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Abstract

In 1999, K. Whyte introduced translation-like actions of a group H on a group G as a dynamical/geometric

generalization of H being a subgroup of G. In this paper, our interest lies in when lattices in closed

Lie subgroups acts translation-like on lattices in the ambient Lie group. Extending work of D. Cohen,

we show that cocompact lattices in non-compact simple Lie groups G not isogenous to SL(2,R) admit

translation-like actions by Z2. This result follows from a more general result. Namely, we prove that any

cocompact lattice in the unipotent radical N of the Borel subgroup AN of G acts translation-like on any

cocompact lattice in G. We also prove that for non-compact simple Lie groups G,H with H < G and

lattices Γ < G and ∆ < H, that ∆ admits a translation-like action on Γ such that Γ/∆ is quasi-isometric to

G/H where Γ/∆ is the quotient (metric space) via a translation-like action of ∆ on Γ and word metric on

Γ.

1 Introduction

Given a Lie group G equipped with a bi-invariant metric, every cocompact lattice Γ < G with a finite word

metric is a coarse geometric model of G (e.g. the inclusion map is a quasi-isometry). One theme in the

study of lattices is how much of the structure of G is captured in the structures on the lattices Γ. When G

is a non-compact real simple Lie group of real rank at least two, Margulis established that these lattices are

arithmetic which is one of the strongest ways that Γ can capture the structure of G. He also directly related

the finite dimensional representation theory of Γ with that of G via super-rigidity. These lattices are also

conjectured by Serre to have the congruence subgroup property, which shows that the finite representation

theory of Γ functions through the structure of G.

Given a Lie group G and closed subgroup H ≤ G, two associated geometric objects are the homogenous

space G/H and the foliation of G via the H–cosets. Given a cocompact lattice Γ ≤ G, we define ∆ = H∩Γ

and ask if Γ/∆ is a coarse model for G/H? When ∆ ≤ H is a cocompact lattice, Γ/∆ is a coarse model for

G/H. Likewise, the coset foliation on Γ via γ∆ is a coarse model for the H–coset foliation. Unfortunately,

the intersection ∆ = H∩Γ can vary (depending on Γ and H) from trivial to a cocompact lattice in H. For

instance, there are infinitely many commensurability classes of arithmetic lattices Γ < SL(2,C) such that

H∩Γ is a cocompact lattice for countably many H that are conjugate to SL(2,R). However, there also

exist infinitely many commensurability classes of arithmetic lattices Γ < SL(2,C) such that H∩Γ is never

a lattice for any H that is conjugate to SL(2,R). By Kahn–Markovic [13], all of these lattices have quasi-

isometric surface subgroups ∆. For these subgroups ∆, the space Γ/∆ gives a coarse model for G/H despite

∆ not being a subgroup of some H. We take an alternative approach to finding models for G/H.
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Given a group H and a metric space (X ,d) with a free (left) H–action, we say that H acts translation-like

on X if sup{d(x,h · x) : x ∈ X}< ∞ for each h ∈ H; an action satisfying this condition is called wobbling.

Our present interest is when X = G is a finitely generated group equipped with a word metric associated

to a finite generating subset. Whyte [22] introduced translation-like actions as a geometric coarsification

of subgroups. Indeed, when H ≤ G, the right action of H on G is free and translation-like for any finite

generating subset of G. In an effort to justify this view, Whyte established a coarse geometric result in

relation to the von Neumann–Day conjecture. The conjecture asserts that a group G is non-amenable if and

only if G contains a non-abelian free subgroup, which by Ol’shanskii [17] is known to be false. On the other

hand, Whyte [22] proved a coarsification of this conjecture, establishing that G is non-amenable if and only

if G admits a translation-like action by a non-abelian free group.

In 1902, Burnside asked if every infinite, finitely generated group G contains an element of infinite order,

and Golod–Shafarevich [8] answered Burnside’s question in the negative by providing examples of finitely

generated infinite torsion groups. Seward [20] took a similar approach as Whyte to Burnside’s problem,

proving that a finitely generated group G is infinite if and only if G admits a translation-like action by Z.

With translation-like actions that are sufficiently well behaved, we provide a method to construct a model

for the homogeneous space G/H that is compatible with models for the Lie groups G and H given by

cocompact lattices ∆ < H and Γ < G. Suppose that ∆ admits a translation-like action on Γ where the orbits

of the action of ∆ on Γ are coarsely embedded and are contained in cosets of H in G. Moreover, suppose

that the quotient of Γ by the translation-like action of ∆ admits a natural metric with a natural inclusion into

G/H that is coarsely dense. We then say that the translation-like action of ∆ on Γ gives rise to a coarse

model of G/H and denote it as Γ/∆.

Following Seward and Whyte, Cohen [6] investigated the geometric coarsification of a question due to

Gersten–Gromov (see [1, Ques 1.1]). Specifically, if G admits a finite K(G,1) and contains no Baumslag–

Solitar subgroups BS(m,n), then is G hyperbolic? Like the von Neumann–Day conjecture and Burnside’s

question, this question is known to have a negative answer, and in fact, there are many counterexamples

to the Gersten–Gromov question. For example, Rips [19] proved that there exists a C′(1/6) small can-

cellation group with a finitely generated but not finitely presentable subgroup H. Since C′(1/6) small

cancellation groups are hyperbolic, the subgroup H cannot contain any Baumslag–Solitar subgroups which

gives a counterexample to the Gersten conjecture. Even if we restrict ourselves to the class of finitely pre-

sentable groups, we have counterexamples. Brady [4] using branched coverings of cubical complexes to

produce a hyperbolic group with a finitely presented subgroup that is not hyperbolic which provides finitely

presentable counterexample to the Gersten conjecture.

The geometric coarsification of the Gersten–Gromov question is that a group G with a finite K(G,1) is

hyperbolic if and only if G does not admit a translation-like action by any Baumslag–Solitar group. The

main result of [6] proved that cocompact lattices in SO(3,1) admit translation-like actions by Z2, proving

that the geometric coarsification of the Gersten–Gromov question is false. Moreover, by inspecting the

construction in [6], we see that the translation-like action of Z2 on cocompact lattices in SO(3,1) gives

rise to a coarse model for SO(3,1)/R2 which can be seen as the space of horospheres of 3-dimensional

hyperbolic space.

