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h i g h l i g h t s

� In aerobic processes, the dynamics of the dissolved oxygen is usually very fast.
� Both continuous and fed-batch models can be reduced by approximating fast dynamics.
� The invariant manifold method leads to an accurate reduced model.
� The reduced model is useful for simplifying the observer design problem.
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Owing to the increasing demand for large scale and high efficiency in manufacturing processes, computer
aided tools for process operation and control are rapidly gaining popularity. An important state variable in
aerobic processes is the dissolved oxygen, which can be easily measured online and is an important indi-
cator of the metabolic activity. However, due to the fast kinetics of the oxygen transfer, dynamical models
describing aerobic bioprocesses tend to be highly stiff. This can lead to significant numerical problems
hampering its use for fixed step discretization methods and computationally costly applications such as
computer fluid dynamics. In this work we use the slow-motion invariant manifold and the quasi steady
state assumption methods to eliminate the differential equation describing the dissolved oxygen (the fast
mode). By doing this, the tractability of the model is significantly increased with a neglectable loss in
description power. The reduced model is also useful for simplifying the observer design problems, which
is demonstrated by a state and parameter estimation example at the end of the work.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction cess design, optimization and control (Rabitz et al., 1983; Wang
A rapid shift in industry towards more sustainable manufactur-
ing processes is desperately needed to meet the current environ-
mental challenges. Biotechnology offers attractive alternatives to
traditional chemical engineering processes for the production of
pharmaceuticals (e.g. antibodies and insulin (Berlec and Štrukelj,
2013; Neubauer et al., 2013)), biodegradable materials, and renew-
able fuels (Gavrilescu and Chisti, 2005).

Nevertheless, bioprocesses typically lie behind chemical engi-
neering solutions in terms of costs, developmental times, process
efficiency, and reliability. For this reason, it is essential to tailor
and apply existing process systems engineering (PSE) tools for pro-
et al., 2016; Westman and Franzén, 2015; Wang et al., 2014;
Anane et al., 2017; Anane et al., 2019). But for this, an accurate
and tractable mathematical description of the bioprocess is
required. Once available, mathematical models can be used from
regulatory agencies support as in Quality by Design (QbD)
(Möller et al., 2019), over model-based process monitoring (e.g.
soft sensors, nonlinear observers) and control (Dochain, 2013), up
to plant optimization (Floudas and Gounaris, 2009; Koutinas
et al., 2012), and to plant-wide optimization (Psaltis et al., 2013).
And even though it is true that it is difficult to mathematically
describe the dynamics of living organisms, macro-kinetic growth
models offer a good trade-off between descriptive power and
model tractability for bioprocesses (Mears et al., 2017; Enfors
and Häggström, 2000; Cruz Bournazou et al., 2012).

The applicability of advanced model-based methods depends
on the properties of the models used, such as accuracy, robustness,
and identifiability. Stiffness, for example, increases the computa-
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Table 1
Parameter values.

Sin Organic substrate concentration in feed 20 g/L
qsmax Maximum aerobic substrate uptake rate 1.5 g/gh
Ks Half-saturation constant for organic substrates 0.05 g/L
DOT� Percentage of dissolved oxygen saturation 100 %
KLa Mass transfer coefficient for oxygen 800 h�1

Yx=s Specific aerobic yield for substrate 0.56 g/g
Yo=s Specific yield of DOT to substrate 1.217 %/g
H Henry coefficient 14000
D Dilution rate 0.4 h�1

Cs Carbon content of substrate 0.487 gC/gX
Cx Carbon content of biomass 0.391 gC/gX
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tional burden and instability of the numerical integration. Differ-
ential equation systems that have both very fast and very slow
modes will require very small discretization steps to catch all
changes in the system and need long time spans to allow slow
modes to come to equilibrium. Stiffness is especially inconvenient
for fixed step discretization methods (e.g. full discretization) and
large systems of partial differential equations (e.g. computational
fluid dynamics). In aerobic bioprocesses, the big difference in
dynamics between physicochemical phenomena and biological
reaction can be very challenging. The dissolved oxygen, for
instance, reveals important process insights, but is prone to cause
stiffness due to its fast kinetics.

