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Abstract

In 1999, K. Whyte introduced translation-like actions of a group H on a group G as a dynamical/geometric
generalization of H being a subgroup of G. In this paper, our interest lies in when lattices in closed
Lie subgroups acts translation-like on lattices in the ambient Lie group. Extending work of D. Cohen,
we show that cocompact lattices in non-compact simple Lie groups G not isogenous to SL(2,R) admit
translation-like actions by Z2. This result follows from a more general result. Namely, we prove that any
cocompact lattice in the unipotent radical N of the Borel subgroup AN of G acts translation-like on any
cocompact lattice in G. We also prove that for non-compact simple Lie groups G,H with H < G and
lattices I' < G and A < H, that A admits a translation-like action on I such that I'/A is quasi-isometric to
G/H where I'/A is the quotient (metric space) via a translation-like action of A on I" and word metric on
I.

1 Introduction

Given a Lie group G equipped with a bi-invariant metric, every cocompact lattice I' < G with a finite word
metric is a coarse geometric model of G (e.g. the inclusion map is a quasi-isometry). One theme in the
study of lattices is how much of the structure of G is captured in the structures on the lattices I. When G
is a non-compact real simple Lie group of real rank at least two, Margulis established that these lattices are
arithmetic which is one of the strongest ways that I" can capture the structure of G. He also directly related
the finite dimensional representation theory of I" with that of G via super-rigidity. These lattices are also
conjectured by Serre to have the congruence subgroup property, which shows that the finite representation
theory of I" functions through the structure of G.

Given a Lie group G and closed subgroup H < G, two associated geometric objects are the homogenous
space G/H and the foliation of G via the H—cosets. Given a cocompact lattice ' < G, we define A=HNT
and ask if I'/A is a coarse model for G/H? When A < H is a cocompact lattice, I'/A is a coarse model for
G/H. Likewise, the coset foliation on I" via YA is a coarse model for the H-coset foliation. Unfortunately,
the intersection A = HNI can vary (depending on I" and H) from trivial to a cocompact lattice in H. For
instance, there are infinitely many commensurability classes of arithmetic lattices I" < SL(2,C) such that
HNT is a cocompact lattice for countably many H that are conjugate to SL(2,R). However, there also
exist infinitely many commensurability classes of arithmetic lattices I" < SL(2,C) such that HNT is never
a lattice for any H that is conjugate to SL(2,R). By Kahn-Markovic [13], all of these lattices have quasi-
isometric surface subgroups A. For these subgroups A, the space I'/A gives a coarse model for G/H despite
A not being a subgroup of some H. We take an alternative approach to finding models for G/H.



Given a group H and a metric space (X,d) with a free (left) H—action, we say that H acts translation-like
on X if sup{d(x,h-x) : x € X} < oo foreach h € H; an action satisfying this condition is called wobbling.
Our present interest is when X = G is a finitely generated group equipped with a word metric associated
to a finite generating subset. Whyte [22] introduced translation-like actions as a geometric coarsification
of subgroups. Indeed, when H < G, the right action of H on G is free and translation-like for any finite
generating subset of G. In an effort to justify this view, Whyte established a coarse geometric result in
relation to the von Neumann—Day conjecture. The conjecture asserts that a group G is non-amenable if and
only if G contains a non-abelian free subgroup, which by Ol’shanskii [17] is known to be false. On the other
hand, Whyte [22] proved a coarsification of this conjecture, establishing that G is non-amenable if and only
if G admits a translation-like action by a non-abelian free group.

In 1902, Burnside asked if every infinite, finitely generated group G contains an element of infinite order,
and Golod-Shafarevich [8] answered Burnside’s question in the negative by providing examples of finitely
generated infinite torsion groups. Seward [20] took a similar approach as Whyte to Burnside’s problem,
proving that a finitely generated group G is infinite if and only if G admits a translation-like action by Z.

With translation-like actions that are sufficiently well behaved, we provide a method to construct a model
for the homogeneous space G/H that is compatible with models for the Lie groups G and H given by
cocompact lattices A < H and I < G. Suppose that A admits a translation-like action on I" where the orbits
of the action of A on I' are coarsely embedded and are contained in cosets of H in G. Moreover, suppose
that the quotient of I" by the translation-like action of A admits a natural metric with a natural inclusion into
G/H that is coarsely dense. We then say that the translation-like action of A on I gives rise to a coarse
model of G/H and denote it as I'/A.

Following Seward and Whyte, Cohen [6] investigated the geometric coarsification of a question due to
Gersten—Gromov (see [1, Ques 1.1]). Specifically, if G admits a finite K(G, 1) and contains no Baumslag—
Solitar subgroups BS(m,n), then is G hyperbolic? Like the von Neumann—Day conjecture and Burnside’s
question, this question is known to have a negative answer, and in fact, there are many counterexamples
to the Gersten—Gromov question. For example, Rips [19] proved that there exists a C'(1/6) small can-
cellation group with a finitely generated but not finitely presentable subgroup H. Since C'(1/6) small
cancellation groups are hyperbolic, the subgroup H cannot contain any Baumslag—Solitar subgroups which
gives a counterexample to the Gersten conjecture. Even if we restrict ourselves to the class of finitely pre-
sentable groups, we have counterexamples. Brady [4] using branched coverings of cubical complexes to
produce a hyperbolic group with a finitely presented subgroup that is not hyperbolic which provides finitely
presentable counterexample to the Gersten conjecture.

