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Abstract—Recent decades have seen a significant increase in the frequency, intensity, and impact of natural disasters and other
emergencies, forcing the governments around the world to make emergency response and disaster management national priorities.
The growth of extremely large and complex datasets —commonly referred to as big data —and various advances in information and
communications technology and computing now support more effective approaches to humanitarian relief, logistical coordination,
overall disaster management, and long-term recovery in connection with natural disasters and emergency events. Leveraging big data
and technological advances for emergency management has attracted considerable attention in the research community. However, the
desired merging of big data and emergency management (BDEM) requires coordinated efforts to align and define interdisciplinary
terminologies and methodologies. To date, the key concepts and technologies in this emerging research area have not been coherently
discussed in a sufficiently broad and multidisciplinary manner. In this article, an international team presents an overview of the BDEM
domain, highlighting a general framework and discussing key challenges from several perspectives. We introduce and summarize
typical technologies and applications, organized into the six broad categories of remote sensing, resilient communication networks,
mobile communication networks, human mobility and urban sensing, social network analysis, and knowledge graphs. Finally, we
outline several directions of future research.

Index Terms—Disaster Informatics, Urban Computing, Smart City, Emergency Management.

F

1 INTRODUCTION

HURRICANES, earthquakes, floods, terrorist acts, and
catastrophic infrastructure failures cause immense

physical destruction and catastrophic loss of life and prop-
erty around the world. In recent decades, the frequency,
intensity, and impact of disastrous events have increased
significantly. Faced with such events, governments have rec-
ognized that emergency response and disaster management
are major concerns requiring concerted efforts in collabora-
tion with business and academia. Contemporary informa-
tion and communications technology and the emergence of
extremely large and complex datasets (i.e., big data) have
made it possible to employ advanced techniques to reveal
patterns, trends, and associations that enhance situational
awareness and decision-making in emergency scenarios.
Data-driven emergency response and management have
been successfully applied in many recent events, including
large-scale natural disasters.

For example, real-time mapping of road conditions dur-
ing an emergency, from congestion to blockages, allows
intelligent support for emergency vehicle navigation, trans-
portation of rescue teams, distribution of supplies, and
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dispatching of volunteers. During the 2011 East Japan
Earthquake, the road network was severed numerous times
across a very wide area. In response, actual traffic data
collected via GPS sensors from moving vehicles was used
to derive a real-time road map. This so-called “probe in-
formation service,” based on collecting GPS sensor data
via the car navigation systems of subscribed vehicles, was
originally intended for daily monitoring of road traffic. In
2006, the use of this service for purposes of disaster response
was studied by ITS Japan (NPO) and Honda Motor Co.
During the 2011 earthquake, the probe information service
was deployed to aggregate daily traffic data from multiple
private companies, including Honda, Pioneer, Toyota, and
Nissan. This allowed the generation of high-fidelity road
passage maps that greatly aided disaster recovery activities
[1].

Numerous other examples have led to the use of ad-
vanced computing and big data for emergency management
attracting considerable attention from the research commu-
nity. However, the delineation of a coherent research agenda
remains elusive.

1.1 Big Data and Emergency Management

A comprehensive approach to emergency management is
a difficult endeavor, involving access to diverse types of
information through heterogeneous channels that can re-
spond to dynamic updates over time. Indeed, big data and
emergency management (BDEM), as an emerging research
area, springs from fundamentally different intellectual lin-
eages and societal contexts. There is innate tension between
the technological capabilities and well-meaning ambitions
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of big data (BD) experts and the real-world needs and
constraints of emergency management (EM) practitioners.

Over the past five years, several survey articles have
summarized existing terminology and methodologies [2],
[3], [4], [5] in data-driven disaster management. However,
these summaries typically only cover state-of-the-art or key
technologies in one or two specific research areas, such
as data mining, machine learning, or communication net-
works. However, BDEM involves cross-domain terminology
and methodologies and should be carried forward by mul-
tidisciplinary and international efforts. To this end, we formed
a multidisciplinary team of 13 experts from nine institutions with
backgrounds ranging from computer science to communications
engineering, remote sensing, cartography, and GIS. The main
focus of this paper is to present an overview of major BDEM
concepts, introduce an overarching framework and key data
sources, and discuss the main challenges from an interdis-
ciplinary perspective. We introduce and organize the core
BDEM technologies and applications into six categories,
namely remote sensing technologies, resilient communica-
tion networks, mobile communication networks, human
mobility modeling and urban sensing, online social network
analysis, and knowledge graphs. Finally, we provide our
key findings, present an outlook on the future of the BDEM
domain, and suggest several future research topics.

The remainder of this article is structured as follows.
Section 2 provides an overview of the concept of big data
and emergency management and discusses the key challenges
in the field. Section 3 covers remote sensing technologies
for EM. Sections 4 and 5 describe resilient communication
networks and mobile communication networks for EM. Sec-
tion 6 then introduces human mobility modeling and urban
sensing for EM. Sections 7 and 8 introduce online social
network analysis and knowledge graphs for EM. Finally,
Section 9 reflects on the state of the domain and delineates
ongoing research challenges and topics for consideration by
the community.

2 OVERVIEW OF THE CONCEPT

2.1 Overview of the General Concept
Figure 1 depicts the general concept of BDEM. The main
purpose of BDEM is to explore effective methodologies and
sustainable solutions to screen the critical and heteroge-
neous information, detect and predict relief demands, help
managers to make effective decisions, then, integrate them
to construct a real-time knowledge system.

During a crisis, everybody involved - the public, the
media, the government, emergency services, relief organiza-
tions, and others- can contribute towards prompt situational
awareness. Social network information, population location
information, and sensor information represent the main
channels through which people collectively build aware-
ness, with the advantages of being distributed, far-reaching,
and instantaneous. And as the disaster evolves, the quantity
and quality of the information will also grow as illustrated
by the timeline. To effectively collect, transmit, extract,
analyze, conserve, and utilize the information, three key
technical parts are essentially needed which are infrastruc-
tural technology (resilient communication networks, mo-
bile communication networks), analysis technology (remote

sensing technologies, human mobility modeling and urban
sensing, online social network analytic), and superstructural
technology (knowledge graphs). We describe the overall
framework in the following lines.

In large-scale emergencies, data-driven emergency re-
sponse is usually quite challenging under the state of emer-
gency as the underlying communication networks are also
disrupted. Thus, building resilient communication networks
for data collection and dissemination is essential for effec-
tive emergency response. Besides, the emergency communi-
cation networks (ECNs) need to be immediately established
to respond to post-disaster operations. For example, the
ECN Center can collect messages from disaster areas and
notify the victims of the required actions for disaster-relief.
When a group of smart-phones connect to the Internet
through cellular or Wi-Fi networks, or when they connect
together under a certain topology using the built-in Blue-
tooth technology, a sensor network is actually constructed
and can be exploited to organize ECNs for disaster-relief
tasks.

While the natural disasters or emergency events occur,
satellite remote sensing systems offer valuable observation
data (e.g. satellite imagery) for constant monitoring of at-
mospheric and surface patterns linked to natural emer-
gencies. Furthermore, satellite communication is essential
for operative emergency response, especially in position
location, alerting, data collection, and harmonizing relief
procedures. Meanwhile, based on human mobility and ur-
ban sensing data, it is critical for modeling and predicting
human behavior and their travel routes in order to de-
sign appropriate transportation scheduling, humanitarian
aid, and emergency management. At the same time, social
media messages during emergencies and disasters can be
analyzed to model and predict human evacuation behaviors
and collect relevant information such as caution-advice and
damage reports, request and offer to help as well as emo-
tional support for the affected community. After integrating
these results, the disaster development can be emulated.
Considering the nature of the data is highly heterogeneous,
and from multiple sources with varying levels of quality
and correctness, a collaboration mechanism will be estab-
lished within each development step to cleanse the chaotic
information.

Finally, based on the constructed resilient communi-
cation networks and smart-phone based ECNs, the big
and heterogeneous data source and analysis result will be
collected that include automated and human sensor data,
mobility and communication data, online social network
data and open and government data. Knowledge graphs
and the semantic technologies they build on offer the un-
foreseeable ways to make these data be rapidly interpretable
and available for complex and querying, processing, and
reasoning.

2.2 Key Challenges

As an emerging field, BDEM faces tremendous challenges
as follows:

Sensing technologies and data acquisition: Following
natural or man-made disasters, effectively sensing and mon-
itoring the event status while unobtrusively and continually
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Fig. 1: Overview of the General Concept.

collecting observation data will become a key problem for
emergency management teams. Nowadays, users have to
evaluate the nature of the emergency and select the appro-
priate sensor for the job. One sensor might be appropriate
in terms of spectral resolution, but offer limited temporal
resolution and become unusable under cloud coverage.

Disasters can potentially destroy the power supply in-
frastructure and cause massive outages. Thus, maintaining
the live status of large numbers of sensing devices with
a limited power budget becomes an intractable challenge.
In the era of big data, human sensing is an emerging
approach for tackling this challenge. However, this modality
faces challenges in terms of privacy, loosely controlled and
nonuniform distributed sensors, and unstructured, implicit,
and noisy data, as discussed in [6].

Computing with big and heterogeneous data: Though
there is an enormous amount of big data (such as social
media data [7], human mobile GPS data [8], and satellite
image data [9]) involved in emergency management, tack-
ling various issues related to the volume, variety, velocity,
variability, validity, volatility, vulnerability, and veracity of
these data are vital in utilizing all available information.
There is a need to investigate new techniques for integrating
data from distinct resolutions and spatiotemporal scales
with different emergencies.

Additionally, how to effectively utilize a deluge of spatial
information under the development of Internet of Things
(IoT) is a key challenge. [10]. In the real world, time-critical
data from sensors and social media increases rapidly in any
given emergency event. Therefore, it is essential to develop
new analytical tools and techniques, which will create a
new level of abstraction and provide novel insights into the
patterns of the emergency event.

Human behavior understanding and modeling: Dur-
ing disaster scenarios in urban districts (for example, a
large fire in a tall building or an explosion in a crowded
area), people easily become panicked, which can result in
casualties. Thus, providing efficient evacuation guidance to
the crowd is of great importance. This can be realized by
understanding and modeling the human mobility of the
crowd following a disaster.

Obviously, the modeling, perception, and accurate fore-
casting of human behavior during an emergency will play
a critical role in efficient emergency management. How-

ever, human behavior and movement patterns usually have
excessive degrees of freedom and inconsistencies, and are
impacted by many factors (e.g., weather, urban structure,
event type, traffic conditions). Thus, human mobility and
behavior are very difficult to model and predict.

