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Abstract

Wind measurements were performed with the UTD mobile LiDAR station for an onshore wind

farm located in Texas with the aim of characterizing evolution of wind-turbine wakes for different

hub-height wind speeds and regimes of the static atmospheric stability. The wind velocity field

was measured by means of a scanning Doppler wind LiDAR, while atmospheric boundary layer

and turbine parameters were monitored through a met-tower and SCADA, respectively. The

wake measurements are clustered and their ensemble statistics retrieved as functions of the

hub-height wind speed and the atmospheric stability regime, which is characterized either with

the Bulk Richardson number or wind turbulence intensity at hub height. The cluster analysis of

the LiDAR measurements has singled out that the turbine thrust coefficient is the main parameter

driving the variability of the velocity deficit in the near wake. In contrast, atmospheric stability

has negligible influence on the near-wake velocity field, while it affects noticeably the far-wake

evolution and recovery. A secondary effect on wake-recovery rate is observed as a function

of the rotor thrust coefficient. For higher thrust coefficients, the enhanced wake-generated

turbulence fosters wake recovery. A semi-empirical model is formulated to predict the maximum

wake velocity deficit as a function of the downstream distance using the rotor thrust coefficient

and the incoming turbulence intensity at hub height as input. The cluster analysis of the LiDAR

measurements and the ensemble statistics calculated through the Barnes scheme have enabled

to generate a valuable dataset for development and assessment of wind farm models.
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1 INTRODUCTION

The recent worldwide outbreak of wind power production poses new challenges for wind farm designers seeking optimal layout and control

strategies to maximize profitability of wind power plants.1,2 A considerable factor for power losses and increased fatigue loads in large wind farms

is connected with wake interactions,3-6 which are affected by farm layout, turbine settings, site topography, and are highly variable with the static

stability of the atmospheric boundary layer (ABL).7-9 Furthermore, the increasing size of wind turbine rotors10,11 exacerbates underperformance

due to wake interactions as a consequence of the increased wake extent and, in turn, the longer downstream distance required for wake recovery.

Continuous improvements in remote-sensing techniques, aiming to measure wind atmospheric turbulence, have been leveraged to achieve a

deeper understanding of ABL flows12-14 and to investigate the evolution of wakes produced by utility-scale wind turbines.15-18 One of the first

campaigns performed with light detection and ranging (LiDAR) systems with the goal of measuring wind-turbine wakes took place at a site near

the coast of the northern part of Germany to probe reduction of the wind speed at certain distances downstream of a wind turbine rotor.19

Since then, a wide range of scanning techniques has been developed for both ground- and nacelle-based LiDAR measurements of isolated wind

turbines,20-23 multiple wakes, and wake interactions.24-27 LiDAR wake measurements were performed in the presence of yaw misalignment of

the turbine rotor28 or wind veer,29 which induce a departure of the wake cross-section from roughly axisymmetric shape, even removing the
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FIGURE 1 Characterization of the test site: A, layout of the wind farm, where the turbine locations are represented by blue circles with
downscaled diameter of 1 D (relative altitude with respect to the light detection and ranging [LiDAR] location is reported over the contour lines
in meters); B, wind rose of the hub-height wind measured by the met-tower and reported as a ratio of the turbine rated wind speed

skewing effect due to the vertical shear. Doppler radars have also been used to measure wakes produced by utility-scale wind turbines.30,31 Both

experimental32-34 and numerical investigations35-38 have pointed out static atmospheric stability being among one of the major factors affecting

the evolution of wind-turbine wakes.

The aim of this study is to provide a quantitative characterization of the evolution of wind-turbine wakes covering the broad range of typical

operations, namely for different incoming wind speeds and atmospheric stability regimes. The variability in the downstream direction of the

wake velocity deficit is captured through a semi-empirical model as a function of the rotor thrust coefficient and turbulent intensity of the

incoming wind. This research has been conducted through a cluster analysis of about 10 000 quality-controlled LiDAR scans, which are then

post-processed through ensemble statistics providing mean and standard deviation of the wake velocity field for the various clusters. Therefore,

the statistics of the LiDAR velocity field are calculated with high statistical accuracy, which is needed to develop and assess numerical models of

wind-turbine wakes.

To investigate downstream evolution of wind-turbine wakes for different turbine settings and atmospheric stability regimes, a field campaign

was carried out for an onshore wind farm located in North Texas. This experimental dataset encompasses meteorological data collected from

a meteorological (met) tower, supervisory control and data acquisition (SCADA) data, and wind speed measurements collected from a scanning

Doppler wind LiDAR. It is important to characterize wind-turbine wakes under realistic operative conditions, thus with a variable wind speed,

thrust coefficient, and under different atmospheric stability regimes in order to enhance accuracy in prediction of wind-turbine wakes and power

capture through wind farm models.1,2,38 To this aim, LiDAR scans of wind-turbine wakes produced by wind turbines not affected by upstream

wakes have been clustered according to the incoming wind speed and atmospheric stability regime. For each cluster, mean and standard deviation

of the streamwise velocity field have been calculated through ensemble statistics enabling the characterization of the wake development for

different atmospheric stability regimes and turbine settings. For this work, the wind farm under examination is installed over a flat terrain.

However, the cluster analysis of LiDAR data is suitable for LiDAR measurements carried out in complex terrain as well, by including parameters

that enable the detection of flow distortions induced by the site topography, such as wind direction, turbine location, and Froude number.39

The remainder of the paper is organized as follows: in Section 2, the experimental setup and the test site are described. Sections 3 and 4 report

in detail the procedure for the post-processing and clustering, respectively, of single-wake LiDAR scans. In Section 5, ensemble statistics of plan

position indicator (PPI) scans belonging to the same cluster are retrieved through the Barnes scheme.40,41 In Section 6, average and standard

deviation of the wake velocity field are investigated for different hub-height wind speed and atmospheric stability regimes. Concluding remarks

are then reported in Section 7.

2 SITE AND EXPERIMENTAL SETUP

A field campaign was performed for an onshore wind farm located in North Texas consisting of identical 2.3-MW wind turbines with rotor

diameter, D, of 108 m, and hub height of 80 m. The elevation map of the site, which is plotted on the background of Figure 1A, is retrieved with a

spatial resolution of 100 m from the US Geological Survey.42 By setting the offset altitude at the location of the LiDAR deployment, the standard

deviation of the topography is of only 16 m, which allows considering this site as a flat terrain. For the retrieval of the LiDAR data, the hub height

of each turbine is corrected by taking the local altitude at the turbine locations into account.

The measurement campaign was conducted through various phases between August 2015 and March 2017 for a total of 236 days. The wind

rose for this site was obtained from meteorological data collected at hub height for the entire duration of the experiment from a met-tower
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FIGURE 2 Sketch of the area probed with the light detection and ranging (LiDAR) plan position indicator (PPI) scans and relative position of the
wind turbines under investigation. The LiDAR samples are colored according to the different PPI scans

located at the south-east corner of the farm (Figure 1A). From the wind rose reported in Figure 1B, it is evident the occurrence of a prevailing

southerly wind direction, which allows classifying this wind farm in four rows: row 1 with turbines 1 to 6, row 2 with turbines 7 to 14 and 73

and 74, row 3 with turbines 15 to 19 and 75 to 78, and row 4 with turbines 20 to 29 and 79 to 82. The streamwise distance between turbine

rows for the prevailing southerly wind directions is about 14 D. Meteorological data were provided at various heights as 10-minute averages and

standard deviation of wind speed (at 36, 60, and 80 m), wind direction (at 36, 60, and 80 m), temperature (at 3 and 75 m), humidity (at 3 and

75 m), and barometric pressure (at 2 and 75 m).

