Can Far Memory Improve Job Throughput?

Emmanuel Amaro Christopher Branner-Augmon
UC Berkeley UC Berkeley
Zhihong Luo Amy Ousterhout Marcos K. Aguilera
UC Berkeley UC Berkeley VMware Research
Aurojit Panda Sylvia Ratnasamy Scott Shenker
New York University UC Berkeley UC Berkeley & ICSI

Abstract

As memory requirements grow, and advances in memory
technology slow, the availability of sufficient main memory
is increasingly the bottleneck in large compute clusters. One
solution to this is memory disaggregation, where jobs can
remotely access memory on other servers, or far memory.
This paper first presents faster swapping mechanisms and a
far memory-aware cluster scheduler that make it possible to
support far memory at rack scale. Then, it examines the con-
ditions under which this use of far memory can increase job
throughput. We find that while far memory is not a panacea,
for memory-intensive workloads it can provide performance
improvements on the order of 10% or more even without
changing the total amount of memory available.

ACM Reference Format:

Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo,
Amy Ousterhout, Marcos K. Aguilera, Aurojit Panda, Sylvia Rat-
nasamy, and Scott Shenker. 2020. Can Far Memory Improve Job
Throughput?. In Fifteenth European Conference on Computer
Systems (EuroSys ’20), April 27-30, 2020, Heraklion, Greece.
ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3342195.3387522

1 Introduction

The rising popularity of in-memory workloads such as ma-
chine learning applications and key-value stores is causing
memory demands in compute clusters to grow rapidly [14].
At the same time, because of the end of Moore’s law, DRAM

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys °20, April 27-30, 2020, Heraklion, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACMISBN 978-1-4503-6882-7/20/04...$15.00
https://doi.org/10.1145/3342195.3387522

manufacturers are struggling to achieve higher storage densi-
ties and lower per-storage-unit costs [40, 44]. Taken together,
these two developments cause main memory to increasingly
be the bottleneck when operating compute clusters [24, 43].

Memory disaggregation, which has been the subject of
both academic research [2, 30, 34, 41, 48, 49, 58] and commer-
cial projects [6, 19, 20], is one way to address the memory
bottleneck, as it allows compute nodes to access memory at
remote nodes; we will call this far memory. While far memory
does not reduce the total amount of memory needed to run
individual jobs, nor does it make memory cheaper or more
dense, far memory does mean that jobs need not be restricted
to localmemory but instead can utilize memory that is located
elsewhere in the cluster. This works around the “memory ca-
pacity wall” [48] and increases the extent to which memory
can be shared efficiently across jobs.

While there has been previous work investigating how
far memory can impact individual jobs [34], there has been
limited work on how effective far memory is in actually in-
creasing job throughput, or equivalently, in reducing job
makespans for a cluster workload: that is the issue we ad-
dress in this paper. There are many ways one can support far
memory, including making the local memory in each server
available for remote use. However, for specificity and simplic-
ity, we consider one particular model of memory disaggre-
gation: using one or more “memory servers” to support all
far memory, while all other servers in the cluster use their
memory to support local jobs.

There are two main barriers to making far memory prac-
tical. The first barrier lies in how one designs the swapping
mechanisms needed to access far memory, as existing sys-
tems [30, 34, 47] that swap over RDMA suffer from poor la-
tency and throughput due to head-of-line blocking, and to
handling interrupts and page reclamation on the critical path
of page fault resolution. We have designed a Linux swap sys-
tem, called Fastswap, that is optimized to use far memory
through RDMA. Like other swap systems, it is transparent
both to applications and developers. In addition, it interacts
directly with Linux control groups [5], allowing Fastswap to
enforce local memory allocations. Fastswap prevents head-of-
line blocking by steering page fetches on the critical path to a

EuroSys 20, April 27-30, 2020, Heraklion, Greece

separate queue. Further, it reduces delays on the critical path
by polling for completions of critical page operations and by
offloading memory reclaim to a dedicated CPU. As a result,
Fastswap achieves remote page access latencies of < 5us, en-
abling applications to access far memory at 10 Gbps with one
thread, and 25 Gbps with multiple threads. Infiniswap [34] is
the closest related work, and Fastswap’s bandwidth is 1.51%
(with one thread) and 2.54x (with multiple threads) higher
than Infiniswap with disabled backup disk.