Big data for relief decision making: As the ”terminal”
of the emergency management system, emergency decision
making (EDM) is receiving more and more attention. Math-
ematical models are the most common way to conceptual-
ize the optimization problem in relief. When facing emer-
gencies, different mathematical models should be estab-
lished according to different requirements. There are three
main categories, including evacuation oriented optimized
scheduling model, resource allocation optimization model,
and logistics optimization model.

Usually, the proposed mathematical models are NP-
hard when considering many practical constraints and the
results cannot be obtained in polynomial time. When tak-
ing the ”deluge” of information of emergency situation
into consideration, solving the mathematical models are
time-consuming. How to coupling the above preanalysis
techniques to realize the real-time optimization for relief
decision making will be challenging works.

3 RESILIENT COMMUNICATION NETWORKS FOR
EMERGENCY MANAGEMENT

Data-driven emergency management usually requires dis-
tributed data to be collected in real time due to the distri-
butional and exceptional nature of an emergency. Unfortu-
nately, this is quite challenging during an emergency, as the
communication networks are usually disrupted. In large-
scale emergencies, many resources, from societal infras-
tructure to computing and communication resources, may
become unavailable or disrupted over a large geographical
area and for a long period of time, depending on the type,
scale, and degree of the emergency. Up to 1.9 million fixed
communication lines and 29, 000 base stations (BSs) were
damaged by the 2011 Great East Japan Earthquake [11].
In spite of this, the use of computing and communication
resource during an emergency is important, and there may
be a much higher demand for resources in both the stricken
area and the wider community. For example, during the
2011 Great East Japan Earthquake, fixed-line phone traffic
was 4–9 times the normal level (NTT East), and mobile
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Fig. 2: Resilient communication networks for Big Data col-
lection and information dissemination in emergency man-
agement.

phone calls increased by a factor of 50–60 (NTT DoCoMo).
Under such conditions, carriers had to block 80–90% of fixed
phone calls and 70–95% of mobile phone calls [12]. Thus,
the physical damage and/or congestion of communication
networks makes real-time information collection and dis-
semination for emergency management quite challenging.

Building resilient communication networks for data col-
lection and information dissemination in emergency man-
agement is essential. The data flows during an emergency
are depicted in Fig. 2, where various kinds of data are
collected from the emergency sites (on the left) through
the communication networks, and the emergency response
decisions based on BD analytics, such as evacuation guid-
ance and rescue instructions, are disseminated to their des-
tinations (on the right). Useful information, such as road
conditions, availability of medical help, and survivor loca-
tions, can be derived from the big data and external static
data, such as map information. To disseminate information
that assists survivors, rescue activities, and other kinds of
disaster response activities, a working network is a neces-
sity. Hence, communication methods provided by various
network facilities play a key role in the emergency response.
Mechanisms for discriminating among the raw data col-
lected from sources such as environmental sensors and mo-
bile phones, efficiently distributing information, refining the
information, and reforming computing and communication
resources based on this information are the keys to ensuring
the smooth flow of information for emergency response.

3.1 Key Technologies and Methodologies
During an emergency event such as a natural disaster,
we need to know and inform people about safe locations,
food sources, resources such as hospitals and gas stations,
and the road conditions. To collect and disseminate such
information, we need a functional communication network.
However, many network elements (nodes and links) may
have been destroyed during the disaster. Therefore, a com-
munication network that can survive a tremendous range
of failures is instrumental in any data-driven emergency
management system. Given the intrinsic difference between
the backbone and access points of communication networks,
we consider two different approaches for each: fast resilient
mechanisms for backbone networks and on-site networking
for wireless access networks.

Resilient communication networks can swiftly recover
when the communication infrastructure is partially dam-
aged during an emergency. In the backbone part, this is
possible because the networks are spread over a wide ge-
ographical area so that, even when a major disaster occurs,
part of the backbone network resources will still be avail-
able. As access networks are usually located over small geo-

graphical areas close to users, the whole network may be de-
stroyed by an emergency. Hence, constructing a new access
network swiftly with the available commodity devices may
take much less time and effort than restoring the destroyed
ones. Integrating both approaches allows the whole network
to provide non-stop services on an end-to-end basis. We
discuss four key technologies for improving the resilience of
communication networks, namely survivable network de-
ployment, demand-driven network resource management,
ad hoc networking, and delay/disruption-tolerant network-
ing.

3.1.1 Survivable Network Deployment
Research on network survivability dates back to graph the-
ory [13], which states that a graph is k-vertex connected if
and only if there are at least k vertex-disjoint paths between
any two vertices. A similar result holds for edge connectiv-
ity. For the communication network to survive emergency
events, it must be deployed with consideration of its ro-
bustness. The robustness of a network can be viewed as the
cost or difficulty of destroying the desired connectivity of
the network. The connection between two or more nodes in
a network can be disrupted by destroying some network
elements (nodes or links). In general, two links that are
physically close to each other are more likely to fail together
than two links that are far apart. Network designers should
make the network as robust as possible under the given
budget for network resources.The heterogeneity of modern
networks means that traditional k-node connectivity and k-
link connectivity-based approaches [14] are inadequate for
modeling the robustness of modern networks. To model
network failures in the event of emergencies, the notion of
k-link connectivity should be extended to deal with cases
where there is a cost for destroying a particular subset of
network elements. This can be modeled as the probability of
a subset of network elements being destroyed by an emer-
gency event. The book by Frank and Frisch [14] contains an
excellent discussion of most of the early works on the appli-
cation of network flow theory to the design and analysis of
what was then called invulnerable networks. Subsequently,
significant advances of both theoretical and practical values
have been reported. These developments are the result of
advances in techniques for algorithm design.

Additionally, since it is not realistic to deploy a network
anew, a practical method is to augment an existing network
by adding new network elements. For example, satellite
links may be added to significantly improve the robustness
of a network, since the satellite links are less likely to fail
together with the links in the ground in the event of a
disaster. However, augmenting a network incurs a cost.
We will study efficient ways to maximize the robustness
of a network under given resource constraint. Since our
network-upgrading problem is an offline optimization prob-
lem, combinatorial optimization approached will be used.
We will study generalizations of these approaches to the
network- upgrading problem here. We need study efficient
algorithms for computing the s− t tolerance of a given pair
of nodes s and t, given the information on the cost for
destroying a subset of network elements. We can estimate
this information using historic data and the prediction of
future disasters. Then, we can apply network flow-based
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technique to compute the s − t tolerance of a given pair of
nodes.

Redundant network construction for easy protection and
restoration has also been studied extensively, such as using
redundant tree [15] or disjoint paths [16]. By constructing a
pair of redundant trees, called red and blue trees, it is able
to guarantee fast recovery from any single-link/node failure
in the network, if the failed node is not the root node [17],
[18]. There are also studies on approximation algorithms for
augmenting a wireless sensor network to meet connectivity
and survivability requirements [19], [20].

3.1.2 Demand-Driven Network Resource Management

Handling the extraordinary traffic demands that occur dur-
ing emergency events is another important issue. The dam-
age caused by an emergency results in a shortage of comput-
ing and communication resources. Maintaining connectivity
and expanding the capacity of the network, for both the
stricken area and other areas, are essential requirements for
big data-enabled decision-making.

As an example of such limited resources in the event of
an emergency, consider the power supply for BSs. Some BSs
may have no power supply following an emergency, or they
may be equipped with batteries or a green power supply.
Thus, resource management of these BSs must take into
account the power constraint. However, such constraints
should be removed after the grid power supply is restored.
Uchiyama et al. studied energy resource management at BSs
using cell zooming [21].

If the radio access network can be divided into a cen-
tralized control component for processing base-band signals
and a distributed component for radio elements (i.e., anten-
nas or physical cell towers), the requirements for the radio
elements will be much simpler than for current BSs. Such
software-defined radio access network architectures would
enable power saving at location-associated communication
facilities, and provide promising solutions for sustaining
communication capabilities over very large geographical
areas during a disaster. Previous studies [22], [23] discussed
the possibility of applying the software-defined network
concept to wireless cellular networks. By separating the
control plane and the data plane of radio access networks,
it may be possible to solve the problems of bandwidth allo-
cation, interference mitigation, handover, and load balanc-
ing among multiple cells. However, using software-defined
radio access network technologies for managing situations
during emergencies is still an open problem [24].

New architectures enabled by software-defined network
technologies, besides their possible use in maintaining net-
work connectivity, also offer a promising approach for host-
ing heavy traffic during emergency events. For example,
the value per bit of the information to be processed or
transferred (in general, the value per unit resource) will
become higher for people in stricken areas. Methods for
allocating computing and networking resources should be
adaptively and optimally tuned in response to emergencies.
Thus, implementing new architectures to allow computing
and communication systems to work in a flexible and scal-
able way is indispensable for emergency preparedness.

Still-alive BS

Disrupted BS Disconnected shelter

Relay

Disaster areas

Fig. 3: An example of ad-hoc networking for providing
connectivity in the disaster area.

3.1.3 Ad-Hoc Networking

This technology deploys provisional access networks that
provide users with communication environments they are
accustomed to, even during emergency conditions. An ac-
cess network is usually located within a small area close to
the users’ locations, with no redundant network resources.
In this case, constructing a provisional access network
swiftly with the available commodity devices and/or fast
deployable emergency resources may take much less time
than restoring the destroyed access network.

Smartphones, as a most popular and available commod-
ity device, have frequently been adopted for provisional ad-
hoc networks in disaster scenarios [25]. These networks can
be quickly setup by ordinary users via on-site commodity
mobile devices, without any requirement for additional
equipment, by connecting them to the nearest Wi-Fi access
point to form a multi-hop network for Internet access.
However, this approach is highly limited by the distribution
and mobility pattern of mobile devices (i.e., users) after
a disaster, as most users will have gathered at specific
locations, such as shelters, to obtain the necessary supplies
[26]. Based on the multi-hop networking of users’ devices,
it is difficult to interconnect the shelters to the Internet [27].

The approach of using dedicated devices, such as de-
ployable wireless relays, to recover network coverage in
important area such as shelters has received considerable
attention [28]. A field study was conducted with a vehicle-
mounted base station and many dedicated low-cost wireless
relays [28]. The results show that the network can provide
satisfactory coverage to a large area via wireless relays and
mobile devices. In such networks for disaster recovery, a
natural challenge is the optimal deployment of a limited
number of relays to extend the network coverage to discon-
nected locations, such as shelters, where most of the people
have gathered after a natural disaster.