The geometric coarsification of the Gersten—-Gromov question is that a group G with a finite K(G, 1) is
hyperbolic if and only if G does not admit a translation-like action by any Baumslag—Solitar group. The
main result of [6] proved that cocompact lattices in SO(3, 1) admit translation-like actions by Z?2, proving
that the geometric coarsification of the Gersten—Gromov question is false. Moreover, by inspecting the
construction in [6], we see that the translation-like action of Z? on cocompact lattices in SO(3,1) gives
rise to a coarse model for SO(3,1)/R? which can be seen as the space of horospheres of 3-dimensional
hyperbolic space.

Our first result extends [6] to all cocompact lattices in all semisimple Lie groups. Fixing an Iwasawa
decomposition of G = KAN, when I" < G is a non-cocompact lattice, then A =IT"NN is a cocompact lattice
in N. The Lie group N is a connected, simply connected nilpotent Lie group and so A < N is a torsion-free,
finitely generated nilpotent group. When I' < G is a cocompact lattice, then I' NN is trivial. Despite it being
impossible for I" to have torsion-free nilpotent subgroups besides Z, the lattices I" do admit translation-like
actions by the lattices in N that give rise to coarse models for G/N.

Theorem 1.1. Let G be a semisimple Lie group with an Iwasawa decomposition G = KAN. If T < G and
A < N are cocompact lattices, then I" admits a translation-like action by A. Moreover, we can choose this



translation-like action to give rise to a coarse mode T'/A of the homogeneous space G/N. Finally, given
distinct lattices T,y < G and A1,Ay <N, we have the coarse models T'1 /A| and Ty /A, for G/N are
bi-Lipschitz.

One immediate corollary of this theorem is the following.

Corollary 1.2. Let G be a noncompact simple Lie group which is not isogenous to SL(2,R). IfT' < G is
cocompact lattice, then T admits a translation-like action by 7.

This corollary generalizes the main result of [6]. More recently, Jiang [12] proved that the lamplighter
group admits no translation-like actions by Baumslag—Solitar groups. As the lamplighter group is not
finitely presentable, it cannot be hyperbolic. Hence, this provides a counterexample for the other direction
of the geometric coarsification of the Gersten—Gromov question. In particular, there are hyperbolic groups
that admit actions by Baumslag—Solitar groups and there exist non-hyperbolic groups which do not admit
any translation-like actions by a Baumslag—Solitar group.

Question 1. Does there exist a non-hyperbolic, finitely presentable group that does not admit a translation-
like action by any Baumslag—Solitar group?

We give an outline of the proof of our first theorem which follows the proof of the main theorem of [6].
Using unipotent flows, we construct a net in G/K which is bi-Lipschitz to our group I' on which A admits
a translation-like action. The unipotent subgroups of the Iwasawa decomposition with the induced metric
are bi-Lipschitz to N with a left invariant metric in which A is a cocompact lattice. The nilpotent Lie
groups N admit natural scaling automorphisms which we use to shrink or expand the copy of A in each
coset (a,N) where a € 7rk(G) a5 g varies to account for the changes in the induced geometry of each
translate of the unipotent subgroup. Since each layer of this net is a copy of A, we act on these layers
by right translation. The actions on the layers combine together to give an action on the entire net that is
translation-like. Through the bi-Lipschitz equivalence of I" with this net, we obtain a translation-like action
of the group Aon T

The last theorem of our note constructs coarse models for homogeneous spaces of the form G/H where
both G and H are noncompact real simple Lie groups using cocompact lattices in G and H. We refer the
reader to Definition 2.11 for the definition of a coarse model.

Theorem 1.3. Let G and H be Q—defined noncompact real simple Lie groups such that H < G. If A< H
and I < G are cocompact lattices, then A admits a translation-like action on I'. Moreover, we can choose
this translation-like such that T'/A is a coarse model for G/H. Finally, given distinct lattices T'1, I, < G
and Ay, Ay < H, the spaces T'1 /Ay and Ty /A, for G/H are bi-Lipschitz.

The proof of this theorem follows from basic structural results of simple Lie groups.

2 Background

For a group G and g,h € G, the commutator is denoted by g and & as [g,h] = g 'h~'gh. For subgroups
A, B < G, the subgroup generated by {[a,b] : a € A, b € B} is denoted by [A, B]. The i-th step of the lower
central series of G is denoted as G;. When N is a nilpotent group, we denote its step length as ¢(N).



2.1 Lie groups and Lie algebras

Lie groups will be typically denoted by G with Lie algebras given by g. The Lie bracket of X and Y will be
denoted by [X,Y]. Inner products will be denoted (-,-). Left translation by a group element g € G will be
denoted by L,. The i-th step of the lower central series of a Lie algebra g will be denoted by g;. The tangent
space of G at any element g € G will be denoted by T,(G).

Given a connected Lie group G with Lie algebra g and g € G, the map L,: G — G given by L,(x) = g-x
is a diffeomorphism of G for all g € G. Thus, the tangent space T, (G) can be identified as (dL,)1(7;(G))
where (dLy); is the linear isomorphism from 7 (G) to T, (G). Fixing a positive definite bilinear form (-, )
on g = T1(G), we have a left invariant Riemannian metric on G defined via

(X,¥), = <dLg,1 (X),dLy1 (Y)>

for all X,Y € T,(G) and for all g € G. For X € g, we have the linear endomorphism ady : g — g given by
ady(Y) = [X,Y].