There are a number of methods that can be applied to reduce
the order of chemical and biochemical models (Okino and
Mavrovouniotis, 1998). Some of them are easy to implement and
thereby widely used, such as the quasi-steady-state assumption
(QSSA) method (Segel and Slemrod, 1989; Gorban, 2018) and sin-
gular perturbation method (Kokotovic et al., 1976; Kumar et al.,
1998). However, due to the fact that these methods render some
non-vanishing errors between the reduced model and the original
one, the performance of the reduced model cannot be guaranteed
for those applications that are sensitive to such errors. An alterna-
tive method to overcome this is the slow-motion invariant mani-
fold method which can guarantee the convergence of the
reduced model (Kazantzis et al., 2010). The invariant manifold
method has been successfully applied to the fields of anaerobic
digestion (Duan et al., 2017; Duan et al., 2017; Duan and
Kravaris, 2018; Stamatelatou et al., 2009) and metabolic models
(Roussel and Fraser, 2001), and is also widely used for the reduc-
tion of general chemical kinetics models (Gorban and Karlin,
2003; Gorban and Karlin, 2005; Chiavazzo et al., 2007). In this
study, both the invariant manifold and the quasi-steady-state
assumption methods are applied in search for a tractable but accu-
rate description of aerobic bioprocesses. We demonstrate that it is
possible to increase the tractability of aerobic bioprocess models
with a minimal loss in accuracy.

We will first study the model reduction problem for aerobic
processes. In Section 2, we analyze the dynamic properties of a
basic 3-state aerobic system to demonstrate why model reduction
is meaningful, and use the detailed E. coli model as a numerical
example. In Section 3, both continuous and fed-batch process mod-
els will be reduced with the slow-motion invariant manifold
method, in comparison to the simpler quasi-steady-state approxi-
mation approach. After the model reduction, in Section 4, we will
work on an example to show how the reduced model could sim-
plify the observer design problem to estimate the state and
parameter.

2. Aerobic model and system properties

In aerobic processes, substrate is consumed by biomass in the
presence of oxygen. Other organic and inorganic matters may also
be involved in the process, such as acetate, enzyme, etc. For repre-
sentative purposes, we will start with a basic aerobic model con-
sisting of 4 states: biomass concentration (X) in [g/L], substrate
concentration (S) in [g/L], dissolved oxygen tension (DOT) in [%]
and the volume of culture medium (V) in [L]:

dS
dt

¼ � F
V

S� Sinð Þ � qsX

dX
dt

¼ � F
V
X þ lX

dDOT
dt

¼ KLa DOT� � DOTð Þ � HqoX

dV
dt

¼ F � Fout

ð1Þ
F and Fout are the inlet and outlet flow rates. The substrate is fed to
the system with a concentration of Sin. In the DOT equation, KLa is
the mass transfer coefficient for oxygen, DOT� is the percentage of
dissolved oxygen saturation and H is the Henry coefficient.

In real practice, the process is usually operated under substrate-
limited conditions, where the oxygen is in excess. It is reasonable
to assume that DOT is kept above the 20% level all the time and
thereby the oxygen uptake rate qo is independent of DOT. Then
the biomass growth rate l, the substrate and oxygen uptake rates
qs and qo are functions of the substrate concentration only:

qs ¼ qsmax
S

SþKS

l ¼ Yx=sqs

qo ¼ Yo=s � qs � l � CX
CS

� � ð2Þ

The definition for other coefficients are given in Table 1, as well as a
set of representative parameter values to be used in the following
sections, which is based on Enfors’ book (Enfors and Häggström,
2000) and our experimental practices. As Cx and Cs in (2) can be
treated as constant, qo is then proportional to qs. Thus, we can
define an overall DOT to substrate yield coefficient
Yo ¼ Yo=s � Yo=sYx=sCX=CS and rewrite (2) as qo ¼ Yoqs.

There could be three operating conditions depending on the
inlet and outlet flows: batch, fed-batch and continuous operations.
The batch reactor has neither inflow nor outflow: F ¼ Fout ¼ 0. The
fed-batch reactor has only inflow but no outflow: Fout ¼ 0. In con-
tinuous operation, the rate of the inlet flow equals to that of the
outflow: F ¼ Fout – 0. Therefore, the volume of culture remains
constant in both batch and continuous reactors, and the state V
in model (1) can be dismissed for these operations. Particularly,
the continuous reactor model can be written as:

dS
dt

¼ �D S� Sinð Þ � qsX

dX
dt

¼ �DX þ lX

dDOT
dt

¼ KLaðDOT� � DOTÞ � HqoX

ð3Þ

where D ¼ F=V represents the dilution rate and is defined as the
ratio of inlet flow rate over the culture medium volume.

