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Multirate Sampled-Data Observer Design Based
on a Continuous-Time Design

Chen Ling and Costas Kravaris

Abstract—A multirate sampled-data observer for nonlinear sys-
tems under asynchronous sampling is developed in this paper. The
proposed multirate observer is based on a continuous-time design
coupled with intersample output predictors for the sampled mea-
surements. The sampled-data system with the multirate observer
forms a hybrid system and it is shown that the error dynamics
of the overall system is input-to-output stable with respect to mea-
surement errors, by applying the Karafyllis–Jiang vector small-gain
theorem. This sampled-data design also offers robustness with re-
spect to perturbations in the sampling schedule. The proposed
method is evaluated through linear systems and a nonlinear batch
reactor example.

Index Terms—Asynchronous sampling, input-to-output stability
(IOS), multirate observers, nonlinear sampled-data systems, vector
small-gain theorem.

I. INTRODUCTION

The objective of this paper is to develop a state observer in a multi-
rate sampled-data system under asynchronous sampling. The problem
of nonlinear observer design has been intensively studied for systems
under fast sampling [1]–[5], which can be potentially applied to esti-
mation, process control, and fault detection and identification. Moti-
vated by practical implementation needs, however, one of the biggest
challenges is to design a state observer for general multirate systems
(e.g., chemical processes, biological systems, and networked control
systems), where different sampling rates of sensors need to be accom-
modated in the observer design framework.

The observer design for linear multirate systems was studied in
[6] and [7], where an available continuous-time observer design was
adopted but different methods (i.e., sample-and-hold strategy [6] and
model-based prediction [7]) were employed to approximate the inter-
sample behavior between consecutive measurements. Both approaches
provided robustness with respect to perturbations in the sampling
schedule.

In nonlinear systems, the focus has been primarily on single-rate
sampled-data observer design based on a mixed continuous and discrete
strategy, which was inspired by the continuous-discrete Kalman filter in
[8]. In [9], an observer for state affine systems with regularly persistent
inputs was designed. The results in [9] were extended to observer design
for state affine systems up to output injection in [10] and adaptive
observer design in [11]. The continuous-discrete approach has been
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applied to high-gain observers in [12]–[17]. In general, the continuous-
discrete observer consists of two steps: open-loop prediction when
no measurements are available and impulsive correction once a new
measurement is obtained. A similar idea was also used in [18] and [19].

The problem of nonlinear multirate observer design has received
little attention, given the challenge in stability analysis that arises from
the asynchronous nature of different sensors and uncertainty in the
sampling schedule. A nonlinear multirate observer design, based on an
approximate discrete-time model, was developed in [20], with guar-
anteed semiglobal practical input-to-state stability (ISS) from exoge-
nous disturbances to estimation errors. An artificial fast-rate sampler
and a hold device were introduced to reconstruct the missing outputs
as well as inputs between sampling times, which were then fed to a
single-rate observer working at a base sampling period of the plant.
The results were extended to one-sided Lipschitz systems in [21]. Re-
cently, a hybrid observer was reported for a class of nonlinear systems
with multirate sampled and delayed measurements [22], with global
exponential stability of the error dynamics. However, it assumes a cer-
tain special structure of the nonlinear system for the method to be
applicable.

In this paper, the proposed multirate sampled-data observer design
adopts the idea in [23] and [24] of using a state predictor to approximate
the intersample behavior, but in a more general context, where multiple
intersample predictors are used for the multirate system. These predic-
tors will be running asynchronously at the same time. Each predictor
generates an estimate of the evolution of a sampled output between
consecutive measurements, in the same spirit as [7] for linear sys-
tems. The existence of a continuous-time observer is a prerequisite
for a multirate observer design. This is a common assumption in the
continuous-discrete observer design for sampled-data systems [15].
Taking the measurement errors as inputs and the estimation errors as
outputs, the notion of input-to-output stability (IOS), originated from
[25] for systems described by ordinary differential equations, is adopted
for stability analysis of the sampled-data system and the multirate ob-
server. Since the overall system is a hybrid system in the sense that
the classical semigroup property does not hold, the notion of weak
semigroup property introduced in [26] and [27] will be utilized, as it is
more relaxed than the semigroup property and allows to study a very
general class of systems (e.g., sampled-data systems, networked con-
trol systems, and hybrid systems). A direct product from this system
theoretic framework is a small-gain theorem for two interconnected
feedback systems [28], which played an important role in the stability
analysis of the single-output sampled-data observer in [23]. This result
was further generalized to a vector small-gain theorem in [29], which
allows to study IOS and ISS properties for large-scale systems consist-
ing of multiple interacting subsystems, such as the proposed multirate
sampled-data observer in Section II.

The rest of this paper is organized as follows. The representation
of a multirate sampled-data observer is formulated in Section II. The
main results are stated in Section III and applied to linear and nonlinear
systems in Section IV.
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Fig. 1. Schematic of the multirate sampled-data observer with the plant (no measurement error).

II. FORMULATION OF THE SAMPLED-DATA OBSERVER

A. Notations

1) K+ denotes the class of positive, continuous functions defined on
R+ := {x ∈ R : x � 0}. We adopt the notations of class K, class
K∞, and classKL functions in [30]. The set of nonnegative integers
is denoted by Z+ .