Given a group G, we define the lower central series of G recursively by G| = G and G; = [G,G;_] for
i > 1. We say that G is nilpotent of step size c if ¢ is the minimal natural number such that G| = {1}.
If the step size is unspecified, we just say that G is a nilpotent group. The lower central series for a Lie
algebra g is defined recursively by g; = g and g; = [g,9,—1] for i > 1. We say that n is nilpotent of step
length c if ¢ is the minimal natural number such that n..; = {0}. If the step size is unspecified, we just say
that n is a nilpotent Lie algebra.

Given a Lie group G and a left Haar measure u, we say that a discrete subgroup I < G is a lattice if
U(T\G) < co. When I'\G is compact, we say I' is cocompact. If G < GL(n,C) is a Q-defined linear group,
the group of integral points is defined by G(Z) = GNGL(n,Z).

2.2 Coarse Geometry and UDBG spaces

Given metric spaces (X;,d;) and (Xz,d»), we say X; and X, are quasi-isometric if there exists a function
f: (X1,d1) = (X2,d>) and constants A > 1, B > 0, and C > 0 such that

L1(5) B (70, £(0)) < Ady () + B,

for all x,y € X;, and for each z € X;, there exists an element x € X; such that d»(z, f(x)) < C. We call the
map f a quasi-isometry between (Xi,d;) and (X»,d>). If the above map is bijective and if B = 0, we call
the map f a bi-Lipschitz map and say that the metric spaces (X;,d;) and (X»,d,) are bi-Lipschitz.

We introduce some conditions on discrete metric spaces that induce some regularity. We say a metric space
(X,d) is uniformly discrete if

inf{d(x1,x2) : x1,x0 € X and x; #x2} > 0.

A discrete metric space (X,d) has bounded geometry if for all r > 0, there exists a constant C, > 0 such
that |B,(x)| < C, for all x € X. We call a uniformly discrete metric space of bounded geometry a UDBG
space.

We are interested in a particular class of UDBG spaces seen in the following definition

Definition 2.1. Let X be a UDBG space. If F C X and r € N, then the r—boundary of F' in X is given by

X (F) o {xeX —F : thereexists y € Y such that d(x,y) <r}.



A Fglner sequence for X is a sequence {F; };cn of non-empty finite subsets of X such that for all » € N, we
have

[0 (F)]

lim —————

n—es  |Fp|

=0.
We say that a UDBG space is non-amenable if it admits no Fglner sequences.

The following property of non-amenable UDBG spaces is of particular importance to us.

Proposition 2.2. Let (X),d;) and (X,,d») be non-amenable UDBG spaces, and suppose that f: X; — X,
is a quasi-isometry. Then f is bounded distance from a bi-Lipschitz map F : X; — X».

Proof. Since X; and X, are non-amenable, we have that Hgf (X;) =0 and H(L)‘f (X2) = 0 by [2, Thm 3.1]
where H/ (X;) and Hy/ (X,) denote the O-th uniformly finite homology groups of X; and X,. Denoting
[X1] and [Xz] as the characteristic classes of X; and X», we have that [X;] = 0 and [Xz] = 0. Thus, if
Ser Hgf ~ (X)) — Hgf (X3) is the map of O-th uniformly finite homology induced by the quasi-isometry f, we
have f.([X;]) = [Xz]. Hence, [22, Thm 1.1] implies that f is bounded distance from a bi-Lipschitz map. [

We finish this section by noting some straightforward properties of translation-like actions. In particular,
translation-like actions respect bi-Lipschitz equivalences of metric spaces and satisfy transitivity properties
as seen in the following lemmas. As these lemmas are straightforward, we omit the proofs for brevity.

Lemma 2.3. Let G be a finitely generated group that acts translation-like on (X,d)), and suppose that
(X1,dy) is bi-Lipschitz to (X2,d) via the map F. Then G admits a translation-like action on (Xa,d>) via the
action g-x=F(g-F~(x)).

Lemma 2.4. Let H,G be finitely generated groups equipped with word metrics, and let (X,d) be a metric
space. Suppose that H that is bi-Lipschitz to G via the map F and that G acts translation-like on (X ,d).
If A is a set of orbit representatives of the action of G on X, then H acts translation-like on (X,d) via
h-(x-g)=x-F(F~'(g)-h) for x € A where we write the action on the right.

Lemma 2.5. Let H,G be finitely generated groups equipped with word metrics, and let (X ,d) be a metric
space. Suppose that H acts translation-like on G and that G acts translation-like on (X,d). Then H acts
translation-like on (X,d).

2.3 Coarse models for homogeneous spaces

We start this subsection with the following definition.

Definition 2.6. Let X be a metric space and suppose that G is a finitely generated group that admits at
translation-like action on X. A chain between x and y in X is a sequence of points {x;, y,-}i.‘:] such that
X =Xx1,y =Y and for each 1 <i < k— 1, there exists a g; € G such that g; - y; = x;y].

With the notion of chains between points in a metric space being acted on translation-like, we can define a
natural quotient of metric space by the translation-like action by some finitely generated group.

Definition 2.7. Let (X,d) be a metric space, and suppose that G is a finitely generated group that admits a

translation-like action on X. We define a distance function d: X x X — R on the quotient X/ ~ by
k
dy([x],[y]) = inf d(xi,yi) : {x,-,yi}f-;l is a chain fromxtoy » .

i=1



The space X/ ~ endowed with the function dy /(- -) is call the translation-like geometric quotient of X
by G.

For a general metric space (X,d) which admits a translation-like action by a group G, we have that X /G is
not necessarily a metric space. However, when X is a UDBG space, the X /G is a metric space as seen in
the following proposition.