SCADA data were provided for each turbine as 10-minute averages and standard deviation of wind speed, power output, rotor rotational

velocity, and yaw angle. These data are used to calculate power curves for the various wind turbines according to the International Electrotechnical

Commission (IEC) standard43 as well as to assess parameters retrieved from the LiDAR measurements. For more details on this dataset and the

used quality control process, see El-Asha et al.9

The wind velocity around and within the turbine array was measured with a Windcube 200S manufactured by Leosphere, which is a scanning

Doppler wind LiDAR embedded in the UTD mobile LiDAR station to allow easy deployment, control, data collection, and monitoring of the

instrument.9 This LiDAR is characterized by a typical scanning range of 4 km with a range gate between 25 and 100 m, accumulation time of

500 ms, and azimuth and elevation capabilities of 0◦ to 360◦ and -10◦ to 190◦ , respectively. The deployment location of the LiDAR is shown in

Figure 1A with a yellow triangle.

A scanning Doppler wind LiDAR measures the radial (also denoted as line-of-sight) velocity, which is the sum of the projections of the three

Cartesian wind velocity components in the direction of the LiDAR laser beam. According to the wind farm layout and the prevalence of southerly

wind directions (Figure 1 B), for wind directions within the sector 145◦ and 235◦, the wakes produced by the turbines from 1 to 6 evolve roughly

towards the LiDAR location, which is a favorable condition for the LiDAR to measure with close approximation the streamwise velocity through

single-wake PPI scans.

The specific scan parameters were selected according to the actual distance between the LiDAR and the turbine under examination, aerosol,

and atmospheric conditions. Main constraints in the selection of the scan parameters consisted in achieving a carrier-to-noise ratio (CNR) higher

than −25 dB throughout the range of interest in order to ensure an accuracy in the velocity measurements higher than 0.5 m s−1,14,22,44 and

acquisition of measurements at hub height within the downstream range 1 to 3 D with at least five measurement points in the transverse direction

within the wake. The main parameters of the single-wake PPI scans are summarized in Table 1. A sketch of the area probed through the LiDAR

PPI scans and the relative locations of the turbines under investigation is reported in Figure 2. The typical range gate adopted for the LiDAR

measurements was 50 m, seldom it was reduced to 25 m or increased to 75 m in presence of very favorable or disadvantageous, respectively,

aerosol conditions. The typical LiDAR elevation angle was between 2◦ and 5◦, which allowed, as it will be detailed in the following, achieving a

good approximation of the horizontal wind speed from the LiDAR radial velocity.

The rotation speed of the scanning head in the azimuthal direction was adjusted between 1◦ s−1 and 2◦ s−1, depending on wind and

atmospheric conditions. Through preliminary measurements, it was observed that the downstream evolution of the wakes did not show significant

meandering-like oscillations under stable atmospheric conditions45,46; thus, a relatively slow rotation speed of 1◦ s−1 was used together with a

relatively narrow azimuthal range of 10◦ . This scan is characterized by a sampling time of about 10 seconds, angular resolution of 0.5◦ , which

corresponds to a transverse resolution of about 15 m at the turbine location. Under convective atmospheric regimes, wider azimuthal ranges were

needed in order to capture the meandering-like oscillations within the measurement area (up to 20◦ ), which required, in turn, a higher rotation

speed of 2 ◦ s−1 in order to keep the sampling time approximately equal to 10 seconds. The single-wake PPI scans were typically performed

with raster mode, namely by reversing the LiDAR rotation speed for consecutive PPI scans in order to minimize the sampling time. For this field

campaign, a total number of 9888 quality-controlled single-wake PPI scans were acquired.

TABLE 1 Scanning parameters for the single-wake PPI LiDAR scans

Rotation Speed [◦ s−1] Range Gate [m] Azimuth Range (◦ ) Elevation (◦ ) Max. Sampling Time (s)

Value 1 2 25 50 75 10 20 2-3 3-4 4-5 10 20

Occurrence 27% 73% 2.5% 96% 1.5% 22% 78% 7.5% 77% 15.5% 95% 5%

Abbreviations: LiDAR, light detection and ranging; PPI, plan position indicator.
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FIGURE 3 Estimation of the vertical
profile of the incoming wind speed, U∞: A,
August 2, 2016, 2:19 AM local time, stable
ABL with TI = 4.8%; B, August 2, 2016,
12:41 PM local time, unstable ABL with TI
= 18%. Blue diamonds represent values
of the 70-th percentile of the LiDAR
equivalent velocity (gray circles), while
the red circles indicate 10-minute average
of the values obtained through the 70th
percentile from consecutive scans.
Respective meteorological (in gold) and
supervisory control and data acquisition
(SCADA) data (in pink) are also reported.
Error bars represent standard deviation

3 POST-PROCESSING OF SINGLE-WAKE PPI SCANS

The radial velocity, Vr, measured by the LiDAR can be expressed as

Vr = Vh cos𝜙 cos(𝜃 − 𝜃w) + W sin𝜙, (1)

where 𝜙 and 𝜃 are the elevation and azimuth angles, respectively, of the LiDAR laser beam, 𝜃w is the local wind direction, and Vh and W are the

horizontal and vertical velocity components, respectively. The last term on the right-hand-side of Equation (1) is practically negligible considering

the small elevation angles used for these LiDAR measurements (Table 1) and the typical small values of the vertical velocity, W, compared with

those of the horizontal wind speed, Vh.15,47,48 Assuming a constant wind direction, 𝜃w , over each PPI plane and equal to the average direction of

the wake advection, we can then calculate the streamwise equivalent velocity, Ueq , as follows:

Ueq ∼ Vr ∕ [cos𝜙 cos(𝜃 − 𝜃w)] , (2)

which represents a proxy for the horizontal streamwise velocity and it is the most relevant velocity component for characterizing wake features.

To strengthen the assumption of a uniform 𝜃w for each PPI scan, measurements acquired during the occurrence of wind veer larger than

10◦ between 36 and 80-m heights (occurrence of 0.6% over the entire dataset) have been excluded for this investigation.

Ueq is interpolated from the spherical coordinates of the LiDAR measurements to a Cartesian reference frame whose origin is fixed at the

turbine hub, x-direction pointing downstream in the wake direction, 𝜃w , z-direction oriented vertically and pointing upwards, and the y-direction

is in the transverse direction in order to produce a right-handed reference frame. For estimating 𝜃w , the wind velocity field is reported over a

structured grid with a resolution of 0.25 D in the streamwise direction within the range from 1 to 10 D while the transverse spatial resolution is

of 0.2 D within the range ± 1.5 D.

In order to remove the effects of wind variability on the ensemble statistics of the wake measurements, the velocity fields are normalized by

the incoming vertical profile of the horizontal wind speed for the respective PPI scan, as follows:

U∗
eq(x, y, z) =

Ueq(x, y, z)
U∞(z)

. (3)

Classical LiDAR scans to probe the ABL vertical profile, such as the velocity-azimuth display (VAD) or Doppler beam swinging (DBS), are not

applicable for these LiDAR measurements due to the presence of wakes intersecting the measurement volume and spatial variability of the ABL

flow within the wind farm area. Therefore, the vertical profile of the incoming horizontal wind speed is directly calculated from the single-wake

PPI scans through the value of the 70th percentile of the distribution of the streamwise equivalent velocity, Ueq , for each height probed by the

LiDAR. The 70th percentile has been chosen through a sensitivity analysis in order to maximize the correlation between the 10-minute averaged

LiDAR measurements with the measurements of the met-tower at hub height (Pearson correlation coefficient, 𝜌 = 0.972) and SCADA data (𝜌

= 0.977). An example of the estimate of the ABL velocity profile from PPI scans is provided in Figure 3. It can be observed how the selected

value of the 70th percentile represents a good trade-off to filter out turbulent gusts while removing effects of LiDAR samples with reduced wind

speed in correspondence of the wind-turbine wake.

