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Abstract

Minimal perfect hash functions (MPHFs) are used to provide
efficient access to values of large dictionaries (sets of key-
value pairs). Discovering new algorithms for building MPHFs
is an area of active research, especially from the perspec-
tive of storage efficiency. The information-theoretic limit for
MPHFs is 1

ln 2
≈ 1.44 bits per key. The current best prac-

tical algorithms range between 2 and 4 bits per key. In this
article, we propose two SAT-based constructions of MPHFs.
Our first construction yields MPHFs near the information-
theoretic limit. For this construction, current state-of-the-art
SAT solvers can handle instances where the dictionaries con-
tain up to 40 elements, thereby outperforming the existing
(brute-force) methods. Our second construction uses XOR-
SAT filters to realize a practical approach with long-term stor-
age of approximately 1.83 bits per key.

Introduction
A minimal perfect hash function (MPHF) for a set Y with
n distinct elements is a collision-free mapping from the el-
ements of Y to the set [n] = {1, . . . , n}. MPHFs enable ef-
ficient access to data stored in large databases by providing
a unique index for each key in a set of key-value pairs. This
allows the value of each key-value pair to be stored at its as-
sociated index in an n-entry table. Since industrial databases
are often of significant size, if an MPHF is going to be used,
one would want it to use as little extra space as possible.

The information-theoretic limit for MPHFs is 1
ln 2 ≈ 1.44

bits per key (Mehlhorn 1982; Fredman and Komlós 1984),
yet no practical constructions (those not relying on brute-
force) have been found that meet this limit. In fact, the cur-
rent best algorithms range between 2 and 4 bits per key (Be-
lazzougui, Botelho, and Dietzfelbinger 2009; Botelho, Pagh,
and Ziviani 2013; Genuzio, Ottaviano, and Vigna 2016;
Limasset et al. 2017). Since applications may also consider
costs such as build time and query time, MPHF construc-
tion and querying should not be so costly as to outweigh the
benefit of a compact representation.

We introduce two new constructions for static MPHFs:
i.e., MPHFs where the set Y is immutable and known in ad-
vance. Both constructions are based on satisfiability (SAT)
techniques and utilize a universal family of hash functions.
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Table 1: The information-theoretic limit (αn) of bits per key
for a various number of keys (n).

n 10 20 30 40 102 103 104

αn 1.143 1.268 1.317 1.343 1.396 1.436 1.442

Our first construction encodes the MPHF construction as
a Boolean formula and computes a solution for it using a
SAT solver. It aims at the construction of MPHFs near the
information-theoretic limit (roughly 1.44 bits per key for
large sets, say consisting of over a few thousand keys) and
can be queried in log2 n steps. The information-theoretic
limit αn for smaller values of n are shown in Table 1.

We present a compact O(n2 log2 n) SAT encoding and a
more effectiveO(n3) encoding. On these encodings, current
SAT solvers (both complete and incomplete approaches) ex-
hibit exponential runtime on the number of elements in the
dictionary, with runtimes growing prohibitively large around
40 elements, making our construction currently impractical
for large sets. However, to the best of our knowledge, no
other existing construction (including brute-force) can con-
struct MPHFs near the information-theoretic limit for sets
with more than 20 elements in reasonable time.

Since we are only interested in satisfiable formulas (ex-
istence of MPHFs), SAT approaches based on local-search
technology seem a natural fit. Currently complete solving
methods work best on our encodings. However, our con-
struction creates formulas with a strong random flavor and
enormous progress has been made on local-search tech-
niques for uniform random k-SAT instances (Kautz and Sel-
man 1996; Balint and Schöning 2012; Gableske 2014).

Our second construction uses approximately 1.83 bits per
key and can build MPHFs in O(n3) steps (though con-
struction is trivially parallelizable). These MPHFs can be
queried in max(3, lnn + ln(lnn)) steps in the worst case.
Formally, the construction involves storing a minimum-
weight perfect matching of a weighted bipartite graph in
a space-efficient retrieval structure called an XORSAT fil-
ter (Weaver, Roberts, and Smith 2018). Our implemented
prototype demonstrates that the approach can produce
MPHFs for large datasets (230 keys) with fast query speed
(a million queries per second) for low costs.