Proposition 2.8. Let X be a UDBG space, and suppose that G admits a translation-like action on X. Then
X /G is a metric space.
Proof. To begin, dy ;¢ ([x], [y]) = dx c([y], [+]) is clear. As X is a UDBG space, we have that

inf{d(x,y) : x,y € X,x#y} >0.

In particular, if [x], [y] are distinct equivalence classes in X /G, then dy /;([x],[y]) > 0. For the triangle
inequality, let { p;, qi}le be a chain from x to y, and let {p},¢;}’_, be a chain from y to z. We then have that
{pi, q,-}i-‘=1 U{p;,q;};—, is a chain from x to z. We may write

=

S

dy ([, ) < Y d(pi,pi) + Y d(p;.qp)-
i=1 =1

By definition, we note that

Mw-

dy6([x], ]) +dx 6 [2]) = inf{ d(pi,qi) : {piaqi}i'(:l isachainfromxtoy}

i=1

-

+

inf{ d(pl,q) : {pl,q}*, isachainfromytoz}.
=

Therefore, by definition that

dx6([x], ]) < dx ([, Y]) +dx 6 (D] [2])-
Thus, X /G is a metric space. O

When given a finitely generated group G with a finite generated subgroup H < G, we note that H acts
translation-like on G in a natural way by left multiplication; moreover, we have that the translation-like
geometric of G by H is bi-Lipschitz to the coset space of H in G. In general, a translation-like geometric
quotient of a finitely generated group G by a finitely generated group H will not necessarily be bi-Lipschitz
to the coset space of a subgroup K < G. Therefore, we may view the translation-like geometric quotient of
G by a finitely generated group H is a generalization of coset spaces of subgroups.

The next propositions show that if given a UDBG space X with a translation-like action by a group G, then
the translation-like action geometric quotient is well-defined up to the bi-Lipschitz classes of G and X.

Proposition 2.9. Let X and Y are UDBG spaces with a bi-Lipschitz equivalence F: X — Y, and suppose
that G is a finitely generated group that acts translation-like on X. If we equip Y with the translation-like
action of G induced by the bi-Lipschitz equivalence, then X /G is bi-Lipschitz to Y / G.

Proof. Let dx and dy be the metrics of X and Y, respectively. We claim that F' descends to a bijection
between X /G and Y /G. By Lemma 2.3, we have that the action of G on Y is given by g-y = F(g-F~'(y)).
If g - x; = xp for x1,xp € X, we have that

g Fx)=F(g-F~'(F(x1))) =F(g-x1) = F(x).



Thus, the map F preserves equivalence classes, and since the induced map F : X /G — Y /G is clearly a
bijection, we have our claim.

There exists a constant C > 1 such that for all elements x,y € X, we have that

édx(xjy) < dy(F(x),F(y)) < Cdx (x,y).

If (p1,41), -+, (Pn,qn) is a chain from x to y in X, then (F(p1),F(q1)), -+ ,(F(pn),F(gn)) is a chain from
F(x) to F(y). In particular, we have that

IN
M:

dy j6(F )L [F ) wmummmzci&&w.

1 i

By taking the infimum over all n-chains from x to y, we have that

dy j([F (x)], [F(»)]) < Cdx c([x], [V])-
Using similar arguments, we have that

Sé/a([6, D) < dy e (F WL FO)). =

Proposition 2.10. Let X be a UDBG space, and suppose that G is a finitely generated group that admits a
translation-like action on X. If H is bi-Lipschitz to G via the map F, then with the induced translation-like
action of H on X, we have that X /G is bi-Lipschitz to X /H.

Proof. For simplicity in this proof, we go with the right action. Letting A be a set of orbit representatives
of the action of G on H, we have that X = | | ., x- G. We have that H acts on itself via right multiplication,
and thus, the action of H on X is given by

he(x-g) =x-(F(F'(g)-h™")).

We claim that y; ~ y, via the G-action if and only if y; ~ y, via the H—action. Suppose that x represents the
equivalence class of y; and y;,. There exist elements g1,g> € G such that x- g; =y; and x- g» = y;. Since H
acts transitively on G, there exists an element & € H such that g| - h = g. Therefore, y; - h = y,. The other
direction is similar. As a consequence, we have that (p1,41),-- -, (Pn,gn) is a chain from x to y with respect
to the G-action if and only if it is a chain from x to y with respect to the H—action. In particular

dx /6|, 6) = dx ju ([x]n. V).

By the above arguments, we have that the identity map from X to itself descends to a map of the orbit spaces
F: X/G — X /H which is a bi-Lipschitz equivalence. O

Definition 2.11. Let G be a Lie group with a Lie subgroup H < G. Let I' < G and A < H be cocompact
lattices. We say that a translation-like action of A on I" gives rise to a coarse model of the homogeneous
space G/H if there exists a UDBG space X C G that bi-Lipschitz to I such that the orbits of the induced
translation-like action of A on X are coarsely embedded and contained in cosets of H in G and where there
exists a natural bi-Lipschitz embedding from X /A to G/H that is a quasi-isometry.



2.4 Carnot Lie groups

We are interested in a special class of nilpotent Lie algebras that admit natural dilations which act as a
generalized notion of scaling.

Definition 2.12. Let g be a nilpotent Lie algebra of step length c. We say that n is a stratified nilpotent
Lie algebra if it admits a grading n = @¢_, v; where v generates n. We say that a nilpotent Lie group N is
stratified if its Lie algebra is stratified.