To study the properties of aerobic systems, the continuous pro-
cess would be a good starting point. For the model (3), there are
two steady states: one is a trivial steady state, where the biomass
is washed out; and the other non-trivial steady state can be calcu-
lated as:

Ss ¼ �DKs

�Yx=sqsmax þ D
Xs ¼ Yx=s Sin � Ssð Þ

DOTs ¼ DOT� � YoHD Sin � Ssð Þ
KLa
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By linearizing model (3) around this steady state, we get the fol-
lowing expression:

_S
_X

D _OT

2
64

3
75 ¼

�D� Xs
dqs

dS

����
s:s:

� D
Yx=s

0

�Yx=sXs
dqs

dS

����
s:s:

0 0

�HYoXs
dqs

dS

����
s:s

� Yo

Yx=s
DH �KLa

2
666666664

3
777777775

S� Ss
X � Xs

DOT � DOTs

2
64

3
75

ð4Þ
and the corresponding eigenvalues:

k1 ¼ �D

k2 ¼ �KLa

k3 ¼ � qsmaxKsXs

Ss þ Ksð Þ2
¼ Yx=sqsmax � D

Yx=sqsmaxKs
SinYx=sqsmax � SinD� DKs
� �

Apparently, all three eigenvalues are negative and this is a
stable steady state. It can be seen that the eigenvalue k1 equals
to the negative dilution rate. The value of k2 is the mass transfer
coefficient for oxygen �KLa, which is usually a very large number
such that KLa � D and k3 is also small compared to KLa. Since these
eigenvalues are of different orders of magnitude, the process is
comprised of fast and slow dynamics, with k2 ¼ �KLa to be the fast
eigenvalue, k1 ¼ �D and k3 related to reaction dynamics to
be the slow. This spectral gap is more explicit given the numbers
of eigenvalues calculated with the parameters in Table 1:
k1 ¼ �0:4; k2 ¼ �800 and k3 ¼ �91:98.

Note that the linearized matrix in (4) is a lower block triangular
matrix, with �KLa being the right bottom block, which is the value
of the fast eigenvalue k2. The left upper block governs the dynamics
of the first two states S and X, with only slow eigenvalues, and
therefore they are the slow states. And the state DOT is the fast
state that associates with the fast eigenvalue k2 ¼ �KLa. Conse-
quently, the entire process has serial structure, with the slow
dynamics followed by the fast dynamics.

The physiology of E. coli, which has been described mathemat-
ically and applied in various studies (Anane et al., 2017; Haby et al.,
2018; Neubauer et al., 2013), can be used as an example to demon-
strate these dynamic properties in a specific application. An E. coli
model can be written as:

dS
dt

¼ � F
V

S� Sinð Þ � qsX

dX
dt

¼ � F
V
X þ lX

dA
dt

¼ � F
V
Aþ qAX

dDOT
dt

¼ KLa DOT� � DOTð Þ � qoXH

dV
dt

¼ F � Fout

ð5Þ

This dynamic model is comprised of five ODEs describing five state
variables, namely biomass X, extracellular concentrations of
substrate (glucose) S, acetate A, dissolved oxygen DOT, and culture
volume V. They are modelled in a standard form, which can be
easily transformed to a continuous, fed-batch or batch process
model.

The auxiliary algebraic equations, coupled with the ODEs to
form the kinetic model, are listed as follows; they describe the
biomass formation, and the intracellular interactions relating sub-
strate, oxygen and acetate consumption:
qs ¼
qsmax

1þ A
Kia

� S
Sþ Ks

qsof ¼
PAmaxqs

qs þ Kap

qsox ¼ qs � qsof

� �
pA ¼ qsof Yas

qsA ¼ qAmax

1þ qs
Kis

A
Aþ Ksa

qA ¼ pA � qsA

qo ¼ qsox � qmð ÞYos þ qsAYoa

l ¼ qsox � qmð ÞYem þ qsof Yxsof þ qsAYxa

Note that under the assumption that DOT > 20%, the kinetics func-
tions are still independent of DOT. An elaborate description of this
model and parameter values can be found in the publication of
Anane et al. (2017).

For a continuous process with D ¼ 0:15 h�1
; Sin ¼ 20 g/L and

KLa ¼ 800 h�1, the non-trivial steady state can be calculated
numerically as:

Ss ¼ 0:0273 Xs ¼ 11:37 As ¼ 0:0296 DOTs ¼ 38:67:

After linearization around the steady state, the state linear matrix is

�63:37 �0:2634 2:36 0
28:89 0 3:728 0
13:02 0:0004 �9:042 0

�1100000 �4315 �22955 �800

2
6664

3
7775 ð6Þ

and the eigenvalues around the steady state are calculated as

k1 ¼ �800 k2 ¼ �63:81 k3 ¼ �8:445 k4 ¼ �0:1512:

It is evident that the system (5), even with more detailed kinet-
ics, is comprised of both fast (k1) and slow (k2; k3 and k4) eigenval-
ues. Similarly to the previous basic system (3), the linear state
matrix is also block lower triangular. Therefore, it can be concluded
that DOT is the fast state that corresponds to the fast eigenvalue
(�KLa) in the E. coli model.

Based on this fact, it’s meaningful to properly eliminate the very
fast dynamics associated with the state DOT in dynamic model (3),
so that the stiffness issue can be avoided when applying this model
to biology and bioengineering applications.