The second barrier lies in how one decides how to split each
job’s memory demands between local memory and far mem-
ory. The use of far memory is, to some extent, a bin-packing
problem: how do you process a workload most quickly with a
given amount of local memory on each server and alarge pool
of remote memory, and where each job must be assigned a total
amount of memory (local and remote) that fully satisfies its re-
quirements? To this end, we designed a far memory-aware
cluster scheduler that leverages far memory to improve job
throughput. When a new job arrives, the scheduler can place
the job on a server that initially has insufficient available local
memory to handle all jobs assigned to it. Our scheduler then
reduces the local memory used by some of the existing jobs on
that server, and uses far memory to ensure that all jobs have
access to enough total memory. It is far from clear that such
a strategy is beneficial, as using far memory inevitably slows
down individual jobs (since accessing far memory is signif-
icantly slower than accessing local memory). However, using
far memory can also enable more jobs to simultaneously run
on a single server, albeit more slowly, which might increase
overall throughput. We have studied this trade off extensively,
and report on when the use of far memory increases overall
throughput, and how this compares to merely increasing the
amount of local memory. To the best of our knowledge, this
is the first systematic exploration of these questions.

The combination of the improved swap system Fastswap
and the cluster scheduler provides support for cluster-wide
far memory, which we call CFM. While we do not have a large
devoted cluster available to us, we used a cluster simulator
(validated with runs on a real nine-node cluster) to explore
what happens on a rack of 40 servers. We find that far memory
is not a panacea; if the memory demands are substantially
larger than available memory, then better performance is
achieved by increasing the local memory per-server rather
than by adding an equivalent amount of memory to a shared
far memory server. However, we find that far memory pro-
vides significant benefits in two key scenarios on a single
rack: (1) If the workloads are memory intensive (i.e., memory
availability rather than core availability is the bottleneck),
converting acompute node into afar memory server canresult
(for the case we studied) in roughly 10% improved throughput
compared to the original rack, even though both rack con-
figurations have the same amount of total memory. (2) If an
operator wishes to moderately increase memory capacity in a

E. Amaro et al.

Processor Processor
Socket 0 Socket 1

Memory Memory Memory Memory
Controller 0 Controller 1 Controller 2 Controller 3

siot 1][stot 1] [stot 1]| [stot 1][stot 1] [stot 1] [siot 1][stot 1] [stot1] ~[stot1 Slot 1
(oto] ot o]t o] [sore o] o] [o] i

Memory Channel

Figure 1. An example server platform with two sockets;
each has two memory controllers, six memory channels,
and twelve memory DIMM slots [17].

rack, adding memory to a memory server allows for finer gran-
ularity increases which still result in significant performance
improvements, whereas upgrading the local memory in each
server can only be done in much larger (and therefore more
expensive) increments (as we discuss in the next section).

We have made available our Linux kernel modifications
and drivers, far memory-aware scheduler, and simulator at
https://github.com/clusterfarmem.

2 Context

As memory requirements for datacenter applications increase
steadily, memory comprises an ever larger fraction of the costs
of operating a datacenter [43, 44, 50]. As aresult, cluster opera-
tors face difficult choices in how to provision memory in their
datacenters. In this section we provide context about memory
provisioning, and state the assumptions of the deployment
scenarios we consider.

2.1 Memory Provisioning

Itisimportant to remember thatlocal memory can only be pro-
visioned at a coarse granularity. As an example, consider the
memory configuration of a recent 2-socket Intel platform [17].
AsFigure 1 shows, each socket has 2 memory controllers, each
memory controller has 3 channels, and each channel has 2
slots for memory modules, or DIMMs, making a total of 24
possible DIMM slots. DIMM sizes are typically powers of 2:
4 GB, 8 GB, 16 GB, and so on. However, one cannot efficiently
use arbitrary numbers and combinations of DIMMs in the
same server. Because of the way that processors interleave
memory accesses, configurations that are “unbalanced” yield
significantly lower memory bandwidth. For example, using
1 DIMM on each memory controller yields only 35% of the
maximum system memory bandwidth [4, 17, 28].