Our first result extends [6] to all cocompact lattices in all semisimple Lie groups. Fixing an Iwasawa

decomposition of G = KAN, when Γ < G is a non-cocompact lattice, then ∆ = Γ∩N is a cocompact lattice

in N. The Lie group N is a connected, simply connected nilpotent Lie group and so ∆ < N is a torsion-free,

finitely generated nilpotent group. When Γ < G is a cocompact lattice, then Γ∩N is trivial. Despite it being

impossible for Γ to have torsion-free nilpotent subgroups besides Z, the lattices Γ do admit translation-like

actions by the lattices in N that give rise to coarse models for G/N.

Theorem 1.1. Let G be a semisimple Lie group with an Iwasawa decomposition G = KAN. If Γ < G and

∆ < N are cocompact lattices, then Γ admits a translation-like action by ∆. Moreover, we can choose this
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translation-like action to give rise to a coarse mode Γ/Λ of the homogeneous space G/N. Finally, given

distinct lattices Γ1,Γ2 < G and ∆1,∆2 < N, we have the coarse models Γ1/∆1 and Γ2/∆2 for G/N are

bi-Lipschitz.

One immediate corollary of this theorem is the following.

Corollary 1.2. Let G be a noncompact simple Lie group which is not isogenous to SL(2,R). If Γ < G is

cocompact lattice, then Γ admits a translation-like action by Z2.

This corollary generalizes the main result of [6]. More recently, Jiang [12] proved that the lamplighter

group admits no translation-like actions by Baumslag–Solitar groups. As the lamplighter group is not

finitely presentable, it cannot be hyperbolic. Hence, this provides a counterexample for the other direction

of the geometric coarsification of the Gersten–Gromov question. In particular, there are hyperbolic groups

that admit actions by Baumslag–Solitar groups and there exist non-hyperbolic groups which do not admit

any translation-like actions by a Baumslag–Solitar group.

Question 1. Does there exist a non-hyperbolic, finitely presentable group that does not admit a translation-

like action by any Baumslag–Solitar group?

We give an outline of the proof of our first theorem which follows the proof of the main theorem of [6].

Using unipotent flows, we construct a net in G/K which is bi-Lipschitz to our group Γ on which ∆ admits

a translation-like action. The unipotent subgroups of the Iwasawa decomposition with the induced metric

are bi-Lipschitz to N with a left invariant metric in which ∆ is a cocompact lattice. The nilpotent Lie

groups N admit natural scaling automorphisms which we use to shrink or expand the copy of ∆ in each

coset (a,N) where a ∈ Zrank(G) as a varies to account for the changes in the induced geometry of each

translate of the unipotent subgroup. Since each layer of this net is a copy of ∆, we act on these layers

by right translation. The actions on the layers combine together to give an action on the entire net that is

translation-like. Through the bi-Lipschitz equivalence of Γ with this net, we obtain a translation-like action

of the group ∆ on Γ.

The last theorem of our note constructs coarse models for homogeneous spaces of the form G/H where

both G and H are noncompact real simple Lie groups using cocompact lattices in G and H. We refer the

reader to Definition 2.11 for the definition of a coarse model.

Theorem 1.3. Let G and H be Q–defined noncompact real simple Lie groups such that H ≤ G. If ∆ < H

and Γ < G are cocompact lattices, then ∆ admits a translation-like action on Γ. Moreover, we can choose

this translation-like such that Γ/∆ is a coarse model for G/H. Finally, given distinct lattices Γ1,Γ2 < G

and ∆1,∆2 < H, the spaces Γ1/∆1 and Γ2/∆2 for G/H are bi-Lipschitz.

The proof of this theorem follows from basic structural results of simple Lie groups.

2 Background

For a group G and g,h ∈ G, the commutator is denoted by g and h as [g,h] = g−1h−1gh. For subgroups

A,B ≤ G, the subgroup generated by {[a,b] : a ∈ A, b ∈ B} is denoted by [A,B]. The i-th step of the lower

central series of G is denoted as Gi. When N is a nilpotent group, we denote its step length as c(N).

3



2.1 Lie groups and Lie algebras

Lie groups will be typically denoted by G with Lie algebras given by g. The Lie bracket of X and Y will be

denoted by [X ,Y ]. Inner products will be denoted 〈·, ·〉. Left translation by a group element g ∈ G will be

denoted by Lg. The i-th step of the lower central series of a Lie algebra g will be denoted by gi. The tangent

space of G at any element g ∈ G will be denoted by Tg(G).

Given a connected Lie group G with Lie algebra g and g ∈ G, the map Lg : G → G given by Lg(x) = g · x
is a diffeomorphism of G for all g ∈ G. Thus, the tangent space Tg(G) can be identified as (dLg)1(T1(G))
where (dLg)1 is the linear isomorphism from T1(G) to Tg(G). Fixing a positive definite bilinear form 〈·, ·〉
on g= T1(G), we have a left invariant Riemannian metric on G defined via

〈X ,Y 〉g =
〈

dLg−1(X),dLg−1(Y )
〉

for all X ,Y ∈ Tg(G) and for all g ∈ G. For X ∈ g, we have the linear endomorphism adX : g→ g given by

adX (Y ) = [X ,Y ].

Given a group G, we define the lower central series of G recursively by G1 = G and Gi = [G,Gi−1] for

i > 1. We say that G is nilpotent of step size c if c is the minimal natural number such that Gc+1 = {1}.

If the step size is unspecified, we just say that G is a nilpotent group. The lower central series for a Lie

algebra g is defined recursively by g1 = g and gi = [g,gi−1] for i > 1. We say that n is nilpotent of step

length c if c is the minimal natural number such that nc+1 = {0}. If the step size is unspecified, we just say

that n is a nilpotent Lie algebra.

Given a Lie group G and a left Haar measure µ , we say that a discrete subgroup Γ < G is a lattice if

µ(Γ\G)< ∞. When Γ\G is compact, we say Γ is cocompact. If G < GL(n,C) is a Q-defined linear group,

the group of integral points is defined by G(Z) = G∩GL(n,Z).