For fed-batch operations, the system is different as there is no
steady state and it is meaningless to study their eigenvalues. How-
ever, inspired by the idea from continuous processes, we will still
apply similar approaches to probe the fed-batch models, and then
show that the reduced model is also valid for the fed-batch case as
long as KLa is large.
3. Model reduction

It has been shown in Section 2 that the continuous aerobic pro-
cess is comprised of fast and slowmodes. Therefore, the models are
eligible for further simplification by assuming the fast dynamics to
be instantaneous and approximate the fast state as a function of
other slow states. One approach for implementation is to find the
slow-motion invariant manifold of the system and use it to approx-
imate the fast state. A detailed tutorial and explanation about this
method can be found in some previous work (Kazantzis et al.,
2010; Duan et al., 2017; Stamatelatou et al., 2009).

Another widely used, simple but less accurate approach is the
QSSA method. It assumes that the fast state reaches its steady state
instantaneously, and thus approximating the differential equation
of that state to be zero. One can directly solve the algebraic equa-
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tions by setting the differential equations of the fast states to be
zero.

In the following part, we will apply both methods to reduce the
order of continuous and fed-batch models, and compare the
results.

3.1. Continuous processes

Consider a dynamic system of the form:

dxs
dt ¼ Fs xsð Þ
dxf
dt ¼ Ff xs; xf

� �
with xs and xf being the vectors of slow and fast states, where the
slow dynamics Fs are followed by the fast dynamics Ff . The fast
states can then be approximated by the slow-motion invariant
manifold xf ¼ T xsð Þ where T xsð Þ satisfies the following invariance
equation (Kazantzis et al., 2010)

@T xsð Þ
@xs

Fs xs; T xsð Þð Þ ¼ Ff xs; T xsð Þð Þ

In the basic continuous aerobic digestion model (1), the slow-
motion invariant manifold T S;Xð Þ can be used to approximate the
fast state DOT, and it should satisfy

@T S;Xð Þ
@X

�DX þ l Sð ÞXð Þ þ @T S;Xð Þ
@S

D Sin � Sð Þ � qs Sð ÞX½ �
¼ KLa DOT� � T S;Xð Þð Þ � Hqo Sð ÞX ð7Þ

This is a first order nonlinear partial differential equation,
whose exact solution is difficult to find in closed form. But an
asymptotic solution can be derived by using perturbation analysis.
As KLa is a large number, it is evident that � ¼ 1=KLa is a very small
parameter that can be used for perturbation analysis. Dividing both
sides of Eq. (7) by KLa, and we have

e
@T S;Xð Þ

@X
�DX þ l Sð ÞXð Þ þ e

@T S;Xð Þ
@S

D Sin � Sð Þ � qs Sð ÞX½ �
¼ DOT� � T S;Xð Þ � eHqo Sð ÞX

or equivalently,

e
@T S;Xð Þ

@X
�DX þ Yx=sqsmaxX

S
Sþ KS

� �

þ e
@T S;Xð Þ

@S
D Sin � Sð Þ � qsmaxX

S
Sþ KS

	 

¼ DOT� � T S;Xð Þ

� eYoqsmaxHX
S

Sþ KS
: ð8Þ

Expanding T S;Xð Þ in asymptotic series in terms of the small
parameter �:

T S;Xð Þ ¼ P0 S;Xð Þ þ P1 S;Xð Þ � eþ P2 S;Xð Þ � e2 þ P3 S;Xð Þ � e3 . . . ð9Þ
and substituting (9) into (8), we get

@P0

@X
eþ @P1

@X
e2 þ @P2

@X
e3

� �
�DX þ Yx=sqsmaxX

S
Sþ KS

� �	 


þ @P0

@S
eþ @P1

@S
e2 þ @P2

@S
e3

� �
D Sin � Sð Þ � qsmaxX

S
Sþ KS

	 


¼ � P0 þ P1eþ P2e2 þ P3e3
� �þ DOT� � eYoqsmaxHX

S
Sþ KS

� �
:

ð10Þ

We can solve for the unknown terms Pi in (10) by matching the
coefficients of the terms in � from lower order to higher order.
The result with up to the second order in � is:
P0 ¼ DOT�

P1 ¼ �YoHXqs Sð Þ
P2 ¼ qoH �DX þ l Sð ÞXð Þ þ YoXH

dqs
dS �D S� Sinð Þ þ qs Sð ÞX½ �

where

dqs

dS
¼ qsmax

KS

Sþ KSð Þ2

The slowmotion invariant manifold for DOT can be expressed as

T S;Xð Þ¼ P0 X;Sð ÞþP1 X;Sð Þ � 1
KLa

þP2 X;Sð Þ � 1
KLa2

þO 1
KLa

� �3
	 


¼DOT� � XHYoqsmax
KLa

S
SþKs

þ 1
KLa2

qoH �DXþl Sð ÞXð ÞþYoXH
dqs
dS �D S�Sinð Þþqs Sð ÞX½ �

n o
þO 1

KLa

� �3
	 


ð11Þ

Therefore, the reduced model becomes

dS
dt

¼ �D S� Sinð Þ � qs Sð ÞX
dX
dt

¼ �DX þ l Sð ÞX
DOT ¼ TðS;XÞ

ð12Þ

where

l Sð Þ ¼ Yx=sqs

qs Sð Þ ¼ qsmax
S

SþKS

Fig. 1 illustrates the approximation of the dynamics (3) through
the reduced model (12) arising from the invariant manifold
method. For an initial condition S 0ð Þ ¼ 0:008 g/L, X 0ð Þ ¼ 1:6 g/L,
DOT 0ð Þ ¼ 25 %, the blue line represents the dynamic response of
the exact model (3), whereas the red dotted line of the reduced
model (12) initialized at the same S 0ð Þ and X 0ð Þ, but with
DOT 0ð Þ ¼ T S 0ð Þ;X 0ð Þð Þ. The exact trajectory of the system involves
an initial phase where the system approaches the invariant mani-
fold very fast, and second phase where the system slowly moves
along the invariant manifold and eventually reaches the steady
state. The model reduction approximation involves projecting the
initial state on the slow-motion invariant manifold, by essentially
ignoring the very fast transient of approach to the invariant man-
ifold. With the reduced system directly starting on the invariant
manifold, all its trajectories will lie on it, as a consequence of the
defining property of the invariant manifold (Kazantzis et al.,
2010). So, the reduced model’s state will involve an initial error
that will rapidly decay at early stage and exponentially converge
to zero.

Alternatively, one can use the QSSA method to find an approx-
imation by assuming the state DOT to be at steady state:

dDOT
dt

¼ KLa DOT� � DOTð Þ � qo Sð ÞXH � 0

The result from quasi-steady-state approximation is

DOT � DOT� � XHYoqsmax

KLa
S

Sþ Ks

Comparing the results from slow motion invariant manifold
method and the QSSA, it can be seen that they are consistent with
each other since the result from QSSA method matches the first
two terms of the slow invariant manifold in (11). As the QSSA
result has an error of O 1=KLa2

� �
, when KLa is a very large number,



Fig. 1. The evolution of real and reduced states on the invariant manifold.
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this approximation is expected to show a good match to the real
fast state. At the same time, it should also be noted that the higher
order terms in the series solution for slow-motion invariant man-
ifold could provide additional corrections to the leading terms, to
render a more accurate approximation. One can decide how many
terms to keep in the series solution, depending on the need for
accuracy and calculation cost.

For the continuous operation of E. coli model (5), a similar
model reduction approach can be performed. The asymptotic series
expansion of the slow-motion invariant manifold up to the second
order term can be calculated as:

T S;X;Að Þ ¼ DOT� þ 1
KLa

�XHqoð Þ þ 1
KLa2 qoH �DX þ lXð Þf

þXH
@qo

@S
D Sin � Sð Þ � qsX½ � þ XH

@qo

@A
�DAþ qaXð Þ

�

þ O
1

KLa

� �3
" #

ð13Þ

The QSSA result is again the same with the first two terms in series
expansion for the slow-motion invariant manifold.

To verify the accuracy of the reduced model, we simulate the
basic aerobic process in Fig. 2 and the E. coli process in Fig. 3. At
time 2 h and 4 h for the basic aerobic process, and at time 10 h
and 20 h for the E. coli process, KLa is changed from 800 to 1000
and 900, as a result of some step change in oxygen flow rate
and/or stirrer speed, to perturb the system. It can be observed from
the graphs in both figures that the reduced models are in good
agreement with the detailed ones most time except for the very
fast changing period with peaking mismatch. The second graph,
which depicts the error, clearly indicates these peaks, for whenever
KLa value changes. The peaking issues at changing points are due to
the elimination of the fast modes in reduced models, and thereby
the reduced models are not capable of capturing the very fast
dynamics when system undergoes a sudden change. In the third
graph, which is a zoom-in view for the errors, the small size of
error of orange lines indicates that even the result from QSSA
method (corresponding to the first two terms in Eq. (11)) is with
satisfactory accuracy, but the presence of second order term (red
lines) makes the reduced model even more precise. But whenever
KLa value changes, there are noticeable peaking errors for both
reduced models.