Let n be a stratified nilpotent Lie algebra of step size ¢ with grading @¢_; v;. Observe that the linear maps
d& : n — n given by

d& Xy, ,X.) = (I~X1,t2'X27"' ,t"-Xc)
satisfy d&,([X,Y]) = [d6,(X),d& (Y)] and d&;s = d& odd; for X,Y € g and ¢,5 > 0. Thus, {d& : t >0}
gives a one parameter family of Lie automorphisms of n. If N is a connected, simply connected nilpotent Lie

group with Lie algebra n, then by exponentiating d§, we have an one parameter family of automorphisms
denoted &;. The dilation on N of factor 7 is the Lie automorphism &;.

We have the following lemma whose proof is an exercise in basic differential topology.

Lemma 2.13. Let N be a connected, simply connected stratified nilpotent Lie group with Lie algebra n. Let
Xent>0andx €N. IfV =L,(X), then (dd)x(V) = (dLyod &)1 (X).

Proof. Since N is a connected, simply connected nilpotent Lie group, the exponential map exp is a diffeo-
morphism whose inverse we formally denote as Log. Letting U be a small neighborhood about the identity,
we have that (U,Log) is a local chart around the identity. Thus, we have that (L,(U), @) is a local chart
about x where @, = LogoL 1. We then have that the map given by ¢; ! o (d&); 0 @.: L,(U) — & (L. (U))
is a local coordinate representation of & at x. Thus,

(d8) = (dgs) "' 0 (d)1 0 (dgy) = (d(Lyoexp)) o (d6); od(LogoL, ).
Observing that N C GL(n,R) and n C gl(n,R) for some n, we may write
(d8),(V) =x(dexp); o (d§) o (dLog);(x"'V).

There exist vectors X; € v; such that V =Y, xX;. Since & oexp = expod;, we have that Logod; = & oLog.
In particular, we may write (dd;); o (dLog); = (dLog); o (d&);. Thus,

1

(d8)x(V) = (d,)x (xX) = x(dexp)1 0 (d8,) o (dLog) o L, 1 (xX) = ( ) x(d5,)1X,->.
=1

Hence,
(d&)x(V) =x <itixi> =
i=1

=

1

(dLi)1 (1 X;) = (dL)1 (ifixz) = (dLy)1o(d&)1(X).
i=1

c
=1

Therefore, (d&;),(V) = (dLyo &)1(X). O

2.5 Semisimple Lie groups

We recall standard facts in the theory of semisimple Lie groups which can be found in [7, 11, 14, 21].



Definition 2.14. Given a real Lie algebra g, the Killing form is the symmetric bilinear form B: g x g — R
given by

By(X,Y) =Tr(adx oady).
We write B = By when g is clear from context. If B is non-degenerate, we say that g is a semisimple Lie
algebra. If the Lie algebra of the Lie group G is semisimple, we say that G is a semisimple Lie group.

2.5.1 Iwasawa decomposition of a semisimple Lie group

The Iwasawa decomposition of a semisimple Lie group G arises from considerations of an involutive auto-
morphism of the Lie algebra g.

Definition 2.15. An involution 6: g — g is called a Cartan involution if the bilinear form given by
Bg(X,Y) = —B(X,0(Y)) is positive definite. We call the bilinear form By the Cartan-Killing metric
on G. Every real semisimple Lie algebra admits a Cartan involution, and any two Cartan involutions of a
real semisimple Lie algebra differ by an inner automorphism.

If 6 is a Cartan involution of the semisimple Lie algebra g, then the Cartan decomposition is given by
the vector space direct sum g = £+ p where £ and p are the eigenspaces relative to the eigenvalues 1 and
—1 of 6. We fix a maximal abelian subspace a of p, with dima = rank(G). The Cartan decomposition is
orthogonal with respect to the bilinear form Bg(X,Y). We fix an order on the system R C o’ of non-zero
restricted roots of (g, a). Let

m={Xet: [X,Y]=0forallY €a}.

The Lie algebra g decomposes as
g=m+a+ @ Ja
acR

where gq is the root space relative to the root a&. We denote ITT as the subset of positive roots. If K, A,
and N are the Lie subgroups with Lie algebras €, a and n = ©ger1, ga, then the map from K x AxNto G
given by (k,a,n) — kan is a diffeomorphism. In particular, we write G = KAN and call this the Iwasawa
decomposition of G. We have that K is a compact Lie group, A is a connected, simply connected abelian
Lie group, and N is a connected, simply connected nilpotent Lie group. Moreover, we have that N has
additional structure in that N is a stratified nilpotent group as shown below.

Denote by @ the subset of positive simple roots. Given that root spaces satisfy [ga, 93] C g4, the subspace
V Cngivenby V = s g5 provides a stratification of n. In particular, n is a stratified nilpotent Lie algebra
and thus, N is a stratified nilpotent Lie group. We write this down as a proposition.

Proposition 2.16. Ler G be a connected, semisimple Lie group, and let G = KAN be an Iwasawa decom-
position. Then N is a stratified nilpotent Lie group.

