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Abstract

Biochar is a promising soil additive for use in support of sustainable crop production. However, the high level of
heterogeneity in biochar properties and the variations in soil composition present significant challenges to the suc-
cessful uptake of biochar technologies in diverse agricultural soils. An improved understanding of the mechanisms
that contribute to biochar-soil interactions is required to address issues related to climate change and cultivation
practices. This review summarizes biochar modification approaches (physical, chemical, and biochar-based organic
composites) and discusses the potential role of biochar in sustainable crop production and soil resiliency, including
the degradation of soil organic matter, the improvement of soil quality, and reductions in greenhouse gas emissions.
Biochar design is crucial to successful soil remediation, particularly with regard to issues arising from soil structure
and composition related to crop production. Given the wide variety of feedstocks for biochar production and the re-
sultant high surface heterogeneity, greater efforts are required to optimize biochar surface functionality and porosity
through appropriate modifications. The design and establishment of these approaches and methods are essential for
the future utilization of biochar as an effective soil additive to promote sustainable crop production.

Keywords: Biochar, carbon sequestration, greenhouse gas mitigation, modification, surface property, sustainable crop
production.

Introduction

Currently, climate change has become one of the most ser-
ious global problems and greatly threatens our earth. Increasing
global warming in particular brings a series of negative effects
to agricultural development, including drought, extreme wea-
ther disasters, and soil degradation (Piao et al., 2010; Chauhan
et al., 2014; Lesk et al., 2016). On the other hand, agricul-
tural soil is an important source of non-CO, greenhouse gas

emission (N,O and CH,) because huge amounts of fertilizer
are being used to increase crop yield to sustain the increasing
world population, particularly for developing countries. For ex-
ample, ~47% and 58% of total anthropogenic emissions of CH,
and N,O, respectively, are estimated to have resulted from the
agriculture sector in 2005 (Smith ef al., 2007). Simultaneously,
high intensities of land use and fertilizer employment can also

Abbreviations: CEC, cation exchange capacity; HM, heavy metal; HTT, heat treatment temperature; nSOC, native soil organic carbon; nZVI, nanoscale zero-valent

iron; SOC, soil organic carbon; WHC, water-holding capacity.
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lead to other environmental problems, such as soil acidifica-
tion (Guo et al., 2010), water pollution (Zhu and Chen, 2002;
Le et al., 2010), and soil organic carbon (SOC) degeneration.
Therefore, the development of sustainable crop production
to counter the adverse impacts of global warming, while also
improving soil quality and reducing greenhouse gas emission,
is very important.

Biochar is a C-rich material that can be produced from a
wide range of organic feedstock, including wood, crop res-
idues, animal manure, sewage sludge, and other organic waste
(Zhao et al., 2013; Luo et al., 2015; Lian and Xing, 2017) by
different methods under oxygen-limited conditions, including
traditional charcoal production, slow/fast/microwave pyrolysis,
gasification, hydrothermal carbonization, and flash carboniza-
tion (Meyer et al., 2011; Masek et al., 2013; Oo et al., 2018).
A considerable number of studies have demonstrated that
biochar application can greatly enhance the soil quality, such as
the soil physical structure and water-holding capacity (WHC)
(Burrell et al., 2016), SOC content (Luo et al., 2016), and nu-
trient retention capacity (Peng et al., 2011). Meanwhile, the
high content of recalcitrant C in biochar is beneficial for C
sequestration and for reducing greenhouse gas emission from
the soil (Zimmerman, 2010; Singh ef al., 2012; Sui et al., 2016;
Han et al., 2018; Borchard et al., 2019). Furthermore, biochar
can also immobilize heavy metal (HM) and reduce its bio-
availability to the crop due to its high sorption affinity for HM
(Bian et al., 2014; Puga et al., 2015; Li et al., 2016; Xu et al.,
2016;Yin et al.,2017), which is helpful in the recovery of crop
productivity and reduces the potential risk to food safety from
HM-contaminated soils. However, a consensus on the benefit
of biochar amendment has not been reached, probably because
of the heterogeneity of biochar properties (such as porosity,
elemental composition, and functional groups) and complex
interactions between biochar and solid components (organic
matter and minerals) as well as biota in the soil. Therefore, more
efforts should be made to modulate the properties of biochar
or design smart biochar products to effectively contribute to
the sustainable crop production in the era of climate change,
which calls for a better understanding of the main environ-
mental processes and mechanisms in the soil-biochar—biota
triangular systems (Mandal ef al., 2016; Rajapaksha ef al., 2016;
Li et al.,2017; Wang et al., 2018).

A number of reviews have systematically summarized the
effects of biochar on soil nutrient utilization and greenhouse
gas emission (Ding et al.,2017; M. Hussain et al.,2017; Nguyen
et al.,2017;Li et al.,2018), as well as HM remediation (Mandal
et al., 2016; Li et al.,2017). However, limited suggestions have
been made regarding the design and modification of biochar
as a promising soil amendment for sustainable crop produc-
tion under a changing climate. Therefore, the main objectives
in the present review are (i) to systematically discuss the crit-
ical role of biochar in the main aspects for sustainable crop
production, including C sequestration, non-CO, greenhouse
gas emission (CH, and N,O), soil quality improvement, and
HM remediation; (ii) to identify the key properties of biochar
that play a crucial part in the aforementioned aspects; and (ii1)
to summarize the current approaches for the production and
modification of biochar, including the selection of feedstock
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and pyrolytic condition, physical/chemical modifications, and
biochar-based composite, and provide suggestions for engin-
eering specific biochar to meet the demand of sustainable
crop production. The effects of biochar on soil properties and
HM removal are not included in our main text but are sum-
marized in the Supplementary data and Supplementary Table
S1 at JXB online, and the application of biochar for organic
pollutant removal was also not covered because of the recent
reviews by others (Lone et al., 2015; Oliveira et al., 2017; Tan
et al.,2017).

Carbon sequestration in soils

Biochar is a highly recalcitrant form of organic C in soils,
and its mean residence time is estimated to be from decades
to more than thousands of years (Supplementary Table S2).
However, a very slow decomposition process of biochar has
also been observed, which depends on the physicochemical
properties of the biochar and on the ambient environment.
At least two forms of C are identified in biochar, namely con-
densed and labile C: the former is highly recalcitrant to abiotic
and biotic degradation, but the latter is relatively more de-
gradable and would be a potential source for the emission of
CO, (Nguyen et al., 2010; Fang et al., 2015). For example, the
labile C from corn straw biochar contributed to 68.1-71.2%
of the total cumulative CO, emission after being added to soil
(Lu et al.,2014). Therefore, the balance between the remaining
biochar-C in the soil and the increased CO,-C from native
SOC (nSOQC) is critical for biochar’s C sequestration potential
in soil (Fig. 1). Thus, quantitative studies should be conducted
to assess the stability of biochar in soil, as well as the direction
and magnitude of biochar-induced nSOC change rather than
the total CO, emission. In this section, the stability of biochar
and the quantitative or structural changes in nSOC induced
by biochar, which are crucial to the soil C sequestration, are
discussed in detail.

Sustainable crop production (SCP)

GHG mitigation
Soil quality improvement
HM pollution remediation

Modification technology

A

( Pyrolysis technology

Engineered
biochar

biochar

Physical modification
Chemical modification
biochar-based composite

Stability of biochar in soils

Mechanisms of biochar degradation

Although biochar is relatively stable in soils because of the
high content of aromatic C, it must be degraded at some rate
(Zimmerman, 2010), and the degradation rate mainly depends
on the property of the biochar and the environmental conditions
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Fig. 1. lllustrative diagram for the main processes of biogenic and native SOC-C transformation in a biochar (BC) application system. In the short term,
after biochar application, soil CO, emission may be increased because of the fast release of labile C from biochar and additional nNSOC degradation
(co-metabolism with biochar labile C). In the long term, the soil C sequestration potential may be enhanced mainly through two aspects: (i) the formation

of stable BC-organic matter macro-aggregates from the interaction betwee

n biochar and nSOC and (i) the changes of quantity and structure of the

microbial community. The dotted yellow arrows indicate the negative effects on substrate availability or microbes. The solid yellow arrows indicate the

positive effects on substrate sorption or C sequestration.

(Cheng et al.,2008; Nguyen and Lehmann, 2009; Spokas, 2014).
Both abiotic and biotic processes are regarded as the two main
processes for biochar degradation in the environment. An
increasing number of studies have revealed that an abiotic pro-
cess (e.g. chemical oxidation) may be the main contributor for
biochar degradation in soils (Cheng et al., 2006; Nguyen ef al.,
2010), especially in the initial fast degradation phase. For ex-
ample, the content of O-containing groups, O/C ratio, and
cation exchange capacity (CEC) of biochar were significantly
increased after incubations (Nguyen ef al., 2010; Rechberger
et al.,2019). In addition, Bruun et al. (2008) found that no mi-
crobial assimilation of '*C-labeled biochar-C was detected after
a 20 d incubation. However, some other studies have suggested
that the biotic process should not be neglected and is even com-
parable with the abiotic process in some situations (Hamer ef al.,
2004; Zimmerman, 2010; Farrell et al., 2013). For instance, a
time lag before the first sharpest increase in the CO,-C evo-
lution (6 d after incubation) was detected in a previous study
(Hamer et al., 2004), which probably occurred because of the
growth of microorganisms and then promoted the degradation
of biochar (Hamer ef al., 2004). Likewise, approximately half of
the biochar degradation was contributed by the biotic process,
based on the comparison of 1 year abiotic and microbial incuba-
tions of different biochars (Zimmerman, 2010).

The degradation mechanism of biochar has been well exam-
ined in the literature; however, the effect of climate change on
the relative importance of abiotic and biotic processes is less
understood. Climate change would probably influence soil con-
ditions (e.g. soil temperature and moisture) and composition, as
well as the activity of the biota, all of which play an important
role in the degradation of biochar in soils. Thus, a systematic
evaluation of the stability of biochar and the design of novel
biochar products are needed to increase C sequestration and re-
duce greenhouse gas emission in the face of climate change.

