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ABSTRACT: Potential energy surfaces (PESs) play an indispensable role in molecular
dynamics but are notoriously difficult to flesh out properly in large-dimensional spaces. In /N
particular, the undetected presence of PES holes, i.e., unphysical saddle points beyond which
the potential energy drops arbitrarily, can have devastating effects on both classical and
quantum dynamics calculations. In this study, the Crystal algorithm is developed as a tool for
efficiently and accurately finding PES holes, as well as legitimate saddle points, even in very = =
large-dimensional configuration spaces. The approach is applied to three large-dimensional
PESs for molecular systems of current interest: uracil, naphthalene, and formic acid dimer.
Low-lying PES holes are discovered and located for the first two systems—including
naphthalene, for which no holes were previously suspected, to the best of our knowledge. (
Likewise, the double-well, double-proton-transfer isomerization saddle point for formic acid

dimer is also located.

Increasingly, all-atom dynamical calculations are used to
simulate larger molecular systems. Despite progress, such
calculations remain challenging, whether performed classically,
quantum mechanically, or via some intermediate approximate
quantum strategy.l_3 For large systems, potential energy
surfaces (PESs) are often eschewed entirely, in favor of “direct”
dynamics.* This approach offers many advantages but has the
disadvantage that gradients and Hessians must generally be
computed “on the fly,” which can be expensive. Alternatively,
recent advances in “automatic” PES construction’~’ have
proven to be remarkably effective, even for large-dimensional
spaces, confirming that explicit PESs will continue to play a
vital role in the foreseeable future of dynamics. This is all the
more likely, given the increasingly important role of artificial
neural networks and other machine learning techniques across
all facets of science and engineering, including PES
construction.® "'

Short of a full-fledged dynamical understanding, it is
desirable to at least know all of the relevant reaction pathways
of a chemical system, which has been deemed nothing less than
“the most important task in the theoretical study ... of chemical
reactions”.'” This, too, is an extreme challenge in large-
dimensional spaces, whose “bottleneck” operation is the
determination of all relevant transition state structures (i.e.,
first-order saddle points). To this end, a great many numerical
optimization techniques, generally requiring at least gradient
calculations, have been developed and applied over the
years.'”~** Roughly speaking, these include interpolation
methods'”'>"*™'% (e.g, synchronous transit,'” saddle opti-
mization,'® and nudged elastic band'®) that seek to find the
saddle point between two known reactant and product
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geometries (generally minima) and local methods'>'>'>"

(e.g., §radient norm minimization'> and Newton—Raph-
son'>'”) designed to “hone in” on the exact saddle point
starting from a nearby “guess” geometry lying within the
convergence / trust radius.

Both types of optimization methods generally suffer from the
limitation that a good set of coordinates, and at least one
geometry, must be known ahead of time, through chemical
intuition or other means."”'>'> More recent—and ambi-
tious—efforts start from a given local minimum and/or seek to
find all relevant saddle points automatically."””~">*°"** One
particularly effective approach is to expand outward in a series
of (harmonically) isoenergetic shells, whose (true) energetic
minima'’ or anharmonic downward distortions point out the
paths toward saddle points and other minima."*”"* Such
methods have been used to find full-dimensional reaction
pathways for molecules with as many as 12 atoms (with
parallelization).'> Even more importantly, they predicted an
unexpected new mechanism for NO; photolysis via “excited
state roaming”, which was later confirmed experimentally,”>**
thus demonstrating the significance for experimental as well as
theoretical chemical science.

On the other hand, and despite much progress, there are no
general optimization methods for first-order saddle points that
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are guaranteed to work'°—certainly not, say, for finding the
lowest-lying saddle point, then the next lowest-lying saddle
point, etc. Such a guarantee would require “a mapping of the
whole surface”, which has been called “impossible for more
than three or four variables”."> According to the conventional
wisdom, this is because the size of the space that must be
explored increases exponentially with the system dimension-
ality, D. This belief explains why the mapping approach has
been eschewed for decades, in favor of the bewildering array of
complex and heuristical optimization strategies currently in
use.