As a conclusion, for the typical aerobic systems, while the slow
invariant manifold method guarantees the good accuracy and con-
vergence of the reduced model, the result from QSSA method is
also fairly accurate as long as KLa is very large. However, the result
from QSSAmethod may not always be accurate enough for systems

with moderately large KLa. For example, with KLa ¼ 30 h�1
;

Yo ¼ 0:107 and Sin ¼ 10 g/L, running a new simulation leads to
the results in Fig. 4. While the invariant manifold with up to the
second order term still show good accuracy, one can notice the sig-
nificant error between the QSSA approximation with the exact one,
especially in the transient phase.

The reduced model for batch processes can be treated as a sim-

plified version of the continuous process with D ¼ 0 h�1.

3.2. Fed-batch

It has been demonstrated that the slow-motion invariant man-
ifold could be used to approximate the fast state locally around the



Fig. 2. Simulation of the basic continuous aerobic process.
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steady state. For the fed-batch operation, a local analysis is no
longer meaningful. Therefore, in order to apply a similar method,
we need to also show that the calculated slow-motion invariant
manifold would asymptotically approach the real state under
fed-batch operations over the entire feasible domain. By setting
Fout ¼ 0 in (1), the fed-batch process can be described as follows:

dS
dt

¼ � F
V

S� Sinð Þ � qsX

dX
dt

¼ � F
V
X þ lX

ð14Þ

dDOT
dt

¼ KLa DOT� � DOTð Þ � HqoX

dV
dt

¼ F

To calculate the slow invariant manifold, we follow the same
procedure as for the continuous process. The corresponding
slow-motion invariant manifold equation for system (14) is:

@T S;Xð Þ
@X

� F
V
X þ l Sð ÞX

� �
þ @T S;Xð Þ

@S
F
V

Sin � Sð Þ � qs Sð ÞX
� �

þ @T S;Xð Þ
@V

F

¼ KLa DOT� � T S;Xð Þð Þ � qo Sð ÞHX ð15Þ
Similarly, we define � ¼ 1=KLa as the small parameter. Dividing
both sides of the equation by KLa, we have

e
@T S;Xð Þ

@X
� F
V
X þ l Sð ÞX

� �
þ e

@T S;Xð Þ
@S

F
V

Sin � Sð Þ � qs Sð ÞX
	 


þ e
@T S;Xð Þ

@V
F

¼ DOT� � T S;Xð Þ � eqo Sð ÞHX ð16Þ
Expanding T S;Xð Þ in asymptotic series in terms of the small

parameter, substituting the expansion for T S;Xð Þ into the Eq. (16),
and solving the equation,wewill get the slow invariantmanifold as:

DOT X; S;Vð Þ ¼ P0 X; S;Vð Þ þ P1 X;S;Vð Þ
KLa

þ P2 X;S;Vð Þ
KLa2

. . .

¼ DOT� � XHYoqsmax
KLa

S
SþKs

þ 1
KLa2

qoH � F
V X þ l Sð ÞX� �


þYoXH
dqs
dS

F
V �S� Sinð Þ þ qs Sð ÞX� �oþ O 1

KLa

� �2
	 
 ð17Þ
Note that this result is very similar to that of the continuous model,
except for the substitution of D with F=V . However, one may notice
a significant difference between them when higher order terms are
calculated.

Next we will show that this calculated slow invariant manifold
will asymptotically approach the real state.



Fig. 3. Simulation of the E. coli continuous process.
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Proposition. Let DOT0 S tð Þ;X tð Þ;V tð Þð Þ be the unique solution of
the invariance Eq. (15) for the model (1), and S tð Þ;X tð Þ;DOT tð Þ;ð
V tð ÞÞ a solution curve of model (1). The dynamics of the off-
manifold coordinate z ¼ DOT tð Þ � DOT0 S tð Þ;X tð Þ;V tð Þð Þ decays
exponentially and the rate of decay is governed by KLa.

Proof. Since DOT0 is the solution of Eq. (15), it holds that:

@DOT0 S;X;Vð Þ
@S

f 1 S;X;Vð Þ þ @DOT0 S;X;Vð Þ
@X

f 2 S;X;Vð Þ

þ @DOT0 S;X;Vð Þ
@V

F

¼ �KLa � DOT0 þ KLa � DOT� � YoqsmaxXH
S

Sþ KS

The dynamics of z ¼ DOT � DOT0 is described by the following
nonlinear differential equation
dz
dt

¼ dDOT
dt

�dDOT0
dt

¼ �KLa �DOT�Yoqsmax
S

SþKS
XHþKLa �DOT�

� �
� @DOT0 S;X;Vð Þ

@S
f 1 S;X;Vð Þþ@DOT0 S;X;Vð Þ

@X
f 2 S;X;Vð Þþ@DOT0 S;X;Vð Þ

@V
F

� �

¼ �KLa �DOT�YoqsmaxXH
S

SþKS

� �
� �KLa �DOT0�YoqsmaxXH

S
SþKS

� �
¼�KLa �z

So the off-manifold coordinate will exponentially decay to 0 with
the rate of KLa.