2.2 Coarse Geometry and UDBG spaces

Given metric spaces (X1,d1) and (X2,d2), we say X1 and X2 are quasi-isometric if there exists a function

f : (X1,d1)→ (X2,d2) and constants A ≥ 1, B ≥ 0, and C ≥ 0 such that

1

A
d1(x,y)−B ≤ d2( f (x), f (y))≤ Ad1(x,y)+B,

for all x,y ∈ X1, and for each z ∈ X2, there exists an element x ∈ X1 such that d2(z, f (x)) ≤ C. We call the

map f a quasi-isometry between (X1,d1) and (X2,d2). If the above map is bijective and if B = 0, we call

the map f a bi-Lipschitz map and say that the metric spaces (X1,d1) and (X2,d2) are bi-Lipschitz.

We introduce some conditions on discrete metric spaces that induce some regularity. We say a metric space

(X ,d) is uniformly discrete if

inf{d(x1,x2) : x1,x2 ∈ X and x1 6= x2}> 0.

A discrete metric space (X ,d) has bounded geometry if for all r > 0, there exists a constant Cr > 0 such

that |Br(x)| ≤ Cr for all x ∈ X . We call a uniformly discrete metric space of bounded geometry a UDBG

space.

We are interested in a particular class of UDBG spaces seen in the following definition

Definition 2.1. Let X be a UDBG space. If F ⊂ X and r ∈ N, then the r–boundary of F in X is given by

∂ X
r (F)

def
= {x ∈ X −F : there exists y ∈ Y such that d(x,y)≤ r} .
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A Følner sequence for X is a sequence {Fi}i∈N of non-empty finite subsets of X such that for all r ∈ N, we

have

lim
n→∞

∣

∣∂ X
r (Fn)

∣

∣

|Fn|
= 0.

We say that a UDBG space is non-amenable if it admits no Følner sequences.

The following property of non-amenable UDBG spaces is of particular importance to us.

Proposition 2.2. Let (X1,d1) and (X2,d2) be non-amenable UDBG spaces, and suppose that f : X1 → X2

is a quasi-isometry. Then f is bounded distance from a bi-Lipschitz map F : X1 → X2.

Proof. Since X1 and X2 are non-amenable, we have that H
u f
0 (X1) = 0 and H

u f
0 (X2) = 0 by [2, Thm 3.1]

where H
u f
0 (X1) and H

u f
0 (X2) denote the 0-th uniformly finite homology groups of X1 and X2. Denoting

[X1] and [X2] as the characteristic classes of X1 and X2, we have that [X1] = 0 and [X2] = 0. Thus, if

f∗ : H
u f
0 (X1)→ H

u f
0 (X2) is the map of 0-th uniformly finite homology induced by the quasi-isometry f , we

have f∗([X1]) = [X2]. Hence, [22, Thm 1.1] implies that f is bounded distance from a bi-Lipschitz map.

We finish this section by noting some straightforward properties of translation-like actions. In particular,

translation-like actions respect bi-Lipschitz equivalences of metric spaces and satisfy transitivity properties

as seen in the following lemmas. As these lemmas are straightforward, we omit the proofs for brevity.

Lemma 2.3. Let G be a finitely generated group that acts translation-like on (X1,d1), and suppose that

(X1,d1) is bi-Lipschitz to (X2,d2) via the map F. Then G admits a translation-like action on (X2,d2) via the

action g · x = F(g ·F−1(x)).

Lemma 2.4. Let H,G be finitely generated groups equipped with word metrics, and let (X ,d) be a metric

space. Suppose that H that is bi-Lipschitz to G via the map F and that G acts translation-like on (X ,d).
If Λ is a set of orbit representatives of the action of G on X, then H acts translation-like on (X ,d) via

h · (x ·g) = x ·F(F−1(g) ·h) for x ∈ Λ where we write the action on the right.

Lemma 2.5. Let H,G be finitely generated groups equipped with word metrics, and let (X ,d) be a metric

space. Suppose that H acts translation-like on G and that G acts translation-like on (X ,d). Then H acts

translation-like on (X ,d).

2.3 Coarse models for homogeneous spaces

We start this subsection with the following definition.

Definition 2.6. Let X be a metric space and suppose that G is a finitely generated group that admits at

translation-like action on X . A chain between x and y in X is a sequence of points {xi,yi}
k
i=1 such that

x = x1, y = yk, and for each 1 ≤ i ≤ k−1, there exists a gi ∈ G such that gi · yi = xi+1.

With the notion of chains between points in a metric space being acted on translation-like, we can define a

natural quotient of metric space by the translation-like action by some finitely generated group.

Definition 2.7. Let (X ,d) be a metric space, and suppose that G is a finitely generated group that admits a

translation-like action on X . We define a distance function d : X ×X → R≥0 on the quotient X/∼ by

dX/G([x], [y]) = inf

{

k

∑
i=1

d(xi,yi) : {xi,yi}
k
i=1 is a chain from x to y

}

.
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The space X/∼ endowed with the function dX/G(·, ·) is call the translation-like geometric quotient of X

by G.

For a general metric space (X ,d) which admits a translation-like action by a group G, we have that X/G is

not necessarily a metric space. However, when X is a UDBG space, the X/G is a metric space as seen in

the following proposition.

Proposition 2.8. Let X be a UDBG space, and suppose that G admits a translation-like action on X. Then

X/G is a metric space.

Proof. To begin, dX/G([x], [y]) = dX/G([y], [x]) is clear. As X is a UDBG space, we have that

inf{d(x,y) : x,y ∈ X ,x 6= y}> 0.

In particular, if [x], [y] are distinct equivalence classes in X/G, then dX/G([x], [y]) > 0. For the triangle

inequality, let {pi,qi}
k
i=1 be a chain from x to y, and let {p′t ,q

′
t}

s
t=1 be a chain from y to z. We then have that

{pi,qi}
k
i=1 ∪{p′t ,q

′
t}

s
t=1 is a chain from x to z. We may write

dX/G([x], [y])≤
k

∑
i=1

d(pi, pi)+
s

∑
t=1

d(p′t ,q
′
t).