The Crystal method presented here differs from all previous
methods in that it is indeed a mapping approach, and therefore
offers a guaranteed strategy for finding saddle points, in
principle. It is also fully automatic, conceptually very simple,
and not especially sensitive to the choice of coordinates.
Crystal is also numerically efficient, even at large values of D
(evidently up to tens of atoms). This is because in reality, PES
complexity scales only polynomially rather than exponentially
for most molecules.” Of course, pathological counterexamples
can be devised; moreover, there are some caveats pertaining to
the size of the discretization step.26 Nevertheless, we
demonstrate in this Letter, through realistic molecular
examples with up to 18 atoms (D = 48), that such a mapping
approach is indeed viable in practice and should therefore
serve as a useful complement to the optimization methods
already in play.

Although Crystal can in principle be applied in both
constructed PES and “on-the-fly” contexts, in this Letter, we
consider only the former. In particular, we concentrate mainly
on the highly challenging problem of finding PES holes—i.e.,
unphysical saddle points, beyond which the minimum energy
path descends arbitrarily (e.g, to negative infinity). Con-
structed PESs that take the form of a truncated Taylor series,
anharmonic force field (AFF) are especially prone to holes,
especially for large values of D.”” Increasing the order of the
polynomial expansion can helg,M’28 as can nonpolynomial
strategies (e.g., “Morsification” 9). In truth, however, these
strategies offer no guarantee of success, as this would be
tantamount to knowing the saddle points a priori. Indeed,
finding PES hole saddle points is all the more difficult, because
(a) chemical intuition offers no indication as to where they
might be located and (b) from a dynamical standpoint, it is
essential to find the lowest-lying holes first.

Consideration (b) arises because the lowest-lying PES holes
impose an artificial upper limit on the energies for which
reliable dynamical calculations can be performed. In quantum
dynamics calculations, holes can manifest as very slow
convergence, spurious energy levels, or even subtler effects,
as a result of which, it can be difficult to even know that one
has entered a hole region. It appears that PES holes are quite
common at large values of D, which is also where they become
the most difficult to detect and fix! Despite best efforts by PES
developers to do this “by hand” (e.g., by adding new ab initio
points and refitting), it is clear that some kind of PES hole-
finder tool—one that is accurate, efficient, reliable, and
automated—is very badly needed for dealing with this
increasingly troublesome nuisance.

Our Crystal code’®*® has been developed to serve as just
such a resource. Originally designed for fleshing out classically
allowed regions of phase space,’® Crystal has been recently
“retooled” to serve as a PES saddle point and hole finder, by
mapping out configuration space (i.e., the space of all
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geometries) instead of phase space. For the study presented
here, three specific molecular applications were chosen: uracil,
naphthalene, and formic acid dimer. These represent some of
the largest molecules for which full-dimensional PESs are
available, and quantum dynamics calculations have been
attempted.”” In addition to rather large system dimension-
alities (D = 30, D = 48, and D = 24, respectively), the
corresponding PES functions themselves exhibit a commensu-
rate complexity. Our goal in this Letter is not only to analyze
the PESs for these complicated, important systems in their own
right, but also to evaluate Crystal’s performance as a mapping-
based saddle point finder, in the context of both holes and
legitimate saddle points, when pushed to the limits of real-
world PESs.

Uracil®' [C,H,O,N, (Figure 1)] is one of the four
nucleobases in the nucleic acid of RNA. It has a role in the

Q
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Figure 1. Molecular structures for uracil (left), naphthalene (middle),
and formic acid dimer (right).

synthesis of many enzymes and can also be used for drug
delivery. Hence, it has been the subject of intense interest in
biology, evolution, and pharmaceutics. With 12 atoms, uracil
has a total of D = 30 vibrational modes. Several years ago, a
full-dimensional AFF PES was developed by Krasnoshchekov
et al.”” The uracil PES has a total of 7796 AFF monomial
terms, provided up to quartic order.”* This is an unusually
large number, in comparison to those of typical quartic AFF
PESs of comparable dimensionality. For example, the benzene
PES (also D = 30), as used in several recent studies,””**~>* has
only around 500 terms. The comparatively much larger
number in the case of uracil indicates higher anharmonicity
and coupling for this system, and a higher probability of holes.
Thomas et al.”’ (correctly) inferred the presence of a low-lying
hole for this PES; however, they did not locate its position.
The uracil PES thus serves as an interesting test case for
Crystal.