3.1.4 Delay/Disruption-Tolerant Networking

To overcome the challenge of intermittent connectivity
between nodes in ad-hoc networks, the paradigm of
Delay/Disruption-Tolerant Networking (DTN) was pro-
posed. In DTN, mobile nodes carry the packets (or data
bundles) until they encounter other nodes, and choose
whether to forward the packet at these encounters. This
store-carry-forward approach tries to mitigate the problem
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(a) Shelters and BSs (b) Network availability

Fig. 4: A real-world scenario for performance evaluation.

of partitioned networks. Most of the proposed DTN routing
protocols focus on enhancing the delivery ratio and/or
reducing the overhead [29]. This is largely achieved by using
past encounters as a metric for calculating future delivery
probabilities. In an emergency scenario, DTN nodes such
as rescue vehicles and unmanned aerial vehicles (UAVs)
are usually administrated by the same authority. This sug-
gest another research topic regarding the mission/trajectory
planning that most improves the DTN routing performance
under some guaranteed delay and delivery ratio [30].

3.2 Real-world Application and Case Study

Real-time and reliable data collection from emergency sites
is the key for data-driven emergency management. To
achieve this, maintaining network connections for those
affected by the emergency event is vital. In the communi-
cation network infrastructure, the access network elements
are usually the most vulnerable part following emergency
events such as natural disasters, as these network elements
(e.g., BSs) are geographically distributed in hostile envi-
ronments and are prone to damage. Unlike the backbone
network, it is extremely hard to deploy access networks with
sufficient redundancy for better survivability. Therefore, a
quickly deployable ad-hoc network is the primary solution
to this problem.

We demonstrate a relay deployment technique for a
wireless ad-hoc network that ensures the network connec-
tion is efficiently restored to people in the affected area [31].
Practically, there are many geographically distributed shel-
ters, such as schools and community facilities, where people
tend to gather. The capacity of each shelter is different, so
the accommodated population is different. An example of
disaster recovery ad-hoc networking is illustrated in Fig. 3.
The relays could be small, low-cost, self-powered devices,
which can be deployed almost anywhere. For instance, a fast
deployable Wi-Fi relay module with a solar power panel the
size of a suitcase has been developed [28].

To facilitate information collection and dissemination in
a disaster scenario, the first responders are frequently faced
with the problem of recovering the network connection as
widely as possible under limitations such as the number
of relays, communication distance, and population distri-
bution. This can be mathematically formulated as a graph
problem, and the corresponding algorithm is proposed. The
effectiveness of the proposed solution was evaluated in the

real-world scenario illustrated in Fig. 4. The availability of
the BSs is adopted from a study of data-driven network
availability [32]. Fig. 4b shows a snapshot of network avail-
ability in Katsushika ward following an earthquake in the
Tokyo area. The population distribution is shown in Fig.
4a, and this can be further accurately estimated using the
method described in [33]. Through the case study of a
wireless multi-hop networking deployment, we are able to
collect essential data and disseminate information to people
in the emergency area, which is necessary for efficient data-
driven emergency management.

4 MOBILE COMMUNICATION NETWORKS FOR
EMERGENCY MANAGEMENT

Large-scale disasters, such as devastating earthquakes,
floods, wildfires, and tsunamis, can result in massive black-
outs and cause severe damage to telecommunication in-
frastructure. It usually takes months to repair the damaged
infrastructure. Therefore, ECNs [3] are needed to reduce loss
of lives, limit damage to people and property, and satisfy
the sharply growing communication demands of disaster
victims. ECNs must be designed to offer reliable post-
disaster communication [34]. For example, an ECN center
can collect messages from disaster areas and inform the vic-
tims about the overall situation and appropriate actions.The
study on resilient communication networks aims to safe-
guard the communication of victims in a wide regional level.
However, to the individual of victims, especial to whom
living in remote areas, a refined supplement of the ECN
will be the key technology to improve the efficiency and
fairness in relief. Therefore, besides the macrolevel resilient
communication networks, microlevel and crowdsourcing
communication networks for emergency management are
also necessary for reliable relief.

Nowadays, smartphones are ubiquitous in our daily
lives, and each of them has embedded sensors such as
GPS, cameras, compass, gyroscopes, microphones, and light
sensors. Hence, when a group of smartphones connect to the
Internet through cellular or Wi-Fi networks, or when they
connect to one another in a cluster using Bluetooth, a sensor
network emerges that can be exploited to organize ECNs for
disaster-relief tasks. Smartphone-based ECNs have there-
fore attracted considerable attention in recent years.

Fig. 5 shows a typical smartphone-based ECN. After a
disaster, the affected area is often split into isolated commu-
nities. As the telecommunication infrastructure is frequently
damaged, these communities may be disconnected from
both the Internet and one another. In such cases, as illus-
trated in Fig. 5, techniques for connecting the networks in-
clude vehicular mobile stations [35] and DTNs [36]. In areas
that remain accessible to vehicular mobile stations, people
can use social media apps such as Twitter and Instagram to
communicate with family and friends through the Internet
connection provided by the mobile stations. In road-blocked
areas, community residents could instead share content with
their smartphones based on the UAVs and Device-to-Device
(D2D) technologies. Smartphones can also collect data from
IoT devices located in the disaster area. The collected data
can be transmitted by mobile stations and aggregated in
remote cloud databases for big data analytics. The useful
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information extracted in this way is delivered to the ECN
center, where it is used to make disaster-relief decisions and
send notifications back to the affected areas, e.g., evacuation
guidance and rescue commands. In edge networks, where
edge servers have been deployed, the real-time big data
preprocessing and analytics can be accomplished through
edge computing [37].

In recent years, there are several key concepts for ECN
appearing in the emergency management field:

Situation Awareness: Situation awareness information
plays an important role during disaster-relief operations,
because the ECN center makes rescue plans based on road
damage, population distribution, resource requirements,
and medical demands. Thus, timely situation-awareness
information is critical for ECN management. Leveraging
the pervasiveness of sensor-equipped smartphones, oppor-
tunistic sensing technology [54] is a promising paradigm for
scalable context monitoring, e.g., for sensing the behavior
of large crowds or monitoring the environment. In particu-
lar, crowd-mobility studies, such as the prediction of crowd
mobility in public areas [36], are highly useful for guiding
evacuation and preventing casualties caused by chaos and
panic in the crowd.

Disruption/Delay Tolerant Networks: As mentioned al-
ready, the communities in a disaster area may be split into
multiple isolated ECNs. DTNs attempt to provide end-to-
end connections across communities by exploiting mobile
stations and aerial vehicles [35].

Big Data Analytics: A large volume of data can be col-
lected from various sources, such as IoT devices located
in disaster areas, smartphone-based networks, and social-
media networks. To leverage the collected data and better
understand the situation, big data analytics is essential. Re-
cent studies [36] have analyzed big datasets from social-
media sources such as Twitter and Facebook to better re-
spond to disasters and manage emergency networks.

Edge and Fog Computing: By 2020, an estimated 50 billion
devices will be connected to the Internet [55]. This IoT will
generate a tremendous volume of data that needs to be
processed and analyzed. Fig. 5 shows how the IoT devices

located in a post-disaster area and the smartphones them-
selves yield a large volume of raw data. To retrieve useful
information for rescue teams in real time, distributed on-site
processing is required. However, the conventional cloud-
based data processing paradigm directs the data streams
to remote cloud servers for processing, which may result
in network congestion and traffic delays. Edge computing
[37] and fog computing [56] reduce the data transmission
requirements and processing load on the cloud servers by
processing data in computing nodes located at the edges
of networks. This edge computing near the IoT devices
and fog computing near the users’ devices will most likely
be located in the same area in a disaster situation. Thus,
edge computing and fog computing can reduce situation-
awareness delays and improve the quality of service in
smartphone-based ECNs.

4.1 Methodologies and Key Techniques

We proceed to review state-of-the-art existing methods and
key techniques for smartphone-based ECNs.

4.1.1 ECNs based on Ad-hoc Networks and DTNs

To ensure a rapid response to disasters, recent studies [36],
[38], [39], [40], [41] explored the use of ad-hoc networks,
opportunistic networks, and DTNs to construct ECNs in
disaster areas for the rescue, relief, and evacuation of vic-
tims. For example, Trono et al. [41] used DTN commu-
nication to develop a smartphone application called DTN
MapEx, which generates and shares maps of disaster areas
by exploiting multiple nodes in the system. This applica-
tion minimizes the computational workload of individual
devices, because map generation tasks are shared between
the mobile sensing nodes in the DTN. Higashino et al. [36]
investigated disaster mitigation, leveraging DTN-enabled
distributed micro-modules to design a smartphone-based
crowd-event detection architecture.

4.1.2 Mobile Base Stations

To foster situational awareness about disasters, ECNs must
support data capturing and aggregation. A handful of stud-
ies [35], [42], [43], [44], [45] apply vehicle- or aerial-based
mobile BSs for these purposes. For example, Gomez et al.
[42] considered the ABSOLUTE project [46], and developed
a prototype low-latency IP mobile network with wide cover-
age by combining aerial, terrestrial, and satellite communi-
cation networks. The aerial BSs acted as the central compo-
nents for providing a resilient communication service to mo-
bile devices. A low-cost balloon-based network [44] has also
been proposed for post-earthquake rescue. Li et al. [43], [45]
developed a disaster management network based on mobile
stations implemented by drones and vehicles equipped with
sensors and network interfaces. The aim was to support
disaster management tasks by sensing damage conditions,
collecting information, and delivering messages to disaster
areas. Narang et al. [35] proposed a cyber-physical buses-
and-drones-based mobile-edge infrastructure for emergency
communications following large-scale disasters in which the
cellular infrastructure has been destroyed.
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TABLE 1: Key Techniques and Methodologies for Smartphone-based ECNs

Contribution References Key Techniques and Methodologies

Construct ECNs [36], [38], [39], [40], [41]
ECNs based on ad-hoc networks,

opportunistic networks and DTNs

Data collection and gathering

[35], [42], [43], [44], [45] mobile base-station based mechanisms
[46], [47], [48] Device-to-Device (D2D) communication based mechanisms

[49], [50], [51], [52], [53] crowd-sensing based mechanisms

4.1.3 D2D Communications
Many recent contributions have explored how D2D com-
munications can extend network coverage in the context
of disasters. For example, in the ABSOLUTE project [46],
short-distance D2D communications are provided for res-
cue teams and emergency agencies when the conventional
network infrastructure has been damaged by a disaster.
Orsino et al. [47] studied social-aware data collection and in-
formation diffusion using D2D communication techniques,
proposing an approach that can be applied to emergency
networks for public safety. Based on D2D communications
in an ad-hoc network, Meurisch et al. [48] proposed an
emergency communication system called NICER911, which
aims to provide reliable communication and emergency
services in disaster areas with compromised infrastructures.