For the PPI scans, roughly 90% of the LiDAR samples were collected downstream of the turbine under examination within the region

0.5≤ x∕D ≤ 8 and within a vertical range of z∕D = ± 0.25. Therefore, LiDAR samples of the streamwise equivalent velocity can be considered as

representative of the wake velocity field at hub height. For the analysis of the wake velocity fields, the wake center is always considered at hub

height, while each LiDAR sample is reported as a function of its downstream location, x, and radial distance from the estimated wake center at
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FIGURE 4 Flowchart for the
post-processing of the light detection and
ranging (LiDAR) data

the respective downstream position, with sign in order to differentiate the two sides of the wake,

r =
(y − yc)|y − yc|√(y − yc)2 + z2, (4)

where yc is the transverse coordinate of the wake center.

For each PPI scan, the calculation of U∗
eq requires the estimate of the wake direction, which is ideally equal to the local mean wind direction

at the rotor disk; however, noticeable angular differences can be observed between the analysis of the LiDAR wake measurements and wind

data collected from the met-tower and SCADA data. The mean wind direction is monitored through the wind vanes installed over the met-tower

and the yaw angle of the individual turbines, which is recorded by the SCADA. While the former might not be representative for the local wind

direction at specific turbine locations due to spatial variability of the wind field, the latter is recorded with a low sampling rate of 10 minutes and

it might differ from the incoming wind direction in presence of a significant wind veer.29 Although cases with evident wind veer are excluded for

this data analysis, even small errors in the estimate of the wake direction can lead to inaccurate characterizations of the wake recovery.

Wind direction measured by the met-tower at height of 75 m is utilized as first attempt to estimate 𝜃w and, in turn, U∗
eq is calculated through

Equations 2 and 3. The wake direction is then updated as the direction of the line fitting the wake centers estimated at the various downstream

locations probed by the LiDAR. This new value of 𝜃w is used to recalculate Ueq and U∞, and this procedure is iteratively advanced until convergence

is achieved in 𝜃w with an accuracy of 0.1◦. A flowchart illustrating the different steps involved in the calculation of U∗
eq and 𝜃w is reported in Figure 4.

To estimate the transverse location of the wake center from each PPI scan, we performed the fitting of U∗
eq at a given downstream location

with a Gaussian function21,49 as follows:

G(r, rc, 𝜎,ΔU) = 1 − ΔU · exp
(
−
(r − rc)2

2𝜎2

)
, (5)

where ΔU is the maximum nondimensional velocity deficit at the considered downstream location, rc is the radial position of the wake center

at a given downstream location, and 𝜎 is the standard deviation of the Gaussian function characterizing the wake width. All these parameters

are obtained from the least-squares regression of the LiDAR measurements at a given downstream location with Equation 5. The quality of the

fitting of the wake velocity profiles is controlled through the mean-square deviation and a threshold equal to 10% of U∞ at hub height is used to

reject scans with poor accuracy in the fitting.

Once the wake centers are estimated for the various downstream locations, the updated wake direction, 𝜃w , is then obtained through a

weighted linear fitting of the wake centers with a weighting function calculated as w(x) = x−𝛽 , where the exponent 𝛽 decreases among integer

values from 4 to 0 for consecutive iterations. This weighting function is introduced to stabilize the numerical procedure and to enhance the

significance of the near-wake centers for the first iterations in the estimate of 𝜃w . In Figure 5, the histogram of the R − square value of the

fitting of the wake velocity field with Equation 5 at each downstream location and all the PPI scans is reported. The mean and median values of

R− square are 0.878 and 0.934, respectively, indicating the good accuracy achieved in fitting the wake velocity field with a Gaussian function and

in detecting the wake centers. Few outliers with low R − square value are seldom observed for downstream locations larger than 6 D and, thus,

having negligible effect on the estimate of the wake direction due to the weighted linear fitting of the wake centers.

Since the streamwise velocity, Ueq , is a function of the wake direction (Equation 2), and Ueq is post-processed to estimate the wake direction, an

iterative procedure is then implemented to estimate both Ueq and 𝜃w , which is schematically reported in the flowchart of Figure 4. Convergence of

this iterative method is achieved when consecutive iterations produce a modification of 𝜃w smaller than 0.1◦. A time-series of the instantaneous

wake direction estimated for turbine 4 is reported in Figure 6. The 10-minute moving average of 𝜃w shows high correlation with the turbine

yaw angle (average value of 0.97). Furthermore, fluctuations of 𝜃w are observed within each 10-minute period with standard deviation roughly

proportional to the wind turbulence intensity, which suggests these fluctuations being associated with the incoming atmospheric turbulence.

4 CLUSTERING OF SINGLE-WAKE PPI SCANS

Once the wake velocity fields are expressed in terms of nondimensional streamwise equivalent velocity, U∗
eq, and each sample reported in a

common reference frame with x-direction equal to the wake direction of its respective PPI scan, it is possible to calculate ensemble statistics of
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FIGURE 5 Histogram of the R − square
value for the fitting of U∗

eq with Equation 5
calculated at each downstream location
and for all the quality-controlled plan
position indicator (PPI) scans

FIGURE 6 Estimate of the wake direction, 𝜃w , for turbine 4: instantaneous and 10-minute moving average of the wake direction compared with
supervisory control and data acquisition (SCADA) yaw angle and wind turbulence intensity on August 10, 2016

the wake velocity field. LiDAR data are clustered in order to characterize the wake variability for different turbine settings and wake evolution

affected by the atmospheric stability. LiDAR data are first clustered as a function of the incoming wind speed at hub-height, which is corrected

for the variation of air density as recommended by the IEC standard43 as follows:

Ucorr
hub = Uhub

(
𝜌10min

𝜌0

)1∕3

, (6)

where Uhub is the 10-minute averaged wind speed measured from the SCADA, 𝜌10min is the 10-minute averaged air density calculated through

temperature and pressure data recorded from the met-tower, and 𝜌0 is the reference air density of 1.225 kg m−3. In order to characterize turbine

operations, the hub height wind speed normalized by the turbine-rated wind speed, U∗
hub

, is deemed being a good parameter to monitor variability

of the thrust force induced by the turbine rotor.

Figure 7A shows power capture of the six turbines under examination normalized by the rated power as a function of U∗
hub

. It is noteworthy that

for operations above the rated wind speed, namely in region 3 of the power curve, a power boost controller can be activated allowing increase of

the rated power of about 5% of its nominal value. The power boost is activated only under specific conditions of the ambient temperature, main

component temperature, turbulence level, and grid voltage levels.

Figure 7B shows the blade pitch angle for different values of the incoming wind speed and highlights the transition from regions 2 to 3 at U∗
hub

about 0.71, where the pitch controller gradually increases the blade pitch angle in order to reduce the thrust coefficient of the blades while limiting

power capture to rated value. Several outliers are observed in Figure 7B, especially transitioning from regions 2 to 3 of the power curve, which

might be related to specific tasks of the turbine controller. In Figure 7C, the power curve is obtained by performing bin averaging of the SCADA

data with bin width of 0.5 m s-1 (0.045 normalized with rated wind speed) based on the IEC standard.43 The Ct curve is estimated from induction

factor and power coefficient with 1-D stream-tube assumption.48 The induction factor, a, is calculated from the equation Cp = 4a(1 − a)2, which

is then plugged in the following relationship to retrieve the thrust coefficient:

Ct = 4a(1 − a). (7)
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For each cluster, the number of PPI scans should be large enough in order to represent wake evolution as an ergodic process. Therefore,

convergence of mean and standard deviation of the wake velocity fields is checked by gradually increasing the number of PPI scans belonging

to the same cluster. On the other hand, the cluster width should be small enough in order to characterize variability of Cp and Ct as a function

of the incoming wind speed (Figure 7C). Based on a sensitivity analysis of mean and standard deviation of the wake velocity fields, the following

values of the normalized wind speed have been selected as edges of the various clusters, which are reported in Figure 7: 0.35, 0.44, 0.53, 0.62,

0.71, 0.76, 0.8, 0.85, 0.90, 0.95, 1.00, 1.04, 1.1, and 1.14.