Key properties of biochar that contribute to its stability

in soils

The stability of biochar exposed to chemical oxidation and
microbial degradation is highly determined by properties such
as the C morphology at both micro- and nanoscales (Nguyen
et al., 2010). Biochar can be more stable in soils when it has a
higher degree of order and larger clusters with more side chains
linked to neighboring aromatic clusters (Nguyen et al., 2010).
Nguyen et al. (2010) reported that corn biochar with lower
heat treatment temperature (HTT) (350 °C) was less stable
than oak biochar with higher HT'T (600 °C), because the corn
biochar had a less ordered structure and smaller cluster size.
Additionally, Fang ef al. (2015) found that the mean residence
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times of high-temperature biochar were dramatically higher
than those of the low-temperature biochar, and the stability of
high-temperature biochar was less affected by soil properties
than low-temperature biochar. The authors attributed this ob-
servation to the higher content of aromatic C (especially the
condensed aromatic C) in high-temperature biochars (Fang
et al., 2015). However, notably, biochar stability is also related
to the raw material used (Han et al., 2018), which is even more
important than HTT when considering the potential total
C sequestration (Zhao et al., 2013). Hence, the selection of a
suitable combination of feedstock and pyrolysis conditions is
essential when designing biochar with high C-sequestrating
capacity in soils.

In addition, the developed porous structure and large sur-
face area can also contribute to the stability of biochar through
interactions with soil minerals (Li ef al.,2014;Yang et al., 2016;
Y. Yang et al., 2018) and soil organic matter (Du et al., 2016;
Zheng et al., 2018). New metallic compounds or organomet-
allic complexes can be formed on the biochar surface and/or in
the pores, which can significantly increase the C recalcitrance
index (Yang et al., 2016). The C recalcitrance index was in-
creased from 44.6% to 45.9—49.6% when walnut shell biochar
was incubated with different soil minerals (FeCl;, AICl;, CaCl,,
and kaolinite) (Yang et al., 2016). Furthermore, the stability of
biochar also may be enhanced by the adsorption of labile C or
organic matter from soils, which could form macroaggregates
around biochar and protect it against microbial degradation
(Du et al.,2016; Zheng et al., 2018).

The labile C within biochar has been suggested to be util-
ized by microbes in the soil and thus partially affects the deg-
radation efficiency of biochar by microorganisms (Luo et al.,
2013). However, a previous study found that only 1.5-2.6%
of the remaining biochar was incorporated into microbial
biomass after 624 d of incubation when '*C-labeled ryegrass-
derived biochar-C was measured in the microbial biomass
(Kuzyakov et al., 2009). A similar result was also found in the
study of Bruun er al. (2008).They concluded that biochar deg-
radation in soils is driven mainly by co-metabolism rather than
serving only as a C source for microorganisms. Changes in soil
microbes (in both activity and structure) have been suggested
to be closely associated with the original C structure of the
biochar and, in turn, these soil microbes influence the bio-
logical degradation process of the biochar (Zhu et al., 2017).
However, the interaction between the biochar C structure and
microbial community still needs to be further ascertained, and
its effect on biochar stability also needs to be explored.

The higher content of ash/minerals in biochar may contribute
to the stability of biochar in soils (Han ef al., 2018;Y. Yang et al.,
2018).Y. Yang et al. (2018) reported a positive relationship be-
tween the ash content and aromatic C-normalized K,Cr,O-
carbon remaining values; meanwhile, these values declined after
a de-ashing treatment. The authors attributed the higher stability
of the original biochar to the presence of endogenous minerals
within the biochars, which can protect organic matter from
K,Cr,0O; oxidation (Y.Yang et al.,2018). Co-pyrolysis with min-
erals has also been reported as possibly significantly increasing
the aromatic C content of biochar relative to untreated biochar
(Li et al., 2014), and thus this process may help enhance biochar
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stability. However, some other studies have suggested that the
presence of ash/minerals may partly break the aromatic struc-
ture of the biochar and reduce cross-links between the layers
(Nguyen and Lehmann, 2009), which would enhance the mi-
crobial activity and indirectly promote biochar biotic degrad-
ation (Nguyen and Lehmann, 2009). Thus, how the composition
of endogenous ash/minerals affects the morphology and struc-
ture of biochar and its stability in soils still needs further investi-
gation (Y.Yang ef al., 2018).

In summary, the mechanism of microbe-mediated biochar
degradation is much less understood than that of abiotic-
mediated degradation. Moreover, the studies on long-term
biochar stability are much scarcer than those on short-term
stability (Supplementary Table S2). Therefore, more studies
are needed to investigate how the interactions between the
biochar and microorganisms influence the stability of biochar
over the long term. Furthermore, biochar stability can be
greatly improved by the addition of biochar into mineral-rich
soils (e.g. clayey soils; E Yang ef al., 2018a) or by loading min-
erals into the feedstock or biochar (Li ef al., 2014;Y. Yang et al.,
2018). However, information on these topics is still limited.
Two aspects should be further examined to demonstrate the
stability of biochar and reveal the underlying mechanisms:
more varieties of biochars should be tested in soils with dif-
ferent mineral compositions, and a greater range of mineral
types being incorporated into biochar under different pyrolysis
conditions (e.g. feedstock and HT'T) should also be examined.
Finally, current studies on the stability of biochar in soil are
mainly conducted in the laboratory (such as the incubation
experiments) and do not involve plants (Supplementary Table
S2); therefore, knowledge about biochar decomposition in real
soil environments is extremely limited.

Native SOC stabilization

Mechanisms of native SOC stabilization by biochar

Positive (Wardle et al., 2008; Luo et al., 2011) and negative
(Zheng et al., 2018) priming effects or no effects (Lin et al.,
2015) have been observed on the mineralization of nSOC
by biochar in previous studies (Supplementary Table S3). The
main mechanisms for the negative priming effect are suggested
as follows: (i) microbial activity is suppressed by the adsorp-
tion of organic matter or nutrient onto the biochar surface,
which limits the bioavailability of nSOC to the microbes; and
(1)) nSOC is protected from microbial degradation by the for-
mation of soil macro-aggregates (Dong ef al., 2016; Du et al.,
2016; Luo et al.,2016; Zheng et al.,2018).The positive priming
effect may also be induced by biochar through the following
two mechanisms: (i) the co-metabolic effect of fast degrad-
ation of labile organic substances (e.g. dissolved organic C) in
biochar, especially during the early stage of biochar application
(Luo et al., 2011; Farrell et al., 2013; Singh and Cowie, 2014;
Yu et al., 2018); and (ii) the enhancement of microbial activity
by supplies of new nutrient resources and favorable habitats for
microbes by biochar application (He et al., 2017). Therefore,
the direction and magnitude of the priming effect, as well
as the underlying mechanisms, are highly dependent on the
properties of biochar or tested soil, as well as their interactions.

0202 1snBny Og uo Jasn ABojouyoa ] Jo synysu| 161099 Aq ZGEZZGS/02S/2/ 1 L/IoMe/qxl/wod dno olwapeoe//:sd)y wolj papeojumod


http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz301#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz301#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz301#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz301#supplementary-data

524 | Jiang et al.

Key factors for biochar-induced nSOC stabilization

The changes of nSOC after biochar application are closely
related to the quantity and structure of the microbial commu-
nity, which are influenced by biochar in direct or indirect ways
(Fig. 1). Biochar with a higher surface area and CEC gener-
ally has higher adsorption capacity for labile C and minerals,
thereby reducing their availability to the microbes, which may
cause changes in the structure of the microbial community
(Liang et al., 2010; Zheng et al., 2018). Although the micro-
bial biomass C has been reported to increase significantly, the
metabolic quotient (¢CO,) remained at a lower level after
biochar application (Liang ef al., 2010; EI-Mahrouky et al.,
2015; Zheng et al., 2018).The authors ascribed this phenom-
enon to the shift of bacterial community towards lower C
turnover (higher C use efficiency) bacteria taxa due to the
relatively lower organic matter availability (Liang ef al., 2010;
El-Mahrouky et al., 2015; Zheng et al., 2018). Furthermore,
biochar with a large C/N ratio generally has high aromatic
C content (this means low microbial availability) and low N
content. Thus, it may mean that less available C and N is re-
leased into the soil and, meanwhile, the higher C/N ratio may
contribute to the adsorption of the mineral N onto biochar
and thus limit the N availability (Zheng ef al., 2018). A nega-
tive correlation between biochar’s C/N ratio and the amount
of nSOC mineralization has been reported previously (Zheng
et al., 2018). In contrast, other studies have also revealed that
the addition of biochar into soil may favor nSOC degradation
by leading to changes in the microbial community (positive
priming effect). For example, biochar could supply favorable
habitats for microbes because of the high surface area and
developed pore structure, and because of the released labile
fractions (e.g. dissolved organic C, nutrients, and other min-
erals) (Maestrini ef al., 2014; El-Naggar et al.,2015; Luo et al.,
2016;Yu et al., 2018). Improvements in the soil pH by alkaline
biochar (especially in acidic soils) (Luo et al., 2011) may also
contribute to the increase in microbial activity.

Soil conditions, such as the initial pH, nSOC, and N status,
temperature, and moisture content (Luo ef al., 2011;Y. Fang
et al., 2014; Sun et al., 2014, 2016) also greatly influence the
processes of biochar-induced nSOC mineralization. The po-
tential negative priming effect was more prevalent in soils with
low mineralizable SOC (Zimmerman et al.,2011; Herath et al.,
2015). Soil additives (e.g. N fertilizer, glucose, and crop straws)
can also affect the biochar-induced priming effect. A greater
negative priming effect was detected in a treatment with add-
itional N than in a treatment without N (Lu and Zhang, 2015).
In the early stage, the magnitude of the negative priming ef-
fect in the treatment with the addition of N was stronger than
that without N addition, whereas the opposite results were
found in the later stage. These findings indicate that the nega-
tive priming effect in the early stage may be induced by the
decreased N bioavailability for microbes due to N adsorption,
and a positive priming effect (or weakening of the negative
priming effect in the early stage) in the late stage may be in-
duced by the release of mineral N from biochar (Wang et al.,
2011). Other researchers have also reported that the addition
of a non-biochar C resource (glucose or crop straws) can ele-
vate (Luo et al., 2017) or reduce (Liang et al., 2010; Keith et al.,

2011;Yousaf et al., 2017) the priming effect according to the
types of additive and soil, as well as the dosage of the additives.
The effect of additives on the soil microbial community may
be promoted or inhibited when co-applied with the biochar
because of the interactions between the biochar and additive,
consequently affecting the soil property. Thus, the interactions
of ‘biochar—additive—microbial community’ under a variety of
conditions (as mentioned above) and their effects on nSOC
mineralization need to be further examined, and the quanti-
tative incorporation of biochar and additives also needs to be
determined. Furthermore, long-term field tests are still lacking
because the biochar—additive interactions may be changed
over time.