4.1.4 Crowd Sensing
To enhance situation awareness during disasters, several
studies [49], [50], [51], [52], [53] have developed elaborate
smartphone-based crowd-sensing techniques. For example,
Higuchi et al. [49] proposed a low-power collaborative lo-
calization algorithm that captures the stop-and-go behavior
of indoor pedestrians. Based on the cooperative operations
among multiple smartphones, Noh et al. [50] developed
an infrastructure-free localization technology with high-
speed positioning functionality. Kojima et al. [51] proposed
a new application that estimates the reason for particular
human crowd events using mobile crowd-sensing tech-
niques. To improve bandwidth utilization and reduce en-
ergy consumption, Zuo et al. [52] explored an image sharing
mechanism that promotes on-site situation-awareness about
disasters such as earthquakes and typhoons. The shared
images are collected via smartphone-based crowd-sensing
techniques. Because cameras can help rescue teams gain
situation awareness, e.g., about trapped victims, Dao et al.
[53] implemented a network of smartphones with cameras
to transmit pictures in an energy-efficient manner.

4.2 Real-world Application and Case Study
We now review some real-world applications of
smartphone-based ECNs, before presenting a disaster-
management case study.

4.2.1 Dedicated Smartphone Apps For Disaster-Relief
Peng et al. [57] developed a Bluetooth-based smartphone
app called E-Explorer, which can deliver rescue information
to survivors trapped in post-earthquake sites. To better
support emergency communication and the rapid inves-
tigation of earthquake damage, Han et al. [58] extended

the iOS-based E-Explorer application to other platforms.
For more efficient responses to disasters such as large-scale
earthquakes and tsunamis, Miyazaki et al. [59] developed
a resilient information management system that runs on
both Android and iOS and provides convenient information
management and data exchange functionalities to rescue
teams and victims following disasters.

4.2.2 Case Study: RIM System
We now describe our ongoing project, the Resilient Informa-
tion Management (RIM) system [59].

The RIM system uses smartphones and UAVs to pro-
vide delay-efficient and reliable solutions in harsh disas-
ter environments where conventional cellular communica-
tion infrastructures have become unavailable or severely
damaged. Although an ad-hoc mobile social network built
through mobile devices such as smartphones may be the
most straightforward communication approach, the result-
ing delivery delay might be too long for time-critical
disaster-relief tasks.

As shown in Fig. 6, we propose to reduce delivery delay
by using UAVs with wireless communication capabilities.
The UAVs follow designated routes to collect information
about damage, injuries, and medical demands from speci-
fied sites, and deliver the gathered data to an information
center. In this way, delivery latency can be greatly reduced
compared to systems that rely on ad-hoc communication.

In this mobile devices-based architecture, we have de-
signed an integrated information management and sharing
mechanism that benefits both rescue teams and victims
[59]. An online algorithm that dynamically schedules mobile
stations based on management task priorities has also been
proposed [43]. Further work on the RIM system will study,
for example, energy-efficient scheduling of drone routes
during the data collection missions.

5 REMOTE SENSING TECHNOLOGIES FOR EMER-
GENCY MANAGEMENT

Remote sensing is the science of gathering sensor infor-
mation about objects or regions from a distance, usually
from satellites. Remote sensing applications are often del-
uged with enormous volumes of remote sensing data, and
can thus be considered as typical data-intensive systems.
Remote sensing data, namely satellite remote sensing big
data, have several peculiar characteristics in terms of their
diversity and high-dimensionality. During natural disas-
ters, large-scale climate monitoring applications can process
local-to-universal multi-temporal and multi-sensor remote
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Fig. 6: Case study: the smartphone- and drone-based Resilient Information Management (RIM) system.

sensing data. In this way, remote sensing systems have
demonstrated their potential utility in delivering critical
information for emergency management.

5.1 Key Technologies and Methodologies
Large-scale satellite imagery data mining: One of the

origins of big data for alert forecasting is from satellite
imagery. Standard satellite image data can be used for
large-scale emergency impact assessment by mining the
spatial scale of influence of a disaster. The satellite types
and the spatial and temporal resolutions required to assess
emergency damage are reviewed in [60]. For satellite data
to be valuable in the aftermath of an emergency, processes
to gather imagery of the emergency incident, analyze the re-
ceived information, and equip technical staff to carry out the
task should be established well in advance [61]. To achieve
this, the efficient processing technology for satellite imagery
data is necessary. In recent years, the sparse representation
gives interesting results for discarding remote-sensing dy-
namic datasets [62].To sparsely represent the spatiotemporal
remote-sensing Big Data, a new dictionary learning algo-
rithm is proposed here by extending the classical K-SVD
method. The information, from both old and new samples,
is explored in the proposed incremental K-SVD (IK-SVD) al-
gorithm, but only the current atoms are adaptively updated.
This makes the dictionary better represent all the samples
without the influence of redundant information from old

samples. Additonally, many nonlinear time series methods
and dimension-reduction methods have been developed
which could be applied to big data with high-dimensional
characteristics and improve the computational efficiency.
[63].

Camera data mining: Mining the video and imagery
data which are from surveillance cameras will be the most
direct method to detect the localised people evacuation and
the disaster situation. Currently, the camera data-based risk
assessment method is an emerging trend in the emergency
management field which is able to overcome the tradeoff
between accuracy and efficiency. Deep learning-based on
ex-ante online risk assessment was proposed by [64] and
implemented in a library. Model sensitivity analyses and
large-scale tests demonstrate the usability and superiority of
the proposed method. In addition, although several early-
warning solutions rely on automated modeling and algo-
rithmic approaches, crowdsourcing can augment attempts
to sieve the signal from the noise in large-scale data. Volun-
teers have been requested to geotag and classify pictures of
affected people and objects in post-emergency analysis [65].
TomNod and the OpenStreetMap have employed digital
technology to help emergency authorities and volunteers
[66].

Multi-model integration: Big data analytics can assist
in the mitigation phase of risk and vulnerability analysis.
Lucid visualization techniques such as “Hotspot” maps
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and hexagonal cells can blend the value of biophysical
and social data to prioritize affected areas. Climate model
results and emergency risk models can be integrated with
remote sensing images to determine societal and monetary
exposure to risk [67]. The main benefit of satellite data is
that it is gathered over time, permitting for the mechanized
evaluation and updating of risk models at regular periods.
For example, the Global Inundation Extent from Multi-
Satellites (GIEMS) [68] provides a low-resolution scheduled
dataset of surface water extent and dynamics. Recently, big
datasets have been tested to increase the size of potential
variables in risk mapping, along with climate models and
satellite pictures. For instance, spatial video has been used in
Haiti to rapidly identify locations inundated by sewage and
water for cholera hazard mapping [69] and in Los Angeles
to determine exposure to wildfire [70]. Nowadays, data from
drones and “high-res” satellite images can be combined
with crowdsourcing to yield comprehensive structure maps
of buildings (Opencitiesproject.org).

5.2 Real-world Application and Case Study

Several well-known mapping apps use remote-sensing big
data, such as Google Maps and Google Earth. These apps
utilize the Google Earth Engine, which brings together a
multi-petabyte repository of satellite imagery and geospatial
datasets with planetary-scale analysis features to detect
changes, map trends, and quantify dissimilarities on the
Earth’s surface.

Urban areas facilitated with sensors have an advantage
during emergencies, because actionable information can be
gathered to help decision-makers. Moreover, machine learn-
ing techniques can be used in the analysis of the sensing
images. Machine learning algorithms enable the general-
ization and prediction of observations. Crowdsourcing is
an innovative perspective for emergency management. It
uses satellite data, citizens sensors, and volunteer mappers
from the affected area to furnish real-time data and analysis
during emergencies.

There are many emerging applications in this field, such
as a new algorithm that uses time-series analysis to create
images based on LandSat data [71]. This algorithm has
achieved stimulating results in bridging gaps in knowledge.
Moreover, deep learning, which learns the characteristics
and discriminative features of data in a hierarchical way,
has also been used to analyze remote sensing data [72].
A Hessian-based method [73] has also been applied to
uncertainty quantification in emergency situations.

An example of the crowdsourcing of maps, social media
data, human sensing data, and satellite data for emergency
management occurred after the flooding in western Nor-
way in 2014. Western Norway is frequently referred to as
fjordland after the region’s most striking natural feature.
Winter lasts from mid-November until April, and climate
situations during this season fluctuate extensively based
on the geography of the area. There was heavy rainfall in
western regions of Norway during autumn 2014, leading to
hazardous flooding in several places that washed out roads,
bridges, and countryside.

When rivers overflowed in the counties of Sognog Fjor-
dane and Hordaland on October 28, 2014, sensing images

and maps of the region were collected. Authorities had to
locate those affected by the flooding to provide aid and
emergency response. The ability to crowdsource the data
gathering and mapping processes was important consider-
ing the urgency of relief operations. Volunteers and local
authorities gathered satellite images for tracing and record-
ing the streets, buildings, and other objects of interest.

Big data analytics processed massive volumes of social
media data, such as tweets, and clustered them according to
the issue (high content overlap), zone (for posts with GPS
tags), and time span. Clusters of tweets are the result of high
social network activity in a particular area. Furthermore,
machine learning classifiers were used to automatically
identify clusters that were likely to be of interest to emer-
gency service providers.

Moreover, crucial details about river flooding conditions
and damage control activities were used to schedule flood
control actions. To offer the emergency service providers
precise and multi-temporal data, high-resolution sensing
data were utilized to plot the river flooding conditions and
ongoing hazard control activities. For some flood-vulnerable
regions, post-emergency sensing data were analyzed to
record the alignment of the river along with hazard control
defenses.

6 HUMAN MOBILITY AND URBAN SENSING FOR
EMERGENCY MANAGEMENT

In the course of emergency events, it is vital to understand,
model, and predict the population behavior and mobility
at a citywide level so as to plan effective transportation
scheduling, humanitarian relief, and post-disaster manage-
ment. For instance, the Great East Japan Earthquake in 2011
disrupted the public transportation systems in the Greater
Tokyo Area, the largest metropolitan area in the world, and
caused widespread traffic chaos and urban disorder. If city
managers could accurately predict how a large number of
people move and select their transportation mode, they
would be able to plan effective transportation scheduling
and avoid overcrowding or traffic jams. A dazzling light
show in Shanghai on new year’s eve, 2014, attracted a
huge crowd to celebrate the arrival of 2015. Unfortunately,
the crowd density was soon out of control and a tragedy
ensued: 36 people died and 47 were injured in a stampede.
The Shanghai local police agency admitted that the crowd
density was underestimated. Reconsidering this event, it
would be useful to provide an accurate forecast of the
crowd density before it became too dangerous. Obviously, if
we could observe and predict human mobility and density
in advance, suitable countermeasures could be enacted to
prevent similar tragedies from happening.