The result calculated from quasi-steady-state approximation
remains the same as the one for continuous model. That’s because
the first two terms contain no dilution-related terms.
For the E. colimodel (5), the fed-batch result also turns out to be
similar with the continuous one. The reader can refer to the
reduced continuous E. coli model (13) and substitute the dilution
rate D with F=V for up to the second order terms to find the
reduced fed-batch model.

In Fig. 5, the same simulation as in Fig. 2 is done for the basic
aerobic process model under fed-batch operation. It can be noted
that both the reduced models derived using slow-motion invariant
manifold and from QSSA method have similar performance as the
continuous model. We skip the simulation result for fed-batch
E. coli model as it shows similar behaviour as the continuous case.
4. Application of reduced model: simplified observer design for
aerobic process monitoring

The lack for affordable and reliable sensors that can measure all
states on-line poses challenges to the bioreactor operation. It also
makes advanced monitoring and control for these processes a
tough problem. For this reason, an observer, also known as a soft
sensor, becomes useful as it could estimate some inaccessible state
information and unknown parameter values based on the mea-
sured variables with certain algorithms. Common observer tech-
niques include the Luenberger observer (Luenberger, 1964) and
the Kalman filter (Kalman, 1960; Welch et al., 1995). There are a
number of published books and articles that give introduction on
the theory and their applications on bioreactors (Dochain, 2003;
Kazantzis and Kravaris, 1998; Krämer and King., 2019; Kravaris
et al., 2004, 2013). In this part, we will use the Luenberger observer
as an example.



Fig. 4. Simulation of an arbitrary continuous process with small KLa.
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To estimate the unmeasured state variables for an observable
system, the traditional full-order identity observer would intro-
duce a new estimator state for each state with proper dynamics,
and these new estimated states would asymptotically approach
the real states with the information from measurements. This
requires the engineer to have relevant background knowledge in
order to perform observer design. And the presence of high order
observers will increase the computational effort as well. Now, with
the availability of the reduced model, state estimation becomes
easier, because some of the unknown states could be directly cal-
culated from the algebraic equations instead of tackling the origi-
nal differential equation system. We will demonstrate an
example for the fed-batch system.

For the basic 4-state fed-batch aerobic process, the dissolved
oxygen tension DOT and the volume of culture are usually mea-
sured continuously on-line, but the biomass and the substrate con-
centration X and S are either hard to measure or can only be
measured offline with a relatively slow sampling rate due to the
sensor limitation. And the value of inlet flow rate F might be hard
to be accurately measured in some applications. In this case, we
assume the measurements to be available for DOT and X, and the
estimation for state variable S is needed. Also, the inlet flow rate
F is piecewise time variant and unknown.
At first, we consider all the measurements to be continuous. The
traditional observer is a full-order constant-gain Luenberger obser-
ver with a parameter estimator as follow:

d
dt

Ŝ

X̂

DÔT

V̂

F̂

2
6666664

3
7777775
¼

� F̂
V̂

Ŝ�Sin
� �

� X̂qs Ŝ;DÔT
� �

� F̂
V̂
X̂þYx=sX̂qs Ŝ;DÔT

� �
KLa DOT� �DÔT

� �
�HYoX̂qs Ŝ;DÔT

� �
F̂

0

2
6666666664

3
7777777775
þL

X� X̂

DOT�DÔT

V� V̂

2
64

3
75

where L is designed using classical pole placement methods.
For the reduced model, with the measurement of X; DOT and V,

unknown inlet flow rate F can be obtained by calculating the time
derivative of V, and S can be solved directly from the algebraic Eq.
(17) by substituting X; DOT and V with the measured data at every
sampling point. To simulate this process, we use the parameter
values in Table 1, with the initial culture volume V ¼ 0:2 L, and
the initial F ¼ 0:1 L/h. F is stepped up to 0.12, 0.16, 0.2 L/h at times
1, 2 and 3 h. We plot the substrate concentration S from the simu-
lated process (blue line), from the Luenberger observer (red dash
line) and from the algebraic equation (green line) in the same



Fig. 5. Simulation of the fed-batch process under substrate limited condition.

Fig. 6. State estimation with continuous measurement.
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graph in Fig. 6. We can tell that both the observer and the solution
from the function are in great agreement with the exact S and F
during the entire time period, as they are nearly on top of each
other.

Next, we consider the measurement of X to be discrete, sampled
at every 0.2 h. There are several methods established to deal with
discrete-time state estimation problems (Tatiraju et al., 1999; Ling
and Kravaris, 2017; Ling et al., 2017a; Liu et al., 2015). To improve
accuracy in the presence of large sampling periods, one could use a
predictor w to estimate X between sampling points where there is
no measurement (Ling et al., 2017b). At each sampling time point,
w is reset to be the measurement of X. And between sampling
points, it is simulated under the same dynamics of X. This method
is demonstrated by the diagram of Fig. 7.