In comparison with total microbial biomass, a change in
the microbial community structure (e.g. the functional di-
versity) may be more important for nSOC decompos-
ition (Blagodatskaya and Kuzyakov, 2008; Liang et al., 2010;
El-Mahrouky et al., 2015; Zheng et al., 2018). Additionally, the
succession of the microbial community (both quantity and
structure) is substantially determined by the composition and
availability of biochar and nSOC (Blagodatskaya and Kuzyakov,
2008). Hence, the evolutionary strategy of the microbial com-
munity in the soil after amendment with the biochar should
be further investigated.

Interactions between biochar and nSOC

The formation of macro-aggregates (>250 pm) between
biochar and soil organic matter, dissolved organic carbon, or
minerals, is regarded as an important mechanism for protecting
nSOC from microbial degradation, especially for long-term
biochar application. The addition of biochar contributes to
the formation of macro-aggregates in the soil (Du et al., 2016;
Zheng et al., 2018), which can increase the stability of the
nSOC. For example, the proportion of macro-aggregates in
the soil was significantly increased by 49-109% after the add-
ition of corncob biochar, and the corresponding SOC con-
centration in the soil was improved by 92.7-120.7% (Du et al.,
2016). Dong et al., (2016) also reported a significant increase in
the ratio of the SOC in the macro-aggregates to the total SOC
in the soil. These data clearly demonstrate a potential negative
priming effect because of the protection by biochar—organic
matter macro-aggregates. The formation of biochar—organic
matter macro-aggregates has been suggested to be highly re-
lated to the surface properties of biochar, such as O-containing
groups, surface area, and porosity (Du ef al., 2016). Thus, more
effort needs to be made to design biochar surface properties
to effectively increase the stability of nSOC and cope with the
negative impact of climate change on C release from soils in
the future.

Relative to the biochar degradation process, two distinct
degradation stages (early stage and late stage) occur with
nSOC, for which the biochar-induced priming effect and its
mechanisms in each stage are different (Zimmerman et al.,
2011; Lu and Zhang, 2015; Purakayastha et al., 2016; G. Liu
et al., 2017). Generally, the positive priming effect tends to
appear in the early stage, whereas the negative priming ef-
fect can be found in the late stage (Singh and Cowie, 2014;
Maestrini et al., 2015). The priming effect in the early stage is

0202 1snBny Og uo Jasn ABojouyoa ] Jo synysu| 161099 Aq ZGEZZGS/02S/2/ 1 L/IoMe/qxl/wod dno olwapeoe//:sd)y wolj papeojumod



more flexible and complex due to drastic interactions in the
biochar-nSOC—microbe system during this period. As labile
organic substances are consumed and more stable soil aggre-
gates are formed, the mineralization of nSOC may remain at a
low rate (Purakayastha et al., 2016). Furthermore, the presence
of plants could also potentially influence the biochar-induced
priming effect on nSOC (Weng et al., 2015), but the related
knowledge is extremely limited. The biochar-induced priming
effect on nSOC would be more complicated when plants are
considered, but the results also would be more meaningtul for
the successtul utilization of biochar in C sequestration in soils.

Mitigation of soil non-CO, greenhouse gas
emission by biochar

The potential reduction in emissions of CH, and N,O by the
application of biochar has been widely accepted. Meanwhile,
high uncertainties still exist because both the positive and nega-
tive effects of biochar on CH, or N,O mitigation have been
reported frequently in previous studies (Supplementary Table
S4), especially for CH, (Jeftery et al., 2016; He et al., 2017,
Song et al.,2017).The mitigation of CH, and N,O emission by
biochar can be realized through various mechanisms (Figs 2, 3)
and are highly dependent on the biochar properties and soil and
environmental conditions, as well as the management practices.

Key properties of biochar for non-CO, greenhouse gas
mitigation

Physical structure: porosity and surface area

The structural properties of biochar, such as porosity and sur-
face area, have been regarded to be among the most important
properties in reducing CH,; and N,O emission through
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different mechanisms including the improvement of soil aer-
ation conditions, in supplying suitable habits for functional
microbes, and in reducing the availability of C and N by ad-
sorption (Van Zwieten et al., 2009; Wang et al., 2012; Wang
et al., 2013; Sui et al., 2016; Cai et al., 2018; Borchard et al.,
2019). Specifically, for CH,, the biochar with developed pore
structure may enhance the adsorption and oxidation of CH,
(Liu et al., 2011; Yoo and Kang, 2012). Several studies have
confirmed that the improvement of soil aeration or the sup-
plementation of suitable habitats with biochar may be benefi-
cial in inhibiting the activity of methanogenic archaea and/or
increasing that of methanotrophic bacteria, and consequently
decreasing the CH, production and/or increasing its oxidation
(Van Zwieten et al., 2009; Karhu ef al., 2011; Qin et al., 2016).
Fang et al. (2016) reported that suppressed CH, production or
enhanced CH, uptake after biochar application can be achieved
by increasing the soil aeration, which is helpful to the diffu-
sion of CH, and O,. Regarding the N,O, the improvement
of soil aeration by biochar application may be responsible for
the reduction of N,O emission due to the suppression of the
denitrification process (Ramlow and Cotrufo, 2018). However,
other studies have indicated that the improvement of soil aer-
ation may have little effect under conditions of high mois-
ture, such as during flooding (Yu ef al., 2012; Lin ef al., 2015).
Under severe water conditions (e.g. paddy cultivation system),
the reduction of CH, and N,O resulting from improvement
in aeration may be temporary and disappear over time due to
waterlogging (Song et al., 2017), and other mechanisms re-
lated to the biochar-induced changes of soil properties (e.g.
pH or available substrates) may be the main contributors to
the emission reduction of CH, and N,O. However, little is
known about the importance of the CH, and N,O emission
reduction by biochar-induced aeration improvements to the
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Fig. 2. Schematic diagram for the potential pathways of N,O emission reduction in biochar-amended soils. In dryland soil systems, N,O emission
reduction may be achieved mainly from the decrease in nitrification after biochar (BC) application, for which the available substrate reduction (e.g. C and
N sources) and/or inhibition of nitrifiers are the possible mechanisms. In paddy soil systems, both the inhibition of denitrification and promotion of the
last step of denitrification may contribute to the reduction of N,O emission. The dotted red arrows indicate the negative effects on substrate availability,
N,O emission, or the nitrification/denitrification process, and the solid red arrows indicate the positive effects on sorption of substrates, soil property

regulation, or the last step of denitrification.
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Fig. 3. Schematic diagram of the potential pathways of CH, emission reduction or CH, uptake enhancement in biochar-amended sails. In dryland sail
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and N sources) and/or regulation of soil properties are the main possible mechanisms. The dotted red arrows indicate the negative effects on substrate
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soil property regulation, or methanotrophic bacteria.

total reduction of these two greenhouse gasses under the field
paddy cultivation system.

Biochars with high surface area and developed porosity can
also adsorb more organic or inorganic matter from the soils,
such as dissolved organic C and mineral N, and thus decrease
the availability of substrate resources for CH, or N,O pro-
duction. Biochar addition has been reported to reduce N,O
emission by 50-90% by reducing the bioavailability of the C
substrate to denitrifiers rather than improving soil aeration or
promoting the reduction of N,O to N, (Ameloot ef al.,2016).
Wang et al. (2013) also attributed the reduced N,O emission
to the enhanced N immobilization and decreased denitrifica-
tion in the biochar-amended soils. However, this mechanism
may be less efficient in soils with a high content of available
substrates (Angst et al., 2014). Thus, the design of biochar for
CH, and N,O reduction from soils with high substrate avail-
ability should attempt not only to enhance the surface area
and porosity but also to regulate other soil properties (e.g. pH
and redox potential; Chen et al., 2018) based on specific soil
conditions. In addition, CH, can also be adsorbed directly by
biochar, leading to the promotion of CH, oxidation (Liu et al.,
2011;Yoo and Kang, 2012) and thus to a reduction in the emis-
sion of CH,.

Elemental composition: H/C, C/N, available substrates,
and toxic compound content

The molar H/C ratio of biochar is regarded as a key factor
influencing the reduction in N,O emission (Cayuela et al.,
2015; Huppi et al., 2016). A positive relationship between the
molar H/C ratio of biochar and the intensity of N,O reduc-
tion has been identified, with a low molar H/C ratio (<0.3)
exhibiting the highest capacity for reduction of N,O emission

(Cayuela et al.,2015). Biochar with a low molar H/C ratio gen-
erally has a higher content of condensed aromatic structures,
which is more beneficial to the electron exchange between soil
microorganisms and the delocalized pi-electron system on the
biochar surface (Cayuela et al., 2015). The role of biochar as an
‘electron shuttle’ can promote the denitrification of N,O into
N, (Cayuela et al., 2015).