The guidelines for balancing memory to achieve full mem-
ory bandwidth are the following: (1) all memory channels
should have the same total memory capacity and (2) all mem-
ory controllers should have the same configuration of DIMMs
(number and sizes of DIMMs !) [17]. Therefore, in Figure 1,

!In addition, all populated memory channels should have the same number
of ranks. A rank is a block of memory and memory controllers interleave
accesses to different ranks.

Can Far Memory Improve Job Throughput?

all slot 0s must have the same memory capacity and all slot
1s must have the same memory capacity.

Achieving balanced configurations limits the granularity
at which memory can be initially provisioned, and also con-
strains the granularity at which memory can be upgraded
if memory requirements change over time. For example, if
we originally installed 192 GB of memory with twelve 16
GB DIMMs (one per channel), the smallest memory upgrade
we could perform would be to add twelve 4 GB DIMMs (one
per channel), representing a 25% increase in total memory
capacity. If we then wanted to increase our memory capacity
again at a later point, the smallest memory upgrade would
involve discarding the 4 GB DIMMs and replacing them with
8 GB DIMMs (purchasing 40% more memory to increase our
capacity by 20%). Worse, if we had originally installed 192 GB
of memory by filling all twenty-four DIMMs in our platform
with 8 GB DIMMs, the next memory upgrade would require
us to discard 96 GB and buy twelve 16 GB DIMMs, resulting
in 288 GB, a 50% upgrade from the original.

Thus, if you can only provision memory per-machine, the
constraints on memory configurations require that you op-
erate at significantly reduced memory bandwidth (which re-
sults in unacceptable performance) or else only increase your
memory capacity at a very coarse granularity, yielding over
or under-provisioning as memory demands change gradually
over time [55, 61]. If we measure the granularity of memory
upgrades in memory per core in the cluster, far memory can
be upgraded at much finer granularity than local memory,
despite obeying the same memory balancing constraints, be-
cause the added memory is shared by a much larger number
of cores.

2.2 Deployment Scenarios

In this paper we are not primarily considering green-field
deployments where an operator can assess their workload’s
memory requirements and then determine the most cost-
effective way to meet them. Our results do shed some light on
green-field scenarios — in particular showing that for memory-
intensive workloads on a single rack, it is better to convert one
compute server into a far memory server — but our main focus
isonincrementally upgrading existing deployments. Based on
what we have heard from operators (these are not operators
of hyperscale datacenters, but more reflective of smaller com-
mercial datacenters found in many businesses), their existing
datacenters tend to have all DIMM slots currently filled. This
makes economic sense, because the cost per unit of memory in-
creases with DIMM capacity, so the cheapest way to provision
a given amount of memory is to use all available DIMM slots.

Considering a single rack that has been provisioned this
way, how should an operator respond when the memory
demands of their workloads exceed what the rack can accom-
modate? As described above, upgrading the memory in all the

EuroSys 20, April 27-30, 2020, Heraklion, Greece

servers in a rack can be done only at a coarse granularity (in
terms of the ratio of memory to cores), whereas far memory
can be added at a finer granularity. Our goal, in this paper, is
to explore how these options compare.

To the best of our knowledge, datacenter operators ranging
from small to medium prefer upgrading whole fleets at once.
We do not consider the case where local memory is upgraded
on a subset of the rack for two reasons: (1) we believe it would
be challenging to manage memory-heterogeneous racks for
operational reasons, and (2) we believe far memory would be
better at avoiding memory over and under-provisioning due
to static partitioning of memory across machines.

While far memory has the potential to improve cluster
throughput, this comes at the cost of slower runtimes for
individual jobs. As such, we believe that far memory is best
suited for applications whose primary metric is job through-
put, rather than customer-facing or latency-sensitive appli-
cations; that is our focus in this paper.

3 CFM Overview

The goal of CFM is to enable clusters to improve their end-to-
end job throughput by leveraging far memory on dedicated
memory servers. Though prior work has explored mecha-
nisms to enable far memory and has demonstrated perfor-
mance benefits of individual jobs when they swap (e.g., [34]),
to the best of our knowledge, no prior work has demonstrated
performance improvements with far memory at rack scale.
We focus on improving end-to-end makespan, or the time it
takes to finish executing a list of jobs. At a high level, CFM’s
approach (§3.1) bears similarities to prior work, but CFM over-
comes several key challenges (§3.2) that make it difficult to
reap cluster-scale benefits from far memory today.