Subsequently, each cluster of the LiDAR data based on U∗
hub

has been further divided into subclusters as a function of atmospheric

stability regime, which strongly affects downstream evolution of wind-turbine wakes.8,9 Atmospheric stability can be characterized through

the Obukhov length, L, which, according to the Monin-Obukhov similarity theory,47,50-52 is proportional to the height above the ground where

buoyancy-produced turbulence begins dominating over shear-produced turbulence:

L = −
Tu3

∗

kg w′T′
, (8)

where u* is the friction velocity calculated as u∗ =
(

u′w′2
+ v′w′2

)1∕4

, T is the virtual potential temperature (kelvins), k is the von Kármán constant

(0.4), g is the gravitational acceleration, and ẃT ́ is the sensible heat flux. Retrieval of the Obukhov length requires high-frequency temperature

and 3-D velocity measurements within the surface layer. For this field campaign, two sonic anemometers Campbell Scientific CSAT3 were

installed in proximity of the LiDAR location at height of 3 m. However, the anemometer data are only available for a limited period of the

campaign and never during the single-wake PPI scans. As an alternative, atmospheric stability can be characterized through the Bulk Richardson

number47,52,53 as follows:

RiB(z) =
g

T(zw)

ΔT
Δz

U2(zw)
z

2
(9)

where zw = 60 m is the met-tower height where wind speed is measured, ΔT is the variation in temperature between heights z1 = 3 m and z2 =
75 m, and the geometric mean of these two heights is z =

√
(z1z2) = 15 m. Therefore, the Bulk Richardson number can directly be measured

through the velocity and temperature measurements provided from the meteorological data. RiB can also be calculated through the stability

parameter, z∕L, as47

RiB(z) =
z
L
𝜙H(z∕L)
𝜙2

M
(z∕L)

(10)

through the evaluation of the nondimensional temperature and velocity functions 𝜙H and 𝜙M , respectively, which are the functional forms provided

by Businger et al54 and Dyer.55 In Figure 8, RiB obtained from the stability parameter measured through the sonic anemometers (Equation (10))

is compared with that directly calculated through the meteorological data (Equation (9)). A good agreement between meteorological and sonic

anemometer data is observed in the estimate of RiB through their linear regression in Figure 8 B (slope 0.81, intercept 0.001, and R-square

value 0.67).

According to the above-presented analysis, clustering of the LiDAR wake measurements as a function of the atmospheric stability is performed

through the Bulk Richardson number calculated from the meteorological data and utilizing the various stability classes suggested in the Golder's

diagram56 by considering an aerodynamic roughness length of 0.01 m, which is representative for the site under examination featured by flat

grassland.47 The various ranges of Obukhov length and Bulk Richardson number belonging to the various stability classes are reported in Table 2.

It is noteworthy that although seven stability classes are envisaged, LiDAR data are unavailable for highly stable conditions (class 7) and not with

FIGURE 7 Performance characterization of the turbines 1, 2, 3, 4, 5, and 6: A, power capture normalized by the turbine rated power as a
function of the normalized hub height wind speed, U∗

hub
; B, blade pitch angle as a function of U∗

hub
, red crosses indicate data corresponding to

quality-controlled light detection and ranging (LiDAR) measurements; and C, power curve and Ct curve obtained through bin averaging. The
vertical dashed black lines indicate boundaries of the various clusters based on U∗

hub
, while the green vertical dashed lines indicate transition

between regions 2 and region 3
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FIGURE 8 Comparison between RiB obtained from sonic anemometer at z = 3 m and meteorological data: A, 1-month long time-series, color in
the background represents daytime (yellow) and nighttime (blue); B, scatter plot for all the sonic anemometer data available (duration
approximately 6 months). Red line is the linear regression, while the blue dashed line indicates the 1:1 line

TABLE 2 Atmospheric stability
classes based on the Golder's
diagram56

Class Obukhov Length [m] RiB Atmospheric Stability TI range [%]

1 −9.42 < L ≤ −5.00 RiB ≤ −0.0071 Highly convective TI > 23.5

2 −15.13 < L ≤ −9.42 −0.0071 < RiB ≤ −0.005 Convective 19.4 < TI ≤ 23.5

3 −40.45 < L ≤ −15.13 −0.005 < RiB ≤ −0.0024 Weakly convective 13.5 < TI ≤ 19.4

4 L ≤ −40.45 or L ≥ 147.50 −0.0024 < RiB ≤ 0.0011 Neutral 7 < TI ≤ 13.5

5 47.14 < L ≤ 147.50 0.0011 < RiB ≤ 0.0033 Weakly stable 5.5 < TI ≤ 7

6 17.20 < L ≤ 47.14 0.0033 < RiB ≤ 0.0067 Stable 4 < TI ≤ 5.5

7 5.00 < L ≤ 17.20 RiB > 0.0067 Highly stable TI ≤ 4

a sufficient number of scans for the highly convective regime (class 1). Therefore, convective and highly convective data are merged into only

one cluster for a total of five clusters based on atmospheric stability.

The calculation of the Bulk Richardson number requires temperature and velocity measurements at different heights, which are not always

available for wind power plants. Therefore, as an alternative method, we propose to cluster LiDAR data for the atmospheric stability based on

the turbulence intensity of the incoming wind at hub height, TI, which is directly calculated by the SCADA for 10-minute periods as the ratio

between the standard deviation and mean value of the wind speed. Both parameters, RiB and TI, can be considered as complementary criteria to

characterize the atmospheric stability; indeed, the former provides a direct comparison between the main forcing on the ABL due to atmospheric

stability, namely buoyancy and shear forces, while the latter quantifies their effects on the average velocity fluctuations as a ratio with the mean

wind speed. TI is reported as a function of RiB for the duration of the experiment in Figure 9. Transitioning from neutral to convective regimes,

TI increases roughly monotonically with reducing RiB ,8,57-59 which makes straightforward the definition of TI ranges for clustering the LiDAR data

as a function of atmospheric stability with a criterion equivalent to that adopted for RiB . However, for stable regimes, TI variation is very limited

with RiB and typically confined within a range between 4% and 7%. Furthermore, for stable conditions, some outliers are observed in Figure 9

FIGURE 9 Turbulence intensity at hub height for the wind turbines under examination recorded by the supervisory control and data acquisition
(SCADA) as a function of the bulk Richardson number calculated from the meteorological data. The vertical dashed black lines represent edges
of the various atmospheric stability classes reported in Table 2. The green crosses indicate data corresponding to quality-controlled light
detection and ranging (LiDAR) scans
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with higher TI, which most probably correspond to passages of cold weather fronts.60 The various classes in the stable regime are simply defined

with evenly spaced ranges of TI, which are reported in Table 2.