By definition, we note that

dX/G([x], [y])+dX/G([y], [z]) = inf

{

k

∑
i=1

d(pi,qi) : {pi,qi}
k
i=1 is a chain from x to y

}

+ inf

{

s

∑
i=1

d(p′t ,q
′
t) : {p′t ,q

′
t}

k
t=1 is a chain from y to z

}

.

Therefore, by definition that

dX/G([x], [y])≤ dX/G([x], [y])+dX/G([y], [z]).

Thus, X/G is a metric space.

When given a finitely generated group G with a finite generated subgroup H ≤ G, we note that H acts

translation-like on G in a natural way by left multiplication; moreover, we have that the translation-like

geometric of G by H is bi-Lipschitz to the coset space of H in G. In general, a translation-like geometric

quotient of a finitely generated group G by a finitely generated group H will not necessarily be bi-Lipschitz

to the coset space of a subgroup K ≤ G. Therefore, we may view the translation-like geometric quotient of

G by a finitely generated group H is a generalization of coset spaces of subgroups.

The next propositions show that if given a UDBG space X with a translation-like action by a group G, then

the translation-like action geometric quotient is well-defined up to the bi-Lipschitz classes of G and X .

Proposition 2.9. Let X and Y are UDBG spaces with a bi-Lipschitz equivalence F : X → Y , and suppose

that G is a finitely generated group that acts translation-like on X. If we equip Y with the translation-like

action of G induced by the bi-Lipschitz equivalence, then X/G is bi-Lipschitz to Y/G.

Proof. Let dX and dY be the metrics of X and Y , respectively. We claim that F descends to a bijection

between X/G and Y/G. By Lemma 2.3, we have that the action of G on Y is given by g ·y = F(g ·F−1(y)).
If g · x1 = x2 for x1,x2 ∈ X , we have that

g ·F(x1) = F(g ·F−1(F(x1))) = F(g · x1) = F(x2).
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Thus, the map F preserves equivalence classes, and since the induced map F̄ : X/G → Y/G is clearly a

bijection, we have our claim.

There exists a constant C ≥ 1 such that for all elements x,y ∈ X , we have that

1

C
dX (x,y)≤ dY (F(x),F(y))≤CdX (x,y).

If (p1,q1), · · · ,(pn,qn) is a chain from x to y in X , then (F(p1),F(q1)), · · · ,(F(pn),F(qn)) is a chain from

F(x) to F(y). In particular, we have that

dY/G([F̄(x)], [F̄(y)])≤
n

∑
i=1

dY (F(x),F(y))≤C
n

∑
i=1

dX (x,y).

By taking the infimum over all n-chains from x to y, we have that

dY/G([F̄(x)], [F̄(y)])≤CdX/G([x], [y]).

Using similar arguments, we have that

1

C
dX/G([x], [y])≤ dY/G([F̄(x)], [F̄(y)]).

Proposition 2.10. Let X be a UDBG space, and suppose that G is a finitely generated group that admits a

translation-like action on X. If H is bi-Lipschitz to G via the map F, then with the induced translation-like

action of H on X, we have that X/G is bi-Lipschitz to X/H.

Proof. For simplicity in this proof, we go with the right action. Letting Λ be a set of orbit representatives

of the action of G on H, we have that X =
⊔

x∈Λ x ·G. We have that H acts on itself via right multiplication,

and thus, the action of H on X is given by

h · (x ·g) = x · (F(F−1(g) ·h−1)).

We claim that y1 ∼ y2 via the G-action if and only if y1 ∼ y2 via the H–action. Suppose that x represents the

equivalence class of y1 and y2. There exist elements g1,g2 ∈ G such that x ·g1 = y1 and x ·g2 = y2. Since H

acts transitively on G, there exists an element h ∈ H such that g1 ·h = g2. Therefore, y1 ·h = y2. The other

direction is similar. As a consequence, we have that (p1,q1), · · · ,(pn,qn) is a chain from x to y with respect

to the G-action if and only if it is a chain from x to y with respect to the H–action. In particular

dX/G([x]G, [y]G) = dX/H([x]H , [y]H).

By the above arguments, we have that the identity map from X to itself descends to a map of the orbit spaces

F : X/G → X/H which is a bi-Lipschitz equivalence.

Definition 2.11. Let G be a Lie group with a Lie subgroup H ≤ G. Let Γ < G and ∆ < H be cocompact

lattices. We say that a translation-like action of ∆ on Γ gives rise to a coarse model of the homogeneous

space G/H if there exists a UDBG space X ⊂ G that bi-Lipschitz to Γ such that the orbits of the induced

translation-like action of ∆ on X are coarsely embedded and contained in cosets of H in G and where there

exists a natural bi-Lipschitz embedding from X/∆ to G/H that is a quasi-isometry.
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2.4 Carnot Lie groups

We are interested in a special class of nilpotent Lie algebras that admit natural dilations which act as a

generalized notion of scaling.

Definition 2.12. Let g be a nilpotent Lie algebra of step length c. We say that n is a stratified nilpotent

Lie algebra if it admits a grading n=
⊕c

i=1 vi where v1 generates n. We say that a nilpotent Lie group N is

stratified if its Lie algebra is stratified.

Let n be a stratified nilpotent Lie algebra of step size c with grading
⊕c

i=1 vi. Observe that the linear maps

dδt : n→ n given by

dδtX1, · · · ,Xc) =
(

t ·X1, t
2 ·X2, · · · , t

c ·Xc

)

satisfy dδt([X ,Y ]) = [dδt(X),dδt(Y )] and dδts = dδt ◦ dδs for X ,Y ∈ g and t,s > 0. Thus, {dδt : t > 0}
gives a one parameter family of Lie automorphisms of n. If N is a connected, simply connected nilpotent Lie

group with Lie algebra n, then by exponentiating dδt we have an one parameter family of automorphisms

denoted δt . The dilation on N of factor t is the Lie automorphism δt .

We have the following lemma whose proof is an exercise in basic differential topology.

Lemma 2.13. Let N be a connected, simply connected stratified nilpotent Lie group with Lie algebra n. Let

X ∈ n, t > 0, and x ∈ N. If V = Lx(X), then (dδt)x(V ) = (dLx ◦dδt)1(X).