Preliminaries
Below we present the most important background concepts
related to the contributions of this paper.

Minimal Perfect Hash Functions. A minimal perfect
hash function (MPHF) for a set Y with n distinct elements
is a bijection that maps the elements from Y to the set [n] =
{1, ..., n}. Three important tradeoffs play a role when con-
structing MPHFs: storage space, query speed, and building
cost. Most research focuses on lowering the storage space,
while having acceptable query speed and building cost.

The probability that a universal functionH with range [n]
is a minimal perfect hash function for Y is n!

nn . For each el-
ement yi with i ∈ [n], the probability that H(yi) and H(yj)
with (j < i) don’t collide is n+1−i

n . The information the-
oretic limit αn is log2(

nn

n! )/n bits per element. This limit
is roughly 1.44 bits per element for large n, but smaller for
small n. Table 1 shows the limit for various values of n.

The only existing MPHF constructions that realize this
bound are based on brute-force: they evaluate many hash
functions on Y and terminate as soon as a minimal perfect
hash function is found. As the representation of such a hash
function requires on average αn bits per element, it follows
that, for example, brute-force over a set of 20 elements re-
quires on average evaluating over 43 million (225.36) hash
functions.

Propositional Logic and Satisfiability. We consider
propositional formulas in conjunctive normal form, which
are defined as follows. A literal is either a variable x (a pos-
itive literal) or the negation x of a variable x (a negative
literal). For a literal l, we denote the variable of l by var(l).
The complementary literal l of a literal l is defined as l = x
if l = x and l = x if l = x. A clause is a finite disjunction
of the form (l1 ∨ · · · ∨ lk), where l1, . . . , lk are literals. A
formula is a finite conjunction of the form C1 ∧ · · · ∧ Cm,
where C1, . . . , Cm are clauses. An XOR constraint is an ex-
pression of the form l1 ⊕ · · · ⊕ lk ≡ b, where l1, . . . , lk are
literals and b ∈ {0, 1}.

An assignment is a function from a set of variables to the
truth values 1 (true) and 0 (false). A literal l is satisfied by
an assignment α if l is positive and α(var(l)) = 1 or if it is
negative and α(var(l)) = 0. A literal is falsified by an as-
signment if its complement is satisfied by the assignment.
For a literal l, we sometimes slightly abuse notation and
write α(l) = 1 if α satisfies l and α(l) = 0 if α falsifies
l. A clause is satisfied by an assignment α if it contains a
literal that is satisfied by α. Finally, a formula is satisfied
by an assignment α if all its clauses are satisfied by α. A
formula is satisfiable if there exists an assignment that satis-
fies it and unsatisfiable otherwise. Moreover, an XOR con-
straint l1 ⊕ · · · ⊕ lk ≡ b is satisfied by an assignment α if
α(l1) + · · ·+ α(lk) ≡ b (mod 2).

XORSAT filters. An XORSAT filter is a space-efficient
probabilistic data structure used for testing whether an ele-
ment is in a set. In the context of this paper, XORSAT filters

are treated as dictionaries of one-bit items. An XORSAT fil-
ter consists of n bits and k hash functions with range [n].
To retrieve the stored bit associated with an element, k hash
functions are evaluated on the element. This results in k en-
tries in the array. If the number of entries with value 1 is
even, then the stored bit is 0, otherwise the stored bit is 1.
XORSAT filters are constructed as follows: First, an XOR
constraint of length k is generated for each of the n elements
in the set, with the right-hand side of each constraint being
equal to the corresponding bit to be stored. After this, the
XORSAT filter is constructed by computing a solution for
the conjunction of these XOR constraints.