2) Rn
+ := {[x1 , . . . , xn ]′ ∈ Rn : x1 � 0, . . . , xn � 0}. Let x, y ∈

Rn . We say that x � y if and only if (y − x) ∈ Rn
+ . We say that

a function ρ : Rn
+ → R+ is of class Nn , if ρ is continuous with

ρ(0) = 0 and such that ρ(x) � ρ(y) for all x, y ∈ Rn
+ with x � y.

3) For every positive integer l and an open, nonempty set A ⊆ Rn ,
Cl (A; Ω) denotes the class of continuous functions on A with
continuous derivatives of order l, which take values in Ω ⊆ Rm .
C0 (A; Ω) denotes the class of continuous functions on A, which
take values in Ω.

4) We denote by ‖·‖X the norm of the normed linear space X . By
| · |, we denote the �1 -norm of Rn . Let I ⊆ R+ be an interval
and D ⊆ Rl be a nonempty set. By L∞

lo c (I ; D), we denote the
class of all Lebesgue measurable and locally bounded functions u :
I → D. For u ∈ L∞

lo c (R+ ; Rn ), we define the norm ‖u(t)‖U :=∑n
i=1 supτ ∈[0 , t ] |ui (τ )|. Notice that supτ ∈[0 , t ] |ui (τ )| denotes the

actual supremum of |ui (t)| on [0, t].

B. Problem Formulation

Consider a multioutput continuous-time autonomous system, where
without loss of generality, the output is assumed to be a part of the state
vector

ẋR (t) = fR (xR (t), xM (t))

ẋM (t) = fM (xR (t), xM (t))

y(t) = xM (t)

(1)

with xR ∈ Rn−m being the unmeasured state vector, xM ∈ Rm be-
ing the remaining state vector that is directly measured, y denot-
ing the output vector, and fR ∈ C1 (Rn−m × Rm ; Rn−m ) and fM ∈
C1 (Rn−m × Rm ; Rm ) with fR (0, 0) = 0 and fM (0, 0) = 0.

In the presence of multiple measurements, it makes more sense
to use a reduced-order observer so that a significantly lower di-
mensionality can ease implementation of the observer. Therefore,
a reduced-order observer formulation will be the focus of this pa-
per. Suppose that a continuous-time reduced-order observer design is

available for system (1)

ż(t) = F (z(t), y(t))

x̂R (t) = Ψ(z(t), y(t))
(2)

with z ∈ Rk being the observer state, x̂R ∈ Rn−m being the state es-
timates, and F ∈ C1 (Rk × Rm ; Rk ) and Ψ ∈ C1 (Rk × Rm ; Rn−m )
with F (0, 0) = 0 and Ψ(0, 0) = 0.

The output equation of system (1) should be modified under slow-
sampled measurements, which yields the following multirate sampled-
data system:

ẋR (t) = fR (xR (t), xM (t))

ẋM (t) = fM (xR (t), xM (t))

yi (ti
j ) = xi

M (ti
j ), j ∈ Z+ , i = 1, 2, . . . , m

(3)

where ti
j denotes the jth sampling time for the ith component in xM , at

some sequence of time instants S = {tk }∞k=0 . The sampling times of
the ith sensor form an infinite subsequence that tends to infinity. These
sampling times are not necessarily uniformly spaced, but satisfying
0 < ti

j+1 − ti
j � r for all j ∈ Z+ , where r is the maximum sampling

period among all the sensors. The sampling times from all the sub-
sequences will be considered as the sampling times of the multirate
sampled-data system (3). Notice that S is the sequence of all sam-
pling times in ascending order. There is a one-to-one mapping from
{ti

j : j ∈ Z+ , i = 1, 2, . . . , m} to {tk }∞k=0 . Finally, we assume that
there is no measurement available at the initial time t0 .

As mentioned in Section I, a continuous-time design (2) will be the
basis of a multirate observer design in the presence of asynchronous
sampled measurements, as long as the intersample behavior is taken
care of. In this way, a continuous-time design from the literature can be
reused in the context of a multirate observer so that we do not need to
design it from scratch. System (3) can be used to predict the evolution
of the output between consecutive measurements. As depicted in Fig. 1,
we propose the multirate sampled-data observer design

ż(t) = F (z(t), w(t)), t ∈ [tk , tk+1 )

ẇ(t) = fM (Ψ(z(t), w(t)), w(t)), t ∈ [tk , tk+1 )

wi (tk+1 ) = yi (tk+1 )

x̂R (t) = Ψ(z(t), w(t)), x̂R ∈ Rn−m .

(4)

This observer has the same dynamics as the continuous-time observer
(2). The predictors operate continuously at different time horizons,
which generate additional signals w(t) to approximate and replace the
output y(t) in the implementation of continuous-time observer (2).
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wi (t) will be reinitialized once a new measurement yi (tk+1 ) becomes
available, whereas the rest of the predictor states do not change until
their measurements are obtained. By integrating the predictor equa-
tions, a model-based correction is applied on the most-recent measure-
ment. Notice that tk and tk+1 are not necessarily the sampling times
from the same sensor. It was seen in [7] that the model-based prediction
offers a more meaningful approach to approximate the intersample be-
havior instead of a simple sample-and-hold strategy, especially under
large sampling period.