Proof. Since N is a connected, simply connected nilpotent Lie group, the exponential map exp is a diffeo-

morphism whose inverse we formally denote as Log. Letting U be a small neighborhood about the identity,

we have that (U,Log) is a local chart around the identity. Thus, we have that (Lx(U),ϕx) is a local chart

about x where ϕx = Log◦Lx−1 . We then have that the map given by ϕ−1
x ◦ (dδt)1 ◦ϕx : Lx(U)→ δt(Lx(U))

is a local coordinate representation of δt at x. Thus,

(dδt)x = (dϕx)
−1 ◦ (dδt)1 ◦ (dϕx) = (d(Lx ◦ exp))◦ (dδt)1 ◦d(Log◦Lx−1).

Observing that N ⊂ GL(n,R) and n⊂ gl(n,R) for some n, we may write

(dδt)x(V ) = x (d exp)1 ◦ (dδt)1 ◦ (d Log)1(x
−1 V ).

There exist vectors Xi ∈ vi such that V = ∑
c
i=1 xXi. Since δt ◦exp = exp◦δt , we have that Log◦δt = δt ◦Log.

In particular, we may write (dδt)1 ◦ (d Log)1 = (d Log)1 ◦ (dδt)1. Thus,

(dδt)x(V ) = (dδt)x (x X) = x(d exp)1 ◦ (dδt)1 ◦ (d Log)1 ◦Lx−1(x X) =

(

c

∑
i=1

x (dδt)1 Xi

)

.

Hence,

(dδt)x(V ) = x

(

c

∑
i=1

t i Xi

)

=
c

∑
i=1

(dLx)1(t
i Xi) = (dLx)1

(

c

∑
i=1

t i Xi

)

= (dLx)1 ◦ (dδt)1(X).

Therefore, (dδt)x(V ) = (dLx ◦δt)1(X).

2.5 Semisimple Lie groups

We recall standard facts in the theory of semisimple Lie groups which can be found in [7, 11, 14, 21].
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Definition 2.14. Given a real Lie algebra g, the Killing form is the symmetric bilinear form B : g×g→ R

given by

Bg(X ,Y ) = Tr(adX ◦adY ).

We write B = Bg when g is clear from context. If B is non-degenerate, we say that g is a semisimple Lie

algebra. If the Lie algebra of the Lie group G is semisimple, we say that G is a semisimple Lie group.

2.5.1 Iwasawa decomposition of a semisimple Lie group

The Iwasawa decomposition of a semisimple Lie group G arises from considerations of an involutive auto-

morphism of the Lie algebra g.

Definition 2.15. An involution θ : g → g is called a Cartan involution if the bilinear form given by

Bθ (X ,Y ) = −B(X ,θ(Y )) is positive definite. We call the bilinear form Bθ the Cartan-Killing metric

on G. Every real semisimple Lie algebra admits a Cartan involution, and any two Cartan involutions of a

real semisimple Lie algebra differ by an inner automorphism.

If θ is a Cartan involution of the semisimple Lie algebra g, then the Cartan decomposition is given by

the vector space direct sum g = k+ p where k and p are the eigenspaces relative to the eigenvalues 1 and

−1 of θ . We fix a maximal abelian subspace a of p, with dima = rank(G). The Cartan decomposition is

orthogonal with respect to the bilinear form Bθ (X ,Y ). We fix an order on the system R ⊆ a′ of non-zero

restricted roots of (g,a). Let

m= {X ∈ k : [X ,Y ] = 0 for all Y ∈ a} .

The Lie algebra g decomposes as

g=m+a+
⊕

α∈R

gα

where gα is the root space relative to the root α . We denote Π+ as the subset of positive roots. If K, A,

and N are the Lie subgroups with Lie algebras k, a and n=⊕α∈Π+gα , then the map from K×A×N to G

given by (k,a,n)→ kan is a diffeomorphism. In particular, we write G = KAN and call this the Iwasawa

decomposition of G. We have that K is a compact Lie group, A is a connected, simply connected abelian

Lie group, and N is a connected, simply connected nilpotent Lie group. Moreover, we have that N has

additional structure in that N is a stratified nilpotent group as shown below.

Denote by Φ the subset of positive simple roots. Given that root spaces satisfy [gα ,gβ ]⊆ gα+β , the subspace

V ⊆ n given by V =
⊕

δ∈Φ gδ provides a stratification of n. In particular, n is a stratified nilpotent Lie algebra

and thus, N is a stratified nilpotent Lie group. We write this down as a proposition.

Proposition 2.16. Let G be a connected, semisimple Lie group, and let G = KAN be an Iwasawa decom-

position. Then N is a stratified nilpotent Lie group.

We introduce some notation. Assuming that N has step length c, we denote Φi as the set of roots such

that ni/ni+1 =
⊕

β∈Πi
gβ as vector spaces with some ordering on the roots. Since N is a connected, simply

connected nilpotent Lie group, the exponential map is a diffeomorphism. In particular, the Baker-Campbell-

Hausdorff formula implies that N is diffeomorphic to ∏
c
i=1 ∏β∈Πi

exp(gβ ).

3 Metrics on semisimple Lie groups

For semisimple Lie groups G with maximal compact subgroup K, we have that G/K = Rrank(G) ×N as

smooth spaces. If g is the Cartan-Killing metric on G, then at the identity coset of G/K, we have by [3,
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Section 4] for (a,n) ∈ G/K that

ga,n =
rank(G)

∑
i=1

da2
i +

c(N)

∑
i=1

∑
β∈Πi

β (a)(gβ )n

where ∑β∈Φ gβ is a left-invariant metric on n, the Lie algebra of N. If c : [0,1]→ G/K is a smooth curve,

we may write

c(t) =

(

ca(t),
(

cβ ,1(t)
)

β∈Φ1
, · · · ,

(

cβ ,c(N)(t)
)

β∈Φc(N)

)

where ca : [0,1] → Rrank(G) is a smooth math and cβ ,i : [0,1] → exp(gβ ) is a smooth map for all β ∈ Πi

and 1 ≤ i ≤ c(N). Thus, it is evident that Rrank(G) with the standard flat metric, which we denote as |·|, is

isometrically embedded. Since any vector X ∈ n may be written as

X =
c

∑
i=1

∑
β∈Πi

Xβ

where Xβ ∈ gβ , we may write the length of c with respect to the metric ga,n as

`G/K(c) =

∫

1

0

√

√

√

√

rank(G)

∑
j=1

(dca j
(t))2 +

c(N)

∑
t=1

∑
β∈Πi

β (a)gβ (dcβ (t),dcβ (t))dt.