A Space-Optimal MPHF Construction
We first explore the ability of SAT solving techniques to
construct space-optimal (αn bits per key) MPHFs. We as-
sume given a set Y = {y1, . . . , yn} (the elements to be
hashed) and an integer m (the number of bits used for stor-
ing the MPHF). Clearly, the elements of Y can be repre-
sented by bit-vectors of length k = dlog2(n)e. For our con-
structions, we use a universal family of k hash functions
H1, . . . ,Hk with domain Y and range {−m, . . . ,m} \ {0}.
For an element yj , we denote with Li(yj) the literal xHi(yj)

if Hi(yj) > 0 and the literal x−Hi(yj) otherwise.
To encode the problem of finding MPHFs into propo-

sitional logic, we first introduce m distinct Boolean vari-
ables x1, . . . , xm. We then aim at defining a propositional
formula such that the index (the hash) for each element
yi can be derived from a satisfying assignment α of the
formula (and in particular from the truth values assigned
to x1, . . . , xm) as follows: The index for yi is going to
be the bit-vector α(L1(yj)) . . . α(Lk(yj)). For example, let
m = 3, j = 1, and assume that H1(y1) = 3, H2(y1) = −1,
and H3(y1) = 2. Then, the index of y1 is determined
by the truth values assigned to the literals L1(y1) = x3,
L2(y1) = x1, and L3(y1) = x2. Thus, if α(x1) = 1,
α(x2) = 0 and α(x3) = 1, then y1 will be mapped to the
index α(x3)α(x1)α(x2) = 〈100〉 = 5 (note that in our set-
ting the bit-vector 〈100〉 represents the number 5 instead of
4 since indices start at 1 and not at 0).

To ensure that the mapping of each element depends on
k distinct variables, we enforce that each hash function re-
turns a different variable by applying a hash function multi-
ple times in case of a clash.

To obtain an MPHF, we want a propositional formula
that is satisfied by an assignment α if and only if for
every pair of distinct elements yi and yj , it holds that
α(L1(yi)) . . . α(Lk(yi)) 6= α(L1(yj)) . . . α(Lk(yj)); in
other words, it holds that yi and yj are mapped to different
indices. Once we obtain such an assignment, we transform
it into a bit-vector (the storage) by concatenating the truth-
value assignments to all the literals. From this bit-vector we
can then compute the index of an element bit-by-bit via sim-
ple look-ups using the hash functions H1, . . . ,Hk.

Example 1. Let Y be the set {y1, y2, y3, y4}, resulting in
n = 4 and k = dlog2(n)e = 2. For this example, we choose
the number of Boolean variables to be m = 6. Suppose the



evaluation of the k = 2 hash functions H1 and H2 (with
range {−m, . . . ,m} \ {0}) on all elements of Y produces
the following table:

L1 L2

y1 x1 x5
y2 x2 x6
y3 x3 x1
y4 x5 x4

The resulting bit-vectors are then obtained from the as-
signments to the variables in x1x5 for y1, x2x6 for y2, x3x1
for y3, and x5x4 for y4. For instance, the assignment that
maps the truth value 0 to the variables x2 and x4, and the
truth value 1 to the other variables makes all indices differ-
ent: y1 maps to 2 (〈01〉), y2 to 3 (〈10〉), y3 to 4 (〈11〉), and
y4 to 1 (〈00〉). The storage of the MPHF is 〈101011〉: 6 bits
for 4 elements, thus 1.5 bits per element. A query to obtain
the value for an element requires k look-ups into the stored
bit-vector.

Encodings
The encoding of a problem into SAT can have a big im-
pact on the performance of SAT solvers. We observed this
for MPHF as well. An often used heuristic for an effec-
tive encoding is to minimize the sum of the number of vari-
ables and the number of clauses. This heuristic is, for exam-
ple, used in the most-commonly applied SAT-preprocessing
technique—bounded variable elimination (Eén and Biere
2005). We thus focused our initial efforts on designing a
compact encoding.

If n, the number of keys, is a power of 2, then the en-
coding only requires the following all-different constraint,
which we need to encode in conjunctive normal form:∧

1≤i<j≤n

L1(yi) . . . Lk(yi) 6= L1(yj) . . . Lk(yj). (1)

Additionally, if the number of keys is not a power of 2, then
we need a constraint stating that none of the elements should
be mapped to values larger than n.

