2018 NOLIMIT —&—

60

YalSAT default —v— v

80 100 120
benchmarks solved

/N

VAN

VAN

Figure 8. Cactus plot for the Random Track (only SAT benchmarks).

149



M. HEULE ET AL.

4.4 Parallel Track

The results of the Parallel Track are somewhat underwhelming; see Table 9 and Figure 9
for an overview. In particular, the hardware used in the Parallel Track is faster than for
the other tracks (even when using only a single core) and, furthermore, parallel solvers were
not required to produce proofs of unsatisfiability. So one would expect that the parallel
solvers would exhibit substantially better performance than the sequential solvers in wall-
clock time (on the same benchmark suite), especially if they can effectively make use of
the 24 cores. However, only 4 solvers were clearly stronger than the sequential solvers.
Furthermore, two of those parallel solvers turned out to be buggy (both TopoSAT versions
reporting UNSAT on some satisfiable instances). It appears that only painless, the winner
of the Parallel Track, and plingeling, the runner up, were able to significantly benefit (in
terms of performance) from using the available multiple cores. The difference between these
solvers and the others is also clear from the cactus plot (see Figure 9).

It seems that—at least based on the performance of the submitted parallel solvers on
the benchmark suite of the 2018 competition—parallel SAT solving is not yet in a mature
state. A central issue that needs to be resolved is memory management: several solvers
ran out of memory on instances that they would have solved when running also on a single
core. Various participants submitted two versions of their solver to the Parallel Track, for
example, a 12 and a 24 core version of cmsb5b-parallel and 24 and 48 threads version of
syrup. The versions with fewer threads always outperformed the one with more threads.
These results only represent the performance of parallel solvers on a single suite on a single
cluster, but these issues can likely be observed in many other situations.

Some solvers in the Parallel Track were buggy—in contrast to the sequential solvers in
the Main Track. This may be the result of requiring proof logging for sequential solvers,
which forces participants to involve proof production and proof validation during solver
development. The organizers have no plans to require proof logging of parallel solvers as
this is more complicated and may slow the necessary improvements. However, supporting
proofs of unsatisfiability could help making parallel solvers less buggy.

5. Conclusions

The 12th edition of the SAT Competition was organized as part of the FLoC 2018 Olympic
Games in conjunction with the SAT 2018 conference. As typical, the 2018 SAT Competition
attracted many participants, with over a hundred solvers competing in the four tracks of the
competition. In this article, we outlined the main organization details of SAT Competition
2018, provided an overview of the new benchmarks contributed by the research community
for use in the competition, gave overview statistics on the participants, and provided details
on the competition results, focusing on the best performing solvers of 2018.

In terms of future developments in the SAT Competitions, we note that, apart from
the Random Track, a great majority of the participating solvers are based on not only
the same algorithmic paradigm, CDCL, but also built on top of the same source code base,
originating from the MiniSAT solver. While one should not de-emphasize the importance of
incremental improvements obtained by demonstrating that small new variations to existing
solvers may be beneficial, seeking ways of providing further incentives for more radical new
algorithmic ideas could be considered. This is especially true, for example, in the case

150 15T



SAT COMPETITION 2018

5000 . . .
abcdsat default ——
cbpenelope default —<—
ccspenelope default
4000 cmsb55-parallel 12core 7
ManyGilucose4.1-2 24threads
painless sym —&—
—_ painless default —@—
£ 3000 - penelope_MDLC default —&— 7
-*é‘ plingeling default —&—
= scalope default —v—
© syrup 24threads
£ 2000 - treengeling default 1
1000 [ .
0 50 100 150 200 250 300

benchmarks solved

Figure 9. Cactus plot for the Parallel Track; solvers with 200 or more solved benchmarks.

Table 9. The best 15 solvers from the Parallel Track ordered by the PAR-2 score. TopoSAT (both
plain and lazy) was disqualified for producing incorrect results.

PAR-2  Solved SAT / UNS Threads Solver Name and Configuration

1252833 289 164 / 125 24 TopoSAT*, plain
1304789 284 159 / 125 24 TopoSAT*, lazy
1397524 275 153 / 122 24 painless, default
1410158 275 157 / 118 24 plingeling, default
1736011 241 148 / 93 24 abcdsat, default
1755049 241 153 / 88 12 cmsbb-parallel, 12core
1797550 238 140 / 98 24 cbpenelope, default
1835313 236 138 / 98 24 ccspenelope, default
1962633 224 132/ 92 24 syrup, 24threads

2006 302 212 135 /77 24 penelope MDLC, default
2058429 212 127 / 85 24 treengeling, default
2062025 206 129 / 77 24 scalope, default
2100147 206 121/ 85 24 ManyGlucose4.1-2, 24threads
2115484 202 122 / 80 24 painless, sym

2177525 198 121 /) 77 48 syrup, 48threads

151



M. HEULE ET AL.

of the Parallel Track, where surprisingly little progress has been made in terms of solver
performance, especially when considering the fact that parallel computing infrastructures
are less limiting for developing novel algorithmic ideas. On another note, in 2018 a very
healthy number of new benchmark instances were contributed by the research community,
thanks to which the 2018 main benchmark suit (used in the Main, Parallel, and No-Limits
tracks) was decidedly constructed solely from the new benchmarks. One must note that, due
to this, the 2018 benchmark set does not contain instances from several domains typically
included in the competition benchmark sets. While using solely new benchmarks is a strong
way to combat solver overfitting towards known benchmarks, the choice of using only new
benchmarks, domains of which were decided by the benchmark contributors, can also be
criticized due to not covering several typical SAT application domains.