Understanding and modeling human mobility at a city-
wide level is a core research direction for emergency man-
agement and urban computing. However, this research is
difficult because there is no reliable method for sensing
human mobility. Recently, however, with the rapid de-
velopment of mobile internet technologies, massive loca-
tion acquisition and human mobile sensing data are be-
ing continuously generated from various sources, such as
smartphones, GPS devices on cars, WLANs, IC cards, and
location-based social networks. This big data offers a new
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way to circumvent the problems of previous research for un-
derstanding human behavior, because it is instantaneously
available, offers high spatial and temporal resolutions, has
no interview bias, and provides comprehensive data for
large populations [74], [75], [76], [77], [78], [79]. Against
this background, accurate predictions of citywide human
mobility become possible, and these are critical to many
intelligent urban systems, such as traffic regulation and
crowd safety surveillance, used for emergency response and
disaster management.

However, influenced by a variety of factors (e.g.,
weather, urban structure, event type, traffic conditions),
citywide human mobility modeling remains highly complex
in the real world. The main complicating factors are as
follows: (1) A modern city usually contains huge road seg-
ments and a complex transportation network, representing
a highly nonlinear and complex system. It is very difficult
to exploit heterogeneous human sensing data and properly
generalize the target conditions. (2) Human behavior and
mobility patterns usually have a high degree of freedom
and variation, and are impacted by many factors. Thus,
human mobility and behavior are very difficult to model
and predict. (3) The urban areas of modern cities have a very
large spatial domain, making accurate predictions difficult.
For instance, the Greater Tokyo Area extends over 3.925
km2, and the larger metropolitan covers 14.034 km2. (4)
To build an effective human mobility prediction model or
mine hidden human behavior patterns, we usually have to
collect sensing data over long time periods. The large tem-
poral scale usually makes the entire modeling process very
complex. (5) Most emergency or rare events only influence
human mobility in specific regions. For example, a traffic
accident may only change the local human mobility patterns
and the key paths passing through the event. Therefore, if
we labeled a rare event at a citywide level, many irrelevant
subjects may become involved (e.g., someone in a nearby
shopping mall may be labeled as part of the “traffic acci-
dent”). Thus, attractive though it is, accurate predictions of
human mobility remain a significantly challenging research
topic.

6.1 Key Technologies and Methodologies

In recent years, a vast number of studies have analyzed
human mobility big data, such as GPS logs [80], [81], [82],
social network data [83], [84], query data from routing
apps [85], IC transport card data [86], and bike rental data
[87]. These massive datasets have great potential to solve
urban problems [6], especially for emergency response and
disaster management [88], [89], [90]. Lu et al. [76] collected
mobile phone data from 1.9 million people in Haiti and ana-
lyzed the population displacement during the 2010 Haitian
earthquake. Song et al. [91] collected data from 1.6 mil-
lion GPS users in Japan to understand and predict human
mobility and evacuation behavior during the Great East
Japan Earthquake and Fukushima nuclear accident in 2011.
They demonstrated that human mobility after large-scale
disasters was more predictable than previously thought.

Individual Human Mobility Modeling: Most of the
above models struggle to predict the mobility or behavior of
individual people accurately. Thus, Song et al. [88] proposed

a hidden Markov model-based predictor to forecast human
mobility during a natural disaster. They extracted important
locations such as “home,” “work,” “social,” and “unknown”
for fine-grained citywide human mobility prediction. Aux-
iliary data indicating the key factors influencing human
mobility are also required, which makes this unsuitable as
a general human mobility predictor that can address both
routine human mobility and behavior in the event of an
emergency. Yabe et al. [92] extracted 18 features and applied
logistic regression to predict the occurrence of irregular
human movement during frequent mid-level disasters. Fan
et al. [80] used a finer location representation by discretizing
the Tokyo region into meshes and representing locations
as a mesh code. Only the most recent trajectories were
utilized to make future predictions. This approach does not
require any labeling work and can be easily implemented
as a general human mobility predictor, but it discards all
historical information, which leads to a loss of accuracy.
Another direction is to use auxiliary data to make long-
term predictions and provide early warnings about crowd
safety. Konishi et al. [85] leveraged transit routing queries
to identify long-term human mobility related to specific
events, and [93] explored the probability of using map query
data to prevent accidents such as the Shanghai stampede.

Human Mobility Flow Modeling: Understanding the
basic patterns of a very large number of population move-
ments is also important for urban emergency management.
Understanding the flow of people [94] and recommending
location-based services [95], [96] use tensor factorization to
decompose urban human mobility. Traffic flow can be seen
as a special human mobility constraint on road networks,
and this has been studied for traffic flow prediction [97] and
traffic congestion monitoring [98], although some kind of
initial individual model is required for each road segment.
Moreover, Song et al. [74] explored the upper bound of
the predictability of human mobility, and Zheng et al. [99]
proposed an unsupervised learning algorithm for location
prediction. A more advanced trajectory calibrating algo-
rithm was proposed in [100].

Deep Learning Technology for Human Mobility Mod-
eling: More recently, deep learning technology has shown
great potential in the fields of natural language processing
and computer vision. There have been some attempts to in-
troduce deep learning into human mobility prediction. Song
et al. [101] proposed a multi-task long short-term memory
deep learning framework to predict both the transportation
mode and location. These two tasks are highly correlated,
and can thus boost each other’s performance. Residue net-
works and convolutional neural networks have been suc-
cessfully used to predict citywide crowd flows [102], and a
long time-series model for predicting the density value of
each grid cell has been constructed [103]; in contrast, our
approach aims to predict citywide human mobility through
sequence classification. In addition, researchers have ap-
plied deep learning to traffic problems in which the traffic
speed and transportation mode are associated with human
mobility [104], [105], [106], [107].

6.2 Real-world Application and Case Study
Researchers at The University of Tokyo developed the
DeepMob disaster management system [90] for effectively
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Fig. 7: DeepMob: DeepMob [90] is disaster management system for effectively predicting and simulating population
evacuation behavior and mobility following various types of earthquakes.

predicting and simulating population evacuation behavior
and mobility following various types of earthquakes. Users
input observation data (e.g., GPS traces), disaster infor-
mation (e.g., earthquake magnitude, earthquake intensity
scale), and transportation conditions, and the system auto-
matically predicts and simulates the evacuation types and
travel routes in subsequent time steps.

DeepMob relies on heterogeneous big data sources, e.g.,
GPS records, transportation and road network data, Japan
earthquake data. To discover knowledge from these data,
the learning architecture performs two tasks: (1) learn the
deep feature representation from disaster information data
and people’s location transitions (as shown in Fig. 7-a);
(2) learn the deep feature representation from GPS traces
and transportation network data (as shown in Fig. 7-b).
To enhance the system performance, DeepMob performs
multimodal learning [104], [108], [109], [110] to learn both
the feature representations and deep knowledge about pop-
ulation behavior and mobility following different types of
earthquakes (as shown in Fig. 7-c).

Experiments show that DeepMob can achieve 87.8%
accuracy in predicting people’s evacuation types and 79.57%
accuracy in predicting their evacuation routes following
various types of earthquakes.

7 ONLINE SOCIAL NETWORK ANALYSIS FOR
EMERGENCY MANAGEMENT

Social Media. The emergence of the Web 2.0 paradigm has
led to the widespread adoption of technology platforms for
content generation and sharing. These platform applications
enable computer-mediated communication among citizens
to create and share information online, and to pursue topical
interests by joining online communities [112] and network-
ing with like-minded users. The growth of social media plat-
forms to fit the interests of different users combined with the
worldwide adoption of mobile technology has made the role
of social media ubiquitous in our daily lives. For instance,
while only 5% of Americans used some form of social media
platform in 2005, some 69% of the population were using
social media in 2016 [113]. Social media has created an
opportunity for citizens to act as citizen sensors [114], which
can be extremely valuable for the sensing and sharing of
useful observations during emergencies. A citizen-driven

Fig. 8: Example of a customized dashboard CitizenHelper
[111] during Hurricane Harvey to visually interact with
relevant social media messages by selecting time (widget
1) and location (widget 4), any trending hashtags (widget 5)
or trending mentioned users (widget 6) as well as filtered
messages of public or groups requesting and offering help
(widgets 2 and 3), extracted by active learning techniques in
the background that have an ability to take feedback (e.g.,
irrelevant request) from a viewer using buttons next to the
tweet message.

information infrastructure has created a new information-
sourcing channel for emergency management organizations,
providing enriched information for dynamic situational
awareness and improved response services [115] [7]. During
recent emergencies and disasters, social media messages
have included relevant information such as caution-advice
and damage reports [116], requests for and offers to help
[117], and emotional support for the affected community
[118]. However, the relevant information is often buried
within a vast quantity of noisy, large-scale unstructured
data. A variety of multimodal (text, images, videos) data
are generated at high velocity, presenting emergency man-
agement organizations with a big data problem [119].
Crowdsourcing on the Web. Crowdsourcing [120], [121] has
become a very popular concept in recent years. However, its
roots come from different concepts in diverse areas of study,
such as peer production, collaborative systems, and collec-
tive intelligence. Crowdsourcing systems combined with the
power of digital connectivity over the Web have revolution-
ized distributed information processes. While there is no
specific definition for the concept, according to Doan et al.
[122], “[a] crowdsourcing system enlists a crowd of users
to explicitly collaborate to build a long-lasting artefact that
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Fig. 9: Illustration of Crisis Mapping during Haiti that was
supported by crowdsourced reports [125].

is beneficial to the whole community.” While social media
has demonstrated potential for collecting partial large-scale
information during emergency events, the crowdsourcing
phenomenon has demonstrated the power of the masses
to help process this big data into coherent products, e.g.,
annotating data for developing machine learning classifiers
[123]. Furthermore, crowdsourcing has initiated various vol-
unteer and technical communities, such as members of the
Digital Humanitarian Network [124], which activates and
performs distributed tasks for accomplishing the overall
goal of serving an information need of an emergency man-
agement organization.