Best known as the main ingredient in traditional mothballs,
naphthalene [C;oHg (Figure 1)] is also the smallest polycyclic
aromatic hydrocarbon (PAH).”® It has been the subject of
spectroscopic studies, owing to the role of PAHs as pollutants.
Despite its 18 atoms and D = 48 dimensions, a PES was
developed as early as 2007 by Cané et al.”” The naphthalene
PES is also a quartic AFF and, as such, is very likely to have
holes. On the other hand, it consists of a substantially smaller
(but still very large) number of terms (4191) than the uracil
PES, despite the much larger dimensionality. This suggests
significantly less anharmonicity and coupling for naphthalene
than for uracil, which is also consistent with chemical intuition.

Even in the gas phase, formic acid dimer [(CH,0,), (Figure
1)] is the most prevalent form of this smallest of the carboxylic
acids.” This is due to its propensity to form hydrogen bonds,
of which even the (cyclic) dimer has two. Moreover, the dimer
dynamics are highly interesting, in that simultaneous exchange
of the two hydroxyl H atoms gives rise to a second equivalent
structure. This double-well, double-proton-transfer isomer-
ization thus presents a highly challenging test case, ideal for
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evaluating Crystal in the context of finding legitimate saddle
points. We use the recent, full-dimensional PES of Qu and
Bowman.”

The uracil and naphthalene PESs described above were the
subject of a recent quantum dynamics study by Thomas et
al,”” who computed vibrational energy levels near the bottom
of the dynamically relevant spectrum. Although only the
lowest-lying states were considered (i.e, within ~1200 and
~1026 cm™" of the ground state for uracil and naphthalene,
respectively), the authors could nevertheless infer the presence
of an unphysical hole in the uracil PES, due to spurious energy
eigenvalues. They then undertook significant effort to modify
the PES, which was originally developed by a different group,*
to obtain a reasonably close alternative without holes.
Although unsuccessful in eliminating all holes (without
adversely impacting the resultant computed energy levels),
the authors were at least able to mitigate hole damage in the
low-lying spectral region considered. In the case of
naphthalene, the authors mentioned above saw no direct
evidence for the existence of a PES hole, so they used the
original PES®” without modification. This led to no apparent ill
effects—Dbut of course, in and of itself, this is no guarantee that
there is not a low-lying PES hole for this system, as well. In any
event, the vignette described above serves to underscore the
pressing need for fast and reliable hole-finding tools such as
Crystal that can be applied prior to performing expensive
quantum dynamics calculations.

The use of Crystal to find both PES holes and legitimate
saddle points proceeds as follows.

(1) Choose a low-energy initial point (e.g, the global
minimum geometry) for which the PES value, V, is less than
some chosen energy cutoff, V.

(2) Run Crystal to “grow” a set of lattice grid points for
which V <V, until all N such grid points have been found.

(3) If N diverges (or otherwise grows very large), there is a
saddle point below V. set V_, = Vi reduce V_, until N no
longer diverges; and set Vi, = V.

(4) Otherwise, there is no saddle point below V_,: set V_
= Vi increase V,, until N diverges; and set V_, = V.
(5) “Divide and conquer” the interval between V_,, and
Veu until the saddle point region is narrowly identified.

(6) Use standard optimization techniques (nudged elastic
band,*¢ New’con—Raphson,19 and gradient norm minimiza-
tion'”) to pinpoint the precise location of the saddle point.

A more detailed overview is provided below. For a complete
exposition, see the companion paper,”® which also provides the
complete Crystal source code and user’s manual. Updated
versions of the latter are also available from the authors on
request. These include refinements that have since been made
to the original code, mostly pertaining to the treatment of
second-order saddle points and non-zero gradient norm
minima, as are also described in this Letter.

The basic operation of the Crystal mapping algorithm is
conceptually straightforward. First, we define an infinite
rectlinear lattice of grid points, spanning the entire
configuration space, (Q,, Qy ., Qp), where the Q; denote
individual vibrational modes or internal coordinates. For each
Q, there is a natural choice of lattice spacing (as discussed in
detail in the companion paper™), in terms of which all grid
point locations become integer-valued vectors with D
components.

Without loss of generality, we take the initial point from step
1 above as the Q; coordinate origin, (0, 0, .., 0). This point is
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known to lie within the configuration space region of interest,
so that V(0, 0, ..., 0) < V. Starting from this initial point, all
nearest neighbor points in all D directions are then
considered—i.e., the points (0, 0, .., Q; = £+ 1, .., 0, 0), for
all 1 < i < D. There are a total of 2D such nearest neighbor
points. For each of these, V(Q;, Q,, .., Qp) is evaluated and
compared to V. Those points that satisfy V(Q;, Q, -, Qp) <
V.. are combined with the initial point to form the “current
set”. In each subsequent iteration, the nearest neighbor points
for the current set are determined. If these are new points, then
V(Qy, Qy -y Qp) is evaluated; if V < V_, then these points are
added to the new current set. Iterations proceed until no new
points are added to the current set, which will happen
eventually, provided that the region of interest is bounded.