5 ENSEMBLE STATISTICS OF CLUSTERED LIDAR DATA

For each cluster produced as a function of the incoming wind speed, U∗
hub

, and atmospheric stability regime, estimated either with RiB or TI, the

LiDAR data normalized by the incoming ABL profile (Equation (3)) and reported in a reference frame with x-direction equal to the respective wake

direction are post-processed in order to calculate their ensemble statistics. Statistically irrelevant circumstances, such as wind turbine shutdown,

and occurrence of wake interactions have been discarded for the present analysis.

For each cluster of the LiDAR data, ensemble statistics are calculated with the Barnes scheme.40,41 Grid characteristics for applications of the

Barnes scheme should be defined as a trade-off between spatial resolution of the available LiDAR data and spatial variability of the wake velocity

field. Considering that for wind-turbine wakes, velocity gradients in the radial direction are generally larger than those in the streamwise direction,

we calculated ensemble statistics of the LiDAR data over a cylindrical domain with streamwise resolution dx∕D = 0.5 and radial resolution of

dr∕D = 0.05. For each grid point (xj, ri), the average velocity field is calculated through the Barnes scheme as follows:

Ueq(xj, ri) =

∑n

k=1
U∗

eq(xk, rk)wk(xj)wk(ri)∑n

k=1
wk(xj)wk(ri)

, (11)

where n is the total number of LiDAR samples falling within the grid cell with centroid (xj, ri) while the streamwise weighting function is given by

wk(xj) = e
−

(xj−xk )
2

2𝜎2
x (12)

and the radial weighting function is

wk(ri) = e
− (ri−rk )

2

2𝜎2
r . (13)

The standard deviation of the two weighting functions is set equal to the respective grid resolutions, dx and dr, multiplied by a factor 𝛽 = 2,

which has been selected upon sensitivity analysis. As shown in Figure 10, a small value of 𝛽 leads to a poor averaging of the velocity profiles,

while larger values of 𝛽 entail an excessive spatial smoothing at regions with higher velocity gradients.

According to the Barnes scheme, for each grid point, the ensemble standard deviation is calculated as follows:

𝜎U(xj, ri) =

√√√√√√∑n

k=1

[
U∗

eq,k
− Ueq(xj, ri)

]2

wk(xj)wk(ri)∑n

k=1
wk(xj)wk(ri)

. (14)

The ensemble standard deviation, 𝜎U , encompasses velocity fluctuations associated with wake dynamics, such as meandering, turbulence,

wake vortical structures,17,61-63 and numerical errors due to the spatial variability of the mean velocity field within each grid cell.

The statistical significance of the ensemble statistics is checked by analyzing the number of LiDAR samples collected for each grid cell and

through the standard error of the weighted mean (SEWM). Under the assumptions of negligible correlation among the velocity fields acquired

FIGURE 10 Ensemble average of the light detection and ranging (LiDAR) measurements calculated with different 𝛽 values of the Barnes scheme.
LiDAR data are collected at x∕D = 1.75 ± 0.25 for the cluster with 0.76 < U∗

hub
≤ 0.80 and different TI: A, 4% < TI ≤ 5.5%; B, 13.5% < TI ≤ 19.4%
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through the various PPI scans and uniform uncertainty of the samples within each cell, the SEWM reads

𝜎<U> = 𝜎U

√√√√√√ n∑
k=1

⎛⎜⎜⎝
wk(xj)wk(ri)∑n

k=1
wk(xj)wk(ri)

⎞⎟⎟⎠
2

. (15)

For our analysis, grid points with 𝜎<U> larger than 0.8% are rejected in order to ensure an adequate accuracy in the analysis of the wake

velocity field for different clusters. The threshold value of 𝜎<U> = 0.8% has been selected upon sensitivity analysis on the wake statistics and

number of rejected LiDAR samples.

The above-presented statistical parameters are reported in Figure 11 for the cluster with normalized incoming wind speed between 0.71 and

0.76 and TI between 13.5% and 19.4%. In Figure 11A, the ensemble average of the streamwise velocity field clearly shows the presence of the

wake velocity deficit generated by the turbine rotor and wake recovery in the downstream direction. Grid points without any LiDAR sample are

left blank in Figure 11. Blank statistics typically occur in proximity of the wake center with increasing downstream distances due to the inclination

of the PPI plane and for lateral downstream locations due to the misalignment between the wake direction and the direction connecting the

location of the turbine under examination and the LiDAR location. In other words, the turbine wakes can cross the LiDAR measurement plane

with a certain yaw angle leading to nonsymmetric distribution of the LiDAR samples (Figure 11C).

In Figure 11B, the standard deviation of the streamwise velocity field highlights the typical higher velocity fluctuations in proximity of the wake

boundary, which reduce by proceeding downstream, as already documented through previous wind tunnel experiments61,62,64 and numerical

simulations.65,66 As mentioned above, the ensemble statistics need to be filtered in order to ensure statistical significance for the various clusters

of the LiDAR data. To this aim, the number of LiDAR samples for each grid cell (Figure 11C) is analyzed together with the SEWM (Figure 11D).

The iso-curve with a value equal to the selected threshold of SEWM = 0.8% is reported in Figure 11 as a black dashed line. The region with high

SEWM singled out for x∕D > 4 and r∕D < 0 is clearly related to the small number of LiDAR samples collected in that wake region, as shown in

Figure 11C. Other two regions with high SEWM and, thus, reduced statistical accuracy are detected in proximity of the wake boundaries in the

near-wake. This statistical feature is due to the lower number of samples acquired in the near wake and also to the enhanced velocity fluctuations

occurring in that region, as highlighted by the velocity standard deviation reported in Figure 11B. These enhanced velocity fluctuations are

most probably due to the detachment of wake vortical structures from the turbine rotor.17,61-63 Statistics at grid points with rejected values are

interpolated with the Matlab function inpaint_nans.67 This function interpolates NaN elements of a 2-D array by applying a ∇4 operator to the

non-NaN elements and performing a least-squares interpolation for the points of interest.

In Figure 12, wake profiles calculated along the transverse direction at different downstream locations are reported in terms of mean and

standard deviation of the normalized streamwise equivalent velocity, U∗
eq, for the cluster with normalized wind speed from 0.76 to 0.81 and TI

between 13.5% and 19.4%. In Figure 12A, the mean velocity profiles show the typical Gaussian-like wake already detected from previous field

experiments,15,49,68 wind tunnel tests,61,62 and numerical simulations.69 A certain level of asymmetry in the mean velocity field is observed on

the side of the wake, which might be due to the transverse variability of the incoming wind field. However, the velocity field results to be more

symmetric with respect to the center within the wake. The standard deviation of the streamwise velocity, 𝜎U , shows two peaks in proximity of

the wake boundaries, which then reduce moving in the downstream direction in agreement with previous numerical simulations70,71 and wind

tunnel experiments.61,62

For the characterization of the wake evolution among different clusters, the characteristic velocity deficit has been quantified through the

minimum of Ueq for each downstream location, U∗
min

, while three metrics have been used to quantify wake width as a function of downstream

position. First, we can define the wake width with the location where Ueq = 0.5 − 0.5 × U∗
min

. As second procedure, we can estimate the wake

width through the application of the integral form of the streamwise momentum-deficit budget, in analogy to the Jensen model.72 Initial wake

FIGURE 11 Ensemble statistics for the cluster of the light detection and ranging (LiDAR) data with 0.71 < U∗
hub

≤ 0.76 and 13.5% < TI ≤ 19.4%:

A, mean normalized streamwise equivalent velocity, Ueq; B, ensemble standard deviation, 𝜎U; C, number of samples per grid cell; and D, standard
error of the weighted mean (SEWM). The black dashed line represents the iso-contour with SEWM equal to 0.8%
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FIGURE 12 Transverse profiles of the velocity field at different downstream locations for the cluster with 0.76 < U∗
hub