With the predictor, the full order observer becomes

d
dt

Ŝ
X̂

DÔT

V̂

F̂

2
6666664

3
7777775
¼

� F̂
V̂

Ŝ�Sin
� �

� X̂qs Ŝ;DÔT
� �

� F̂
V̂
X̂þYx=sX̂qs Ŝ;DÔT

� �
KLa DOT� �DÔT

� �
�HYoX̂qs Ŝ;DÔT

� �
F̂

0

2
6666666664

3
7777777775
þL

w� X̂

DOT�DÔT

V� V̂

2
64

3
75
Fig. 7. Observer design scheme w

Fig. 8. State estimation with continuous DOT m
dw
dt

¼ � F̂

V̂
wþ Yx=swqs Ŝ;DÔT

� �
; t 2 tk; tkþ1½ Þ

w tkþ1ð Þ ¼ X tkþ1ð Þ; t ¼ tkþ1

For the reduced model, S would be solved from the algebraic Eq.
(17) as DOT ¼ T w; S;Vð Þ, where w is the solution of

dw
dt

¼ � F
V
wþ Yx=swqs Ssolved;DOTð Þ; t 2 tk; tkþ1½ Þ

w tkþ1ð Þ ¼ X tkþ1ð Þ; t ¼ tkþ1

8<
:

From Fig. 8, we observe that both methods show good perfor-
mance in estimating the state S and parameter value F.
5. Discussion

In this work, we have studied model reduction problems for
aerobic processes. For the very basic aerobic model, the analysis
shows that the process typically consists of both fast and slow
dynamics. Considering that the process is substrate-limited in
practice, the slow and fast dynamics are connected in series and
the dissolved oxygen tension is the fast state associated with the
ith inter sample predictor.

easurement and sampled X measurement.



Z. Duan et al. / Chemical Engineering Science 217 (2020) 115512 11
fast eigenvalue. The numerical study on a macro-kinetic E. coli
model also validates the aforementioned property. This is the
theoretical basis that motivates the model reduction to eliminate
the fast dynamics associated with the state DOT.

To reduce the model, we use the slow-motion invariant mani-
fold to approximate the fast state DOT, by assuming the fast
dynamics to be instantaneous. This is a rigorous model reduction
method that guarantees the convergence to the real state once
the fast dynamics dies out. To find the slow invariant manifold, a
partial differential equation is approximately solved via perturba-
tion analysis and the accuracy of the solution can be adjusted via
the truncation order. As a comparison, the quasi steady state
approximation, which is not accurate but easy to implement, is
also used to find a reduced model. It turns out that the result of
the QSSA method leads to the same first two terms in the asymp-
totic series for the slow-motion invariant manifold. It is observed
that for typical aerobic processes, the less rigorous QSSA method
leads to a model that is fairly accurate, while the slow-motion
invariant manifold provides an even more precise approximation
to the state DOT. The model reduction has been done to both con-
tinuous and fed-batch processes.

Finally, an observer design problem is studied as an example to
show how this reduced model could be useful in bioengineering
applications. With the reduced model, the traditional observer
design problem can be simplified, leading to a zero-order observer,
which becomes easy to use for lab researchers. The multi-rate mea-
surement problem can also be handled with the introduction of an
inter-sample predictor. And this zero-order observer shows great
performance in estimating unmeasured states and unknown
parameters.
6. Conclusion

Time scale analysis of certain dynamic systems reveals signifi-
cant differences in the rate of change of their modes. This can be
used as the basis to increase the tractability of differential equation
models that describe processes governed by both fast and slow
dynamics simultaneously. As we have demonstrated in this work,
the stiffness of aerobic macro-kinetic models can be significantly
reducedby the substitution of the differential equation for dissolved
oxygen tension with an algebraic equation derived from the slow-
motion invariantmanifold. This significantly increases the tractabil-
ity of the model in the sense of reducing the computational burden
while increasing the robustness of the simulations, which will
highly benefit those applications involving massive simulations
(e.g. optimization and CFD simulations). Furthermore, the reduction
of model may even open up possibilities for the use of some acces-
sible PSE tools. For example, we show that the design of an observer
based on the reduced model is simplified by assuming an instanta-
neous equilibrium between the dissolved oxygen and all other
states. The simplification of the traditional observer to zero-order
makes this powerful tool available for the scientific community of
biotechnology, who has no need digging into the complicated
aspects of mathematics but still can find a way to implement obser-
vers in order to improve their experiments. Although the derivation
and proof is only performed for a basic aerobic model and an E. coli
macro-kinetic growth model, this reduction approach can be used
for any model with similar characteristics.
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