7.1 Key Techniques and Methodologies

There are several applications of big social data for all
phases of the emergency management cycle. In the past
decade, with the rising adoption of social media, a variety
of computational techniques in areas such as data min-
ing, machine learning, natural language processing, and
network sciences have been enabled by the easier access
to data, such as public Twitter streams. We now describe
some of the key problems and the techniques that can be
used to address them (for comprehensive surveys, see [116],
[119], [126]). The basic requirement for any social media
mining task applied to emergency management is the early
identification of the incidents; therefore, event detection
is one of the critical techniques [127], [128]. For instance,
Sakaki et al. [127] showed the efficacy of Twitter in detecting
earthquakes in real time. After event detection, one needs
a relevance criterion for information filtering, such as a
relevant keyword set, so that only event-related social media
messages are collected from the large amount of noisy,
operationally irrelevant, content shared on social media.
Given that manual keyword sets can be biased and become
outdated during the rapidly changing events following a
disaster, domain modeling and topic tracking are important
techniques. Therefore, there have been attempts to adapt
existing domain models or dynamically create models for
event relevance that help identify and filter relevant social
data for analysis [129], [130]. Once the data have been
collected, either in streaming mode or batch mode, their

processing requires a variety of techniques to extract infor-
mation that will improve situational awareness and deci-
sion support. These techniques are primarily content-based,
network-based, user-based, context-based, or employ visual
analytics for the ultimate human–computer interaction.

Content-based techniques explore different information
types in the message content [131], e.g., classifying and
extracting topics of interest such as caution-advice and
damage reports [116], modeling behavior such as requests
for and offers to help [117], [132], [133], and measuring
credibility and detecting rumors [134], [135], [136].

User-based techniques focus mainly on the identifica-
tion of a variety of user categories [137], such as on-the-
ground informants [138], emerging informants [139], influ-
ential users [140], real and virtual volunteers [141], and
organizational users [142], [143].

Network-based techniques primarily investigate infor-
mation diffusion for message reachability [144], [145] and
community formation and evolution [146], [147]. In addi-
tion, simulation and agent-based modeling are useful meth-
ods for studying social network behavior before, during,
and after disaster events [148], [149].

Context-based techniques help enrich the metadata of
streaming data instances, such as geo-locations of the infor-
mation source, which are typically present in less than 2%
of the records. Geo-tagging [150], [151] and spatiotemporal
analytics [152], [153] are examples of this type of technique
for enhancing the modeling and analysis of social data.

Visual analytics techniques provide a means of easily
understanding the information extracted from social data.
The ultimate aim is to assist the emergency management
teams and inform the public. One popular approach for
social analytics visualization is a customized dashboard, as
shown in Fig. 8 [111], [154], [155], [156]. This provides a
spatiotemporal organization of information about what is
happening where and what assistance is required. A key
component of the dashboard is geo-tagged data visualiza-
tion. This is often used as a standalone ‘crisis map’ [157],
which has been an effective tool in various disasters over
the last decade. Crisis maps provide geo-tagged information
at one place and enhance situational awareness. Fundamen-
tally, maps are a key provider of situational awareness in
the incident management community, and new forms of
information channels allow the crisis map inputs to incor-
porate social media and crowdsourcing feeds. Crisis maps
are important information products that assist emergency
responders in unknown regions, providing the right direc-
tions at the right time.

7.2 Real-world Application and Case Study
In a study [158], over 8.5 million tweets during Hurricane
Harvey were analyzed to help to make decisions on disaster
relief distribution. The geographic context was extracted
from the tweets message content. Then, based on two data
sets retrieved from authoritative data sources (The first is
a digital elevation model obtained from the US Geological
Survey for the derivation of the flow network. The second is
the Land Use Dataset Council, available from the Houston-
Galveston area, a consortium of Texas local governments,
including Harris County, the key study area.), the com-
prehensive disaster relief location was detected. Finally, by
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employing a mixed-integer linear programming model and
particle swarm optimization, the optimal layout of temporal
rescue centers are decided.

Moreover, during the Haiti earthquake response,
Ushahidi’s Haiti Map [125] was commended by relief agen-
cies for being extremely helpful in informing them of the
situation on the ground (Fig. 9). Within the context of crowd-
sourcing efforts for emergency management, crisis mapping
has recently emerged as a major open source technological
concept for visually representing the crowdsourced infor-
mation processed by distributed workers, creating a live cri-
sis map for situational awareness. Starting with Ushahidi’s
project, which leveraged live collaborative mapping based
on crowdsourced reports during post-election violence in
Kenya in 2008 [157], crisis maps have become a core element
of any emergency response that is assisted by citizen-led
volunteer communities [124], [159]. Furthermore, volunteer
and technical communities such as the Humanitarian Open-
StreetMap team have become well-respected and reliable
sources, rapidly providing a crowdsourced, collaborative
geographical map during crises across the world to facilitate
social data and crowdsourcing-driven maps [160].

8 KNOWLEDGE GRAPHS FOR EMERGENCY MAN-
AGEMENT

From the preceding sections, it is clear that emergency
management relies on a broad variety of big-data sources
including automated and human sensor data, mobility and
communication data, and open and government data. In
emergency situations, these and other sources must rapidly
be made interoperable and available for complex querying,
processing, and reasoning in ways that are not always fore-
seeable in advance [119]. Knowledge graphs originate from
Tim Berners-Lee’s vision of a machine-processable web of
data that augments the original human-oriented web of
documents [161], [162]. The central idea is to represent data
semantically as graphs, with nodes that represent concrete
objects, information, or concepts, and edges that represent
meaningful relationships. The Resource Description Frame-
work (RDF)1 is the central standard for storing and exchang-
ing knowledge graphs as files. They can be queried and
manipulated using the associated SPARQL2 language. The
RDF Schema (RDFS)3 and Web Ontology Language (OWL)4

standards support even more precise semantics along with
automated reasoning, in particular when the description
logic subset (OWL-DL) of OWL is used.

These and other semantic technologies make knowledge
graphs possible. Together, they offer principles and stan-
dards that can be used to fulfill central information interop-
erability needs in emergency situations. For example, [163]
reports the development of SokNOS, an OWL-based disas-
ter management system that offers better support for sys-
tem extensibility, simplified database integration, improved
search operations, external sensor discovery, plausibility
checking, and visualization. In [164], the e-Response system,
which integrates semantics-based and other tools to assist

1. https://www.w3.org/TR/rdf-primer/
2. https://www.w3.org/TR/sparql11-overview/
3. http://www.w3.org/TR/rdf-schema/
4. http://www.w3.org/TR/owl2-overview/

high-level tactical command during large-scale emergencies,
is presented. e-Response uses knowledge graphs to encour-
age and facilitate collaboration between emergency opera-
tives who may use different tools. Its use was illustrated
through the example of a fire emergency scenario.

The Linked Open Data (LOD) principles [165] offer fur-
ther advice for making data available as knowledge graphs.
The central principles of LOD are as follows: (1) sharing
graphs using standards such as RDF, RDFS, OWL, and
SPARQL; (2) using Internationalized Resource Identifiers
(IRIs) as standard names for nodes and edges; (3) defining
these IRIs in ontologies and vocabularies; (4) making each
IRI provide a knowledge graph with related data about
itself; and (5) representing the ontologies and vocabularies
themselves as knowledge graphs, typically expressed in
RDFS or OWL.5 The term knowledge graph can also be used
to refer to company-internal, proprietary data, whereas LOD
emphasizes public sharing of semantic data.

The LOD Cloud has grown to include more than 1200
datasets that adhere to these principles6, with a total of
around 150 trillion edges7. Much-used datasets such as DB-
pedia [166], GeoNames8, LinkedGeoData [167], and Wiki-
data9 link the knowledge graphs in the LOD cloud by
offering standard names (IRIs) for people, organizations,
places, works, and so on.

8.1 Methodologies and Key Techniques

8.1.1 Ontologies and vocabularies

Knowledge graphs and LOD rely heavily on ontologies and
vocabularies that offer standard names, in the form of IRIs,
for important emergency-related individuals, relationships,
and classes. Although numerous general and specific on-
tologies have been proposed (e.g., [168], [169], [170], [171],
[172], [173], [174], [175], [176], [177]), there is currently no
consensus. For instance, [178] reviews 26 relevant ontolo-
gies, vocabularies, and taxonomies divided into 11 subject
areas (disasters, resources, processes, people, organizations,
damage, infrastructure, geography, hydrology, meteorology,
and topography). Only 14 are represented as knowledge
graphs (i.e., using RDF, RDFS, or OWL) and, of those, only
12 are openly available: MOAC (about disasters, see below),
FOAF (people and their connections), BIO (biographies),
InteLLEO and Organisation Ontology (both about orga-
nizations), OTN (infrastructures), GeoNames (geography),
Ordnance Survey Hydrology Ontology (hydrology), NNEW
(meteorology), USGS CEGIS (topography), Ordnance Sur-
vey Building and Places Ontology (buildings and places),
E-response Building Pathology Ontology and E-response
Building Internal Layout Ontology (both about buildings),
and AktiveSA (multi-domain). In [178], it is concluded that
while a single, all-encompassing ontology may be neither
feasible nor desirable, further work is needed to complete
the partial ontologies and make them interoperable.

5. The difference is that ontologies tend to be more precise, formal
and expressed in OWL; whereas vocabularies are expressed in RDFS.

6. http://lod-cloud.net/
7. http://lodstats.aksw.org/
8. http://www.geonames.org/
9. https://www.wikidata.org/wiki/Wikidata:Introduction
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The XML-based Emergency Data Exchange Language
(EDXL) [179] facilitates the sharing of emergency infor-
mation between government agencies and other involved
organizations. EDXL is divided into several packages that
offer concepts for alerts, information about events, affected
areas, and additional image or audio resources (the common
alerting protocol package); requesting, responding to, and
committing resources (the resource messaging package);
field observations, causality, illness, and management re-
porting (the situation reporting package); hospitals, their
statuses, bed capacities, facilities, resources, and services
(the hospital availability exchange package); emergency pa-
tients (the tracking emergency patients package); high-level
information modeling (the reference information model
package); and routing XML messages (the distribution el-
ements package). EDXL-RESCUER [168] makes this XML-
based standard available as an OWL ontology.