≤ 0.81 and 13.5% < TI ≤
19.4%: A, mean normalized streamwise equivalent velocity Ueq; B, ensemble standard deviation, 𝜎U . Black lines represent extrapolated data

FIGURE 13 Ensemble mean velocity, Ueq, for the clusters with 0.76 < U∗
hub

≤ 0.80 and different atmospheric stability regimes: A, 4% < TI ≤ 5.5%,
B, 5.5% < TI ≤ 7%, C, 7% < TI ≤ 13.5%, D, 13.5% < TI ≤ 19.4%, E, 0.003 < RiB ≤ 0.007, F, 0.001 < RiB ≤ 0.003, G, 0.002 < RiB ≤ 0.001, and
H, -0.005 < RiB ≤ 0.002. Black line separates areas of measurement statistics and interpolated data

width, Rini, is estimated through the first method at xini∕D = 1.75 in order to preserve consistency among the different methods. The radius of the

wake R(x) must satisfy
Rini

∫
−Rini

(
1 − Ueq(xini, r)

) |r|dr =

R(x)

∫
−R(x)

(
1 − Ueq(x, r)

) |r|dr. (16)

The wake half-width, R, is obtained by solving Equation (16) iteratively by gradually increasing R at a specific downstream location.

The prediction of the wake width can also be obtained through a power-law model, which has been already used from previous works for

characterizing wind-turbine wakes.3,8,73-75 Downstream variation of the mean velocity deficit can be fitted through a power law as follows:

U∗
min = 1 − A

( x
D

)−N
, (17)

where A and N are parameters that should be determined from experimental data. Specifically, A is equal to the velocity deficit at x∕D = 1 and

N quantifies the wake recovery rate. In this paper, the ensemble-averaged velocity fields are leveraged to estimate the initial velocity deficit A

and wake recovery rate N through a least-squares fitting. According to mass and streamwise momentum conservation, the wake width can be

quantified as75,76

b1∕2 = B
( x

D

)M
, (18)

where M represents wake expansion and B is the initial wake width at x∕D = 1. Based on mass and momentum conservation, it is found that

M = N∕2.77

As shown in Figures 13, 14, and 15, the three procedures to estimate the wake width agree remarkably well in the near wake. Interestingly,

the wake width based on mass conservation shows a rapid expansion for x∕D ≳ 5, which might be due to a less axisymmetric morphology of

the wake velocity field and inclination of the PPI planes. It is noteworthy observing how the wake boundaries are practically co-located with the

regions with enhanced standard deviation.

Ensemble statistics for each cluster of the LiDAR data in terms of mean and standard deviation of the streamwise velocity field are reported in

the Appendix A. A comparison among ensemble statistics of clusters of the LiDAR data with normalized wind speed between 0.76 and 0.80 and
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FIGURE 14 Ensemble standard deviation, 𝜎U , of the light detection and ranging (LiDAR) wake measurements for the clusters with 0.76 < U∗
hub

≤
0.80 and different atmospheric stability regimes: A, 4% < TI ≤ 5.5%, B, 5.5% < TI ≤ 7%, C, 7% < TI ≤ 13.5%, D 13.5% < TI ≤ 19.4%, E, 0.003 <

RiB ≤ 0.007, F, 0.001 < RiB ≤ 0.003, G, 0.002 < RiB ≤ 0.001, and H, -0.005 < RiB ≤ 0.002. Black line separates areas of measurement statistics
and interpolated data

different atmospheric stability regimes is now presented. The respective ensemble averages are reported in Figure 13A-D when LiDAR data are

clustered as a function of TI, while in Figure 13E-H for clusters based on RiB . First, effects of atmospheric stability on downstream evolution are

well captured with clusters based either on TI or RiB . Specifically, as already highlighted from previous LiDAR campaigns,8,9 enhanced turbulence

intensity of the incoming wind field leads to a faster recovery of the wake velocity deficit and faster wake expansion. Furthermore, we can

observe that clustering with either TI or RiB enable an effective characterization of wake variability as a function of the atmospheric stability.

A quantification of the effects of atmospheric stability on wake recovery will be provided in the next section.

The analysis of the ensemble standard deviation of the velocity field also provides important information on the wake characteristics (Figure 14).

As mentioned above, enhancement in 𝜎U is generally observed at the side boundaries of the wake followed by a downstream reduction. The

regions with higher 𝜎U are generally narrower for stable atmospheric conditions (low TI or positive RiB), while they become more diffused for

convective atmospheric conditions (higher TI or negative RiB). For convective conditions, the maximum values of 𝜎U also increase, indicating that

on top of the wake-generated turbulence and detachment of wake vorticity structures, significant meandering oscillations are induced by the

higher incoming turbulence intensity. It is interesting to observe that these ensemble statistics allow a good estimate of the incoming atmospheric

turbulence as well.

Effects on wind-turbine wakes due to different incoming wind speed and, thus, different thrust coefficient of the rotor, Ct , can be observed by

selecting only clusters of the LiDAR data with similar atmospheric stability regimes. Specifically, the clusters of Figure 15 are all characterized by

an incoming turbulence intensity between 7% and 13.5%. Starting from the cluster in Figure 15A with relatively low incoming wind speed (0.44 <

U∗
hub

≤ 0.53), a well-demarcated velocity deficit is observed downstream of the turbine rotor with associated regions of enhanced 𝜎U at the wake

boundaries (Figure 15E). Increasing the incoming wind speed to the range 0.71 < U∗
hub

≤ 0.76, the wake velocity deficit is generally increased

(Figure 15B) and, as a consequence of the enhanced axial shear, the wake added turbulence intensity is also increased (Figure 15F). These wake

FIGURE 15 Ensemble statistic for the light detection and ranging (LiDAR)–data clusters with 7% < TI ≤ 13.5%: A, and E, 0.44 < U∗
hub

≤ 0.53,

B, and F, 0.71 < U∗
hub

≤ 0.76, C, and G, 0.85 < U∗
hub

≤ 0.9, and D, and H, 1 < U∗
hub

≤ 1.04. Ensemble mean, Ueq, is in A, B, C, and D, while the
ensemble standard deviation, 𝜎U , is in E, F, G, and H
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features are consistent with an increased thrust coefficient, Ct , as estimated from the SCADA data and showed above in Figure 7C. For the cluster

with 0.85 < U∗
hub

≤ 0.9, the turbine operations transition from regions 2 to 3 of the power curve by pitching the blades (Figure 7B) and leading to

a reduction of Ct (Figure 7C). The transition from regions 2 to 3 of the power curve is clearly captured through the LiDAR measurements; indeed,

a reduced velocity deficit and wake-generated turbulence are observed in Figure 15C,G, respectively. By further increasing the incoming wind

speed to the range 1 < U∗
hub

≤ 1.04 and, thus, further reducing Ct , the wake velocity deficit becomes very mild, together with a reduction of the

standard deviation of the velocity at the wake boundaries.

It is noteworthy that the variation of the thrust coefficient, Ct , does not only affect the velocity deficit, but the wake width and recovery as

well. Indeed, in case of a larger Ct , such as for Figure 15B, the larger velocity deficit and axial shear lead to enhanced wake-generated turbulence

(Figure 15F), which promotes flow entrainment within the wake and, in turn, a faster wake recovery. In contrast, for lower Ct , such as for

Figure 15D,H, even though the velocity deficit is weaker, it persists further downstream because wake diffusion mainly occurs due to the incoming

atmospheric turbulence. Combined effects of atmospheric and wake-generated turbulence will be quantified in detail in the following section.