3.1 Approach

In CFM, applications utilize far memory via swapping over
RDMA. CFM enforces memory allocations using Linux con-
trol groups.

Swapping. Applications can leverage far memory in broadly
two ways: transparently (without application modifications),
or via explicit and potentially custom APIs [1, 23, 54, 59].
Though specialization has the potential to offer better perfor-
mance, large-scale cluster operators have claimed that special-
ization is impractical [43], as their clusters execute thousands
of heterogeneous workloads, and porting them to a different
memory hierarchy would take significant effort. Instead, sim-
ilar to Infiniswap [34], CFM realizes far memory with swap-
ping, an existing mechanism that extends virtual memory
beyond physically available memory. When a CPU accesses
a memory address in a page that is not present in physical
memory, a page faultis raised and the page fault handler trans-
parently fetches the contents of the page from swap space
into local memory. Traditionally swap space resided on disk

EuroSys 20, April 27-30, 2020, Heraklion, Greece

and the resulting millisecond-scale access latencies induced
large and poorly understood performance overheads on work-
loads. However, swapping itself does not fundamentally entail
millisecond-scale latencies, and with today’s microsecond-
scale network latencies, swapping to far memory over the
network has the potential to yield good performance.
Cgroups. CFM enforces per-job limits on local memory con-
sumption using Linux control groups (cgroups) [5]. Cgroups
control the amount of physical memory allocated to a group
of processes and CFM uses the swap system to keep the excess
in far memory.

RDMA. CFM leverages RDMA for low-latency access to mem-
ory on remote servers. CFM uses one-sided read and write
operations, which enable access to memory without using the
remote CPU.In general, RDMA operations are submitted to lo-
cal queue pairs and are then processed by the local RDMA NIC.
Once an operation has completed, the NIC posts a completion
to a completion queue; completion queues can be configured to
raise interrupts when completions arrive, or to remain silent
with the expectation that they will be polled. Traditionally
RDMA bypasses both the remote and local operating systems,
but RDMA also offers a kernel API for drivers to use; CFM
leverages this API for swapping pages over the network.

3.2 Challenges and Contributions

There are two main challenges to realizing cluster-scale ben-
efits from far memory: enabling far memory to be swapped
in quickly (§3.2.1) and deciding how to schedule jobs across
local and far memory (§3.2.2).

3.2.1 FastSwapping. RDMA swap devices have been ex-
plored in prior works such as Infiniswap [34] and HPBD [47].
However, these approaches are unable to sustain the high
performance required by applications today, for three main
reasons:

1. To hide the I/O latency of future page faults, operating
systems typically implement page prefetching by fetch-
ing several pages on each page fault. Unfortunately, in
Linux the faulted page—the page currently required by
the application—may lie anywhere in the aligned win-
dow of pages to be prefetched. Existing systems fetch
all pages using a single queue pair per CPU (or worse,
a single queue pair for the whole swap system [47]),
so the faulted page may queue behind prefetch pages.
Processing each page to fetch can take a few microsec-
onds due to memory allocation, so with Linux’s default
prefetch window size of 8, head-of-line blocking may
delay fault handling by tens of microseconds.

2. In existing systems that swap over RDMA, the CPU is
notified that an RDMA operation (e.g., a read of a re-
mote page) has completed via interrupts. This interrupt-
handling occurs on the critical path—before the page

E. Amaro et al.

fault handler is able to return to the application—and
can add 10 ps or more [13] to page fault handling.

3. After the contents of a faulted page are read into local
memory, the operating system charges the new page
to its cgroup by increasing its memory counter. If the
cgroup memory limit is exceeded, excess pages need
to be reclaimed. In contrast to system-wide reclaim in
Linux, memory reclaim in cgroups is always done di-
rectly, that is, before leaving the page fault handler and
returning to the application. Thus the entire process of
reclamation (finding pages to reclaim, writing them to
the swap device, and returning the pages to the kernel
for reuse) delays page fault resolution.

CFM introduces a faster swapping system called Fastswap
(§4) that overcomes all three of these challenges, enabling
CFM to achieve lower latency and higher throughput for re-
mote swap than existing systems such as Infiniswap (§6.4).