The associated distance function on G/K is given by

dG/K = inf
{

`G/K(c) : c is a smooth path in G/K from x to y
}

.

For a ∈ Rrank(G), we denote Na as the nilpotent Lie group N equipped with the left invariant metric

c(N)

∑
i=1

∑
β∈Πi

β (a)(gβ )n

which we will identify with {a}×N in G/K. Any smooth curve c : [0,1]→ Na has the form

c(t) =

(

(

cβ ,1(t)
)

β∈Φ1
, · · · ,

(

cβ ,c(N)(t)
)

β∈Φc(N)

)

where cβ ,i(t) ∈ exp(gβ ) for all t ∈ [0,1]. Therefore, the length of c in Na is given by

`a(c) =

∫

1

0

√

√

√

√

c(Na)

∑
i=1

∑
β∈Πi

β (a)gβ (dcβ ,i(t),dcβ ,i(t))dt.

As before, the associated distance function is given by

da(x,y) = inf{`a(c) : c is a smooth path in Na from x to y} .

We have the following smooth diffeomorphism which dilates N based on the point a in Rrank(G).

Definition 3.1. For each 1 ≤ i ≤ c(N) and β ∈ Πi, we denote fβ ,i(a) = 1/ 2i
√

β (a). With this value, we

denote the following map Fa : N → N as

Fa(x) =
(

δ fβ ,i(a)
(xβ ,i)

)

1≤i≤c(N),β∈Πi

.

Since δβ ,i is a smooth map for all β ∈ Πi and each 1 ≤ i ≤ c(N), we have that F is a diffeomorphism.
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We note for all elements a ∈ Rrank(G) and roots β ∈ Φ that β (a) > 0. In particular, we have that β (~0) = 1

for all β ∈ Φ. With this observation in mind, we have the following proposition which relates the length of

the path c in N~0 to length of the path in Fa(c) in Na.

Proposition 3.2. If c : [0,1]→ N is a smooth curve, then for all a ∈Rrank(G) we have that `a(Fa(c)) = `0(c).

Proof. We have that

c(t) = (
(

cβ ,1(t)
)

β∈Φ1
, · · · ,

(

cβ ,c(N)(t)
)

β∈Φc(N)
)

dc(t) = (
(

dcβ ,1(t)
)

β∈Φ1
, · · · ,

(

dcβ ,c(N)(t)
)

β∈Φc(N)
).

We may write

dcβ ,i(t) = dLcβ ,i(t)
(Xβ ,i(t))

where Xβ ,i : [0,1]→ gβ is a smooth function. For notational simplicity, we let ρβ ,i,a(t) = δ fβ ,i(a)
◦ cβ ,i(t).

Thus, Lemma 2.13 implies that

d(δ fβ ,i(a)
◦ cβ ,i)(t) = (δ fβ ,i(a)

)1(dLρβ ,i,a(t)
(Xβ ,i(t))) = (1/ 2

√

β (a))dLcβ ,i(t)
(Xβ ,i(t)).

Therefore, we may write

β (a)gβ (d(ρβ ,i,a(t)),d(ρβ ,i,a(t))ρβ ,i,a(t)
= gβ (dLcβ ,i(t)

(Xβ ,i(t)),dLcβ ,i(t)
(Xβ ,i(t)))ρβ ,i,a(t)

= gβ (Xβ (t),Xβ (t))1

= gβ (dLcβ ,i
(X(t)),dLcβ ,i

(t))1

= gβ (dcβ ,i(t),dcβ ,i(t)).

Combining everything together, we may write

`a(Fa(c)) =

∫

1

0

√

√

√

√

c(Na)

∑
i=1

∑
β∈Πi

β (a)gβ (dρβ ,i,a(t),dρβ ,i,a(t))ρβ ,i,a(t)
dt

=

∫

1

0

√

√

√

√

c(Na)

∑
i=1

∑
β∈Πi

β (a)gβ (dcβ ,i(t),dcβ ,i(t))cβ ,i(t)
dt

= `0(c).

As a natural consequence, we have the following corollary.

Corollary 3.3. Let x,y ∈ N, and let a ∈ Rrank(G). Then da(Fa(x),Fa(y)) = d0(x,y).

Proof. Let c be a smooth path from x to y. We have by the above proposition that `0(c) = `a(Fa ◦ c). Since

Fa ◦ c is a path from Fa(x) to Fa(y), we have that

da(Fa(x),Fa(y))≤ `a(Fa ◦ c) = `0(c).

Therefore, by definition, we have that d~0(x,y) ≤ da(Fa(x),Fa(y)). Using a similar argument, we also have

that da(Fa(x),Fa(y))≤ d0(x,y). Therefore, d0(x,y) = da(Fa(x),Fa(y)).

We now provide a lower bound for the distance between points in distinct cosets of N in terms of the

distance between of the the coordinates of the coset representatives.
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Lemma 3.4. Let x,y be distinct points in Rrank(G), and let g,h ∈ N. We then have that dG/K((x,g),(y,h))≥
|x− y| . Moreover, if g = h, then dG/K((x,g),(y,g)) = |x− y|.

Proof. Let c be a path between (x,g) and (y,h). We may write

`G/K(c) =

∫

1

0

√

√

√

√

rank(G)

∑
j=1

(dca j
(t))2 +

c(N)

∑
i=1

∑
β∈Πi

β (a)gβ (dcβ ,i(t),dcβ ,i(t))dt

≥

∫

1

0

√

√

√

√

c(N)

∑
j=1

(dcaβ ,i
(t))2dt =

∫ 1

0
|dca(t)| ≥ |x− y| .

Therefore, we have by definition that dG/K((x,g),(y,h))≥ |x− y|.