6 MODELING WAKE RECOVERY FOR DIFFERENT INCOMING WIND SPEEDS AND
ATMOSPHERIC STABILITY REGIMES

The aim of this section consists in quantifying downstream wake evolution for different turbine settings, thus Ct , and atmospheric stability

regimes. For each cluster of the LiDAR dataset, the maximum ensemble-averaged velocity deficit is considered as the characteristic velocity

deficit to investigate wake recovery. For the various clusters obtained with different ranges of U∗
hub

and atmospheric stability regime, classified

either through TI or RiB , the maximum ensemble-averaged velocity deficit is reported in Figure 16 together with the respective fitting lines

obtained with the power law of Equation (17). Clusters for which the average velocity field has less than 80% of the grid points with SEWM

lower than 0.8% are omitted for this analysis.

An evident increase in the slope of the fitting lines is observed by transitioning from stable to convective stability regimes, which corresponds

to an increasing exponent N moving from the first column on the left-hand side of Figure 16 towards the last column at the right-hand side.

This analysis corroborates results from previous LiDAR experiments performed for different atmospheric stability regimes.8 For normalized wind

speeds lower than 0.81, which correspond basically to turbine operations with constant Ct in region 2 of the power curve, the fitting lines obtained

for the same stability class practically overlap. For higher wind speed, namely transitioning from regions 2 to 3 of the power curve, the increased

blade pitch angle and, in turn, reduced Ct , leads to a reduction of the velocity deficit, and, as it will be shown in the following, in a reduction of

the coefficient A of Equation 17. Indeed, in each panel of Figure 16, the origins of the fitting lines at the closest downstream location generally

increase for darker lines, namely by reducing U∗
hub

. Furthermore, the good agreement between the results obtained by clustering the LiDAR data

as a function of TI or RiB suggests that variability in wake recovery induced by atmospheric turbulence is well-captured through this analysis.

In order to provide a quantitative analysis on the wake recovery for different turbine settings and atmospheric stability regimes, the fitting

parameters A and N of Equation (17) obtained by clustering the LiDAR data with U∗
hub

and TI are reported in Figure 17A, B, respectively. Parameter

FIGURE 16 Downstream evolution of the maximum velocity deficit for different clusters of the light detection and ranging (LiDAR) data: A, 4%
< TI ≤ 5.5%, B, 5.5% < TI ≤ 7%, C, 7% < TI ≤ 13.5%, D, 13.5% < TI ≤ 19.4%, E, 19.4% < TI ≤ 38.5%, F, RiB ≤ -0.005, G, -0.005 < RiB ≤ -0.002,
H, -0.002 < RiB ≤ 0.001, (I) 0.001 < RiB ≤ 0.003, and (J) RiB > 0.003. The solid lines represent fitting of the experimental data with the power law
of Equation (17)
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FIGURE 17 Fitting parameters for power law of Equation (17): A, A as a function of Ct , B, N as function of TI, C, A as function of Ct and TI, and
D, N as function of Ct and TI

FIGURE 18 Linear regression of the normalized power-law parameters A* and N* with C∗
t and TI* : A, A* vs C∗

t , B, A* vs TI* , C, N* vs C∗
t , and D, N*

vs TI* . All the parameters are normalized with respect to their minimum and maximum values

A is related to the axial induction exerted by the turbine rotor, a.3,75,78 By assuming a linear relationship between parameter A and the axial

induction factor, a, such as A = ka + b, Equation (7) can be recast as follows:

Ct = 4

(
A − b

k

)(
1 − A − b

k

)
+ 𝛼. (19)

By fitting the values of Ct as a function of A (Figure 17A) with Equation 19, it is obtained that k = 1.8, b = -0.07, 𝛼 = −0.36, and R−square = 0.89,

which indicates a good fitting of the experimental data with this quadratic function. By plotting parameter A as a function of Ct and TI in

Figure 17C, it is observed that the dependence of A from TI is practically negligible; indeed, the experimental data have a uniform scatter around

the fitting surface of Equation (19). This observation is further corroborated through the linear regression of the various parameters normalized

with their respective minimum and maximum values, eg, A* = (A − Amin)∕(Amax − Amin), which is reported in Figure 18. A similar normalization has

been performed to generate parameters N* , C∗
t , and TI* . The linear regression between A* and C∗

t produces a correlation coefficient of 0.908 with

a slope of 0.95. In contrast, the linear regression between A* and TI* produces a correlation coefficient of 0.292 with a slope of 0.28, which

confirms the negligible influence of the incoming turbulence intensity on the near-wake velocity deficit.

The rate of wake recovery, which is represented by the exponent N of Equation (17), is plotted as a function of TI in Figure 17B. As expected,

an evident increase of N is observed with increasing TI representing the faster wake recovery transitioning from stable to convective atmospheric

conditions. Furthermore, a secondary trend of N is observed as a function of Ct . Specifically, for a given range of TI, N slightly increases with

increasing Ct . This trend is consistent with an enhanced wake recovery associated with the wake-generated turbulence, which is the result of
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higher Ct and velocity deficit. Indeed, by plotting N as a function of TI and Ct in in Figure 17D, it is understandable that the coupled effects of

incoming and wake-generated turbulence on wake recovery rate can be modeled through a logistic function, such as

N = c
⎛⎜⎜⎝1 + e

−𝛽

(
C

p1
t

TIp2
−b

)⎞⎟⎟⎠
−1

. (20)

The fitting of the experimental data with Equation (20) (R-square = 0.94) produces a growth rate 𝛽 = 14.824, an inflection point b = 0.411,

and upper asymptotic value c = 1.1. The exponents for Ct and TI are fitted with p1 = 0.273 and p2 = 0.348, respectively. It is difficult to quantify

the significance of Ct and TI on the variability of N from the numerical values obtained for the coefficients p1 and p2. However, from the results

of the linear regression between N* vs C∗
t and TI* , which are reported in Figure 18C,D, respectively, it is confirmed the strong dependency of

N from TI (correlation coefficient of 0.936 and slope of 0.9) with a smaller, but nonnegligible, dependence from Ct with a slope of 0.43 and

correlation coefficient of 0.409. This result suggests that the variation of Ct and, thus of the wake velocity deficit and shear, affects downstream

wake evolution by enhancing flow entrainment within the wake, which is promoted by the increased wake-generated turbulence. Therefore,

for modeling wind-turbine wakes and wind farms, it is deemed important that turbulence models should include both contributions due to the

incoming atmospheric turbulence and wake-generated turbulence for reproducing accurately wake recovery.

7 DISCUSSION AND CONCLUDING REMARKS

A LiDAR campaign was carried out for an onshore wind farm in North Texas with the aim of estimating first- and second-order statistics of the

wake velocity field generated by isolated wind turbines for different turbine settings, i.e., thrust coefficient of the turbine rotor, and atmospheric

stability regimes. Wind data were collected with a scanning Doppler wind LiDAR for a period between August 2015 and March 2017, together

with meteorological and SCADA data. The LiDAR scanning strategy consisted of multiple narrow PPI scans probing isolated wind-turbine wakes,

namely by avoiding occurrence of wake interactions. Almost 10 000 single-wake scans have been analyzed and clustered as a function of

the incoming wind speed at hub height and atmospheric stability regime, which is classified through the Bulk Richardson number or incoming

turbulence intensity at hub height.