3.2.2 Cluster Scheduling. Many existing schedulers en-
able efficient sharing of cluster resources by scheduling jobs
across cores, memory, and other resources [31-33, 36, 51, 56,
61]. However, existing schedulers do not consider far mem-
ory; that is, they do not provide support for scheduling jobs
whose memory can be dynamically split across local and far
memory and they do not specify how to best allocate local
memory across multiple jobs sharing the same machine. CFM
proposes a centralized far memory-aware scheduler (§5) that
considers far memory when assigning jobs to machines and
decides how to partition local memory across different jobs
in order to optimize makespan.

4 Fastswap

In this section we describe Fastswap, our RDMA swap system.
Figure 2 shows its overall architecture and how it improves
upon existing components of the operating system. While pre-
vious research efforts [30, 34, 47] simply expose their RDMA
backend as a swap device, we found that enabling higher
swapping performance required modifications to the page
fault handler, swap system, and the cgroup memory controller.
We implemented Fastswap by modifying approximately 300
lines of kernel code, and with a new device driver in 1200 lines
of code for Linux 4.11.

Improving paging performance is challenging. While many
systems focus on making improvements at millisecond time
scales [35, 46], our system strives to enable microsecond-scale
swapping. Most of the mechanisms we discuss in this section
occur while program execution is paused. Therefore, every
microsecond we save is a microsecond of compute time given
back to the application.

Can Far Memory Improve Job Throughput?

Page P: + It Check Modified
age fau
memory:
Ifault handler limit

Direct
reclaim,
write pages

Cgroup memory
controller

Read page and
prefetches

Offloaded reclaim
]
Fastswap CPU
Frontswap <¢—— Write
RDMA pages. Reclaimer
backend

' ' ' Y

CPUO CPU1 CPU 2 CPUN
poll int poll int poll int poll int
ap qap qp ap ap qp ap qp

Hardware RDMA NIC

Figure 2. Architecture of Fastswap.
4.1 RDMA Backend

In Fastswap, the operating system interacts with the RDMA
NIC using the RDMA backend. As shown in Figure 2, the back-
endisused by all swap operation types: page faults, prefetches,
and memory reclaim. While prior research has exposed an
RDMA backend as a block device [34, 47], Fastswap uses the
Frontswap interface [3]. Frontswap is designed for swapping
at page granularity rather than supporting general block I/O
operations, and strives to minimize context-switches to other
tasks while swap operations complete.

Queue pairs. RDMA requests in a given queue pair are pro-
cessed in-order by NIC Processing Units [39]. If different
classes of swap operations share a queue, critical operations—
e.g., reads for faulted pages and writes for evicted pages—will
queue behind less urgent prefetch reads. Fastswap avoids
this head-of-line blocking by using two RDMA queue pairs
per CPU, one for operations on the critical path and one
for prefetches. Separating these operations into two queue
pairs enables Fastswap to handle their completions differ-
ently. Our RDMA backend configures interrupt completions
for prefetches, and disables them for critical operations (in-
dicated by int and poll in Figure 2); Fastswap polls for com-
pletions of critical operations instead.

Frontswap interface. Frontswap assumes its operations
complete synchronously [3], that is, control of execution re-
turns to the swap system only after the Frontswap operation
has completed. Therefore, it provides no mechanism to dis-
tinguish between operations that are on the critical path and
those that are not. Thus, Fastswap enhances the Frontswap
interface to distinguish between critical and non-critical oper-
ations, enabling the RDMA backend to steer requests to their
appropriate queue pair. In our modified Frontswap interface,
both types of operations return immediately after initiating

EuroSys 20, April 27-30, 2020, Heraklion, Greece

Swap system Fastswap
CPU 0 —_page fault

addr F
alloc page for F
start read F

alloc page for PFO CPUO
[start read PFo_| RDMA queue pairs
Prefetcher alloc page for PF1 po||

page start read PF1_,|)
allocations alloc page for PF2 [TTTT] int
and reads start read PF2_ |

alloc page for PF7 *

start read PF7_ |
poll wait F__ |

Figure 3. Page fault and prefetching with Fastswap.

their RDMA request. The modified swap system then polls
for completion of critical path operations, while non-critical
path operations trigger interrupts on completion.