The first and most compact encoding of the all-different
constraint used in our experiments introduces auxiliary vari-
ables ea,b with a, b ∈ {x1, x1, . . . , xm, xm} that denote that
literals a and b are equal. So ea,a = 1, ea,a = 0, and
ea,b = eb,a. These variables are used to construct the clauses∧

1≤i<j≤n

(eL1(yi),L1(yj) ∨ · · · ∨ eLk(yi),Lk(yj)). (2)

Intuitively, these clauses state that the keys for distinct ele-
ments yi and yj need to differ in at least one bit.

Notice that we only need such ea,b variables if for some
pairs of elements y and y′ and some i holds that Li(y) = a
and Li(y

′) = b. The intuitive meaning of the ea,b variables
can simply be encoded using an XOR constraint:

ea,b ⊕ a⊕ b ≡ 1. (3)

Although encoding ternary XOR constraints normally re-
quires four clauses, we used only the two clauses with the

positive literal ea,b as the two clauses with the negative lit-
eral ea,b are blocked (Kullmann 1999) and thus redundant.
The resulting encoding has O(n2 log2(n)) ternary clauses
and O(n2) clauses of length k.

We also explored various other encodings since the re-
sults based on the above encoding were disappointing. The
most effective encoding (for both complete and incomplete
solvers) that we explored uses no auxiliary variables—in
case the number of keys is a power of 2, we encode the con-
straint (1) as follows:

∧
1≤i,j,l≤n,i 6=j

L1(yi) . . . Lk(yi) = l→ L1(yj) . . . Lk(yj) 6= l.

(4)
In the above, L1(yi) . . . Lk(yi) = l denotes that the bit-

vector interpretation of L1(yi) . . . Lk(yi), with L1(yi) being
the most significant bit, equals the lth position in range [n].
E.g., 〈000〉 = 1 and 〈001〉 = 2. In case the number of keys
is not a power of 2, we drop both literals that represent the
most significant bits, i.e., L1(yi) and L1(yj), for all l with
l + 2k−1 > n and l − 2k−1 < 1.

When representing this encoding in conjunctive normal
form, the number of clauses is cubic in n and therefore much
larger compared to the first encoding, which uses auxiliary
variables. Also, the clauses are of length 2k. It is therefore
unlikely that one can use this encoding to construct MPHFs
with hundreds of keys because solving almost any formula
with over a million clauses is challenging for current state-
of-the-art solvers. The encoding also produces many tauto-
logical clauses and duplicate literals, which are both dis-
carded by our generator.

The cubic encoding turned out to be more effective com-
pared to the compact encoding. For example, formulas with
32 keys and 46 variables can be solved with the cubic en-
coding with an average runtime of 4 seconds whereas the
average solving time for formulas based on the compact en-
coding was 8.5 seconds. One explanation for the difference
is that the cubic encoding enables more unit propagations.
Consider again Example 1 and in particular the constraint
stating that the bit-vectors of y1 and y3 must be different.
In terms of variables it means that x1x5 cannot be equal to
x3x1. Under the assignment that makes x3 true and x5 false,
we can deduce that x1 must be true. Unit propagation on the
cubic encoding will infer this. However, in the compact en-
coding we end up with the binary clauses (ex1,x3 ∨ ex1,x5),
(ex1,x3 ∨ x1), and (ex1,x5 ∨ x1).

Other encodings of the all-different constraint of bit-
vectors have been studied in the literature (Biere and Brum-
mayer 2008; Surynek 2012), but the authors considered the
case where the number of bit-vectors is significantly smaller
than the range of the bit-vectors. For our application, how-
ever, the number of bit-vectors and their range is equal or
similar.