Let γ : [0,1] → Rrank(G) be a straight line path from x to y, and let c : [0,1] → G/K be the path given by

c(t) = (γ(t),g). We may express the length of c as

`G/K(c) =

∫

1

0

√

√

√

√

rank(G)

∑
j=1

(dcai
(t))2dt =

∫ 1

0
|dγ(t)|dt = |x− y| .

In particular, we have that dG/K((x,g),(y,g))≤ |x− y|. Using the above inequality, we have that

dG/K((x,g),(y,g)) = |x− y| .

The last proposition of this section relates the distance between (~0,x) and (~0,y) in N~0 with the distance

between (a,Fa(x)) and (a,Fa(y)) for any a ∈ Rrank(G) as points in G/K.

Proposition 3.5. Let g,h ∈ N, and let a ∈ Rrank(G). Then

C1 ln(d0(x,y))≤ dG/K((a,Fa(x)),(a,Fa(y)))≤C2 ln(d0(x,y))

for some constants C1,C2 > 0.

Proof. By [9, 3.C′
1], we have that there exist constants C1,C2 > 0 such that

C1 ln(da(Fa(x),Fa(y)))≤ dG/K((a,Fa(x)),(a,Fa(y)))≤C2 ln(da(Fa(x),Fa(y))).

By Corollary 3.3, we have that da(Fa(x),Fa(y)) = d0(x,y). Thus, we have that

C1 ln(d0(x,y))≤ dG/K((a,Fa(x)),(a,Fa(y)))≤C2 ln(d0(x,y)).

4 Lipchitz models for cocompact lattices in semisimple Lie groups

We now introduce a model for the Lipschitz geometry of cocompact lattices in an arbitrary semisimple Lie

group G with an Iwasawa decomposition G = KAN. For a cocompact lattice ∆ ⊂ N, we let X(∆) ⊂ G/K

be the subset given by

X(∆) =
{

(a,Fa(g)) : a ∈ Zrank(G),g ∈ ∆

}

with the induced metric.
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Proposition 4.1. If ∆ < N be a cocompact lattice such that

inf{d0(x,y) : x,y ∈ ∆,x 6= y}> 1,

then X(∆) is a UDBG space.

Proof. We first show that X(∆) is uniformly discrete. If x,y ∈ Rrank(G) such that x 6= y, then Lemma 3.4

implies for any g,h ∈ ∆ that

dG/K((x,Fx(g)),(y,Fy(h)))≥ |x− y| ≥ 1.

For z = x = y, Proposition 3.5 implies that there exists a constant C1 > 0 such that

dG/K((z,Fz(g)),(z,Fz(h)))≥C1 ln(d0(g,h))≥C1 ln(inf{d0(a,b) : a,b ∈ ∆,a 6= b}).

Therefore, for all (x,Fx(g)),(y,Fy(h)) ∈ X(∆), we have that

dG/K((x,Fx(g)),(y,Fy(h)))≥ min{1,C1 ln(inf{d0(a,b) : a,b ∈ ∆,a 6= b})} .

In particular, we have that

inf
{

dG/K((x,Fx(g)),(y,Fy(h))) : (x,Fx(g)) 6= (y,Fy(h)) in X(∆)
}

> 0

showing that X(∆) is uniformly discrete.

We now demonstrate that X(∆) has bounded geometry. To do that, we show for all r > 0 that there exists a

constant Cr such that
∣

∣BX(∆)((x,Fx(g)))
∣

∣≤Cr for all g ∈ ∆ and x ∈ Zrank(G). We start by showing that there

exists a universal constant Mr such that any r–ball in X(∆) intersects at most Mr sets of the form (x,N)
where x ∈ Zrank(G). We also need to show that there exists a constant Cr > 0 such that

∣

∣BX(∆),r(x,Fx(g))∩ (y,N)
∣

∣≤Cr

for y ∈ Zrank(G).

If (y,Fy(h)) ∈ BX(∆),r((x,Fx(g))) such that |x− y|> r, then Proposition 3.4 implies that

dG/K((y,Fy(h)),(x,Fx(g)))≥ |x− y|> r

which is a contradiction. Therefore, we have that |x− y| ≤ r. Since x is fixed, it is easy to see that exists a

constant M > 0 such that there are at most M sets of the form (y,N) such that

BX(∆),r((x,Fx(g)))∩ (y,N) 6= /0.

First consider (x,Fx(h)) ∈ BX(∆),r((x,Fx(g))). We have by the above reasoning that |x− y| ≤ r, and thus, the

triangle inequality and Corollary 3.3 imply that

d0(g,h)≤C1e
dG/K((x,Fx(h)),(x,Fx(g))) ≤C1er.

Thus, h ∈ B∆,C1er(g), and by Gromov’s polynomial growth theorem, we have that there exists a constant

C2 > 0 and a natural number d such that
∣

∣B∆,C1er(g)
∣

∣≤C2Cd
1 edr. Now consider (y,Fy(h))∈BX(∆),r((x,Fx(g)))

where x 6= y. That implies

(y,N)∩BX(∆),r((x,Fx(g)) 6= /0,

and by the above statement, we have that there exist at most Mr such points y. Taking these statements

together, we have that
∣

∣BX(∆),r((x,Fx(g))
∣

∣≤C3edr

for some constant C3 > 0. Therefore, X(∆) is a UDBG space.

13



The following proposition demonstrates that under appropriate assumptions on ∆ < N that X(∆) can be

thought of as a model for the Lipschitz geometry of Γ where Γ < G is a cocompact lattice.

Proposition 4.2. Let Γ < G be a cocompact lattice, and let ∆ < N be a cocompact lattice satisfying

inf{d0(g,h) : g,h ∈ ∆,g 6= h}> 1.

Then X(∆) is bi-Lipschitz to Γ.

Proof. Let C1,C2 > 0 be the constants from Proposition 3.5, and let C = max{C1,C2}. Since ∆ is a cocom-

pact lattice in N, we have that ∆ is quasi-isometric to N. In particular, there exists a constant ε1 > 0 such

that if g ∈ N, then there exists an element h ∈ ∆ such that d0(g,h) ≤ ε1. Letting ε = C ε1 + rank(G), we

claim that X(∆) is ε–dense in G/K. Let (x,g) ∈ X where x ∈ Rrank(G) and g ∈ N.