4.2 Page Fault Handler

Fastswap modifies the page fault handler in two key ways.
First, it instructs the swap system to handle faulted pages
and prefetched pages differently, as described above. Second,
Fastswap modifies the swap system to first read the faulted
page, followed by the remaining pages within the prefetch
window (a related approach is proposed in [26]). After issuing
all reads, Fastswap poll waits for the faulted read to complete.
By issuing the faulted read first, we overlap the latency of
allocating physical pages for prefetch reads and the latency
of issuing the prefetch RDMA reads, with the RDMA read
for the faulted page. Figure 3 shows how Fastswap services
a page fault and associated prefetches.

Handling faulted pages and prefetched pages separately
minimizes the cost of missed prefetches. For example, assume
page fault 1 occurs on address F;, with an associated set of
prefetch pages P;. Our swap system will issue reads for F; and
Py, and poll until the read for F; completes. At this point, the
page fault handler will return to user space. Then, suppose
page fault 2 occurs on address F, where F, ¢ P; (i.e., a prefetch
miss). Fastswap can fetch F, without waiting for any page in
Py, whereas previous systems would need to wait for all pages
in P; before the F, read could finish [34, 47].

4.3 Memory Reclaim

We have covered how the Fastswap swap system brings pages
from far memory into local memory. Now we describe how
Fastswap reclaims memory so that processes do not use more
local memory than their allowed share. Fastswap moves recla-
mation off the critical path of page fault handling by modifying
the cgroup memory controller.

In general, memory reclaim is needed when memory in a
cgroup grows beyond its allowed limit, or conversely, when
a cgroup’s memory limit shrinks. In Fastswap, memory in

EuroSys 20, April 27-30, 2020, Heraklion, Greece

a cgroup increases when page faults bring pages from far
memory into local memory, or when a process allocates addi-
tional memory. Meanwhile, memory limits shrink when our
far memory-aware scheduler chooses to carve out memory
to fit additional processes (see §5).

Traditionally, after reading a faulted page, the memory
controller charges the page to its cgroup. Then, the controller
checks if the cgroup has more memory than its allowed share.
If there are excess pages, they are directly reclaimed and pos-
sibly evicted to far memory. Direct reclaim takes place in the
context of the page fault handler, so it prevents the CPU from
returning to user space and continuing workload execution.

As we show in §6.4.3, memory reclaim in Linux is surpris-
ingly expensive, consuming 62-85% of the kernel time when
our applications have 50% of their memory in far memory:.
To reduce these costs, whenever a node is using far memory,
our modified memory controller offloads memory reclaim to
a dedicated reclamation CPU (Figure 2); we call this process
offloaded reclaim. Offloading memory reclaim allows the CPU
that caused a page fault to return to user space without spend-
ing time on direct reclaim. Recent efforts have used a similar
approach for offloading cold memory compression [43] and
packet processing [22, 52] to dedicated CPUs.

Offloaded reclaim is not suitable for all situations, e.g., to
reclaim pages in response to large memory allocations, or in
response to a large limit shrink. In these situations, offloaded
reclaim can become a bottleneck because the reclaimer is
shared across CPUs.

To prevent cgroups from significantly exceeding their mem-
ory allocation, Fastswap gives each cgroup a small threshold
a of memory above its limit. When a cgroup first reaches
its memory limit, the memory controller requests offloaded
reclaim. If the reclaimer is busy and cannot service reclama-
tion requests fast enough, memory in the requesting cgroup
will keep increasing. Once the cgroup exceeds its memory
limit by «, page fault handlers for the cgroup will perform
direct reclaim as well. This guarantees that the cgroup does
not exceed its limit by more than «. In our implementation we
use @ =8MB. If a node is not using far memory, the reclaimer
is idle, so the CPU can be used to execute jobs.

Regardless of whether memory reclaim is direct or of-
floaded, when evicting pages to far memory, we poll for their
completions. A page can be fully reclaimed only after its write
to far memory finishes. At this point, the cgroup memory
allocation decreases and the kernel can reuse the page. Since
memory reclaim is done in batches, using interrupts for writes
would delay observable reclaim and could cause more page
reclaims than required. With polling, the cgroup memory
counter decreases immediately after the write completes.

E. Amaro et al.

o 3.5 constant local memory time
€ 3.0 =@~ spark

c == kmeans

2 2.5 <= linpack

3 =~ memaslap
= quicksort
£ 1.5+ tf-inceptio

S
Z1.0: o

hd ==
100% 90% 80% 70% 60% 50% 40%
Local memory ratio

Figure 4. Performance degradation of applications from
Table 1 using Fastswap. The constant local memory time
line depicts A=B (§5.2).