The Management of a Crisis (MOAC) [169] vocabulary
links crisis information from three different sources: (a)
volunteer and technical committees (the Ushahidi Platform),
(b) disaster affected communities, and (c) traditional hu-
manitarian agencies. MOAC is divided into three sections
that offer concepts for emergency types, security incidents,
and affected populations (the emergency management sec-
tion); shelters, water, sanitation, food, health, logistics, and
telecommunications (the emergency cluster section); and
who/what/where/when, needs, and responses (the who-
what-where section).10

The Humanitarian eXchange Language (HXL) standard
aims to improve information sharing during humanitarian
crises without creating new reporting burdens11. Developed
in parallel with a semantic vocabulary [170], HXL defines
hashtags for describing places (geolocations, populated
places, and administrative units in countries); people and
households (affected populations, their needs and character-
istics); responses and other operations (relief organizations
and their capacities and operations); crises, incidents, and
events (crises and events, their causes, impacts and sever-
ity); and general metadata (data provenance, approvals,
and timestamps). The HXL standard is part of a broader
infrastructure that also comprises training, tools, and other
materials.

8.1.2 Semantic lifting and linking
Semantic lifting is the process of interpreting and re-
representing non-semantic data as knowledge graphs using
appropriate ontologies and vocabularies. For example, the
HXL infrastructure includes an online tool for annotating
spreadsheet data with tags from the HXL vocabulary [170].
Natural language techniques can be used to extract meaning
from text through pipelines that include character decod-
ing, tokenization, normalization, stopword removal, stem-
ming/lemmatization, part-of-speech (POS) tagging, and de-
pendency analysis [119]. Recent approaches represent the
semantics of words as vectors [180], [181] and analyse
them using deep neural networks [182], [183] to support
tasks such as text classification, document ranking, reading
comprehension, and question answering more precisely.

10. http://www.observedchange.com/moac/ns/
11. http://hxlstandard.org/

Microtexts such as Twitter messages and Facebook up-
dates are particularly challenging for natural language tech-
niques because each message is short and offers limited
input to analyze, contains little context beyond its asso-
ciated metadata (particularly if the the message has been
sampled from a larger pool), and uses condensed, informal
language with abbreviations, slang, misspellings, limited
punctuation, and incomplete sentences [184]. Although they
are not yet widely used, there exist social media platforms
that natively expose their data as knowledge graphs, either
through semantic annotations or by other means [185]. Ad-
ditional approaches to semantic lifting deal with pictures,
(live or recorded) audio, and (live or recorded) video. For
example, in an emergency situation, computer analyses of
pictures posted on social media after an earthquake can
be used to identify roadblocks and structural damage to
buildings.

When data have been lifted into knowledge graphs,
their individuals, relationships, and classes will be uniquely
named using standard IRIs, making them linkable to (and
thus able to be enriched with) data from other knowledge
graphs, such as those in the LOD cloud.

8.1.3 Semantic interoperability

Emergency-relevant datasets that have been lifted into
knowledge graphs become easily linkable, not only with
open reference datasets, but also with one another. This
capacity is extremely valuable in emergency management,
where diverse information sources must often be made
interoperable rapidly to support complex processing, rea-
soning, and querying in unforeseeable ways. Indeed, in-
formation interoperability has been a central driving force
behind all the examples we have so far presented in this
section.

8.1.4 Querying, processing, and reasoning

Almost all the semantic applications we have reviewed
use SPARQL to query and update the knowledge graphs.
The graphs themselves can be manipulated in memory,
using APIs such as Apache Jena, or stored in databases,
either as semantically-wrapped SQL databases or in native
knowledge-graph databases, so-called triple stores (Open-
Link Virtuoso12 is a popular example).

Knowledge graphs are amenable to rule-based reason-
ing and, if the graph conforms to the more restrictive
Description Logic (DL) subset of OWL, also to automated
classification, subsumption, consistency checking, and re-
lation checking [186]. For example, [187] applies rules to
identify people who have been impacted by earthquakes
and adverse weather conditions, whereas [188] uses rules to
classify and determine the severity of fire incident reports.
Finally, [174] illustrates how an inference engine can be used
to determine the emergency level and activate appropriate
emergency plans in civil aviation emergencies. Distributed
queries and automated reasoning over knowledge graphs
constructed from big data are important topics for future
research.

12. https://virtuoso.openlinksw.com/
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8.1.5 Big knowledge graphs
The preceding sections have described how knowledge
graphs and semantic technologies are being used to handle
sources of big data such as remote and human sensors,
social media, information services, open data, and govern-
ment data [189]. As the volume, velocity, and variety of
the data grow, the need for semantics that make sense of
these data will grow stronger [190] and pose new technical
challenges. The term big linked data has been coined to
reflect this trend [191]. Although mainstream triple stores
can reportedly store graphs with more than one trillion
edges [192], big linked data will eventually have to be sup-
ported by distributed big-data platforms. Graph-oriented
big-data technologies such as Google’s Pregel [193] and
Apache Giraph13 offer interesting research challenges in this
direction.

While techniques for big semantic data analysis can be
applied to emergency management out of the box, they may
be even more powerful in domain-specific forms [119]. For
example, machine learning techniques for natural language
processing, ontology learning, and ontology-based learn-
ing could be used to tailor information classification and
extraction to particular emergency domains. One resulting
research challenge is to investigate how domain- and even
single crisis-specific techniques, e.g., for social message fil-
tering, could be reused across domains and crises. Another
research challenge is to understand how the sub-symbolic
outputs of machine learning techniques can best be used
in combination with open and interpretable knowledge
graphs.

8.2 Real-world Application and Case Study

CERISE-SG: Motivated by the permanent risk of flooding
in the Netherlands, the CERISE-SG project [194] explores
the use of semantic technologies and LOD to streamline
the exchange of data between a regional water board that
oversees flood protection and an electricity grid operator.
Data types include water levels, which are monitored auto-
matically in real time, the locations of flood-protective assets
such as pumping stations, locations of electrical grid assets,
status reports from pumping stations and electrical assets,
and the affected areas and consumers. Interoperability is
facilitated by a bespoke domain ontology that unifies all
the data as knowledge graphs. Among the benefits are the
flexibility of the underlying data structure, ease of updating
data dynamically and in a decentralized manner, external
compliance to simplify the link with other data sources, and
precise semantics to enable formal reasoning and inference.
The authors conclude that semantic technologies and LOD,
particularly when they become more widely used and sup-
ported by a dedicated crisis ontology, will be highly useful.

Sahana Asia: Built on top of the Sahana platform [195],
Sahana Asia [176] uses knowledge graphs to integrate data
from external sources such as live earthquake alerts and
weather data, known vulnerabilities in cities, open street
maps, other map information, and contextual information
from open sources such as DBpedia and GeoNames. The
data are stored as knowledge graphs using a bespoke

13. http://giraph.apache.org

disaster data management vocabulary. Sahana Asia can be
used to identify potentially disastrous situations in advance,
predict vulnerable places and infrastructures based on his-
torical data, visualize data in maps, generate evaluation
plans, and disseminate appropriately user-tailored alerts
and warnings. The system combines semantic reasoning
with conventional analysis approaches such as regression.

Safety Check: Safety Check [187] is an experimental
semantic web application that identifies the people affected
by a natural or human-made disaster. The application uses
a bespoke ontology to integrate personal data from Face-
book’s Graph API with earthquake and weather alters from
public sources and open geographical background infor-
mation about cities, their geo-coordinates, populations, and
areas. The resulting knowledge graph is used to automate
reasoning about the affected areas and people and to pro-
vide those affected with safety instructions.

9 CONCLUSION AND FUTURE DIRECTIONS

BDEM is an interdisciplinary and emerging research field
that requires collaboration between researchers from vari-
ous backgrounds. In this paper, we have presented a com-
prehensive overview of the key concepts of BDEM and dis-
cussed the existing technologies and real-world applications
from the perspective of interdisciplinary fields. We end this
article with a list of open issues and future directions of
study:

Reliable and Efficient Disaster-relief Architecture:
First, building a high-reliability disaster-relief architecture
that handles the sensing and collection of disaster data
efficiently in terms of energy and delivery delay remains
an open problem. The trade-off between detection accuracy
and response complexity should be emphasized.

Accurate and Multidimensional Positioning: Currently,
due to the limitation of the infrastructure, GPS data still con-
tains strong noise. During a disaster, the accuracy of location
information will be greatly related to the efficiency of rescue.
For example, during a fire, the accurate information of the
indoor location (location and storey) of victims is crucial for
rescue strategies making. Therefore, smartphone-based ap-
proaches that can accurately and multidimensionally track
human mobility and recognize human behavior in complex
environments are urgently needed to satisfy the require-
ments of disaster-relief applications. Heterogeneous data
fusion technologies will be a future direction of research to
solve this challenge.

IoT in emergency: During a disaster, people expect
to understand the disaster situation from the collected
data timely. Thus, quickly gathering the required amount
of training data samples is a critical problem. With the
development of IoT, large-volume sensing data will be
transmitted to aggregation gateways which can solve this
problem. However, how to ensure efficient data delivery in
DTN-based ECNs in the emergency situation and how to
quickly utilize these data under the IoT architecture will be
challenging.

Deployment of Computing Resources: The collected
data need to be processed quickly to retrieve meaningful
information for evacuation and rescue. For this purpose,
several groups of edge servers could be employed in a
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decentralized manner in real time. Consequently, the de-
ployment of data processing/computing resources while co-
ordinating with data-collecting devices is another problem
that requires further research.

Privacy: Privacy is an important issue in human mobile
sensing. To achieve situational awareness, data need to be
collected from both public and private sensor networks,
as well as smartphone-based applications. This results in
privacy issues. Existing social media are used with an anno-
tation functionality, through which private information such
as a user’s home address, daily office routine, and social
activities could be easily inferred from multimedia data
including images, audio records, and videos posted on their
social media networks. To preserve users’ privacy, social
media usually allow the privacy level to be tuned when
sharing information online. This leads to a trade-off between
the privacy level and situational awareness performance:
strict privacy controls would limit the useful information
that could extracted about disaster scenes.

Emotion Sensing: Emotion sensing [196] is an emerging
topic in smartphone-based data analytics. Under disaster
scenarios, determining the emotions of victims would be
useful in providing emotional care so as to help them
overcome difficulties and recover from disasters. Although
some recent studies [197], [198] have conducted sentiment
analysis based on Twitter datasets, it is still challenging
to estimate the psychological status of people with high
accuracy in the context of disasters. This is an interesting
open problem for data-driven emergency management.

Knowledge Transfer: There are typically many reports
of major events and disasters (e.g., earthquakes, typhoons,
and tsunamis). Seeing and reading about these events may
cause others to wonder, “What if this happened in my
city?” The same question also intrigues city managers,
city planners, and emergency response agencies. Obviously,
learning lessons and gaining experience from emergency
events can serve as critical examples for designing other
cities and ensuring more effective emergency management
planning. Thus, models or approaches that transfer human
disaster behavior and activities from one disaster to another,
and from the affected city to other unaffected cities, are a
promising direction for study.