The soil C/N ratio after biochar application is a key indi-
cator for N,O evolution (Cayuela et al., 2014). Feng and Zhu
(2017) found that the increased N,O emission was negatively
correlated with the TC/IN (the ratio of total C content and
inorganic N content) and the nitrification was promoted when
the TC/IN was <45, whereas the nitrification was suppressed
when the TC/IN was >60. Similar recommendations for a
C/N ratio were also reported by Vigil and Kissel (1991) where
the break-even C/N ratio between the net N immobilization
and mineralization of residues was 40. Therefore, the addition
of biochar with high C/N may significantly increase soil C/N
and suppress the emission of N,O (Grutzmacher ef al., 2018).
Thus, the significantly higher soil C/N in biochar treatment
than that without biochar may result in greater immobilization
of N instead of mineralization (Ly et al., 2015). However, not-
ably, the addition of biochar to soil with low N content may
increase the emission of N,O (Shen ef al., 2014). The addition
of high-N biochar alone, which was generally produced from
livestock manure, may significantly promote N,O emission
(Spokas and Reicosky, 2009; Yoo and Kang, 2012; Lin et al.,
2015; Grutzmacher et al., 2018), compared with the low-N
biochar produced from lignocellulosic feedstock, which ex-
hibited little effect on the N,O emission (Grutzmacher et al.,
2018) or significantly suppressed the N,O emission (Spokas
and Reicosky, 2009; Wang et al., 2013). These results indicate
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that the addition of N-rich biochar may also bring additional
N sources into the soil for N,O production and emission.

Available substrates (e.g. dissolved organic C and mineral N)
in biochar may potentially promote the emission of CH, or
N,O because these substrates could help functional microbes
produce both of these greenhouse gases (Singla and Inubushi,
2014; Lin et al., 2015). Singla and Inubushi (2014) reported
that CH, emission can be significantly increased by solid, di-
gested, slurry-derived biochar due to the additional supply
of substrates. Additionally, Korai ef al. (2018) found that CH,
emission can be reduced when biochar is extracted by hot
water. However, Cai et al. (2018) indicated that the biochar-
induced soil-dissolved organic C change may not be the dom-
inant driving factor in CH, emission compared with other soil
indicators, such as redox potential. As mentioned above, the
addition of N-rich biochar is likely to promote N,O emis-
sion due to the introduction of available N substrate relative
to biochar with low N content (Spokas and Reicosky, 2009;
Yoo and Kang, 2012; Lin et al., 2015; Grutzmacher et al.,2018).

The emissions of CH, and N,O can also be reduced because
of the presence of toxic compounds released from biochar
(Spokas, 2013; Wang et al., 2013). The capacity for soil CH,
uptake was reduced in the fresh biochar treatment, whereas it
was little changed in the weathered biochar treatment, which
may be attributed to the elimination of toxic compounds after
field aging (Spokas, 2013). Thus, polycyclic aromatic hydrocar-
bons in low-temperature (300-400 °C) biochar contributed
to the reduced N,O emission (Wang et al., 2013). However, a
reduction in the N,O emission was detected in the treatments
with phenolic compounds removed from low-temperature
(200-400 °C) biochar (Wang et al., 2013). These inconsistent
results suggest that the effect of toxic compounds from biochar
on the evolution of CH, or N,O needs to be further studied.
Moreover, the toxic compounds in biochar may potentially af-
fect the growth of microbes (He et al., 2017), which would
have profound implications for crop production.

Biochar pH

Soil pH is one of the most important factors that determines
the composition and structure of the microbial community, for
example the functional microbes related to CH, and N,O pro-
duction or consumption (Feng ef al., 2012; Obia et al., 2015).
Hence, the emission of CH, or N,O can be reduced potentially
through soil pH regulation by biochar. Biochar usually has a
wide range of pH (4-12) (Rillig et al., 2010; Schimmelpfennig
et al., 2014; M. Hussain ef al., 2017; Saenger et al., 2017). Thus,
the addition of biochar into soils can significantly influence
the soil environment and consequently the evolution of CH,
or N,O. The addition of alkaline biochar into acidic soils can
significantly reduce the emission of CH, because of the im-
provement in soil pH (Feng et al.,2012; Jeffery et al., 2016). For
example, CH, emission was significantly reduced by 59-63%
after biochar was added to acidic paddy soil, which led to an
increase in the abundance of methanotrophic bacteria because
of the increased soil pH (Feng ef al., 2012). However, the pH
effect of biochar on CH, emission was negligible in neutral
soils (Jeffery et al., 2016; Cai et al., 2018). Therefore, the ef-
tect of biochar pH on CH, evolution relative to high-pH soils
(neutral and alkaline) needs further elucidation.
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In addition, increased soil pH has the potential to increase
the activity of N,O reductase and thus promote the denitrifi-
cation of N,O to N,, which has been reported frequently in
previous studies (Yanai et al., 2007; Van Zwieten et al., 2009;
Obia et al.,2015;Tan et al.,2018). Obia et al. (2015) confirmed
that the emission of N,O can be significantly suppressed, and
the emission of N, was increased when two alkaline biochars
(rice husk biochar and cacao shell biochar) were added into
acidic soils; the extent of N,O suppression was positively re-
lated to the alkalizing effect of the biochar. However, notably,
soil pH can effectively regulate the microorganism community
not only for N,O reductase but also for other denitrifiers (e.g.
nitrite reductase genes, nirK and nirS) or nitrifiers that may also
contribute to the emission of N,O. The role of other micro-
organism community changes induced by enhanced soil pH
is less understood, although it is important for elucidating the
mechanism of N,O emission.

Key soil factors affecting the performance of biochar
on non-CO, greenhouse gas emission

Water regime/water moisture content

The moisture content (or water regime of crop cultivation, e.g.
of dryland or paddy land systems) is one of the most important
factors regulating the evolution of CH, or N,O (Jeffery et al.,
2016; Song et al., 2017) because of the dominant cyclic pro-
cesses of C or N in soils under different moisture conditions;
thus, they will also impact on how the biochar application in-
fluences soil CH, or N,O evolution.

Meta-analysis studies have suggested that the addition of
biochar to flooded soils and/or acidic soils during flooded
periods as part of a management regime can significantly re-
duce the CH, emission (by increasing the CH, oxidation),
whereas such an addition can significantly increase CH, emis-
sion (or reduce CH, uptake) in non-flooded soils (Jeffery et al.,
2016; Song et al., 2017). However, the opposite results were
also recorded in some individual studies. Rondon et al. (2006)
reported that CH, uptake can be significantly increased after
biochar addition in upland soil. Yu et al. (2012) found an ob-
vious shift from CHj, sink to source when biochar was added
to paddy or forest soils with high water-filled pore space (100%
and 85%, respectively). These inconsistent results were also
recorded between the alternate water regimes of ‘flooding—
drainage’ and completed waterlogging. The potential reduc-
tion in the CH, emission occurred in the former (Qin et al.,
2016; Chen et al., 2018), whereas an increase in CH, emis-
sion was recorded under the completely waterlogged condi-
tion (Cai et al., 2018). These results clearly demonstrate the
different performances of biochar on CH, evolution under
different water regimes. Generally, dryland is thought to be the
sink for atmospheric CH, (Scheer ef al., 2011), and the cap-
acity for CH, uptake can be promoted further after biochar
application through the promotion of methanotrophic bac-
terial activity by the improvement of soil aeration or pH (Qin
et al., 2016). Under an extremely high moisture content or
completely waterlogged conditions, the potential reduction of
CH, emission may be mainly derived from the inhibition of
methanogenic archaea activity by the reduced availability of
substrate content (Lin et al., 2015) or the introduction of toxic
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compounds (Spokas, 2013), whereas the improvement of soil
aeration may have little effect under such high moisture con-
ditions (Yu et al.,2012; Lin et al., 2015).

The majority of reduced N,O emission was recorded under
conditions of relatively high moisture content (e.g. paddy cul-
tivation system) with biochar addition (Q. Liu er al., 2017)
(Supplementary Table S4). The reduced emission of N,O was
mainly derived from the suppressed denitrifiers (such as nirK
and nirS) because of the reduced availability of N (Wang ef al.,
2013; Ameloot et al., 2016) or the presence of toxic com-
pounds (Wang ef al., 2013), and from the increasing reduction
of N,O to N, by denitrification (Q. Liu et al., 2017). Under
low moisture conditions (water-filled pore space <70%), nitri-
fication was suggested as the main source of N,O production
(Sun et al., 2018;Yoo et al., 2018). For example, the source of
N,O emission coming from nitrification accounted for >80%
of the total N,O emission in most of the treatments under 60%
WHC conditions (Lan et al., 2014). Q. Liu et al. (2017) indi-
cated that N,O emission can be significantly increased by 13%
on average under low soil moisture conditions (<70% WHC),
which was probably driven from the increased abundance of
ammonia-oxidizing bacteria/archaea. However, the nitrifica-
tion and denitrification may exist simultaneously under both
highly aerated soils (Lan et al., 2014) and highly water-filled
pore space soils, especially in paddy cultivation systems (Case
et al.,2015; Sun et al.,2018). Sun ef al. (2018) reported that the
increased N,O emission can be attributed to the enhancement
of both nitrification and denitrification due to biochar appli-
cation, which was confirmed by the close correlation between
N,O emission and the abundance of ammonia-oxidizing bac-
teria and nirK. Liu et al. (2014) showed that N,O emission in-
creased significantly (by 150-190%) within biochar treatments
under the typical water regime of paddy cultivation due to the
increase in the dissolvable organic C or NH," in the soil.

In sum, the performance of biochar on soil CH, and N,O
evolution can be significantly affected by the water regime
employed, and the reduction mechanisms of these two green-
house gasses are also distinct under different water regimes
(Figs 2, 3). Thus, the specific properties of biochar, which are
responsible for different reduction mechanisms, should be fur-
ther identified correspondingly.

Soil pH

The evolution of CH, or N,O after biochar addition is signifi-
cantly affected by the initial soil pH. CH, emission reportedly
can be significantly reduced in acidic soils (pH <6) but signifi-
cantly increased in neutral soils (pH from 6 to 8) (Jeffery ef al.,
2016). Feng et al. (2012) found that the emission of CH, was
significantly reduced by 59-63% after the addition of biochar
[produced at low (300 °C) or high (500 °C) temperature| to
acidic paddy soils (pH 4.4). In another study, CH, emission
showed greater reductions when the soil pH increased from
5.08 to 5.97—6.40 than in those soils where the pH was little
changed (Shen et al.,2014). Cai et al. (2018),in contrast, reported
a significant increase in CH, when biochar was added into a
neutral soil (pH 7.6), although the soil pH was increased after
the addition of biochar. Therefore, the effect of biochar on soil
CH, evolution may be dependent on the initial soil pH, which

may be affected by abundance and structure of the functional
microbes under the different pH circumstances (Cai et al., 2018).
For example, the initial rates of methanogenic/methanotrophic
microbes in the studies of Feng ef al. (2012) and Cai et al. (2018)
were 0.01-0.07 and 1-4, respectively. However, Qin ef al. (2016)
reported that the average emission of CH, can be significantly
reduced by 17.8-9.9% because of the biochar application during
a 4 year field experiment, in which the pH value (7) of tested
soil was similar to that in the study of Cai ef al. (2018). These
inconsistent results may be attributed to the difference in the
applied water regime, as discussed earlier. According to these re-
sults, we can conclude that the effect of biochar on CH, emis-
sion through increasing soil pH is highly determined by the
initial structure of methanogenic/methanotrophic microbes,
which may be affected by both pH and other soil conditions.