We introduce some notation. Assuming that N has step length ¢, we denote ®; as the set of roots such
that n;/n;y1 = @Dpen, 9 as vector spaces with some ordering on the roots. Since N is a connected, simply
connected nilpotent Lie group, the exponential map is a diffeomorphism. In particular, the Baker-Campbell-
Hausdorff formula implies that N is diffeomorphic to [T¢_; [1gem, exp(gp)-

3 Metrics on semisimple Lie groups

For semisimple Lie groups G with maximal compact subgroup K, we have that G/K = R™K(G) « N as
smooth spaces. If g is the Cartan-Killing metric on G, then at the identity coset of G/K, we have by [3,



Section 4] for (a,n) € G/K that

rank(G)

¢(N)
8a,n = Z + Z Z ﬁ(a)(g )Vl

i=1 Bell;

where Y gcq gp is a left-invariant metric on n, the Lie algebra of N. If ¢: [0, 1] — G/K is a smooth curve,
we may write

c(r) = (Ca(t)a (Cﬁ,l(t))ﬁgcbl 1T (cﬁ’C(N)(t))ﬁefbf(N)

where ¢, [0,1] — R™*(6) js a smooth math and cp,i: [0,1] — exp(gg) is a smooth map for all § € IT;

and 1 <i < ¢(N). Thus, it is evident that R™k(G) with the standard flat metric, which we denote as -], is
isometrically embedded. Since any vector X € n may be written as

X=) Y X
i=1ﬁ€n,‘

where X5 € gz, we may write the length of ¢ with respect to the metric g, , as
B <9p y g P 8a,

1 rank(G)
EG/K(C):/O ; (deq;(1))* + Z Z B(a)gp(dep(t),dcp(t))dt

t=1 Bell;
The associated distance function on G/K is given by
dg/x = inf{{gk(c) : cisasmooth pathin G/K fromxtoy}.

For a € R™(G) we denote N,, as the nilpotent Lie group N equipped with the left invariant metric

¢(N)
Y. ) Bla)(gp)

i=1 ﬁGHi

which we will identify with {a} x N in G/K. Any smooth curve c: [0, 1] — N, has the form

ct) = ((Cﬁ,l(t))ﬁecb. (e (I))ﬁ@c(m)

where cg ;(t) € exp(gg) for all 7 € [0, 1]. Therefore, the length of ¢ in N, is given by

1
éa(c)z/o Z Y. B(a)gg(dcp(t),deg ;(t))dt

1 Bell;
As before, the associated distance function is given by
dy(x,y) =inf{l,(c) : cis a smooth path in N, from x to y}.
We have the following smooth diffeomorphism which dilates N based on the point a in R™K(G)

Definition 3.1. For each 1 <i < ¢(N) and B € I1;, we denote fﬁ = 1/%/B(a). With this value, we
denote the following map F,,: N — N as

Fa(x) = (SfBJ(“) (xﬁ’i)) 1<i<c(N),Bell;

Since 0p ; is a smooth map for all 8 € IT; and each 1 <i < ¢(N), we have that F'is a diffeomorphism.
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We note for all elements a € R™(G) and roots € ® that (a) > 0. In particular, we have that §(0) = 1
for all B € ®. With this observation in mind, we have the following proposition which relates the length of
the path ¢ in Nj to length of the path in F;(c) in N,.

Proposition 3.2. Ifc: [0, 1] — N is a smooth curve, then for all a € R"™*C) ywe have that £,(F,(c)) = £o(c).
Proof. We have that

ct) = ((cp1)) peg, ++ (pev (D) peg )
dC(l) = ((dcﬁ’l(t))ﬁecbl N (dcﬁ,c(N) (l))ﬁeq)c(N)).
We may write
deg i(t) = dLey (1) (Xp,i(t))

where Xg ;: [0,1] — gg is a smooth function. For notational simplicity, we let pg ; ,(¢) = Sfbj(a) ocp(t).
Thus, Lemma 2.13 implies that '

d(8yy a) 0 cp.i)(t) = (8p, @)1 (dLpg (1) (Xpi(1))) = (1//Bla))dLey ) (Xp i(t)).

Therefore, we may write

B(a)gp(d(pp,ia(t)),d(Pp,ialt))py. ) = dLey (1) (Xp,i(1)),dLey 1) (Xp.i(1)))pg . (1)

8 (

(XB() ()N

= gp(dLey,(X(1)),dLey (1))
gp(dep,i(t),dep,i ())

Combining everything together, we may write

1 ¢(Na)
CalFale)) = Y Y B(@)gs(dppalr)dpg 1a(®))py s
0 B

i=1 Bell;

1
/0 Z Y. Bla)gp(dep (1), dcp i(1))ey o dt

i=1 Bell;
= fo(c). O

As a natural consequence, we have the following corollary.

Corollary 3.3. Let x,y € N, and let a € R™™6). Then d,(F,(x),Fa(y)) = do(x,y).

Proof. Let ¢ be a smooth path from x to y. We have by the above proposition that £y(c) = £,(F, o c). Since
F,ocis apath from F,(x) to F,(y), we have that

da(Fa(x), Fa(y)) < la(Faoc) = bo(c).

Therefore, by definition, we have that d;(x,y) < du(Fy(x),Fu(y)). Using a similar argument, we also have
that d, (F,(x), F,(y)) < do(x,y). Therefore, do(x,y) = dy(Fy(x), Fu(y)). O

Q

We now provide a lower bound for the distance between points in distinct cosets of N in terms of the
distance between of the the coordinates of the coset representatives.
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Lemma 3.4. Let x,y be distinct points in R"*6) and let g,h € N. We then have that dg/k((x,8), (v,h)) >
lx—y[. Moreover, if g = h, then dgk((x,8),(.8)) = [x—I.

Proof. Let ¢ be a path between (x,g) and (y,h). We may write

1 rank(G) c(N)
lg/k(c) = /0 (dea,())2+ Y. Y Bla)gp(dep;(t),deg ;(t))dt

=1 i=1 Bell;

~

v

1 ¢(N 1
deg, .(1))2dt = de, (1) > |x—y].
/0 L, (deuy (0% = [ 1dea(0)] > e =1

Therefore, we have by definition that dg /x ((x,8), (y,2)) > [x—y|.