Data-driven relief management optimization: Cur-
rently, most of the existing big data-related works on emer-
gency management are focusing on collecting, sensing and
predicting the accurate information during emergencies.
In the aspect of relief management optimization research,
such as emergency logistics optimization, supply-demand
matching, most of the works engaged in developing ad-
vanced mathematical models but few in designing data-
driven methods. Bridging the gaps between the achieve-
ments of the two aspects of studies to establish practical
data-driven decision support systems will be a significant
future direction of study.

Smart Cities with Integrated Disaster-Relief Infrastruc-
tures: Finally, establishing smart cities with resilient disaster
recovery capabilities is a promising direction for future
sustainable development. To achieve this goal, an integrated
disaster-relief infrastructure equipped with multiple het-
erogeneous technologies, including satellite communication
networks, aerial-vehicle-based networks, and ground smart-

device networks, should be developed. For this, efficient
distributed algorithms that can work in decentralized and
autonomous environments must be able to coordinate with
the integrated infrastructure.
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and L. A. Ureña-López, “Ranked wordnet graph for sentiment

polarity classification in twitter,” Computer Speech & Language,
vol. 28, no. 1, pp. 93–107, 2014.

[198] L. Y.-F. Su, M. A. Cacciatore, X. Liang, D. Brossard, D. A.
Scheufele, and M. A. Xenos, “Analyzing public sentiments on-
line: Combining human-and computer-based content analysis,”
Information, Communication & Society, vol. 20, no. 3, pp. 406–427,
2017.

Xuan Song is an Excellent Young Researcher
of Japan MEXT, and an Associate Professor at
The University of Tokyo. He received the Ph.D.
degree in signal and information processing from
Peking University, China, in 2010. His main re-
search interest are AI and its related research
areas, such as data mining, intelligent system,
computer vision, and robotics, especially on in-
telligent surveillance and information system de-
sign, mobility and spatio-temporal data mining,
sensor fusion, and machine learning algorithms

development. By now, he has published more than 60 technical publi-
cations in journals, book chapter, and international conference proceed-
ings, including more than 30 high-impact papers in top-tier publications
for computer science and robotics, such as ACM TOIS, ACM TIST, IEEE
T-PAMI, KDD, UbiComp, IJCAI, AAAI, ICCV, CVPR, ECCV, ICRA and
etc.

Haoran Zhang received the Ph.D. degree in oil-
gas storage and transportation engineering in
2018 from China University of Petroleum-Beijing.
After graduation, he works as a researcher at
The University of Tokyo. His current research
interests include system optimization and data
mining. He has published about 60 SCI papers,
and 10 conference papers in many top interna-
tional journals and conferences, such as Applied
Energy, Energy, Journal of Cleaner Production
and IEEE Transactions on Industrial Informatics.

Rajendra Akerkar is a Professor and Head of
Big Data Research Group at Western Norway
Research Institute. He has 28 years of experi-
ence in knowledge representation and reason-
ing, ubiquitous data analytics and requirement
engineering. He is actively involved in several
international research innovation initiatives for
more than 22 years. Currently he coordinates
three major research initiatives funded by Eu-
ropean Commission (Horizon 2020 programme)
and the Research Council of Norway on two

different topics: ubiquitous data-driven mobility/transport and Big Data
in emergency management. He is a member of IEEE Task Force on
Disaster Resilient Smart World. He is serving as an Associate Editor
of International Journal of Metadata, Semantics and Ontologies, and
Knowledge Management Track Editor of Web Intelligence, an interna-
tional journal.

Authorized licensed use limited to: TULANE UNIVERSITY. Downloaded on August 30,2020 at 15:55:29 UTC from IEEE Xplore.  Restrictions apply. 



2332-7790 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2020.2972871, IEEE
Transactions on Big Data

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 23

Huawei Huang (M’16) received his Ph.D in
Computer Science and Engineering from the
University of Aizu, Japan, in 2016. He is cur-
rently an Associate Professor at School of Data
and Computer Science with Sun Yat-Sen Univer-
sity, China. His research interests mainly include
SDN/NFV, edge computing, and blockchain sys-
tem. He received the best paper award of
TrustCom-2016. He used to be a visiting scholar
at the Hong Kong Polytechnic University (2017-
2018), a post-doctoral research fellow of JSPS

(2016-2018), an Assistant Professor with Kyoto University, Japan (2018-
2019). He is a member of the IEEE.

Song Guo (M02SM11) is a Full Professor with
the Department of Computing, Hong Kong Poly-
technic University, Hong Kong. He received his
PhD degree in computer science from University
of Ottawa. He has authored or coauthored over
450 papers in major conferences and journals.
His current research interests include big data,
cloud and edge computing, mobile computing,
and distributed systems. Prof. Guo was a recip-
ient of the 2019 TCBD Best Conference Paper
Award, the 2018 IEEE TCGCC Best Magazine

Paper Award, the 2017 IEEE SYSTEMS JOURNAL Annual Best Paper
Award, and six other Best Paper Awards from IEEE/ACM conferences.
He was an IEEE Communications Society Distinguished Lecturer. He
has served as an Associate Editor of IEEE TPDS, IEEE TCC, IEEE
TETC, etc. He also served as the general and program chair for numer-
ous IEEE conferences. He currently serves in the Board of Governors
of the IEEE Communications Society.

Lei Zhong received his Ph. D. degree on in-
formatics from The Graduate University for Ad-
vances Studies in Japan. From 2011 to 2017,
he involved in many national research projects
related with wireless communication and net-
working when he worked in National Institute
of Information and Communications Technology
(NICT), National Institute of Informatics (NII) and
The University of Tokyo respectively.He currently
is a senior researcher and project manager in
Toyota Motor Corporation, where he is respon-

sible for the research and architect of future network and computing
infrastructure for connected vehicles. He is also serving as a Toyota
delegate in several related standardization organizations such as 3GPP
and AECC. His research interests include edge computing, vehicular
networking, software-defined networking, Internet-of-Things and Big
Data. He has been published more than 30 technical papers and applied
several patents in these fields.

Yusheng Ji (M’94-SM18) received the B.E.,
M.E., and D.E. degrees in electrical engineering
from the University of Tokyo. She joined the Na-
tional Center for Science Information Systems
(NACSIS), Japan, in 1990. She is currently a
Professor with the National Institute of Informat-
ics (NII), and SOKENDAI (the Graduate Univer-
sity for Advanced Studies), Japan. Her research
interests include network architecture, resource
management in wireless networks, and mobile
computing. She has served as a Board Member

of Trustees of IEICE, Steering Committee Member of Quality Aware
Internet SIG, Expert Member of IEICE Technical Committees on Com-
munication Quality, Symposium Co-Chair of IEEE GLOBECOM in 2012
and 2014, Track Chair of IEEE VTC 2016 Fall and 2017 Fall, Associate
Editor of IEICE Transactions and IPSJ Journal. She is an Expert Mem-
ber of IEICE Technical Committees on Internet Architecture, Steering
Committee Member of Internet and Operation Technologies SIG of IPSJ,
Editor of IEEE Transactions of Vehicular Technology, Symposium Co-
Chair of IEEE ICC2020, and TPC Member of IEEE INFOCOM, ICC,
GLOBECOM, WCNC, etc.

Andreas L. Opdahl is Professor of Informa-
tion Systems Development at the University of
Bergen, Norway. He received his Ph.D. from the
Norwegian University of Science and Technol-
ogy in 1992. His research interests include on-
tologies and knowledge graphs, enterprise and
IS modelling, as well as safety and security re-
quirements. Opdahl is the author, co-author or
co-editor of more than a hundred peer-reviewed
research papers that have been cited more than
3500 times. He is a member of IFIP WG5.8 on

Enterprise Interoperability and WG8.1 on Design and Evaluation of
Information Systems. He serves regularly as a reviewer for premier
international journals such as MISQ, JAIS, and ISR and as an organiser
of the most renowned international conferences and workshops in his
fields of interest.

Hemant Purohit is an Assistant Professor of
Information Sciences and Technology in the Vol-
genau School of Engineering at George Mason
University, Fairfax, USA. His research interests
include social web mining, semantic computing,
and human-AI collaboration with applications
in disaster informatics and smart city services.
Contact him at hpurohit@gmu.edu.

Andr e Skupin is a Professor of Geography
and Co-Director of the Center for Information
Convergence and Strategy (CICS) at San Diego
State University. He received a Dipl.-Ing. De-
gree in Cartography from the Technical Univer-
sity Dresden, Germany, and a PhD in Geography
at the University at Buffalo, United States. His
research expertise is centered on data visualiza-
tion, machine learning and knowledge manage-
ment, with applications in such diverse domains
as biomedicine, demography, and criminology.

Authorized licensed use limited to: TULANE UNIVERSITY. Downloaded on August 30,2020 at 15:55:29 UTC from IEEE Xplore.  Restrictions apply. 



2332-7790 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2020.2972871, IEEE
Transactions on Big Data

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 24

Akshay Pottathil is a strategist with extensive
experience in developing public-private partner-
ships. He has a proven ability to conduct accu-
rate needs analysis, assess technical capabili-
ties, conduct strategic planning, build and mo-
tivate teams, and manage high-risk/high-reward
projects. At San Diego State University, he was
honored with the Faculty of the Year award in
the Homeland Security program and has been
granted multiple Presidential Leadership Fund
awards. His efforts have spanned across North

America, Europe, the Middle East, and South East Asia. Pottathil serves
as Co-Director of San Diego State Universitys Center for Information
Convergence and Strategy (CICS), Co-Director of the Center for Data
Analytics and Intelligence (CENDAI) at the University of Life Sciences
Prague, in addition to other academic and non-academic appointments.

Aron Culotta is an associate professor of com-
puter science at the Illinois Institute of Technol-
ogy in Chicago, where he leads the Text Analysis
in the Public Interest lab. His research focuses
on extracting socially valuable insights from on-
line social networks. He is a former Microsoft
Live Labs Fellow with a PhD in computer science
from the University of Massachusetts, Amherst.
His work has received best paper awards at
the Association for the Advancement of Artifi-
cial Intelligence (AAAI) conference and the Con-

ference on Computer-Supported Social Work and Social Computing
(CSCW).

Authorized licensed use limited to: TULANE UNIVERSITY. Downloaded on August 30,2020 at 15:55:29 UTC from IEEE Xplore.  Restrictions apply. 