It is important to point out that the sampled-data system (3) together
with the multirate observer (4) is a hybrid system, which does not sat-
isfy the classical semigroup property. However, the weak semigroup
property still holds (see [26] and [27]). The recent results in [26]–[29]
for a wide class of systems will be used in the proof of the main the-
orem to be stated in the following section. From the main theorem,
other important features of this multirate sampled-data observer in-
clude: First, the missing intersample behavior can be reconstructed by
using the intersample predictors and second, as long as the maximum
sampling period is sufficiently small, if the continuous-time observer
implementation guarantees stability of the error dynamics and robust-
ness with respect to measurement errors, then the multirate observer
will inherit these properties as well. These properties are unaffected
by perturbations in the sampling schedule, which is a major advantage
of the proposed hybrid implementation as opposed to an approximate
discrete-time observer approach. Moreover, this continuous-discrete
observer approach is able to use all possible measurements with dif-
ferent sampling rates, without making common assumptions when a
discrete-time observer is used, such as that the sampling periods of the
sensors are uniform and/or their ratios are rational numbers.

C. Basic Notions

We require that the following assumption holds.
Assumption 1: System (1) is forward complete.

Note that Assumption 1, according to the main results in [31], implies
the existence of functions μ ∈ K+ and a ∈ K∞ such that for every
(xR ,0 , xM ,0 ) ∈ Rn−m × Rm , the solution (xR (t), xM (t)) of (1) with
initial condition (xR (0), xM (0)) = (xR ,0 , xM ,0 ) exists for all t � 0
and satisfies

|(xR (t), xM (t))| � μ(t)a(|(xR ,0 , xM ,0 )|) ∀t � 0. (5)

In other words, a finite dimensional system described by ordinary dif-
ferential equations is forward complete if and only if the corresponding
solution exists for all t � 0 and for every initial condition [24].

Similar to [23, Definition 2.1] but in the context of a reduced-order
observer, it is necessary to define the following notion of robust ob-
server for system (1) with respect to measurement errors, which is
important to develop the main results of this paper.

Definition 1: The system

ż(t) = F (z(t), y(t)), z ∈ Rk

x̂R (t) = Ψ(z(t), y(t)), x̂R ∈ Rn−m
(6)

where F ∈ C1 (Rk × Rm ; Rk ) and Ψ ∈ C1 (Rk × Rm ; Rn−m ) with
F (0, 0) = 0 and Ψ(0, 0) = 0 is called a robust observer for system
(1) with respect to measurement errors, if the following conditions
are met.
1) There exist functions σ ∈ KL, γ, p ∈ N1 , μ ∈ K+ , and a ∈ K∞

such that for every (xR ,0 , xM ,0 , z0 , v) ∈ Rn−m × Rm × Rk ×

L∞
lo c (R+ ; Rm ), the solution (xR (t), xM (t), z(t)) of

ẋR (t) = fR (xR (t), xM (t))

ẋM (t) = fM (xR (t), xM (t))

ż(t) = F (z(t), xM (t) + v(t))

x̂R (t) = Ψ(z(t), xM (t) + v(t))

(7)

with initial condition (xR (0), xM (0), z(0)) = (xR ,0 , xM ,0 , z0 )
corresponding to v ∈ L∞

lo c (R+ ; Rm ) exists for all t � 0 and satis-
fies the following estimates:

|x̂R (t) − xR (t)| � σ(|(xR ,0 , xM ,0 , z0 )|, t)
+ γ(‖v(t)‖U ) ∀t � 0

(8a)

|z(t)| � μ(t)[a(|(xR ,0 , xM ,0 , z0 )|)
+ p(‖v(t)‖U )] ∀t � 0.

(8b)

2) For every (xR ,0 , xM ,0 ) ∈ Rn−m × Rm , there exists z0 ∈ Rk such
that the solution (xR (t), xM (t), z(t)) of system (7) with initial
condition (xR (0), xM (0), z(0)) = (xR ,0 , xM ,0 , z0 ) correspond-
ing to v ≡ 0 satisfies xR (t) = Ψ(z(t), xM (t)) for all t � 0.

Remark 1: If system (6) is a robust observer for system (1) with
respect to measurement errors, then system (7) with the output Y =
Ψ(z, xM + v) − xR satisfies the uniform IOS (UIOS) property from
the input v ∈ L∞

lo c (R+ ; Rm ) with gain γ ∈ N1 (see [28]).
Instead of using online, continuous-time outputs, a multirate

sampled-data observer only uses outputs at discrete sampling times in
S = {tk }∞k=0 . The sampling partition is not necessarily uniform, but
there exists a maximum sampling period r acting as the upper bound on
each sampling interval. Next, we define the notion of a robust multirate
sampled-data observer.