We observed that SAT encodings of MPHF problems with
m ≥ dn/ ln 2e have a high probability of being satisfi-
able (in the range of n up to 40 used in the evaluation)
and that a phase transition pattern can be observed near the
information-theoretic limit of constructing MPHFs. We ex-
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Figure 1: Left, the satisfiability threshold for MPHFs with 10, 20, 30, and 40 keys. The horizontal axis shows the number of bits
per key. The vertical axis is the fraction of runs (out of 2400) that were satisfiable. The bold vertical line represents the MPHF
information-theoretic limit for large sets. Right, the average runtime to build MPHFs with 10, 20, 30, and 40 keys. The vertical
axis shows the runtime in seconds using a logscale.

perimented with a range of different SAT encodings and
SAT solvers, but the current state-of-the-art tools are not
powerful enough to practically construct MPHFs with more
than 40 elements near the theoretic limit.

Experimental Evaluation
We evaluated the effectiveness of our SAT-based approach
to constructing MPHFs near the information-theoretic
limit. The encoding and decoding tools are available
at https://github.com/weaversa/MPHF. We used
cube-and-conquer (Heule et al. 2012) to solve the resulting
formulas as this approach demonstrated strong performance
on the hardest MPHF instances. Cube-and-conquer splits a
given problem into multiple subproblems, which are solved
by a “conquer” solver. We used glucose 3.0 (Audemard
and Simon 2009) as conquer solver. All mentioned runtimes
are the sum of splitting the problem and the solving time by
the conquer solver on a single core of a Xeon CPU E5-2650.

Figure 1 (left) shows the results for 10, 20, 30, and 40 ran-
dom keys with the number of bits per key between 1 and 2.
Each point shows the fraction of satisfiable formulas aver-
aged over 2400 instances for each number of keys (n) and
number of variables (m). The bold vertical line denotes the
information-theoretic limit.

The observed phase transition from UNSAT to SAT be-
comes more and more sharper when increasing the number
of keys. Moreover, the curve based on 40 keys appears to
be almost symmetric (rotation by 180 degrees) in the point
at 50% at the information-theoretic limit for large n. Re-
call that the information-theoretic limit α40 = 1.343. Hence
the phase transition happens slightly after the limit. We an-
alyzed the results and noticed various instances that did not

use all m variables. If one or more variables are missing,
then the formula is more likely to be unsatisfiable. The ob-
served phase transition for n = 40 is much closer to α40

when only considering the instances that use allm variables.
Our results show that the SAT-based approach is able

to construct close to space-optimal MPHFs for the limited
number of keys considered in the experimental evaluation.
They also suggest that the curve would further sharpen when
increasing the number of keys. To the best of our knowledge,
this is the first approach that can construct close to space-
optimal MPHFs for 40 keys in reasonable time.

Unfortunately, experiments with off-the-shelf SAT
solvers on the encodings exhibit exponential runtime on the
number of keys as shown in Figure 1 (right). The runtime
bump near 1.8 for 40 keys is due to the lack of subproblems
that are generated. Generating more subproblems for these
instances would reduce the runtime (combined splitting and
solving time). The formulas for 40 keys at the observed
phase transition require on average about 800 seconds,
although for some instances solving takes a few hours. In
contrast, the hardest instance for 30 keys can be solved in
a several seconds. Hence, larger runs that may sharpen the
logistic curve could not be completed. We experimented
with both complete and incomplete state-of-the-art solvers,
including probsat (Balint and Schöning 2012). Whether
there exists an encoding that is more amenable to SAT
solvers is left for future work.

A 1.83n MPHF Construction
The second MPHF construction, which allows building
MPHFs with approximately 1.83n bits per key, also uses a
universal family of k hash functions and returns a bit-vector



of m bits. However, obtaining the index for a key is quite
different. Instead of computing the index bit by bit, the sec-
ond MPHF approach computes which hash function should
be used to obtain the index.

To build an MPHF for a set Y with n elements, given a set
of universal hash functions H1, ...,Hk each with range [n],
we first create a weighted bipartite graph G = (Y, [n], E),
where for all y ∈ Y and for all i ∈ [k], (y,Hi(y)) ∈ E, it
holds that weight(y,Hi(y)) = i.