The meta-analysis by He ef al. (2017) found a negative
trend between the responses of soil N,O emission and soil pH
(P=0.001), indicating that the increased pH after biochar appli-
cation may have positive potential for N,O reduction. However,
a negligible correlation was observed between the response ratios
of N,O emission and soil pH in the study by Song et al. (2017).
Another meta-analysis showed that, except for acidic soil groups
(pH <5), the addition of biochar into all pH groups exhibited a
significant reduction in N,O emission compared with the con-
trol, but little difference was detected among them (Cayuela et al.,
2014).In addition, N,O emission has also been reported as being
positively correlated with soil pH, and the increased soil pH that
occurs after biochar addition may significantly promote the po-
tential denitrification rate and thus increase the N,O emission
(Liu et al., 2014). As mentioned above, soil N,O emission can
be reduced by the enhancement of denitrification (reduction
of N,O to N,), which is contributed by the increased soil pH
after alkaline biochar application, whereas the initial abundance
of denitrifier or the intensity of denitrification must be different
among the soils with different pH values. Therefore, the results
indicate that the change in N,O evolution is highly dependent
on the change in soil pH in biochar-amended soil.

Therefore, the soil pH-determined functional microbe
abundance and microbial structure should be considered when
biochar is being added to the soil to reduce CH, and N,O
emission by regulating the soil pH. Generally, the application
of alkaline biochar to acidic soils may bring about a positive
reduction of CH, and N,O, which may not be the case for
neutral or alkaline soils. Therefore, how the biochar affects the
evolution of CH, and N,O in alkaline soils and the underlying
mechanisms should be further explored.

Exogenous substrate application

The effect of biochar on soil CHy or N,O evolution can be
potentially altered when labile exogenous C sources (e.g. crop
straw) are added simultaneously. The addition of rice straw
biochar produced at 300 °C into soil alone can significantly
increase CH, emission, whereas the CH, emission was signifi-
cantly reduced when the rice straw biochar was co-applied with
rice straw (Cai et al., 2018). The increased emission of CH, in-
duced by the addition of labile exogenous C sources can be in-
hibited by biochar application (Liu ef al., 2011; Cai ef al., 2018).
The decreased availability of dissolved organic C substrate due
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to sorption to biochar may be the main mechanism for the re-
duction of CH, emission (Cai et al., 2018). For example, the re-
duced emission of CH, was significantly related to the decreased
dissolved organic C in soil, and the higher temperature biochar
exhibited high reduction potential (Cai ef al., 2018).

Co-application with exogenous N fertilizer can also poten-
tially influence the CH, or N,O evolution in biochar-amended
soils. The emission of CH, can be significantly reduced (Hedge’s
d=—3.1) in the low N application rate (<120 kg ha™"), but that
was not the case at a high N application rate (>120 kg ha™")
(Jeftery et al., 2016). Ramlow and Cotrufo (2018) reported that
the increased CH, uptake after biochar application was much
greater for the treatment with no N fertilizer application than
that with N fertilizer application. Furthermore, a decreased CH,
uptake rate was detected when biochar was co-applied with N
fertilizer (Scheer ef al.,2011). The mechanism for the combined
effect of biochar and N application on CH, evolution remains
unclear (Jeftery et al.,2016).The variation in functional microbes
in composition and structure during the interactions between
biochar and exogenous N fertilizer might play an important role
in CH, evolution, which merits further investigation.

Many studies have indicated the interactive effect of biochar
and exogenous N fertilizer on the N,O emission (Wang ef al.,
2012; Troy et al., 2013; Angst et al., 2014; Feng and Zhu, 2017,
He et al., 2017; Niu et al., 2017; Grutzmacher et al., 2018).
However, the direction and magnitude of N,O emission as af-
fected by this interactive effect are not always consistent. The
meta-analysis showed that N,O emission can be significantly
reduced for the treatments with and without fertilizer compared
with the control, and a higher reduction was recorded in the
case of fertilizer use (Cayuela ef al.,2014; He et al.,2017), which
was explained by the more available N being immobilized by
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its adsorption onto the biochar. However, Chen ef al. (2015) re-
ported that N,O emission was increased by 49% when biochar
was co-applied with urea fertilizer at 140 kg ha™" year . Troy
et al. (2013) detected that biochar increased N,O emission when
pig manure was added jointly. In addition, little difference in the
N,O emission was found between biochar treatments and con-
trol when the livestock manure was co-utilized (providing the
equivalent of 410 kg N ha™") (Angst et al., 2014). Other studies
(Scheer et al., 2011; B. Li et al., 2015; Agegnehu et al., 2016;
Bass et al., 2016) also recorded similar results. These data suggest
that the immobilization of N by biochar adsorption may not
always be the dominant mechanism regulating N,O emission
in biochar-amended soils. Different N species (e.g. NO;3;™ and
NH,") have distinct adsorption affinities compared with biochar,
which contribute very differently to the emission of N,O
(Cayuela et al., 2014; Nelissen ef al., 2014). Meanwhile, the add-
itional labile C input from fertilizers would stimulate nitrifiers
or denitrifiers to produce more N,O (Troy ef al.,2013; Liu ef al.,
2014).Thus, the N species and C/N ratio in exogenous N fertil-
izers may be important factors to consider in evaluations of their
effects on N,O emission after their application into the soil with
biochar. Additionally, the interactions of biochar with different
N-containing materials and aging effects should be further
studied to better understand the mechanism of N,O emission to
optimize the application of exogenous N and biochar.

Modified biochar for sustainable crop
production
The production of engineered biochar to make it a multi-

functional soil amendment for sustainable crop production
has been regarded as one of the most effective approaches
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Fig. 4. Process diagram of the engineered biochar (BC) for sustainable crop production. The abbreviations WR, CR, SSR, and AMR indicate woody
resource, crop resource, sewage sludge resource, and animal manure resource, respectively.
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Fig. 5. Effects of feedstock type and pyrolytic temperature on the selected key biochar properties. Significant differences between the groups were
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Fig. 5. Continued

for its application in agriculture (Al-Wabel et al., 2018). (e.g. feedstock and pyrolytic conditions); (ii) the physical
According to an overview of previous studies (Zhang ef al., modification; (iii) the chemical modification (including
2016; Sizmur et al., 2017; Wang et al., 2018), modifica- pre-treatments of feedstock and post-treatments of pristine
tion methods can be classified mainly into four categories biochar); and (iv) the biochar-based organic composite (e.g.
(Fig. 4): (1) the controls of general production conditions co-composting with organic waste).
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Fig. 5. Continued

Effects of feedstock and HTT on biochar properties

Feedstock type and HTT are regarded as the most important
factors for controlling biochar properties. To clarify the gen-
eral roles of these two factors on key biochar properties, the
relevant data compiled from previous studies (Supplementary
Table S5) have been analyzed using one-way ANOVA with
Duncan’s multiple range test (P=0.05). The feedstock type can
greatly affect most of the selected biochar properties, except
for the molar ratio of H/C and pH. The biochars produced
from woody resources (WR) showed trends of higher C con-
tent, C/IN, and surface area, whereas they showed lower O/C,
CEC, ash content, and nutrient content (N, P, and K), than
other feedstock types. In contrast, two organic waste resources,
sewage sludge (SSR) and animal manure (AMR), were fa-
vorable for the production of biochars with lower C content,
C/N, and surface area, and higher O/C, ash content, and nu-
trient content (especially for N and P). Crop resource (CR)-
derived biochar fell in the middle between the WR-biochar
and AMR -biochar or SSR-biochar. Relative to the feedstock
type, the HT'T showed a more significant impact on the molar
ratios of the O/C and H/C, surface area, pH, and contents
of ash, N, and P. Generally, higher HTT decreased the O/C
and H/C molar ratios and the contents of the N and P, but
increased the surface area and pH (Fig. 5). Overall, these re-
sults confirmed the different trends of biochar properties rela-
tive to the feedstock type and HTT (Zhao et al., 2013; Luo
et al., 2015). Neither the feedstock type nor the HTT can in-
duce a consistent trend for the changes in CEC because CEC
is multi-related to cations (e.g. K, Ca, and Mg) (Zhao et al.,
2013), surface area, and surface functional groups (Peng et al.,
2011; Suliman et al., 2016) of biochar, and these factors vary
greatly with different feedstock and/or pyrolysis conditions.
Yuan et al. (2011) also reported mixed changes of CEC among
the biochars produced from different feedstock and HTT. In
addition, others have suggested that the nutrient properties of
biochar are more greatly affected by feedstock than pyrolytic
temperature (Zhao et al., 2013), which is determined by the
nutrient content in the original feedstock. Thus, biochar de-
rived from CR (higher K content) and AMR (higher N and
P content) at a relatively lower temperature may be more effi-
cient for soil nutrient improvement (Fig. 5) (Novak et al.,2009;
Zhao et al., 2013).

Notably, although the biochars in the same category have a
similar evolution mechanism with HTT, they can also exhibit
distinct properties only because the feedstock comes from dif-
ferent regions. Yoo et al. (2016) reported that biochar derived

507 F=0.566, no sig.
¥a0q 7
&
Ea 30 a .
§ 20 7
210 1
LHTT MHTT HHTT

from rice straw grown in China had relatively higher N con-
tent and lower C/N than biochar from rice straw grown in
Korea due to the more extensive N fertilization in China than
in Korea. Therefore, we believe that differentiating biochar
based on a number of key parameters of raw materials (such
as C/N, mineral content and composition, or cellulose/lignin
content) would be more accurate than when based just on the

feedstock types.