Suppose that x ∈ Zrank(G). There exists an element h ∈ ∆ such that d1(F−x(g),h) ≤ ε1. Proposition 3.5

implies that

dG/K((x,Fx(h)),(x,g))≤ d0(h,(F−x(g))≤C ε1.

Suppose that x ∈ Rrank(G)\Zrank(G). There exists an element y ∈ Zrank(G) such that |x− y| ≤ 2rank(G), and

thus, there exists an element h ∈ ∆ such that d0(F−y(g),h)≤ ε1. By the triangle inequality, Lemma 3.4, and

Proposition 3.5, we have that

dG/K((x,g),(y,Fy(h))) ≤ dX((x,g),(y,g))+dX((y,g),(y,Fy(h)))

≤ 2rank(G)+d~0(F−y(g),h)

≤ 2rank(G)+ ε1 = ε.

Therefore, X(∆) is ε-dense in G/K, and subsequently, X(∆) and Γ are quasi-isometric. Since X(∆) and Γ

are quasi-isometric non-amenable spaces, Proposition 2.2 implies that they are bi-lipschitz.

5 Proof of Theorem 1.1

For the readers convenience, we restate our Theorem 1.1.

Theorem 1.1. Let G be a semisimple Lie group with an Iwasawa decomposition G = KAN. If Γ < G and

∆ < N are cocompact lattices, then Γ admits a translation-like action by ∆. Moreover, we can choose this

translation-like action to give rise to a coarse model Γ/∆ of the homogeneous space G/N. Finally, given

distinct lattices Γ1,Γ2 < G and ∆1,∆2 < N, we have the coarse models Γ1/∆1 and Γ2/∆2 for G/N are

bi-Lipschitz.

Proof. It is evident that there exists a cocompact lattice ∆′ in N satisfying

inf
{

d0(g,h) |g,h ∈ ∆′,g 6= h
}

> 1.

We first demonstrate that ∆′ admits a translation-like action on X(∆′). For g ∈ ∆′ and (x,Fx(h)) ∈ X(∆′), we

let g ·(x,Fx(h)) = (x,Fx(hg−1)). It is easy to see that this is a free action. Therefore, we need to demonstrate

that we have a wobbling action. We have by Proposition 3.5 that there exists a constant C > 0 such that

dG/K((x,Fx(h))(x,Fx(hg−1)))≤C ln(d0(h,hg−1))≤C ln(d0(1,g)).

Therefore, ∆′ admits a translation-like action on X(∆′).
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To finish, we note that ∆ is a cocompact lattice in N, and by the discussion after [5, Ques 2], we have that ∆

and ∆′ are bi-Lipschitz. We have that ∆ acts on itself by right multiplication, and thus, Lemma 2.3 implies

that ∆ admits a translation-like action on ∆′. Lemma 2.4 implies that ∆ admits a translation-like action on

X(∆′). Since X(∆′) is bi-Lipschitz to Γ, we have by Lemma 2.3 that ∆ admits a translation-like action on Γ

as desired. It is evident that the given translation-like action gives rise to a coarse model for G/N.

If Γ,Γ′ < G are cocompact lattices, we have that Γ and Γ′ are bi-Lipschitz by Proposition 2.2. Moreover,

if ∆,∆′ < N are cocompact lattices, then since N is a Carnot group, we have by the remark after [5, Ques

2] that ∆ and ∆′ are blipschitz. hus, by applying Proposition 2.9 and Proposition 2.10, we see that Γ/∆ and

Γ′/∆′ are bi-Lipschitz.

For the proof of Corollary 1.2, we note that if G is not isogenous to SL(2,R), then Z2 ≤ ∆. Since Z2 acts

translation-like on ∆ by virtue of being a subgroup, we have by Lemma 2.5 that Z2 acts translation-like Γ.

6 Proof of Theorem 1.3

We restate Theorem 1.3 for the reader’s convenience.

Theorem 1.3. Let G and H be Q–defined noncompact real simple Lie groups such that H ≤ G. If ∆ < H

and Γ < G are cocompact lattices, then ∆ admits a translation-like action on Γ. Moreover, we can choose

this translation-like such that Γ/∆ is a coarse model for G/H. Finally, given distinct lattices Γ1,Γ2 < G

and ∆1,∆2 < H, the spaces Γ1/∆1 and Γ2/∆2 for G/H are bi-Lipschitz.

Proof. Since the inclusion of H into G is Q–defined, we have by [18, 10.14. Corollary (iii)] that H(Z) is

a subgroup of a cocompact lattice Λ that is commensurable with G(Z). We have that H(Z) ≤ H∩Λ ≤ Λ,

and thus, H∩Λ is a cocompact lattice in H. Hence, we have that Λ/Z∩Λ naturally embeds into G/H as

a coarse dense subset. Thus, subgroup containment of H∩Λ into Λ is a translation-like action that gives

rise to a coarse model for the homogeneous space G/H. Since Γ and Λ are quasi-isometric non-amenable

spaces, Proposition 2.2 implies that Γ and Λ are bi-Lipschitz, and thus, H∩Λ admits a translation-like

action by Lemma 2.3. Hence, Proposition 2.9 implies that Γ/H∩Λ is bi-Lipschitz to Λ/H∩Λ, and thus,

the translation-like action of H∩Λ on Γ gives rise to a coarse model of G/H. Additionally, ∆ and H∩Λ are

quasi-isometric nonamenable spaces, and thus, by Proposition 2.2, we have that they are bi-Lipschitz. Thus,

Lemma 2.4 implies that ∆ admits a natural translation-like action on Γ. Moreover, we have by Proposition

2.10 that Γ/∆ is bi-Lipschitz to Γ/H∩Λ. Subsequently, ∆ admits a translation-like action on Γ that gives

rise to a coarse model for G/H. Finally, we note that if Γ′ < G and ∆′ < H are different cocompact lattices,

then by Proposition 2.2, we have that ∆ and ∆′ are bi-Lipschitz and that Γ and Γ′ are bi-Lipschitz. Thus, by

applying Proposition 2.9 and Proposition 2.10, we see that Γ/∆ and Γ′/∆′ are bi-Lipschitz.
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