Let y: [0,1] — R™(6) be a straight line path from x to y, and let c: [0,1] — G/K be the path given by
c(t) = (y(¢),g). We may express the length of ¢ as

1
lg/k(c) = /
0

In particular, we have that dg /k ((x,g), (¥,g)) < |x —y|. Using the above inequality, we have that

)
(e o) = [ lario]dr = e,

rank(G
X
j=1

dg/k((x,8),(y,8)) = [x—yI. O

The last proposition of this section relates the distance between (0,x) and (0,y) in N; with the distance
between (a, F,(x)) and (a, F,(y)) for any a € R*(C) a5 points in G/K.
Proposition 3.5. Let g,h € N, and let a € R™6)_ Then

Ciln(do(x,y)) < dgk((a,Fa()), (@, Fa(y))) < C2In(do(x,y))

for some constants C1,Cp > 0.

Proof. By [9, 3.C’1], we have that there exist constants Cy,C, > 0 such that

Cr In(dy(Fa(x), Fa(y))) < dg/k((a, Fa(x)), (@, Fa(y))) < Co In(da(Fa(x), Fa(y)))-

By Corollary 3.3, we have that d,(F,(x), F,(y)) = do(x,y). Thus, we have that

Ci In(do(x,y)) < dg/k((a,Fa(x)), (a, Fa(y))) < C2 In(do(x,y)). N

4 Lipchitz models for cocompact lattices in semisimple Lie groups

We now introduce a model for the Lipschitz geometry of cocompact lattices in an arbitrary semisimple Lie
group G with an Iwasawa decomposition G = KAN. For a cocompact lattice A C N, we let X(A) C G/K
be the subset given by

X(A) = {(a,Fg(g)) L a € ZPC) o ¢ A}

with the induced metric.
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Proposition 4.1. If A < N be a cocompact lattice such that
inf{do(x,y) : x,y € A x#£y} > 1,
then X(A) is a UDBG space.

Proof. We first show that X(A) is uniformly discrete. If x,y € R™(G) guch that x # y, then Lemma 3.4
implies for any g,h € A that

dG/K((xaEV(g))a(y7Fy(h))) > |x_y| > L.

For z = x =y, Proposition 3.5 implies that there exists a constant C; > 0 such that
dg k(2 F2(8)), (z,F:(h))) = C1 In(do (g, h)) = Cy In(inf{do(a,b) : a,b € A,a#b}).
Therefore, for all (x, Fi(g)), (v, Fy(h)) € X(A), we have that
dg/k((x,Fx(g)), (v, Fy(h))) > min {1,C) In(inf{do(a,b) : a,b € A,a+#b})}.
In particular, we have that
inf {dgk((x,F(8)), (0, Fy(h))) © (x,Fx(g)) # (v.Fy(h)) in X(A)} >0
showing that X(A) is uniformly discrete.

We now demonstrate that X(A) has bounded geometry. To do that, we show for all r > 0 that there exists a
constant C, such that ’BX(A) ((x,Fx(g)))| < C, forall g € A and x € Z™(G) We start by showing that there
exists a universal constant M, such that any r—ball in X(A) intersects at most M, sets of the form (x,N)
where x € Z™%(G) We also need to show that there exists a constant C, > 0 such that

[Bxa), (5 F(&) N 0:N)| <€
for y € Zrank(G),
If (y,Fy(h)) € Bx(a),((x,Fx(g))) such that |x —y| > r, then Proposition 3.4 implies that
dg k(3 Fy(h)), (x, Fe(8))) = [x—y| > r

which is a contradiction. Therefore, we have that [x —y| < r. Since x is fixed, it is easy to see that exists a
constant M > 0 such that there are at most M sets of the form (y,N) such that

Bx(a),-((x,Fe(8))) N (y,N) # 0.

First consider (x, Fy (1)) € Bx(a),-((x,Fx(g))). We have by the above reasoning that [x —y[ < r, and thus, the
triangle inequality and Corollary 3.3 imply that

do(,h) < Cy o (SF).(ED) < ¢y,

Thus, h € Bac,er(g), and by Gromov’s polynomial growth theorem, we have that there exists a constant
C, > 0 and a natural number d such that |Ba ¢, ¢ (g)| < CyC¢ e Now consider (y, Fy(h)) € Bxa)r((x,Fx(g)))
where x = y. That implies

(yaN) mBX(A),r((X’Ef(g)) # 0,

and by the above statement, we have that there exist at most M, such points y. Taking these statements
together, we have that

|Bx (). (6, Fx(8))] < Cse®
for some constant C3 > 0. Therefore, X(A) is a UDBG space. O
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The following proposition demonstrates that under appropriate assumptions on A < N that X(A) can be
thought of as a model for the Lipschitz geometry of I where I" < G is a cocompact lattice.

Proposition 4.2. LetI" < G be a cocompact lattice, and let A < N be a cocompact lattice satisfying
inf{do(g,h) : g,heA,g#h}>1.

Then X(A) is bi-Lipschitz to T

Proof. Let C1,Cy > 0 be the constants from Proposition 3.5, and let C = max {C,C5}. Since A is a cocom-
pact lattice in N, we have that A is quasi-isometric to N. In particular, there exists a constant € > 0 such
that if g € N, then there exists an element & € A such that dy(g,h) < €. Letting € = C & + rank(G), we
claim that X(A) is e-dense in G/K. Let (x,g) € X where x € R™X(6) and g € N.