Physical modification

Steam/gas activation is one of the most employed physical
methods used to modify biochar structure, and this method
introduces an additional activation process by steam or dif-
ferent agent gases (e.g. CO, or NH3) at high temperature after
application of the traditional pyrolytic process (Rajapaksha
et al.,2016; Shao et al., 2018). Generally, the surface properties,
including surface area and porosity, of biochar can be signifi-
cantly improved during the steam/gas activation process (Table
1) and, thereby, the adsorption capacity of biochar is enhanced.
For example, after undergoing steam activation at 800 °C, the
biochars derived from different materials (broiler litter, alfalfa
stem, switchgrass, corn stover and cobs, guayule bagasse, and
soybean straw) can exhibit significantly increased surface areas
from negligible to 136-793 m* g', with the corresponding
volumes of the micropores reaching 0.052-0.344 cm’ g~
(Lima et al., 2010). In another study, the surface area and total
pore volume were improved from 56.91 m* g~' and 0.027 cm”’
g !, respectively, for unmodified corn biochar to 755.34 m’
g ' and 0.384 cm’ g”' for CO, activated corn biochar (Shao
et al., 2018). These increased surface areas and porosity may
be attributed to the development of pore size distribu-
tion or the formation of pores and exposure of new surfaces
within biochar particles by the continuous diftfusion of high-
temperature stem/gas into biochar particles (Lima ef al., 2010;
Rajapaksha et al., 2015). NH; is another common gas used as
the activating agent, which could enrich the N content and
increase the N-containing functional groups on the biochar
surface through ammonification (Zhang et al., 2014) (Table
1). Furthermore, the use of CO,—ammonia mixture gas as the
activation agent may result in a combination of advantages
(Zhang et al., 2014). As reported by Zhang et al. (2014), the
surface area, micropore volume, N content, and N-containing
group could be increased when the biochar was activated by a
high-temperature CO,—ammonia mixture.

In addition to the porous structure, other properties of
biochar, including pH, ash content, and element molar ratios

020z 1snbny og uo Jasn ABojouyoe] Jo einsu| elbioes) Aq 26£ZzG5/025/2/ ) L/210Me/qxl/wod dno-olwepeoe//:sdyy wols pepeojumoq


http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz301#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz301#supplementary-data

Biochar for sustainable crop production | 533

Table 1. Changes of biochar (BC) properties modified by different methods

Modification method

Modified properties

Reference

Physical modification
Steam activation at 800 °C

Steam activation at 300 °C and
700 °C

Steam activation for maize stover-
and wood-BC
Steam activation of wood-BC

Steam activation of different
feedstock-based BCs
CO, activation of corn-BC

CO, activated corn-BC and then

impregnation by methyldiethanolamine—

methanol solutions with different
methanol concentrations

CO, activation for cotton stalk BC at

different activation temperatures

NH; activation for cotton stalk BC at

different activation temperatures

Mixed CO,—NHj; gas activation for
cotton stalk BC at different
activation temperatures

Pre-magnetic stirring orange peel
powder in FeCl, and FeClj; (1:1)
solution and then pyrolysis at
250-700 °C

BC modified using microwave-
synthesized magnetic iron oxide
particles (FeSO,-7H,0)

Increases the surface area significantly: from 59.5 m? g~" to 335.1 m? g~ and from

94.2 m? g~" to 335.3 m? g~ for low and high temperature BC, respectively

Significantly increases the micropore area and micropore volume

Slightly increases the pH for activated BC at low temperature, and slightly decrease it at
high temperature

Increases the ash content for both activated BCs, from 25.4% to 28.7% for low
temperature and from 43.7% to 70.7% for high temperature

Decreases the H/C, O/C, and (O+N)/C molar ratios for activated BC at low temperature,
and increases these at high temperature

Increases the surface area for both activated BCs, from 0.85 to 1.22 for low temperature
and from 2.31 to 7.10 for high temperature

Decreases the pore volume for activated BC at low temperature (from 0.004 cm® g~

to 0.003 cm® g7'), and increases this value at high temperature (from 0.008 cm® g™' to
0.038 cm® g™).

Increases the O/C molar ratio at low pyrolytic temperature (350 °C), and decreases

the O/C ratio at high pyrolytic temperature (550 °C), for both stover- and wood-BC
Increases the surface area after steam activation, and the maximum increase of surface
area under optimum condition can reach up to 643 m? g~ in comparison wth

<10 m? g~ for pristine BC

Increases the surface area from negligible to 136-793 m? g™’

Exhibits developed micropore volume, ranging from 0.052 cm® g™ to 0.344 cm® g™
Increases the surface area from 56.91 m? g~ (unmodified corn BC) to 755.34 m? g~'
Increases the total pore volume from 0.027 cm?® g~' (unmodified corn BC) to 0.384 cm? g~
Decreases the abundance of surface functional groups in comparison with unmodified corn BC
Decreases the surface area from 56.91 m? g~' (unmodified corn BC) to 0.81-25.54 m? g™,
the extent decreasing along with increasing methanol concentration

Decreases the total pore volume from 0.027 cm® g™ (unmodified corn BC) to 0.001—
0.0194 cm® g™, the extent decreasing along with increasing methanol concentration
Increases the surface functional groups (especially nitrogen functional groups) in
comparison with only CO,-activated corn BC, and the extent increased along with
increasing methanol concentration

Increases the atomic O/C and N/C ratios in comparison with only CO,-activated corn BC,
especially at high methanol concentrations

Increases the surface area from 224 m? g~' (unmodified cotton stalk BC) to 289-556 m? g~
Increase the pore volume of micropore from 0.07 (unmodified cotton stalk BC) to
0.12-0.21 cm® g~'

Increases the surface area at relatively high temperature (>600 °C) from 224 m? g~
(unmodified cotton stalk BC) to 252-435 m? g~

Increases the N content at relatively low temperature <900 °C) from 1.09% (unmodified
cotton stalk BC) to 2.91-1.61%

Increases the surface area at relatively high temperature (>600 °C) from 224 m? g~
(unmodified cotton stalk BC) to 297-627 m? g™’

Increases the pore volume of micropore at relatively high temperature (>600 °C) from
0.07 cm® g~ (unmodified cotton stalk BC) to 0.12-0.25 cm® g'

Increases the N content at relatively low temperature (<900 °C) from 1.09% (unmodified
cotton stalk BC) to 1.52-3.78%

Significantly higher content of iron oxide in modified BC than non-modified BC, and the
extent increased with the increase of pyrolytic temperature

Significantly decreases the C content, especially for MBC pyrolysis at high temperature
(700 °C, only 0.424%)

Significantly increases the H/C ratio

Increases the ash content from 3.17-14.9% to 42.4-95.7%

Decreases the surface area

Decreases the surface area after magnetic modification for the pristine BCs with high
surface area (nut shield, plum stone, and wheat straw BCs), and increases the surface
area for those pristine BCs with low surface area (grape stalk and grape husk BCs)
Abundance of iron oxides in magnetic modified BCs

Increases the CEC after magnetic modification for all BCs, with the exception of grape
stalk BC, increases by 1.49-4.33 times

Uchimiya et al. (2010)

Rajapaksha et al. (2015)

Fungo et al. (2014)

Azargohar and Dalai
(2008)

Lima et al. (2010)

Shao et al. (2018)

Shao et al. (2018)

Zhang et al. (2014)

Zhang et al. (2014)

Zhang et al. (2014)

Chen et al. (2011)

Trakal et al. (2016)
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Table 1. Continued

Modification method

Modified properties

Reference

Chemical modification

Soaked BC in 0.1 M HCI solution
Layered double hydroxide-modified
BC

Immersed peanut hull BC in 10%
H,O, solution for 2 h

Immersed the BC in 10% H,SO, solution

Stirred rice straw BC in KOH solution

Immersed the wood-BC in KOH
solution

Stirred municipal solid waste BC in
KOH solution

Immersed BC in 10% NaOH solution

Soaked hickory BC in NaOH solution
for 2 h and then heated at 600 °C
for 2 h further

Stirred BCs in chitosan solution for

30 min and then added dropwise into
NaOH solution for 12 h

Sequentially stirred BC in H,SO, and
HNO; solutions, ammonium hydroxide
solution, and with Na,S,0, added
Soaked rice straw BC in FeCl, solution

Pre-dipped ground corn material in
MgCl, solution for 2 h and then
pyrolysis at 300-600 °C

Soaked corn straw BC in KMnO,
and Fe(NOg); solutions and further
pyrolysis at 600 °C for another 0.5 h

Soaked corn straw BC in KMnO, and
FeSQO, solutions

Pre-immersed feedstock in MnCl,-4H,0
solution for 2 h

Soaked pine BC in KMnO, solution
with a magnetic stirrer for 2 h, and the
resulting suspension was then

boiled for 20 min, followed by drop
wise addition of HCI solution
Pre-soaked corn cob in MgCl,-6H,0
solution and stirred for 1 h, and then
pyrolysis at 600 °C

Decreases the pH from original 10.21 to 7.26

Increases the surface area from 6 m? g~' to 30 m2 g™' for Zn/Al-MBC, 13 m? g~

for Mg/Al-MBC, and 56 m? g~ for Ni/Fe-MBC

Increases the micropore volume

Decreases the pH from 6.2 (pristine BC) to 4.4

Increases the surface C oxidation of pristine BC resulting in increases of O content and
O-containing functional groups

Slightly increases the surface area due to the increase of surface carboxyl groups,
suggesting that the H,O, treatment could not increase the surface area dramatically
through the change of pore structure of BC

Minimal variation on the surface functional groups

Enhances the formation of various surface functional groups, e.g. COO-, CH,, and OH
Enhances the surface area

Enhances the porous structure

Increases the surface area after KOH activation, and the maximum increase of
surface area under optimum conditions can reach up to 783 m? g~" in comparison with
<10 m? g~ for pristine BC

Increases the surface area from 29.1 m? g~' to 49.1 m? g™'

Increases the pore volume from 0.039 cm® g~' to 0.357 cm® g™’