5 Far Memory-Aware Scheduler

In this section we describe how CFM makes scheduling de-
cisions for a cluster equipped with far memory. Our sched-
uler uses bin-packing to allocate memory between jobs, and
gains greater flexibility by allowing jobs to use far memory
in addition to local memory. Intuitively, this can improve job
throughput by allowing each node to fit additional jobs when
memory is the constraining resource. However, the use of
far memory slows down individual jobs, and as a result it is
unclear how this impacts the overall makespan.

We define the memory request mem; of job i to be the max-
imum it uses during execution; if allocated mem; of memory,
job i would not incur any hard page faults. Given a set of jobs
and their CPU and memory requirements, there is a maxi-
mum number of jobs we can fit onto a single server. By using
cgroups and CFM, we can rebalance the local memory that
jobs use in a node, and free up enough local memory to fit
additional jobs. When a cgroup is shrunk, pages are evicted
to far memory such that memory of the cgroup does not ex-
ceed the new limit. In general, the cost of shrinking is the
slowdown jobs experience, and the network bandwidth and
latency to move memory from local to far memory.

5.1 Job Degradation Profiles

The performance degradation applications experience when
they trade local memory for far memory is application depen-
dent (see §6.1.2 for details on the applications we use). Figure 4
shows how the runtime of several jobs (each normalized by
its runtime with 100% local memory) increases as we decrease
the local memory ratio, or the fraction of the job’s memory
that is local. Some applications such as tensorflow-inception
experience very little slow down (at most 10.5%) when using
far memory, while others experience significant slowdowns
(e.g., spark’s runtime triples when using 40% far memory).

Therefore, a scheduler that uses far memory cannot treat ev-
ery job the same—it needs additional information that allows
it to model the job slowdown in order to optimize workload
makespan. Thus, for each application that we use in the rest of

Can Far Memory Improve Job Throughput?

the paper, we create a degradation profile ? that estimates the
runtime f;(r;) at different local memory ratios r;. To create a
degradation profile, we measure the application’s runtime at
several discrete local memory ratios using Fastswap, and then
use polynomial fitting to create a continuous function that
the memory policy uses (explained in the next subsection).

Using job profiles has limitations; in particular, applications
must finish so their profiles can be computed, and applications
must have similar performance degradation when using far
memory across different executions. It may be possible to
use page fault frequencies to model job slowdown instead of
pre-computed profiles; we leave exploring this to future work.

5.2 Far Memory Scheduling Policies

Our scheduler is simple and follows conventional designs [61],
except when dealing with memory. When new jobs arrive,
they are added to a pending queue which keeps jobs in arrival
order. Whenever the pending queue is not empty, the sched-
uler tries to assign jobs to nodes in the job-arrival order. For
each job, the scheduler iterates through all nodes in order to
find one that has a sufficient number of cores and memory
available for the job. We iterate through the nodes in random
order to improve the average runtime for finding such a node,
and the jobisplaced on the first such node found. If nonode has
sufficient resources to execute a job, we leave it in the pending
queue. In this work we do not consider job preemption.

When scheduling jobs, the scheduler needs to make two
decisions. First, in the loop above it must decide if a job “fits”
on anode (i.e., perform job admission control); in order to do
so, we rely on a fit function provided by the memory policy.
The fit function begins by checking if sufficient cores are
available to execute the job; if not, we declare that the job does
not fit on the node. If sufficient cores are available, we use a
heuristic to determine whether sufficient local memory can
be made available at the node, and enough free far memory
remains to execute the job. If so, we say that the job fits on
the node; otherwise, we say that it does not.

Second, once a node with sufficient resources has been
found, we need to decide how much local memory to give the
job. This is done by the rebalance function provided by the
memory policy. The rebalance function revises the memory
allocations of jobs executing on the node, so it is called before
a new job is started to free enough local memory for the new
job, and after a job finishes, in order to distribute local memory
back across the remaining jobs. rebalance does not use far
memory unless it needs to.

Next, we discuss several memory policies that we con-
sidered in terms of the fit and rebalance functions they
provide.