Definition 2: The system

ζ̇(t) = g(ζ(t), ζ(tk )), t ∈ [tk , tk+1 )

ζ(tk+1 ) = G

(

lim
t→t−

k + 1

ζ(t), yi (tk+1 )

)

x̂R (t) = Ψ(ζ(t))

(9)

where g ∈ C1 (Rk × Rk ; Rk ), G ∈ C0 (Rk × R; Rk ), and Ψ ∈
C1 (Rk ; Rn−m ) with g(0, 0) = 0, G(0, 0) = 0, and Ψ(0) = 0 is called
a robust multirate sampled-data observer for system (3) with respect
to measurement errors, if the following conditions are met:
1) There exist functions σ ∈ KL, γ, p ∈ N1 , μ ∈ K+ , and

a ∈ K∞ such that for every (xR ,0 , xM ,0 , ζ0 , d, v) ∈
Rn−m × Rm × Rk × L∞

lo c (R+ ; [0, 1]) × L∞
lo c (R+ ; Rm ), the

solution (xR (t), xM (t), ζ(t)) of

ẋR (t) = fR (xR (t), xM (t))

ẋM (t) = fM (xR (t), xM (t))

ζ̇(t) = g(ζ(t), ζ(tk )), t ∈ [tk , tk+1 )

ζ(tk+1 ) = G

(

lim
t→t−

k + 1

ζ(t), xi
M (tk+1 ) + vi (tk+1 )

)

tk+1 = tk + rd(tk )

x̂R (t) = Ψ(ζ(t))

(10)

with initial condition (xR (0), xM (0), ζ(0)) = (xR ,0 , xM ,0 , ζ0 )
corresponding to d ∈ L∞

lo c (R+ ; [0, 1]) and v ∈ L∞
lo c (R+ ; Rm ) ex-
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ists for all t � 0 and satisfies the following estimates:

|x̂R (t) − xR (t)| � σ(|(xR ,0 , xM ,0 , ζ0 )|, t)
+ γ(‖v(t)‖U ) ∀t � 0

(11a)

|ζ(t)| � μ(t)[a(|(xR ,0 , xM ,0 , ζ0 )|)
+ p(‖v(t)‖U )] ∀t � 0.

(11b)

2) For every (xR ,0 , xM ,0 ) ∈ Rn−m × Rm , there exists ζ0 ∈
Rk such that for all d ∈ L∞

lo c (R+ ; [0, 1]), the solu-
tion (xR (t), xM (t), ζ(t)) of (10) with initial condition
(xR (0), xM (0), ζ(0)) = (xR ,0 , xM ,0 , ζ0 ) corresponding to d ∈
L∞

lo c (R+ ; [0, 1]) and v ≡ 0, satisfies xR (t) = Ψ(ζ(t)) for all
t � 0.

Remark 2: If system (9) is a robust multirate sampled-data observer
for system (3) with respect to measurement errors, then system (10)
with the output Y = Ψ(ζ) − xR satisfies the UIOS property from the
input v ∈ L∞

lo c (R+ ; Rm ), with gain γ ∈ N1 (see [28], where the notion
of UIOS is defined for hybrid systems, e.g., system (10), which does
not satisfy the classical semigroup property).

Remark 3: The sampling period in each subsequence is allowed
to be time varying. The equation tk+1 = tk + rd(tk ) generates the
sampling instants in S sequentially with 0 � tk+1 − tk � r for all
k ∈ Z+ . The value that d(tk ) takes introduces uncertainty to the end
point of each sampling interval. Proving stability for any disturbance
d ∈ L∞

lo c (R+ ; [0, 1]) will guarantee stability for all sampling schedules
of system (10).

Remark 4: At a specific time tk , there could be measurement of
more than one output or the sampling of one sensor may coincide with
another (i.e., d(tk ) = 0). Hence, some sampling instants may appear
more than once in the sequence S, where the reinitialization step will
occur repeatedly but on different elements in w(t).

III. MAIN RESULTS

Recently, the nonlinear small-gain theorem was generalized from
two interconnected systems to large-scale complex systems consisting
of multiple, interacting input-to-output stable (or input-to-state stable)
subsystems in [32]–[34]. In [29], a generalization of several previously
developed nonlinear small-gain theorems was obtained. Uniform and
nonuniform IOS and ISS properties were studied for a wide class of
nonlinear feedback systems that do not satisfy the semigroup property,
such as hybrid and switched systems.

In this section, we assume that there exists a robust observer for
system (1) in the sense of Definition 1, and would like to give conditions
so that stability of the error dynamics and robustness with respect to
measurement errors still hold for the multirate design.

Theorem 1: Consider system (1) under Assumption 1 and sup-
pose that system (6) is a robust observer for system (1) with re-
spect to measurement errors. Moreover, suppose that there exist
constants Ci � 0 and functions σ̄i ∈ KL for all i = 1, 2, . . . , m,
such that for every (xR ,0 , xM ,0 , z0 , v) ∈ Rn−m × Rm × Rk ×
L∞

lo c (R+ ; Rm ), the solution (xR (t), xM (t), z(t)) of (7) with initial
condition (xR (0), xM (0), z(0)) = (xR ,0 , xM ,0 , z0 ) corresponding to
v ∈ L∞

lo c (R+ ; Rm ) exists for all t � 0 and satisfies the following
estimate:

|f i
M (Ψ(z(t), xM (t) + v(t)), xM (t) + v(t))

− f i
M (xR (t), xM (t))|

� σ̄i (|(xR ,0 , xM ,0 , z0 )|, t) + Ci ‖v(t)‖U ∀t � 0.

(12)

Additionally, suppose that 3rCim < 1 for i = 1, 2, . . . , m and
3γ(ms) < s for all s > 0, where γ ∈ N1 is the gain function in the
estimate (8a) of the robust observer. Then, (4) is a robust multirate
sampled-data observer for system (3) with respect to measurement
errors.