Acknowledgments

We would like to thank everyone who contributed to SAT Competition 2018 by submit-
ting solvers or benchmarks. We also thank StarExec at the University of lowa and Texas
Advanced Computing Center (TACC) at The University of Texas at Austin for providing
computing infrastructure which allowed for smoothly running the competition.

References

[1] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT
solvers. In Craig Boutilier, editor, IJCAI 2009, Proceedings of the 21st International
Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17,
2009, pages 399-404. Morgan Kaufmann Publishers Inc., 2009.

[2] Adrian Balint, Anton Belov, Matti Jarvisalo, and Carsten Sinz. Overview and analysis
of the SAT Challenge 2012 solver competition. Artificial Intelligence, 223:120-155,
2015.

[3] Toméds Balyo, Marijn J. H. Heule, and Matti Jarvisalo. SAT Competition 2016: Recent
developments. In Satinder P. Singh and Shaul Markovitch, editors, Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San
Francisco, California, USA., pages 5061-5063. AAAI Press, 2017.

[4] Daniel Le Berre and Laurent Simon. The essentials of the SAT 2003 Competition. In
Enrico Giunchiglia and Armando Tacchella, editors, Theory and Applications of Sat-
isfiability Testing, 6th International Conference, SAT 2003. Santa Margherita Ligure,
Ttaly, May 5-8, 2008 Selected Revised Papers, 2919 of Lecture Notes in Computer
Science, pages 452—467. Springer, 2004.

[5] Daniel Le Berre and Laurent Simon. Fifty-five solvers in Vancouver: The SAT 2004
Competition. In Holger H. Hoos and David G. Mitchell, editors, Theory and Appli-
cations of Satisfiability Testing, 7th International Conference, SAT 2004, Vancouver,
BC, Canada, May 10-18, 2004, Revised Selected Papers, 3542 of Lecture Notes in
Computer Science, pages 321-344. Springer, 2005.

152 15T



[6]

[11]

SAT COMPETITION 2018

Luis Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter
Schneider-Kamp. Efficient certified RAT verification. In Leonardo de Moura, editor,
Automated Deduction - CADE 26 - 26th International Conference on Automated De-
duction, Gothenburg, Sweden, August 6-11, 2017, Proceedings, 10395 of Lecture Notes
i Computer Science, pages 220-236. Springer, 2017.

Niklas Eén and Niklas Sorensson. An extensible sat-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, Theory and Applications of Satisfiability Testing, 6th
International Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003
Selected Revised Papers, 2919 of Lecture Notes in Computer Science, pages 502-518.
Springer, 2004.

Marijn J.H. Heule, Matti Jarvisalo, and Martin Suda, editors. Proceedings of SAT
Competition 2018: Solver and Benchmark Descriptions, B-2018-1 of Department of
Computer Science Series of Publications B. University of Helsinki, 2018.

Matti Jarvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Simon. The interna-
tional SAT solver competitions. AI Magazine, 33(1), 2012.

Matti Jarvisalo, Marijn Heule, and Armin Biere. Inprocessing rules. In Bernhard
Gramlich, Dale Miller, and Uli Sattler, editors, Automated Reasoning - 6th Interna-
tional Joint Conference, IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings,
7364 of Lecture Notes in Computer Science, pages 355-370. Springer, 2012.

Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning
rate based branching heuristic for SAT solvers. In Nadia Creignou and Daniel Le
Berre, editors, Theory and Applications of Satisfiability Testing - SAT 2016 - 19th
International Conference, Bordeauz, France, July 5-8, 2016, Proceedings, 9710 of
Lecture Notes in Computer Science, pages 123-140. Springer, 2016.

Mao Luo, Chu-Min Li, Fan Xiao, Felip Manya, and Zhipeng Li. An effective learnt
clause minimization approach for CDCL SAT solvers. In Proceedings of the Twenty-
Siath International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, August 19-25, 2017, pages 703-711, 2017.

Alexander Nadel and Vadim Ryvchin. Chronological backtracking. In Olaf Beyers-
dorff and Christoph M. Wintersteiger, editors, Theory and Applications of Satisfiabil-
ity Testing - SAT 2018 - 21st International Conference, SAT 2018, Held as Part of
the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings,
10929 of Lecture Notes in Computer Science, pages 111-121. Springer, 2018.

Laurent Simon, Daniel Le Berre, and Edward A. Hirsch. The SAT2002 competition.
Annals of Mathematics and Artificial Intelligence, 43(1):307-342, 2005.

Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. StarExec, a cross community logic
solving service. https://www.starexec.org, 2012.

Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking
and trimming using expressive clausal proofs. In Carsten Sinz and Uwe Egly, editors,

Jsam 153


https://www.starexec.org

M. HEULE ET AL.

Theory and Applications of Satisfiability Testing - SAT 2014 - 17th International Con-
ference, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
14-17, 201/. Proceedings, 8561 of Lecture Notes in Computer Science, pages 422—429.
Springer, 2014.

154 15T



	Introduction
	Overview of SAT Competition 2018
	Competition Tracks
	Requirements for Participation
	Rankings, Awards, and Disqualification Criteria
	Input and Output Format
	Proof Checking
	Computing Environment

	Benchmarks
	Benchmark Domains
	Benchmark Selection

	Competition Results
	Main Track
	No-Limits Track
	Random SAT Track
	Parallel Track

	Conclusions