Increase the O-containing functional groups

Relatively higher content of polyaromatic structure

Increases the O-containing functional groups

Slightly increases the H/C and O/C atomic ratios from 0.33 to 0.26 and 0.12 to 0.10,
respectively

Increases the surface area from 256 m? g™' to 873 m? g~

Increases the CEC from 45.7 cmol kg™ to 124.5 cmol kg™

Enhances the thermal stability

Significantly increases the surface O-containing functional groups

Slightly increases pH

Significantly decreases the surface area

Increases the H/C and O/C atomic ratios, and decreases the C/N ratio

Introduces a considerable number of amino groups

Increases the total Fe content from 0.74 g kg™ to 35.5 g kg™
Decreases the pH from 10.7 to 4.87

Enriches the magnesium nanoparticles in MBC

No change in surface area

Increases the ash content from 16.77% to 27.53%

Increases the K content from 112.3 mg I to 261.4 mg |’
Increases the surface area from 61.0 m? g~' to 208.0 m? g™'
Increases the pH,,,, from 8.93 to 9.6

Increase the ash content from 16.77% to 36.61%

Increase the K content from 112.3 mg I~' to 259.2 mg I
Decreases the surface area from 61.0 to 7.53 m? g™
Decreases the pH,,,, from 8.93 to 3.17

Increases the ash content from 4.02% to 14%

Increases the surface area more than twice

Increases the pore volume more than seven times

Increases the thermal stability, due to the presence of Mn-oxides
Increases the ash content from 4.02% to 33.4%

Decreases the surface area by two-thirds

Increases the pore volume by 21 times

Increases the thermal stability, due the presence of Mn-oxides

Increases the pH from 7.17 to 10.45
Dramatically increases the surface area from 0.07 m? g~ to 26.56 m? g~'
Alters the surface structure and morphology

Guo et al. (2017)
F. Yang et al. (2018b)

Xue et al. (2012)

Fan et al. (2010)
Bashir et al. (2018)

Azargohar and Dalai

(2008)

Jinetal (2014)

Fan et al. (2010)

Ding et al. (2016)

Zhou et al. (2013)

Yang and Jiang (2014)

Yin et al. (2017)

C. Fang et al. (2014)

Lin et al. (2018)

Lin et al. (2018)

Wang et al. (2015)

Wang et al. (2015)

Shen et al. (2019)
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Modification method

Modified properties

Reference

Kenaf bar BC was mixed with
FeSO,-7H,0 and stirred for 30 min to
form a mixture of the BC and iron; sub-
sequently green tea extract was added
to produce a solid and the obtained solid
was separated, washed, and dried to
form the designated BC-nzVI

BC was dissolved in FeSO,-7H,0 and
stirred for 1 h, then the NaBH,

solution was added dropwise for
reduction FeSO,-7H,0 to nzVI

Wood biomass was immersed and stirred
into prepared graphene oxide nanosheet
(~1 pum) suspensions for 1 h, and then
the pre-treated wood biomass was pyro-
lyzed in muffle furnace by slow pyrolysis
at desired temperatures (300-700 °C)
Water hyacinth biomass was dipped into
graphene oxide suspension and stirred
for 1 h, followed by sonication for 2 h,
and then the treated biomass was
pyrolyzed in tubular furnace in N,
environment at temperature of 300 °C
Milled hickory chips and sugarcane
bagasse biomass were stirred in carbon
nanotube suspensions, and then
pyrolyzed in a quartz tube at 600 °C

BC-based organic composite
Co-composting of BC and chicken
manure

Co-composting of BC and farm
manure at various ratios
Co-composting of BC with green
waste and chicken manure

Co-composting of BC and pig
manure

Composted corn cob BC in rice
straw

Co-composting of BC and rice straw

Co-composting of BC with mill waste
and sheep manure

Co-composting of BC with pig
manure and corn stalk powder

Formation of spherical particles (with mean diameter of ~100 nm) on BC-nZVI surface
Contains abundant organic functional groups including C=0, C-N, C-H and C-O.

Decreases the surface area from 194.4 m? g~' to 96.1-122.7 m? g~' for different
mass rates of BC to nZVI

Decrease the pore volume from 0.98 cm® g™' to 0.017-0.041 cm?® g~* for different
mass rates of BC to nzZVI

Loads nzVI particle homogenously on BC surface

Increases the BET-N, surface area from 8.38-302.8 m? g™ to 10.97-443.9 m? g™';
BET-CO, surface area from 117.7-367.8 m? g~' to 121.8-454.9 m? g~
Significantly increases the nanoporous structure

Significantly increases the active sites

Significantly alters the structure of surface functional groups

Introduces a sheet-like graphitic structure

Increases the BET-N, surface area from 8.85 m? g~ t0 25.89 m? g~'

Decreases the pore volume from 0.025 cm® g™' to 0.019 cm® g™" and pore size
from 1.716 nmto 1.613 nm

Increases the quantity of oxygen-containing functional groups, which is indicated
by the decrease of surface C/O rate from 2.93 to 2.26

Surface areas of hickory chips BC—carbon nanotube (1%) and sugarcane bagasse
BC-carbon nanotube (1%) were ~3 and 40 times greater than pristine BCs
Increases the negative charge of surface with increasing amount of carbon nanotube
added

Higher thermal stability for carbon nanotube-modified BCs than pristine BCs
Loads the tubular carbon nanotube bundles on BC surface

Decreases the pH from 9.7 (rice hull BC) to 8.1

Decreases the C content from 88% (rice hull BC) to 42.3%

Increases the total N content from 1.3 g kg™ (rice hull BC) to 16.9 g kg™
Compared with the M treatment, BM significantly reduced soil CO, and N,O by
35% and 27%

Increases the N content from 1.86% to 3.73-4.66%

Increases the nutrients from 0.24, 0.03, and 0.38% (pristine BC) to 1.15, 0.2, and 0.66%

for N, P, and K, respectively

Decreases the C/N ratio from 308 (pristine BC) to 30

Decreases the pH from 8.1 to 7.5

Increases the pH from 7.32 (wheat straw BC) to 8.5-9.0

Increases the concentrations of water-soluble nutrients including PO,*", K*, and Ca?*
Decreases the pH from 9.98 (corn cob BC) to 7.13

Increases the water-extractable organic carbon content from 1.84 g kg™' (corn cob BC) to

6.91 gkg™'

Increases the CEC from 61 cmol kg™ (corn cob BC) to 119 cmol kg™
Increase the O content from 9.64% (corn cob BC) to 12.59%
Decreases the pH from 9.98 (corn cob BC) to 7.04

Increases the water-extractable organic carbon content from 1.84 g kg™' (corn cob BC) to

31.27 gkg™

Increases the CEC from 61 cmol kg™ (corn cob BC) to 131 cmol kg™
Increases the O content from 9.64% (corn cob BC) to 13.98%
Decreases the C/N ratio from 80.2 (BC) to 12.4

Increases the nutrients of N, P, and K from 0.84, 0.19, and 0.27% (pristine BC) to 2.69,

0.39, and 4.04%, respectively
Higher N content than BC or compost only
Decreases the C/N

Liu et al. (2018)

|. Hussain et al. (2017)

Abdul et al. (2017)

Shang et al. (2016)

Inyang et al. (2014)

Yuan et al. (2017)

Qayyum et al. (2017)

Bass et al. (2016)

Zhang et al., (2016)

Zeng et al. (2015)

Zeng et al. (2015)

Lopez-Cano et al. (2016)

(R. Liet al., 2015)
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[H/C, O/C, and (O+N)/C], can also be changed during the
stem/gas activation process. These varieties are highly de-
pendent on the activation condition, such as the gas agent,
temperature, and duration (Zhang et al., 2013; Rajapaksha
et al., 2015). Thus, how to control the activation condition to
effectively regulate the properties of biochar and their impli-
cations for soil amendment need to be thoroughly examined
in the future.

Chemical modification

The main chemical modifications for biochar include at least
oxidation of acids/bases, loading of metal bases, and coating
with nanoscale metal oxides or carbonaceous materials (Inyang
et al., 2014; Mandal et al., 2016; Rajapaksha et al., 2016; Abdul
et al., 2017; Sizmur et al., 2017). Using different chemical
treatments, biochar properties, including the pH, surface area,
O-containing group content or species, porosity, and surface
charge, can be regulated (Table 1). The general alkalinity of
biochar can be reduced when biochar is treated by acidic solu-
tions or Fe solutions. As shown in Table 1, the pH of biochars
was decreased after the biochars had been soaked in solutions
of HCI, H,O,, FeCl,, or Fe(NO3); (combined with KMnO,
solution). Furthermore, Shen et al. (2019) reported that the pH
of corncob biochar increased from 7.17 to 10.45 when the
corncob material was pre-treated with a MgCl,-6H,O solu-
tion. The surface area, O-containing groups, and porosity can
be improved by acidic and/or base oxidation, such as H,O,,
KOH, or NaOH treatments (Table 1). The changes in biochar
pore size distribution and pore structure deformation were re-
garded as the main contributors to the increased surface area
(Jin et al., 2014). In addition, the CEC increased 172% when
hickory biochar was soaked in NaOH solution for 2 h and
further heated at 600 °C for another 2 h (Ding et al., 2016).

Recently, the use of nanoscale metal oxides (e.g. oxides
of Mn, Mg, and Zn), nanoscale zero-valent iron (nZVI), or
carbonaceous materials (e.g. carbon-nanotube and graphene
oxide nanosheet) to produce biochar-based nanocomposites
was suggested as a promising pathway for synthesizing the
highly efficient adsorbent for pollutant removal (Tan et al.,
2016). Generally, the surface area, pore properties, and func-
tional groups can be positively improved after the biochar is
coated with nanometal oxides (Table 1). However, C. Fang
et al. (2014) reported little change in the surface area of biochar
when the corn material was pre-dipped in an MgCl, solution,
although the magnesium nanoparticles were enriched in the
modified biochar. Even in the study of Lin et al. (2018), the
authors found that the surface area was significantly decreased
from 61 m* g”' to 7.53 m* g~' when corn straw biochar was
treated by KMnO, solution. Wang et al. (2015) also detected
a dramatic decrease in the surface area for birnessite-modified
biochar, although the pore volume was 22 times greater than
that of pristine biochar. Thus, the changes in biochar properties
should be further examined regarding different metal oxides,
biochars, and methods of incorporation.