Here, the weighted bipartite graph is created in such a way
that the nodes on the left-hand-side (i.e., the left partition)
represent elements of Y and the right-hand-side nodes rep-
resent elements from [n]. The hash functions determine how
every left-hand-side node is connected to k right-hand-side
nodes. That is, for each y ∈ Y , compute H1(y), . . . ,Hk(y)
and add edges from y to the resulting nodes produced by the
hash functions. The weight of each edge is assigned the in-
dex of the hash function used, that is, weight(y,Hi(y)) = i.

The parameter k should be chosen in a way that guaran-
tees that G possesses a perfect matching. A result by Frieze
and Melsted (Frieze and Melsted 2012) shows that, with
high probability, G will have a perfect matching when the
degree of each left-hand-side node is at least three and the
degree of each right-hand-side node is at least two. Newman
and Shepp’s result (Newman and Shepp 1960) on the Dou-
ble Dixie Cup Problem shows that the right-hand-side nodes
will, with high probability, have degree two when the num-
ber of edges reaches n(lnn+ ln(lnn)). Hence, since every
Hi is used to hash n keys, the optimal value for parameter k
is max(3, lnn+ ln(lnn)).

Let M be a minimum-weight perfect matching of G. M
can be found in O(n3) steps using the Hungarian Algo-
rithm (Kuhn 1955). M is also the bijective mapping of the
MPHF being built. SinceG fits Parviainen’s proposed “Case
II” (Parviainen 2004), M has weight approximately 1.83n,
asymptotically, which was determined experimentally.

The mapping M is stored in a space-efficient retrieval
structure such that, for each y, if Hi(y) ∈ M then store
((i, y), 1) (definite presence) and for each j < i store
((j, y), 0) (definite absence).1 Such a retrieval structure can
be created in O((1.83n)3) steps, takes up one bit of space
per element stored, and can be accessed in a small con-
stant number of steps (Dietzfelbinger and Walzer 2019a).
It’s worth noting that both the Hungarian Algorithm and
the retrieval structure construction process can benefit from
sharding the input into small sets (which can all be processed
in parallel), meaning that the MPHF can be created more ef-
ficiently than two O(n3) steps, though at a determinable,
yet practically small loss to space efficiency. The long-term
storage of this MPHF construction is equivalent to the size
of the retrieval structure which will be approximately 1.83n.

To find the mapping from y to its corresponding index,
query the retrieval structure with (i, y), starting with i =
1 and increment until 1 is given. Then, the index for y is
Hi(y).

1This is reminiscent of BBHash’s positional MPHF scheme (Li-
masset et al. 2017)

Example 2. We provide a detailed example of building an
MPHF by storing a minimum weight perfect matching of
a bipartite graph in the solution of a k-XORSAT instance.2
Let Y be the set {y1, y2, y3, y4, y5}, resulting in n = 5 and
k = max(3, ln 5+ ln(ln 5)) = 3. First, the k hash functions
are evaluated on all elements of Y , producing the following
table.

H1 H2 H3

y1 1 5 2
y2 2 4 5
y3 1 3 4
y4 1 3 1
y5 5 3 3

Next, a bipartite graph is built from the table by adding for
each element in Y an edge from the element to the results of
the hash functions. Thus, for instance, y1 is connected to 1,
5, and 2.

y1

y2

y3

y4

y5

1

2

3

4

5

The weight of each edge is equal to the index of the hash
function used. For example, edge (y1, 1) has weight 1 and
edge (y2, 5) has weight 3. The Hungarian Algorithm is now
used to find a minimal weight perfect matching of the bipar-
tite graph. One such matching (which has weight 8) is given
below.

H1 H2 H3

y1 1 5 2
y2 2 4 5
y3 1 3 4
y4 1 3 1
y5 5 3 3

This corresponds to the following matching:

2Many practical algorithms exist that support linear-time con-
struction and constant-time look-ups on static dictionaries (Seiden
and Hirschberg 1994; Dietzfelbinger and Pagh 2008; Aumüller, Di-
etzfelbinger, and Rink 2009; Porat 2009; Botelho, Pagh, and Zi-
viani 2013; Genuzio, Ottaviano, and Vigna 2016; Dietzfelbinger
and Walzer 2019a). Without loss of generality, the XORSAT fil-
ter (Weaver, Roberts, and Smith 2018) is chosen here.



y1

y2

y3

y4

y5

1

2

3

4

5

The final step is to store the matching in an XORSAT fil-
ter. For this example, we store the following 8 elements:

((y1, 1), 1),
((y2, 1), 1),
((y3, 1), 0), ((y3, 2), 0), ((y3, 3), 1),
((y4, 1), 0), ((y4, 2), 1),
((y5, 1), 1).