Proof: We focus on the following hybrid system, consisting of a
sampled-data system and a multirate observer

ẋR (t) = fR (xR (t), xM (t))

ẋM (t) = fM (xR (t), xM (t))

ż(t) = F (z(t), w(t)), t ∈ [tk , tk+1 )

ẇ(t) = fM (Ψ(z(t), w(t)), w(t)), t ∈ [tk , tk+1 )

wi (tk+1 ) = xi
M (tk+1 ) + vi (tk+1 )

tk+1 = tk + rd(tk )

Y (t) = Ψ(z(t), w(t)) − xR (t).

(13)

By virtue of Definition 2, it is necessary to show that system (13) with
the output Y = Ψ(z, w) − xR satisfies the UIOS property from the
input v ∈ L∞

lo c (R+ ; Rm ).
Note that the hybrid system (13) has a distributed structure, where

each intersample predictor is a subsystem operating asynchronously.
Each subsystem receives the associated system output and reinitializes
its own intersample predictor. These subsystems also communicate
with each other as well as the continuous-time observer by transmitting
the predicted outputs. We focus on the ith subsystem and treat wj (t)
(j 
= i) and vi (t) as inputs to this subsystem. First, the boundedness
of ‖w(t) − xM (t)‖U will be established. Next, we will focus on the
overall hybrid system (13) and study the UIOS property from the actual
input v ∈ L∞

lo c (R+ ; Rm ). A vector small-gain theorem (see [29]) will
be used to complete the proof.

Consider the ith subsystem from the distributed structure, where
wj (t) (j 
= i) and vi (t) are considered as input

ẋR (t) = fR (xR (t), xM (t))

ẋM (t) = fM (xR (t), xM (t))

ż(t) = F (z(t), w(t)), t ∈ [ti
j , t

i
j+1 )

ẇi (t) = f i
M (Ψ(z(t), w(t)), w(t)), t ∈ [ti

j , t
i
j+1 )

wi (ti
j+1 ) = xi

M (ti
j+1 ) + vi (ti

j+1 )

ti
j+1 = ti

j + rd(ti
j )

Y (t) = Ψ(z(t), w(t)) − xR (t)

(14)

which satisfies the weak semigroup property. Since two different sam-
plings can never occur at the same time in a subsystem (i.e., ti

j1

= ti

j2
if

j1 
= j2 ), disturbance d ∈ L∞
lo c (R+ ; (0, 1]) is used to introduce pertur-

bations in the sampling schedule of the ith subsystem, which rules out
the Zeno phenomenon. Because system (6) is a robust observer for (1)
with respect to measurement errors, it follows from (8a), (8b), and (12)
that for every (xR ,0 , xM ,0 , z0 , w

i
0 , d) ∈ Rn−m × Rm × Rk × R ×

L∞
lo c (R+ ; (0, 1]), the solution (xR (t), xM (t), z(t), wi (t)) of (14) with

initial condition (xR (0), xM (0), z(0), wi (0)) = (xR ,0 , xM ,0 , z0 , w
i
0 )

corresponding to the inputs wj (t) where j 
= i (i.e., predicted outputs
from other intersample predictors) satisfies the following estimates for
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all t ∈ [0, tm ax ):

|Y (t)| � σ̂(|(xR ,0 , xM ,0 , z0 )|, t) + γ(‖w(t) − xM (t)‖U ) (15)

|z(t)| � μ(t)[a(|(xR ,0 , xM ,0 , z0 )|) + p(‖w(t) − xM (t)‖U )] (16)

|f i
M (Ψ(z(t), w(t)), w(t)) − f i

M (xR (t), xM (t))|
� σ̄i (|(xR ,0 , xM ,0 , z0 )|, t) + Ci ‖w(t) − xM (t)‖U .

(17)

Since Assumption 1 holds, we obtain from (5) and (16)

|(xR (t), xM (t), z(t))| � μ̄(t)[ā(|(xR ,0 , xM ,0 , z0 )|)
+ p(‖w(t) − xM (t)‖U )] ∀t ∈ [0, tm ax )

(18)

for appropriate functions σ̂, σ̄i ∈ KL, γ, p ∈ N1 , μ, μ̄ ∈ K+ , and
a, ā ∈ K∞, where tm ax ∈ (0, +∞] is the maximal existence time of
the solution.

Consider those time intervals where the reinitialization step occurs
at the beginning. For all t ∈ [ti

j , t
i
j+1 ) ∩ [0, tm ax ) with j � 1, we have

|wi (t) − xi
M (t)| �

∫ t

t i
j

|f i
M (Ψ(z(s), w(s)), w(s))

− f i
M (xR (s), xM (s))|ds + |vi (ti

j )|
� rσ̄i (|(xR ,0 , xM ,0 , z0 )|, ti

j ) + rCi ‖w(t) − xM (t)‖U
+ |vi (ti

j )|
� σi

1 (|(xR ,0 , xM ,0 , z0 )|, t) + rCi ‖w(t) − xM (t)‖U
+ sup

0�τ �t
|vi (τ )|

(19)

where σi
1 (s, t) = rσ̄i (s, t − r) for t � r and σi

1 (s, t) = exp(r −
t)rσ̄i (s, 0) for t < r. Note that σi

1 (s, t) ∈ KL. Since there is no
measurement available at the initial time ti

0 = 0, we make an initial
guess wi (ti

0 ) = wi (0) = wi
0 for the ith state of the predictor. For all

t ∈ [0, ti
1 ) ∩ [0, tm ax ), we get

|wi (t) − xi
M (t)| � |wi

0 − xi
M ,0 |

+ r sup
0�s�t

|f i
M (Ψ(z(s), w(s)), w(s)) − f i

M (xR (s), xM (s))|

� |wi
0 | + |xi

M ,0 | + rσ̄i (|(xR ,0 , xM ,0 , z0 )|, 0)