Suppose that x € Z™(G) There exists an element & € A such that d;(F_,(g),h) < €. Proposition 3.5
implies that
dgk((x, Fx(R)), (x,8)) < do(h, (F-(g)) < Céy.

Suppose that x € R™™(G)\7rank(G)  There exists an element y € Z™™(G) such that [x — y| < 2rank(G), and
thus, there exists an element & € A such that do(F_,(g),n) < &. By the triangle inequality, Lemma 3.4, and
Proposition 3.5, we have that

dg/k((x,8), (v, Fy(h))) dx((x,8),(,8)) +dx((»g), (v, Fy(h)))
2rank(G) +dy(F-(g),h)
)

2rank(G) + ¢ = €.

VANVANVAN

Therefore, X(A) is €-dense in G/K, and subsequently, X(A) and I are quasi-isometric. Since X(A) and T’
are quasi-isometric non-amenable spaces, Proposition 2.2 implies that they are bi-lipschitz. O

5 Proof of Theorem 1.1

For the readers convenience, we restate our Theorem 1.1.

Theorem 1.1. Let G be a semisimple Lie group with an Iwasawa decomposition G = KAN. IfI" < G and
A < N are cocompact lattices, then I" admits a translation-like action by A. Moreover, we can choose this
translation-like action to give rise to a coarse model T /A of the homogeneous space G/N. Finally, given
distinct lattices T'1,I'y < G and A1,Ay <N, we have the coarse models T'1 /A and Ty /A, for G/N are
bi-Lipschitz.

Proof. It is evident that there exists a cocompact lattice A’ in N satisfying

inf{do(g,h)|g.he A',g#h} > 1.

We first demonstrate that A’ admits a translation-like action on X(A'). For g € A’ and (x, F(h)) € X(A'), we
let g- (x,Fy(h)) = (x,F.(hg™")). It is easy to see that this is a free action. Therefore, we need to demonstrate
that we have a wobbling action. We have by Proposition 3.5 that there exists a constant C > 0 such that

de i ((x, Fx(h)) (x, Fx(hg™"))) < Cln(do(h,hg™")) < Cln(do(1,g)).

Therefore, A’ admits a translation-like action on X(A).
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To finish, we note that A is a cocompact lattice in N, and by the discussion after [5, Ques 2], we have that A
and A’ are bi-Lipschitz. We have that A acts on itself by right multiplication, and thus, Lemma 2.3 implies
that A admits a translation-like action on A’. Lemma 2.4 implies that A admits a translation-like action on
X(A'). Since X(A') is bi-Lipschitz to ', we have by Lemma 2.3 that A admits a translation-like action on I’
as desired. It is evident that the given translation-like action gives rise to a coarse model for G/N.

If I',T” < G are cocompact lattices, we have that I and I are bi-Lipschitz by Proposition 2.2. Moreover,
if A, A’ < N are cocompact lattices, then since N is a Carnot group, we have by the remark after [5, Ques
2] that A and A’ are blipschitz. hus, by applying Proposition 2.9 and Proposition 2.10, we see that I'/A and
[ /A’ are bi-Lipschitz. O

For the proof of Corollary 1.2, we note that if G is not isogenous to SL(2,R), then Z> < A. Since Z? acts
translation-like on A by virtue of being a subgroup, we have by Lemma 2.5 that Z? acts translation-like T".

6 Proof of Theorem 1.3

We restate Theorem 1.3 for the reader’s convenience.

Theorem 1.3. Let G and H be Q-defined noncompact real simple Lie groups such that H < G. If A< H
and I < G are cocompact lattices, then A admits a translation-like action on I'. Moreover, we can choose
this translation-like such that T'/A is a coarse model for G/H. Finally, given distinct lattices T'1,T2 < G
and Ay, Ay < H, the spaces T'1/A; and Ty /A; for G/H are bi-Lipschitz.

Proof. Since the inclusion of H into G is Q—defined, we have by [18, 10.14. Corollary (iii)] that H(Z) is
a subgroup of a cocompact lattice A that is commensurable with G(Z). We have that H(Z) < HNA <A,
and thus, HN A is a cocompact lattice in H. Hence, we have that A/Z N A naturally embeds into G/H as
a coarse dense subset. Thus, subgroup containment of HN A into A is a translation-like action that gives
rise to a coarse model for the homogeneous space G/H. Since I" and A are quasi-isometric non-amenable
spaces, Proposition 2.2 implies that I" and A are bi-Lipschitz, and thus, HN A admits a translation-like
action by Lemma 2.3. Hence, Proposition 2.9 implies that I'/HN A is bi-Lipschitz to A/HN A, and thus,
the translation-like action of HNA on I gives rise to a coarse model of G/H. Additionally, A and HNA are
quasi-isometric nonamenable spaces, and thus, by Proposition 2.2, we have that they are bi-Lipschitz. Thus,
Lemma 2.4 implies that A admits a natural translation-like action on I". Moreover, we have by Proposition
2.10 that I'/A is bi-Lipschitz to I'/HN A. Subsequently, A admits a translation-like action on I that gives
rise to a coarse model for G/H. Finally, we note that if I" < G and A’ < H are different cocompact lattices,
then by Proposition 2.2, we have that A and A’ are bi-Lipschitz and that I and I are bi-Lipschitz. Thus, by
applying Proposition 2.9 and Proposition 2.10, we see that I'/A and I /A’ are bi-Lipschitz. [
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