Elements are stored in the filter in the way proposed by
Weaver et al. (Weaver, Roberts, and Smith 2018), where the
first part of the tuple is the element being filtered on and the
second part is one bit of metadata to store (treating the filter
like a dictionary of one-bit items).

Let t denote the number of tuples, in this case 8. We
construct the XORSAT filter using two hash functions with
range [t]. We limit the number of hash functions for read-
ability, but use 5 hash functions in practice to generate an
XORSAT filter with high efficiency.

tuple H1 H2 XOR constraint

(y1, 1) 3 6 x3 ⊕ x6 ≡ 1
(y2, 1) 5 1 x5 ⊕ x1 ≡ 1
(y3, 1) 4 8 x4 ⊕ x8 ≡ 0
(y3, 2) 2 3 x2 ⊕ x3 ≡ 0
(y3, 3) 5 4 x5 ⊕ x4 ≡ 1
(y4, 1) 8 7 x8 ⊕ x7 ≡ 0
(y4, 2) 2 7 x2 ⊕ x7 ≡ 1
(y5, 1) 4 3 x4 ⊕ x3 ≡ 1

The conjunction of the XOR constraints is satisfiable, for
example by assigning the truth value 1 to the variables x2,
x3, and x5, and the truth value 0 to the other variables. We
thus store the bit vector 〈01101000〉, using 8 bits for 5 ele-
ments.

The index of an element of Y is determined by querying
the filter a number of times, stopping when it returns 1. In
this example, to determine the index of y3, we first query the
filter with (y3, 1) and obtain the hashes 4 and 8. Thus, the
filter will return 0 because it has 0 at the positions 4 and 8,
and 0 ⊕ 0 ≡ 0. Next, we query the filter with (y3, 2). The
filter will again return 0. Finally, we query the filter with
(y3, 3). Now it will return 1. This means the MPHF index of
y3 is H3(y3) = 4.

Proof of Concept
We provide some experimental results of building and test-
ing the 1.83n MPHF construction. To this end, we wrote a

tool that is composed of implementations of a minimum-
weight bipartite perfect matcher3 and an XORSAT fil-
ter (Weaver, Roberts, and Smith 2018). All runs were per-
formed on an Amazon EC2 instance of type m5.4xlarge.
Such an instance has 16 cores, 64 GiB of memory, and cur-
rently costs 0.768 USD per hour.

Table 2: Runtime in seconds to compute the minimum-
weight bipartite perfect matching on n keys, per the con-
struction described above.

29 210 211 212 213 214 215 216 217 218 219

<1 <1 <1 <1 <1 1 2 9 32 134 566

The results in Table 2 show that it will not be practical to
build a large MPHF without blocking (or sharding) the in-
put and solving each block independently. The trade-off here
is that, in exchange for being able to build MPHFs for very
large sets, blocking slightly decreases the space efficiency of
the MPHF due to the need to store extra information relating
to block sizes. Table 2 also gives some insight into appropri-
ate block sizes for MPHFs: a block size between 213 and 214

allows blocks to be built in about one second.

Table 3: Achieved bits per key (BPK) and seconds taken to
compute a blocked MPHF on n keys, per the construction
described above. Size refers to the number of kilobytes in the
resulting MPHF. Cost of building is in USD. Query speed is
in nanoseconds per query.