+ rCi ‖w(t) − xM (t)‖U
� σi

2 (|(xR ,0 , xM ,0 , z0 , w
i
0 )|, t) + rCi ‖w(t) − xM (t)‖U

(20)

where σi
2 (s, t) = [rσ̄i (s, 0) + s] exp(r − t) and σi

2 (s, t) ∈ KL. Com-
bining (19) and (20), we conclude that the following estimate holds for
all t ∈ [0, tm ax ) and for i = 1, 2, . . . , m

|wi (t) − xi
M (t)| � σi (|(xR ,0 , xM ,0 , z0 , w

i
0 )|, t)

+ rCi ‖w(t) − xM (t)‖U + sup
0�τ �t

|vi (τ )|. (21)

From (21), the fact that
∑m

i=1 rCi < 1/3, and the assumption that
tm ax is finite, it suffices to show the boundedness of ‖w(t) − xM (t)‖U
for all t ∈ [0, tm ax ). In fact

‖w(t) − xM (t)‖U

�
∑m

i=1 σi (|(xR ,0 , xM ,0 , z0 , w
i
0 )|, 0) + ‖v(t)‖U

1 − ∑m
i=1 rCi

.
(22)

From (18), (21), (22), and the boundedness-implies-continuation (BIC)
property (see [26]) for system (14), we conclude that tm ax = +∞.
Hence, all the aforementioned inequalities hold for all t � 0. Therefore,
t ∈ [0, tm ax ) can be replaced by t � 0 in the inequalities. In addition,
the BIC property of each subsystem implies that the BIC property holds
true for the overall hybrid system (13) with tm ax = +∞.

Now, we are in a position to study the UIOS property of the overall
hybrid, multirate system (13) from the actual input v ∈ L∞

lo c (R+ ; Rm ).
A vector small-gain theorem will be used to check stability of the large-
scale hybrid systems composed of multiple interconnected subsystems.

Without loss of generality, we may assume that μ̄(t) � 1 in (18).
From (18), (22), and the triangle inequality |w(t)| � |w(t) − xM (t)| +
|xM (t)|, we obtain for all t � 0

|(xR (t), xM (t), z(t), w(t))|
� 2μ̄(t)[â(|(xR ,0 , xM ,0 , z0 , w0 )|) + p̂(‖v(t)‖U )]

(23)

for appropriate functions â ∈ K∞ and p̂ ∈ N1 . Furthermore, (23) and
the BIC property of the hybrid system (13) imply the following impor-
tant properties.
1) System (13) is robustly forward complete from the input v ∈

L∞
lo c (R+ ; Rm ).

2) 0 ∈ Rn−m × Rm × Rk × Rm is a robust equilibrium point
from the input v ∈ L∞

lo c (R+ ; Rm ), with any output function
H(t, xR , xM , z, w, v) with H(t, 0, 0, 0, 0, 0) = 0 for all t � 0.

Now, Hypotheses (H1)–(H4) of the vector small-gain the-
orem are satisfied by virtue of the inequalities (15), (21),
(22), and (23). We conclude that the hybrid system (13) sat-
isfies the UIOS property from the input v ∈ L∞

lo c (R+ ; Rm ).
In other words, there exist functions σ̃ ∈ KL, γ̃, p̃ ∈ N1 , μ̃ ∈
K+ , and ã ∈ K∞ such that for every (xR ,0 , xM ,0 , z0 , w0 , d, v) ∈
Rn−m × Rm × Rk × Rm × L∞

lo c (R+ ; [0, 1]) × L∞
lo c (R+ ; Rm ), the

solution (xR (t), xM (t), z(t), w(t)) of (13) with initial condition
(xR (0), xM (0), z(0), w(0)) = (xR ,0 , xM ,0 , z0 , w0 ) corresponding to
d ∈ L∞

lo c (R+ ; [0, 1]) and v ∈ L∞
lo c (R+ ; Rm ) satisfies the following es-

timates for all t � 0:

|Y (t)| � σ̃(|(xR ,0 , xM ,0 , z0 , w0 )|, t) + γ̃(‖v(t)‖U ) (24a)

|(z(t), w(t))| � μ̃(t)[ã(|(xR ,0 , xM ,0 , z0 , w0 )|) + p̃(‖v(t)‖U )].
(24b)

Moreover, for every (xR ,0 , xM ,0 ) ∈ Rn−m × Rm , there ex-
ists (z0 , w0 ) ∈ Rk × Rm with w0 = xM ,0 such that for all d ∈
L∞

lo c (R+ ; [0, 1]), the solution (xR (t), xM (t), z(t), w(t)) of (13) with
initial condition (xR (0), xM (0), z(0), w(0)) = (xR ,0 , xM ,0 , z0 , w0 )
corresponding to d ∈ L∞

lo c (R+ ; [0, 1]) and v ≡ 0, satisfies xR (t) =
Ψ(z(t), w(t)) for all t � 0.