The simple description given above suggests a computa-
tional (CPU) scaling of DN, in terms of both CPU effort and
memory (note that N itself has an implicit dependence on D,
which is where the overall polynomial scaling comes from). In
practice, there are many issues that make efficient numerical
implementation a challenge. For example, at each iteration, it is
necessary to check nearest neighbor points against all current
set points, to avoid duplication and redundant effort. A naive
search might thus lead to DN scaling of CPU effort—which,
assuming say N = 10, becomes unfeasible. Of course, standard
sort algorithms, based on binary tree structures, can be used to
reduce the scaling to DN log N. These typically require
extensive use of pointers, however, which gives rise to very
substantial CPU overhead (in terms of both effort and
memory). Alternatively, pointer-free array-based approaches
may also be used, but generally at the expense of having to
move vast amounts of data to accommodate the growing
binary tree, which is even more expensive.

Crystal exploits an alternate strategy that provides the “best
of both worlds”—i.e., using simple arrays (mostly containing
just short integers) instead of pointers, yet implemented in
such a manner that growing a binary tree does not require any
copying of data. As a consequence, DN log N scaling of CPU
effort, and DN scaling of CPU memory, are achieved with
minimal overhead. (Note the linear D scaling, reminiscent of
gradient-based optimization methods.) The method has been
found to be extremely reliable and efficient, with typical
execution times (for a single V, value) on the order of
seconds.”®

For bound molecular systems, N is guaranteed to be finite
provided that V_, lies below the first dissociation threshold,
assuming that V(Q,, Q,, .., Qp) is well-behaved. If, instead, a
numerical PES happens to have an unphysical hole saddle
point lying below the true dissociation threshold (and also
below V), then N will grow indefinitely, in principle without
limit. In practice, some very large upper limit N, is chosen,
such that when N reaches N, Crystal stops and reports a
hole. Through the “winnowing” described in step S above, it
then becomes possible to narrow the hole saddle point region
down to a single grid point (modulo symmetry consider-
ations). We call this the “lattice hole point”.

We next briefly address how our method is applied to find
legitimate saddle points, i.e. the primary bottleneck in
identifying reaction pathways. For dissociation pathways, the
procedure is identical to that used for finding hole saddle
points as described above. For isomerization pathways, the
situation is similar: starting from the first isomer well, once V_,
reaches the transition state energy, there will be a sudden but
finite jump in N, as the second well region suddenly becomes
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available. By monitoring such sudden jumps in N, we can
identify and locate legitimate isomerization saddle points.

After finding the lattice hole point using Crystal, several
strategies may then be used to “hone in” on the precise
location of the nearby saddle point itself. A nudged elastic
band approach could be used,'® although with the initial point
chosen as the second end point, this might not be very efficient
(and no other choice would be “black box”). A local method is
generally preferable, with Newton—Raphson offering quadrati-
cally fast convergence, but also requiring Hessian evaluations."”
Alternatively, we have employed the simple gradient norm
minimization strategy, based on the magnitude of the local
force vector, or norm of the PES gradient. This approach has
been found to work quite well, despite its small radius of
convergence, because of the proximity of the lattice hole point
to the saddle point.'>*® However, because it is not based on
energy per se, it can sometimes converge to higher-lying
“second-order saddle points” (two negative Hessian eigenval-
ues, instead of one), or even to gradient norm minima for
which the gradient itself is non-zero. These situations were
indeed observed for the molecules of this study. Consequently,
when using gradient norm minimization, once the minimum is
located, we ensure first that the PES gradient is in fact zero and
second that the corresponding Hessian has exactly one
negative eigenvalue.

In its role as both a PES hole finder and a legitimate
transition state finder, Crystal would be much more valuable if
it could find multiple saddle points in increasing energetic
order, instead of just the lowest-lying one as described above.
We have built such functionality into our code, through a
procedure we call hole plu%ging, reminiscent of iterative
optimization and elimination.”~ The idea is simple: once a
lattice hole point is located, it is thereafter permanently
“tagged,” so that if and when it next appears in the current set
of a subsequent Crystal execution, its nearest neighbor points
are precluded from consideration. In practice, we find it
convenient (but not necessary) to employ a refinement known
as “cubic plugs”, whose detailed explanation is reserved for the
companion paper.