Characterizing atmospheric stability for wind energy applications is not an easy task, especially considering the typical availability of

meteorological data for existing power plants. The atmospheric stability condition can be characterized through the Bulk Richardson number,

which provides a comparison between the two main forcing on the ABL flow, namely buoyancy and shear force, or the Obukhov length. The

former requires for its calculation temperature and velocity measurements at different heights in the range of the rotor disk, while the latter needs

high-frequency measurements of momentum and heat fluxes in the surface layer. In case meteorological data are not available, other engineering

parameters, such as wind turbulence intensity and shear exponent, can be considered as alternative criteria to characterize the atmospheric

stability regime. In this study, we have shown that a cluster analysis based on the Bulk Richardson number leads practically to the same statistical

characterization of the variability of wind-turbine wakes as for a cluster analysis performed by leveraging the wind turbulence intensity at hub

height. Therefore, considering that this wind parameter is often stored through the SCADA for each wind turbine for 10-minute periods, it

is definitely advantageous to develop wake engineering models with parameters tuned on the incoming turbulence intensity for reproducing

modulations on the wake evolution due to the atmospheric stability, as it has been proposed recently with a parabolic RANS model.1,38

In this paper, we provide guidelines for an accurate cluster-statistical analysis of LiDAR measurements, which are the results of an

extensive experimental experience consisting of about 2-year-duration field deployment and related data post-processing. The first step for

the post-processing is the overlapping of different LiDAR data collected through different scans over a common reference frame, while using

consistent physical data from the various LiDAR scans. To this aim, we have shown that the quantification of the wake direction is crucial for this

task and it represents the common x-direction of the used reference frame. The wake direction is estimated through a weighted linear fitting

of the wake centers, which are identified through the Gaussian fitting of the wake velocity field. Each velocity field is made nondimensional

through the vertical profile of the incoming wind speed, which is calculated directly from the LiDAR scan under examination and not leveraging

other measurements, such as meteorological data or periodic LiDAR measurements performed with other scans, eg, Doppler beam swinging

(DBS) or velocity azimuth display (VAD). This measurement strategy resulted to be instrumental to ensure a good accuracy in the statistical

characterization of the wake velocity field.

In this paper, we have described in detail the calculations of the ensemble statistics from non-colocated and non-simultaneous LiDAR

measurements through the Barnes scheme. Guidelines are provided for the selection of the grid-cell size, which is used for the calculation of the

ensemble statistics, and radii of the weighting functions. Besides the calculation of the average velocity field, this approach enables the calculation

of the standard deviation which encompasses information for the wake turbulence intensity. Obtaining turbulence statistics for non-colocated

and non-simultaneous data is still a big challenge for atmospheric turbulence.79 Furthermore, in this paper, we have proposed a parameter for

quantifying accuracy in the calculation of the ensemble average, namely the SEWM. We used a threshold for the SEWM equal to 0.8% to reject

data with poor statistical accuracy.
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The coupled cluster-statistical analysis has enabled to single out a reduced normalized velocity deficit when wind turbine operations transition

from regions 2 to 3 of the power curve as a consequence of the increased blade pitch angle and reduced thrust coefficient. Wake recovery is mainly

governed by the turbulence intensity of the incoming wind; indeed, higher turbulence intensity promotes turbulent mixing and flow entrainment

into the wake leading to a faster wake recovery. Furthermore, the accuracy achieved through the proposed cluster-statistical analysis has allowed

detecting a secondary effect on the wake recovery rate due to the variation of the rotor thrust coefficient. A larger thrust coefficient, which is

typical for operations in region 2 of the power curve aiming to maximize power capture, generates an enhanced velocity deficit and radial shear

of the streamwise velocity, which is the source for a more intense mechanically-generated turbulence. This added wake-turbulence promotes

wake mixing and recovery, similarly for an increase of the incoming turbulence intensity, yet with smaller impact on the wake recovery rate.

This qualitative information gathered on the variability of a turbine wake for different operative conditions and atmospheric stability regimes

have been embedded in a quasi-empirical model for predictions of the maximum velocity deficit as a function of the downstream position.

Downstream evolution of the maximum velocity deficit has been characterized through a power law. It has been shown that the velocity

deficit in the near wake has a quadratic relationship with the turbine thrust coefficient, while it is practically independent on the turbulence

intensity of the incoming wind. For the parameter of the power law representing the wake recovery rate, it can be predicted through a p-logistic

function encompassing both primary dependency with incoming turbulence intensity and secondary effects related to the rotor thrust coefficient.

Therefore, a simple model for predicting downstream evolution of the maximum wake velocity deficit is now available just providing incoming

turbulence intensity and rotor thrust coefficient.

The various steps described in this paper for post-processing of the LiDAR data, such as use of a common reference frame and non-dimensional

wind data, proper calculation of the ensemble statistics through the Barnes scheme, and quantification of the statistical accuracy, are important

to single-out the physics underpinning various flow phenomena, especially in presence of complicated flow features, such as distortions and

speed up induced by the site topography. We believe that these tasks for data-post-processing should be standardized through the wind energy

research community in order to enable inter-comparisons among different experimental datasets and assessment of numerical models. This

dataset is made publicly available.80
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APPENDIX A: : FIRST- AND SECOND-ORDER STATISTICS OF THE WAKE VELOCITY FIELD FOR THE VARIOUS CLUSTERS OF

THE LIDAR DATA
Mean velocity and standard deviation of the wake velocity fields are reported for the various clusters in two forms, namely color maps and

transverse profiles at hub height for six different downstream locations. This is the list of the figures reported in the following:

- Color maps of the mean velocity field calculated for clusters based on normalized wind speed at hub height, U∗
hub

, and turbulence intensity, TI,

are reported in Figure A1.
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- Color maps of the velocity standard deviation calculated for clusters based on normalized wind speed at hub height, U∗
hub

, and turbulence

intensity, TI, are reported in Figure A2.

- Color maps of the mean velocity field calculated for clusters based on normalized wind speed at hub height, U∗
hub

, and Bulk Richardson number,

RiB , are reported in Figure A3.

- Color maps of the velocity standard deviation calculated for clusters based on normalized wind speed at hub height, U∗
hub

, and Bulk Richardson

number, RiB , are reported in Figure A4.

- Transverse profiles at hub height of the mean velocity field calculated for clusters based on normalized wind speed at hub height, U∗
hub

, and

turbulence intensity, TI, are reported in Figure A5.

- Transverse profiles at hub height of the velocity standard deviation calculated for clusters based on normalized wind speed at hub height,

U∗
hub

, and turbulence intensity, TI, are reported in Figure A6.

- Transverse profiles at hub height of the mean velocity field calculated for clusters based on normalized wind speed at hub height, U∗
hub

, and

bulk Richardson number, RiB , are reported in Figure A7.

- Transverse profiles at hub height of the velocity standard deviation calculated for clusters based on normalized wind speed at hub height,

U∗
hub

, and bulk Richardson number, RiB , are reported in Figure A8.
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FIGURE A1 Ensemble-average of the wake velocity field, Ueq, clustered as a function of incoming wind speed and turbulence intensity at hub
height
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FIGURE A2 Ensemble standard deviation of the wake velocity field, 𝜎U , clustered as a function of incoming wind speed and turbulence intensity
at hub height
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FIGURE A3 Ensemble-average of the wake velocity field clustered as a function of incoming wind speed and bulk Richardson number
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FIGURE A4 Ensemble standard deviation of the wake velocity field clustered as a function of incoming wind speed and bulk Richardson number



24 ZHAN ET AL.

FIGURE A5 Profiles of the ensemble-average of the wake velocity field clustered as a function of incoming wind speed and turbulence intensity
at hub height
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FIGURE A6 Profiles of the ensemble standard deviation of the wake velocity field clustered as a function of incoming wind speed and
turbulence intensity at hub height
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FIGURE A7 Profiles of the ensemble-average of the wake velocity field clustered as a function of incoming wind speed and bulk Richardson
number
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FIGURE A8 Profiles of the ensemble standard deviation of the wake velocity field clustered as a function of incoming wind speed and bulk
Richardson number
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