Biochar with a large surface area and pore structure is re-
garded as an efficient and low-cost supporting material for
nZVI stabilization (Dong et al., 2017). Although the surface

properties (e.g. surface area and pore volume) may be decreased
for biochar-based nZVI composites compared with pristine
biochar (Table 1), the introduction of nZVI particles generally
leads to a positive surface charge and high performance in re-
duction and catalysis (I. Hussain ef al., 2017; Liu et al., 2018).
Therefore, the biocharnZVI composites manifested much
higher pollutant removal efficiency than the biochar alone or
nZVI alone, especially for the oxyanion-related HMs and or-
ganic pollutants (Bakshi ef al., 2018; Liu ef al., 2018; Lyu et al.,
2018). The high reducibility of the biocharnZVI composites
was suggested to be the key mechanism for HM removal (Lyu
et al., 2017; Bakshi et al., 2018; Liu et al., 2018). For example,
Bakshi ef al. (2018) revealed that As®™ can be removed effect-
ively through its reduction to As*T, coupling with the succes-
sive oxidation of Fe’ to Fe?"/Fe>', and then co-precipitation
of the As”* and Fe’* to form various Fe(As)OOH phases. The
catalysis/activation of biochar-nZVI composites is the main
contributor to degradation of the organic pollutant (I. Hussain
et al., 2017; Liu et al., 2018), I. Hussain ef al. (2017) reported
that the biocharnZVI can effectively enhance the degrad-
ation of nonylphenol (optimal removal rate reached up to
96.2% within 120 min) by activating the persulfate to generate
sulfate radicals. In one of the more recent studies, Dai et al.
(2019) found that a 2D biochar-ZVI composite, synthesized
from lignocellulosic waste (old corrugated containers) and
FeCl;-H,O, exhibited high efficiency toward bisphenol A deg-
radation by activating either peroxymonosulfate or H,O,.The
authors ascribed this high catalytic activity of 2D biochar-ZVI
composite to the synergetic effect of the Fe' species, the ke-
tonic C=0 groups, and the intrinsic graphene oxide-like 2D
structure (Dai et al., 2019). Consistent results were also re-
corded by Liu et al. (2018). Additionally, coating with nanoscale
carbonaceous materials (e.g. graphene or carbon nanotube)
could also effectively enhance the adsorptive performance of
biochar-based composites (Inyang et al., 2015; Shang et al.,
2016; Tang et al., 2016; Abdul et al., 2017). The surface area,
nanoporous structure, and potential active sites can be dramat-
ically increased for biochar-based graphene/carbon nanotube
composites, due to the loading of new nanostructures, such as
a sheet-like graphitic structure and tubular carbon nanotube
bundles (Inyang et al., 2014; Shang et al., 2016; Abdul et al.,
2017). Theretore, biochar-based nanocomposites can be an
effective method for specific pollutant removal/degradation.
However, the stability and efficiency of these new promising
biochar-based nanocomposites should be further examined
extensively, in which the roles of the synthetic method or mix-
ture proportion (nanomaterial to biochar), as well as the com-
ponents and properties of nanomaterial and pristine biochar,
should be considered (Dong et al.,2017;1. Hussain et al.,2017).

To summarize, the aforementioned results indicate that the
surface functionality of biochar can be designed for specific
applications. However, the composition heterogeneity of the
feedstock inevitably leads to the distinct surface properties
of biochar as mentioned above, although the same chemical
modification/material is carried out under strictly controlled
conditions. Among the heterogeneous features, the presence of
inorganic species may be one of the most important factors,
which greatly affects the reactions during the modification.
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Thus, how to effectively control the negative impact of
these inorganic species in the chemical modification and/or
utilize them as natural activators should be examined in fu-
ture studies on the design of biochar and biochar-based prod-
ucts. Additionally, the biochar-based nanocomposites may be a
promising method to produce an efficient functional biochar;
however, studies regarding this aspect remain limited. Finally,
the physicochemical stability of modified biochar, especially
those loaded with metals, nanoparticles, or biochar-based
nanocomposites, in the soil matrix is relatively less well exam-
ined, which would be an important criterion for evaluating the
performance of biochar products in real applications.

Biochar-based organic composite

Co-composting biochar with organic waste not only can
accelerate the composting process but can also improve the
quality of the ultimate compost product due to the interactions
between biochar and organic waste as well as with the micro-
organisms. During the composting process, the properties of
added biochar, such as the surface functional groups, CEC, pH,
and nutrient retention, can also be altered accordingly. Thus,
adding biochar into the organic compost process made the
added biochar itself and biochar-based organic composite ex-
hibit apparent improvement in comparison with biochar or
organic compost without biochar (Table 1). For example, Zeng
et al. (2015) reported that the pH of corn cob biochar was
reduced from 9.98 to 7.13, whereas the water-extractable or-
ganic carbon content, CEC, and O content were significantly
increased after composting. For the biochar-based composite,
lower pH and C/N, and higher O content, CEC, and nu-
trient (N/P/K) retention were observed relative to the com-
post without biochar (Table 1). Furthermore, the stability of
the biochar-based organic composite can also be enhanced,
although the organic matter degradation may be increased
during composting (Dias ef al., 2010; Zhang et al., 2016). Dias
et al. (2010) found an extremely high humic acid fraction in
the alkali-extractable fraction (>90%), which indicated the
high intensity of the humification of the biochar-based organic
composite. This alteration may be very favorable to improve-
ments in the structure and quantity of soil organic matter when
the biochar-based organic composites are applied to the soils.
In summary, most previous studies of biochar modifica-
tion or biochar-based organic composite, especially the phys-
ical and chemical modifications, were aimed at improving
the properties of biochar related to its sorption capacity of
HMs and organic compounds in water and soil environments.
However, the modified biochars or biochar-based compos-
ites, which are characterized by high surface area and porosity,
enriched nutrient or mineral content, and/or abundance of
surface functional groups, may also provide other benefits in
soil improvement, such as increasing the SOC stability, miti-
gating greenhouse gas emission, and enhancing soil quality.
Unfortunately, these aspects are less well examined in the lit-
erature. Moreover, the production cost will inevitably increase
because of additional production processes or input of chem-
ical materials, especially for physical and chemical methods.
Owing to the large demand for biochar for soil improvement,
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the economic feasibility of modified biochar or biochar-based
composite application in crop production systems should be
assessed. Comparatively, the biochar-based organic composite
may have more integrated benefits (e.g. better organic waste
management and nutrient recycling) for environment and
crop production than the physical and chemical modifications.
However, challenges still exist to more precisely control the
properties of biochar-based organic composite due to the com-
plicated biochar—microbe—organic material interactions under
variable composting conditions. Thus, more studies should be
conducted to investigate how to design better biochar-based
organic composites for more effective applications in sustain-
able crop production.

Conclusions and future perspectives

In this review, the potential benefits of biochar in carbon se-
questration, reduction of greenhouse gas emission, soil quality
improvement, and HM remediation are discussed in de-
tail (for detailed discussion of the latter two aspects, see the
Supplementary data). Based on the analysis of the relationship
between biochar properties and functions, the key compos-
ition and structure of biochar that play a crucial role in the
above-mentioned aspects are also recognized. Finally, the cur-
rent engineered modifications of biochar for sustainable crop
production have been reviewed. Although biochar shows great
potential in the promotion of sustainable crop production,
many knowledge gaps still exist. Specifically, five aspects of re-
search that need to be addressed are outlined as follows.

(1) The relationship between biochar properties and its ben-
efit for crop production/environment should be explored
comprehensively in a full variety of biochar/soil/environ-
ment conditions, based on which the key biochar proper-
ties with respect to specific purposes should be identified.
This is the critical foundation for guiding the future of
engineered biochar practices.

(i) Direct and indirect interactions between biochar and
microorganisms play a critical role in the functions of bi-
ochar on crop production and environment. However, the
relationships between biochar properties and microbial
community succession have not been thoroughly illumi-
nated. Thus, the interactions between biochar properties
and functional microbial communities under different
scenarios (different soil/environmental conditions or
specific soil/environmental issues) should be examined
systematically.

(ii1) A large portion of current studies on modified biochar are
mainly related to its sorption capacity for contaminants in
water and soil systems. Information on the performance
and related mechanisms of the influence of these modified
biochar on other aspects (e.g. soil property and green-
house gas emission) when they are applied to soils is still
extremely limited.

(iv) Along with increasing the variety of engineered bio-
char, investigations are needed into the optimal mod-
ification technical routes under a wide range of soil/
environmental  conditions  regarding  performance
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efliciency, environmental impact, and economics of each
engineered biochar. Furthermore, the differences between
engineered biochars and other amendments should also
be discussed. Thus, methods, such as life cycle assessment
and the analysis of cost—benefit or cost-effectiveness, are
needed to quantitatively assess these aspects in both mod-
eling and empirical ways.

(v) The production of biochar and its use are involved in a
complicated system with multiple stakeholders (e.g. pro-
ducer, user, and policymaker) (Oliveira ef al., 2017). Thus,
effective collaboration that can link all the stakeholders
together to promote the development of biochar tech-
nology for better agricultural and environmental utiliza-
tion needs to be addressed and developed.

Supplementary data

Supplementary data are available at JXB online.

S1. Benefits of biochar for soil health.

S2. Remediation of heavy metal (HM) pollution.

Fig. S1. Links of key biochar (BC) properties and mechan-
isms for heavy metal (HM) immobilization.

Table S1. Summary of the responses of soil HM bioavail-
ability, HM uptake by plants, and the crop productivity to
biochars (BC) added to HM-contaminated soils.

Table S2. Biochar (BC) stability test by the soil mineraliza-
tion experiments.

Table S3. Summary of soil C responses to biochar (BC)
application.

Table S4. Summary of the responses of N,O, CO,, and CH,
emissions in various soils to the applications of biochar (BC)
produced under different conditions.

Table S5. Original studies used for the compilation of the
biochar property data set.
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