We return now to a discussion of the specific molecular
applications, starting with uracil. The first step is to choose the
lattice spacings. These are based on the harmonic frequen-
cies,” taken from the CCSD(T)-based values of Puzzarini et
al.*® (Table S1). As for the anharmonic terms, their
comparatively large number implies substantial CPU effort
needed for each PES function evaluation, irrespective of the
fact that a great many such PES evaluations might be required
in such a large dimensional space.

Using Crystal, a low-lying hole was indeed identified and
located in the uracil PES. For this hole, the V, interval in step
5 above was winnowed down to a V_,; of 5348.09 cm™' and a
Vi of 5348.11 cm ™. This revealed a lattice hole point lying at
the configuration labeled “Lattice Hole Point 1” in Table S3.
Remarkably, the largest, V., = 5348.09 cm™’, calculation
above required <30 s of CPU time, running on a single core of
the Quanah cluster at the Texas Tech University High
Performance Computing Center. CPU memory requirements
(<2 MB) were also remarkably minimal.

From the Lattice Hole Point 1 configuration of Table S3, we
see that reaching the lowest-lying uracil hole region requires
the simultaneous displacement of nine separate Q; coordinates.
Such a PES hole would be almost impossible to locate “by
hand” (i.e, via plots of PES slices taken two or three
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coordinates at a time) and also presents a challenge for
optimization methods."> Nevertheless, a total of only 22822
lattice grid points (V) were found to lie below this hole, which
is not very many, given the dimensionality.”® For D = 30, a
PES hole with such a small N value may be expected to have
severe dynamical repercussions. On the other hand, because
our algorithm scales as N log N, this small N value also helps
explain why Crystal was able to find the hole so quickly.

Starting from Lattice Hole Point 1, gradient norm
minimization was used in our initial attempt to find the
corresponding hole saddle point. However, this led to a
minimum with a non-zero gradient. From here, though, it was
straightforward to find the true saddle point, following a
minimum-energy path-type procedure. The results are
presented in Table S3. Note that the uracil hole saddle point
lies only 720.241 cm™" above the global minimum! It is thus
no surprise that Thomas et al. encountered severe problems.”’”
This energy is also much lower than the corresponding lattice
hole point energy. This situation is typical for large-
dimensional spaces and underscores the importance of finding
the saddle point explicitly, once the nearby lattice hole point
has been properly identified via Crystal.

Having precisely identified the hole saddle point, we can
visually observe the hole behavior, via a one-dimensional plot
of the PES, taken along a path from the global minimum,
through the hole saddle point, and out into the hole region.
Such a “reaction profile” plot is presented in Figure 2, for the
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Figure 2. “Reaction profile” plot for the uracil PES of Krasnoshchekov
et al.*> The origin corresponds to the global minimum geometry,
whereas the 100th point corresponds to the hole saddle point
geometry, located a mere 720.241 cm ™' above the minimum. Between
the points, the reaction path is taken to be the straight line segment
connecting the origin and the hole saddle point. Beyond the latter, the
reaction path extends in the direction of the saddle point Hessian
eigenvector with a negative eigenvalue. In this regime, the plot shows
a monotonic descent toward negative infinity, the hallmark of a PES

hole.

lowest-lying uracil PES hole. Beyond the saddle point, the hole
behavior is quite glaring. Note also that in addition to being
very low-lying, this hole appears to be quite broad, in the sense
that it does not disappear under significant perpendicular
mode displacements from the saddle point. One indication of
this is the rather large difference between the lattice hole and
saddle point configurations as presented in Table S3. Another
indication is what occurs when the hole is “plugged”, as
described below.
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Using a previously described notation,*® a rather large “cubic
plug” was inserted around Lattice Hole Point 1 of the uracil
PES. Running Crystal again, we discovered a new lattice hole
point. Lattice Hole Point 2 (as presented in Table S3)
corresponds to a significantly higher PES energy (V,,, between
6985.76 and 6985.78 cm ™). However, the similarity of the two
lattice hole point configurations suggests that they in fact
belong to the same broad hole. This hypothesis was confirmed
via gradient minimization, etc,, starting from Lattice Hole
Point 2, which led to exactly the same hole saddle point as for
Lattice Hole Point 1.