Build Time Query
n 1 Core 16 Cores BPK Cost Speed

215 3 < 1 1.85 0.00 172
216 6 < 1 1.85 0.00 168
217 14 2 1.85 0.00 165
218 28 3 1.85 0.00 167
219 55 4 1.85 0.00 167
220 114 8 1.85 0.00 167
221 228 15 1.85 0.00 167
222 450 30 1.85 0.01 170
223 903 59 1.85 0.01 191
224 1 816 118 1.85 0.03 225
225 3 503 228 1.85 0.05 211
226 7 238 472 1.85 0.10 221
227 14 465 952 1.85 0.20 244
228 28 991 1 920 1.85 0.41 335
229 57 861 3 892 1.85 0.82 420
230 120 088 8 346 1.85 1.78 552

In Table 3, to maintain high XORSAT-filter efficiency
up into the billions of keys, the XORSAT-filter parameters
were raised from those suggested by Weaver et al. (Weaver,

3https://github.com/jamespayor/weighted-bipartite-perfect-
matching



Roberts, and Smith 2018) to a block size of 4608. We also
used the sparse vector generation method proposed by Di-
etzfelbinger and Walzer (Dietzfelbinger and Walzer 2019a).
As expected, each run generated a weighted bipartite graph
with a minimum weight of 1.831n, so any loss in space ef-
ficiency is due to extra information stored about the MPHF
blocking scheme and inefficiencies in the resulting XOR-
SAT filters.

Recent practical improvements to the construction of
space-efficient retrieval structures, such as those proposed
by Dietzfelbinger and Walzer (Dietzfelbinger and Walzer
2019b), would likely improve the results given here (shorter
build time) and we plan to evaluate them in future work.

We performed a comparison between our approach
and the state-of-the-art. Specifically, we used the
benchmphf tool4 to generate MPHFs for 230 elements.
The benchmphf tool supports the EMPHF (Belazzougui
et al. 2014), HEM (Botelho, Pagh, and Ziviani 2013),
CHD (Belazzougui, Botelho, and Dietzfelbinger 2009),
and Sux4j5 implementations. Our results were similar to
those reported by Limasset et al. (Limasset et al. 2017)
with construction time between 400 and 2000 seconds, bits
per key between 2.90 and 4.22, and query time between
250 to 1000 nanoseconds per query. For 230 elements, our
implementation achieved 1.85 bits per key, took 120000
seconds (sequentially) to build, and has a query time of
roughly 550 nanoseconds per query.

Perfect Hash Functions
Our paper focuses on MPHFs, but the same techniques can
also be used to construct (non-minimal) perfect hash func-
tions (PHFs). We already observed for the SAT-based ap-
proach that increasing the number of variables (i.e, enlarging
the distance with respect to the information-theoretic limit)
reduces the costs to build a MPHF. Alternatively, one can
reduce the costs by increasing the range to which keys are
mapped and thus allow gaps.

When considering the 1.83n MPHF construction re-
worked for PHFs, the ratio of right-hand-side nodes to left-
hand-side nodes in the bipartite graph will be greater than
1. How does this effect the minimum weight of the graph?
If the weight scales slowly as the ratio grows, the construc-
tion proposed here could also be used to build space-efficient
PHFs.

Conclusions and Future Work
We presented two MPHF constructions. Our first con-
struction achieves storage efficiency near the information-
theoretic limit but has the drawback that SAT-solving tech-
niques can currently only deal with instances up to 40 keys,
which is still twice as much as previous (brute-force) ap-
proaches. Our second construction is practical in that it al-
lows constructing MPHFs for large datasets for low costs
and high query speeds. In fact, this is the most storage-
efficient construction of all currently known practical MPHF
constructions.

4https://github.com/rchikhi/benchmphf
5https://github.com/vigna/Sux4J

One of the exciting challenges for future work is to find
out whether a SAT-solving tool can be developed that can
construct MPHFs near the information-theoretic limit for a
substantial number of elements. Such an approach would
likely be based on local-search techniques as they tend to
scale better on random problems, such as uniform random
k-SAT formulas.

Our experiments revealed the surprising observation that
a huge encoding without auxiliary variables achieves bet-
ter results than more compact encodings. As stated earlier,
this may be due to the increased propagation power of the
cubic encoding. The development of an encoding with only
O(n2 log2 n) clauses with the same propagation power as
the cubic encoding could further improve the results.
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