Remark 5: If we consider the hybrid system (13) with the pre-
diction error as the output map, i.e., Y ′(t) = w(t) − xM (t), by
applying the vector small-gain theorem again, we conclude that
with this output, system (13) also satisfies the UIOS property from
the input v ∈ L∞

lo c (R+ ; Rm ). In other words, there exist functions
σ̃ ∈ KL and γ̃ ∈ N1 such that for every (xR ,0 , xM ,0 , z0 , w0 , d, v) ∈
Rn−m × Rm × Rk × Rm × L∞

lo c (R+ ; [0, 1]) × L∞
lo c (R+ ; Rm ), the

solution (xR (t), xM (t), z(t), w(t)) of (13) with initial condition
(xR (0), xM (0), z(0), w(0)) = (xR ,0 , xM ,0 , z0 , w0 ) corresponding to
d ∈ L∞

lo c (R+ ; [0, 1]) and v ∈ L∞
lo c (R+ ; Rm ) satisfies

|w(t) − xM (t)| � σ̃(|(xR ,0 , xM ,0 , z0 , w0 )|, t)
+ γ̃(‖v(t)‖U ) ∀t � 0.

(25)
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Without measurement errors, the error dynamics of the multirate
sampled-data observer, including the intersample predictors, will con-
verge to zero asymptotically.

Remark 6: The continuous-time observer design coupled with in-
tersample output predictors can be applied to multirate full-order ob-
server design, under appropriate modifications. The vector small-gain
theorem is applicable to study the UIOS property of the overall system
from measurement errors.

Remark 7: It would be possible to include exogenous inputs in
the system definition (3) and (4), and subsequently extend the stability
analysis mutatis mutandis. This is not included for brevity.

IV. APPLICATIONS

In this section, the performance of the proposed multirate sampled-
data observer is illustrated through linear systems and a nonlinear reac-
tor example. An explicit formula for estimating the maximum sampling
period is derived for linear detectable systems with application to an
oscillator example.

A. Linear Detectable Systems

Consider a linear detectable system, where without loss of generality,
the output is assumed to be a part of the state vector

ẋR (t) = A11xR (t) + A12xM (t), xR ∈ Rn−m

ẋM (t) = A21xR (t) + A22xM (t), xM ∈ Rm

y(t) = xM (t).

(26)

A reduced-order Luenberger observer design is available

ż(t) = Fz(t) + Hy(t)

x̂R (t) = T −1
R (z(t) − TM y(t))

(27)

where F is a Hurwitz matrix with desired eigenvalues and forms a
controllable pair with H . The transformation matrices TR and TM

satisfy the following Sylvester equation:

[
TR TM

]
[
A11 A12

A21 A22

]

= F
[
TR TM

]
+ H

[
0 I

]
. (28)

Consequently, there exists a positive definite matrix P such that F ′P +
PF is negative definite and there exist constants α, δ > 0 such that

x′(F ′P + PF )x + 2x′PHv � −2αx′Px + δ|v|2 (29)

for all (x, v) ∈ Rn−m × Rm . Inequality (29) implies for every
(xR ,0 , xM ,0 , z0 , v) ∈ Rn−m × Rm × Rn−m × L∞

lo c (R+ ; Rm ) the
solution of (26) with

ż(t) = Fz(t) + H(y(t) + v(t)) (30)

with initial condition (xR (0), xM (0), z(0)) = (xR ,0 , xM ,0 , z0 ) cor-
responding to v ∈ L∞

lo c (R+ ; Rm ) satisfies the estimates for

i = 1, 2, . . . , m

|x̂R − xR | � |T −1
R | exp(−αt)

√
K2

K1
|z0 − TR xR ,0 − TM xM ,0 |

+

(

|T −1
R |

√
δ

2αK1
+ |T −1

R TM |
)

sup
0�τ �t

|v(τ )| ∀t � 0

|Ai
21 (x̂R − xR ) + Ai

22v|

� |Ai
21 ||T −1

R | exp(−αt)
√

K2

K1
|z0 − TR xR ,0 − TM xM ,0 |

+

(

|Ai
21 ||T −1

R |
√

δ

2αK1
+ |Ai

21 ||T −1
R TM | + |Ai

22 |
)

× sup
0�τ �t

|v(τ )| ∀t � 0

where K1 , K2 > 0 are constants such that K1 |x|2 � x′Px � K2 |x|2
for all x ∈ Rn−m , and Ai

21 and Ai
22 are the ith row of the matrices A21

and A22 , respectively. We conclude from Theorem 1 that the following
system

ż(t) = Fz(t) + Hw(t), t ∈ [tk , tk+1 )

ẇ(t) = A21 x̂R (t) + A22w(t), t ∈ [tk , tk+1 )

wi (tk+1 ) = xi
M (tk+1 ) + vi (tk+1 )

x̂R (t) = T −1
R (z(t) − TM w(t))

(31)

is a robust multirate sampled-data observer for system (26) with respect
to measurement errors given that the maximum sampling period r
satisfies the inequalities

3rm

(

|Ai
21 ||T −1

R |
√

δ

2αK1
+ |Ai

21 ||T −1
R TM | + |Ai

22 |
)

< 1, i = 1, 2, . . . , m

(32)

and

3m

(

|T −1
R |

√
δ

2αK1
+ |T −1

R TM |
)