The D = 48 normal mode frequencies for naphthalene are
listed in Table S2. As discussed, the naphthalene PES is far less
anharmonic than for uracil, suggesting it is less likely to have a
low-lying hole.”” However, Crystal tells a different story. In
particular, our calculations have revealed the existence of a
naphthalene PES lattice hole point, at the configuration listed
in Table S4. Note that “only” six modes are now coupled
(displaced), rather than nine. Even so, the corresponding
lattice hole point energy is larger than for uracil—i.e, V_,
between 6932.5 and 6933 cm ™. A total of N ~ 3.6 million grid
points lie below this hole. This is a much larger N value than
for uracil, reflecting the larger D and V_, values of naphthalene.
The larger N leads to substantially greater CPU effort, despite
the somewhat simpler PES. In particular, the largest V
calculation for naphthalene required 2 h on a single CPU core
of the Quanah cluster. This is still remarkably inexpensive,
given the complexity of the problem.

Starting from the naphthalene lattice hole point described
above, gradient norm minimization, etc., were again applied, to
determine the location of the corresponding hole saddle point,
given in Table S4. This point lies 2483.050 cm™ above the
PES minimum—much higher than for uracil, but still a “low-
lying” PES hole, potentially capable of inflicting harm on
dynamical calculations. This is evidently not the case for the
study of Thomas et al; however, knowing for sure would
require modifying the PES, so as to remove this newly
discovered hole, or push it to a higher energy. In any event, the
naphthalene hole can be clearly seen in Figure 3, where it is
depicted graphically in a “reaction profile” plot.

To test the limits of the methodology still further, we also
considered what happens when the naphthalene hole is
“plugged”. Again, a cubic plug was inserted; however, this
time the effect was to “stop the leak”. More specifically, V_,

2000 A
0

E
L -2000
>
o
o -4000
c
[}
T -6000
g
£ _8000
o
-10000
-12
000 0 50 100 150 200

Reaction coordinate grid points

Figure 3. “Reaction profile” plot for the naphthalene PES of Cané et
al.’” Other details are as in Figure 2, except that the hole saddle point
energy is now 2483.050 cm™! above the global minimum.

was increased beyond the first lattice hole point energy, up to a
maximum V,, value of 8432 cm™!, without any new holes
appearing. As this is beyond the range of most chemically
relevant applications, it was deemed not necessary to push
things any further. In any event, even this “heroic” calculation
(for which N ~ 32.3 million) required only ~5 GB and 18 h
on a single CPU core.

Finally, the formic acid dimer system is quite different from
the others in that it represents (a) a highly anharmonic
complex rather than a molecule, (b) isomerization rather than
dissociation, and (c) a legitimate saddle point rather than a
hole. It thus provides a highly important test case for the
Crystal method, even though the isomerization saddle point for
the Qu and Bowman PES is of course already well-known.*
Note that the minimum and transition state structures have C,,
and D,;, point group symmetry, respectively; however, we did
not exploit symmetry at all in our calculation (though we did
presume a planar form).

Starting from one of the two equivalent PES minima, and
using Cartesian coordinates with lattice spacings based on
displacements relative to the other minimum, Crystal located a
lattice hole point between V_, values of 3958.42 and 3958.45
cm™. The largest V_,, calculation required N =~ 338084 grid
points and ~33 min on a single Quanah CPU core. Starting
from the lattice hole point, gradient norm minimization, etc.,
were then used to locate the isomerization saddle point. The
resultant energy (i.e., 2847.55 cm™' above the minimum)
agrees perfectly with that reported in the original study.”

In conclusion, (a) explicit PES functions, obtained as
automated fits or interpolations of ab initio data, will play an
important role in the future of dynamics, even for large
systems. (b) In this milieu, PES holes are a tremendous
nuisance, becoming increasingly difficult to both avoid and
detect. Legitimate saddle points are also much harder to find.
(c) Crystal provides an accurate, inexpensive, reliable, and
automated tool, for identifying PES holes and legitimate saddle
points, and determining their precise locations. (d) Crystal also
provides a “hole plugging” feature, allowing users to locate
multiple saddle points, in energetic order (e.g, prior to
modifying or “fixing” PESs, in the case of holes). (e) The latest
Crystal source code and user’s manual are always available from
the authors on request.
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