< 1. (33)

Consider a third-order linear oscillator

ẋ1 = −0.1x3 , ẋ2 = 20x1 − x2 , ẋ3 = 20x1

y1 = x2 , y2 = x3 .
(34)

A reduced-order Luenberger observer is designed with F = −2 and
H =

[
1 2

]
. Inequality (29) holds true with P = K1 = K2 = 3, α =

1, and δ = 7.5. We conclude from (32) and (33) that there exists a multi-
rate sampled-data observer for system (34) provided that the maximum
sampling period r < 0.039. Notice that conditions (32) and (33) are
very conservative. Indeed, simulations show that the stability and ro-
bustness of the multirate observer will be preserved under much larger
sampling period. The actual sampling subsequences of y1 and y2 are
as follows:

t1
j = {0.40, 2.15, 4.05, 5.88, 7.70}

t2
j = {0.20, 1.07, 2.17, 3.02, 4.07, 5.13, 6.20, 7.07}

where perturbations in the sampling schedule are considered.
Fig. 2 shows the performance of the multirate sampled-data observer

with initial conditions x(0) =
[
0 0.5 0.3

]′
, x̂1 (0) = −0.5, w1 (0) =

3, and w2 (0) = −7.2. It is clear that the observer provides reliable
estimation of the state.
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Fig. 2. The oscillator example: (a) Comparison of the multirate
sampled-data observer with a continuous-time observer using contin-
uous measurements. (b) and (c) Performance of the intersample output
predictors for sampled measurements y1 and y2 , respectively.

B. Batch Chemical Reactor

Consider an isothermal batch reactor, where the following series
reactions are taking place:

M → P

2P → Q → R.

The reaction rates of M , P , and Q are assumed to be

rM = − k1CM , rP = k1CM − k2CP
2

rQ = k2CP
2 − k3CQ

where k1 = 0.4 h−1 , k2 = 1 L/(mol·h), and k3 = 0.5 h−1 . The concen-
trations of P and Q can be measured by online analytical instruments,
with different sampling rates. Let x1 , x2 , and x3 represent the concen-
trations of M , P , and Q, respectively. The state-space model is given
by

ẋ1 = −0.4x1 , ẋ2 = 0.4x1 − x2
2 , ẋ3 = x2

2 − 0.5x3

y1 (t1
j ) = x2 (t1

j ), y2 (t2
j ) = x3 (t2

j ), j ∈ Z+ .

Sampling normally occurs every 0.4 h for y1 and every 0.5 h for y2 .
However, perturbations in the sampling schedule are considered and
the actual sampling subsequences of y1 and y2 for j = 1, 2, . . . , 8 are
as follows:

t1
j = {0.38, 0.79, 1.23, 1.60, 1.98, 2.41, 2.82, 3.20}

t2
j = {0.50, 0.99, 1.52, 2.01, 2.48, 3.01, 3.52, 4.01}

A continuous-time observer, which serves as the basis of the multi-
rate sampled-data observer, will be designed by using the exact error
linearization method (see [5] for the full-order observer formulation,
and [35] for the reduced-order observer formulation) as follows:

ż = Az + B

[
y1

y2

]

(35)

where A = −2 and B =
[
2 1.5

]
. The immersion map z = T (x)

satisfies

∂T

∂x1
f1 (x) +

∂T

∂x2
f2 (x) +

∂T

∂x3
f3 (x) = AT + B

[
x2

x3

]

(36)

Fig. 3. The reactor example: (a) Comparison of the multirate sampled-
data observer with a continuous-time observer using continuous mea-
surements. (b) and (c) Performance of the intersample output predictors
for sampled measurements y1 and y2 , respectively.

which admits a global solution

T (x) = −0.25x1 + x2 + x3 (37)

which is solvable with respect to the unmeasured state x1 .
We design a multirate sampled-data observer based on (4) and the

performance is shown in Fig. 3 with the initial conditions: x(0) =
[
1 0.7 0

]′
, x̂1 (0) = 1.5, w1 (0) = 0.6, and w2 (0) = 0.1. Fig. 3(a)

shows that the speed of convergence of the multirate sampled-data
observer and the continuous-time observer is comparable under the
selected design parameters. From Fig. 3(b) and (c), the intersample
predictors are able to predict the intersample behavior with high accu-
racy after a few samplings by using model-based prediction.

V. CONCLUSION

This paper developed a design method for nonlinear multirate
sampled-data observer based on an available continuous-time design,
coupled with intersample predictors. The main contributions are as
follows.

i) The IOS property was established for the estimation and prediction
errors with respect to measurement errors.

ii) The multirate design can handle nonuniform and asynchronous
sampling without any assumption on the ratio of sampling periods
to be an integer, as seen in the oscillator and reactor examples.

iii) As long as the maximum sampling period does not exceed a cer-
tain limit, the error dynamics of the proposed multirate observer
is input-to-output stable, irrespective of perturbations in the sam-
pling schedule.

The major contributions of the proposed hybrid observer over an
approximate discrete-time observer are (ii) and (iii). Checkable suf-
ficient conditions for stability and robustness were derived for linear
detectable systems.

The theoretical framework of this study refers to a global observer
design. For general nonlinear systems, a local observer formulation is
of great interest. In addition, measurement delay and output feedback
control based on a multirate observer will also be considered in our
future work.
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