2We note that our degradation profile is similar to Miss Ratio Curves [63],
except in MRC the y-axis is miss ratio, whereas in our profile it is job
execution slowdown.

EuroSys 20, April 27-30, 2020, Heraklion, Greece

Uniform policy. When a set of jobs on a machine requires
more memory than is available locally, this policy shrinks
all jobs uniformly up to a minimum ratio a. For example, if
a=0.75, then the policy will trade up to 25% of local memory
for far memory on every job. This policy uses this minimum
ratio both to determine if jobs fit and to rebalance memory
allocations. Although simple, this policy does not take into ac-
count the fact that different jobs slowdown differently when
they are shrunk to the same ratio. In addition, the same ratio
will mean different amounts of far memory depending on
how much memory each job uses.

Variable policy. This policy improves upon uniform by al-
lowing per-job minimum ratios. We chose minimum ratios
for jobs that correspond to a 20% slowdown—we empirically
determined 20% to be a good trade off between job slowdown
and improved makespan. The fit function returns true if
1) there is enough memory on the machine for all jobs, in-
cluding the incoming job, to have at least the amount of local
memory specified by their minimum ratio, and 2) the cluster
has sufficient far memory for the residuals. The rebalance
function adjusts memory allocations by reducing local mem-
ory proportionally for each job according to its minimum
ratio. Therefore, the minimum ratio of each job determines
its friendliness for using far memory. Rebalancing jobs pro-
portionally based on their minimum ratios requires users to
define it for each job. Since this policy scales local memory lin-
early for each job, it performs best if performance degradation
is also linear up to the minimum ratio.

Memory-time policy. Using insights gained from the pre-
vious policies, we designed a policy that directly captures the
fact that jobs that use far memory experience nonlinear slow-
downs. As a result, rather than relying on manually specified
minimum ratios, this policy makes use of the memory-time
product, which we explain next, to determine the best local
memory ratio for each job in anode when rebalance is called.

Given a set of memory-constrained jobs, the asymptotic
makespan for these jobs is given by [32, 33, 61]:

memorytime

makespan= —
local_mem- utilization

where memorytimeis the sum of all the jobs’ memory require-
ments multiplied by their runtime, local _mem is the total
available local memory in the cluster, and utilization is the av-
erage utilization of local memory in the cluster. Intuitively, the
product of memory requirement and runtime captures how
much memory a job consumes during its execution. Without
far memory, memorytimeis fixed because the amount of local
memory a job uses and its duration are both fixed. The total
local memory in the cluster is similarly fixed. Therefore, pre-
vious research on scheduling to lower makespan, or improve
throughput, could only focus on increasing the denominator
by improving utilization [32].

EuroSys 20, April 27-30, 2020, Heraklion, Greece

B C f(r)[Time

r
Local Memory i Far Memory

Figure 5. How a job can reduce its local memory consump-
tion by using far memory. A is the original memory-time
productwhennofarmemoryisused.B+Cisthenewmemory-
time product, where B is the local portion, and C is the far
portion of the product. r is the local memory ratio of the job.

With far memory, we can decrease local memorytime and
increase utilization to further improve makespan. Since we
use far memory only when local memory is fully utilized,
utilization is commonly very high. In addition, memorytime
is no longer fixed at ¥, N mem;- (1) but is instead flexible:

N

memorytime= Z mem;-r;- fi(r;)
i=1

As we increase far memory usage, the product r; - f;(r;)
depends on how gracefully a job’s performance degrades.
Figure 5 conceptually shows A, the original memory-time
product for a job using only local memory, and B+C, its new
memory-time product when using far memory (i.e., B is the
local memory-time product while C is the far memory-time
product). As long as the area of B is less than A, a job’s local
memorytime can be reduced by trading some of its local mem-
ory for remote memory. When this is not the case, using addi-
tional far memory would increase a job’s local memory-time,
so our scheduler must not reduce a job’s memory ratio below
this point. As illustrated in Figure 4 with the constant local
memory-time curve, for many jobs the slowdown is graceful
enough that they can be shrunk significantly without reach-
ing the point where A and B have the same area. For example,
we could shrink local memory atleast 60% for all six workloads
except for spark and linpack. Therefore, our memory-time
policy can reduce local memorytime by finding appropriate
local memory ratios for each job. For example, for r; = 0.5,
if £;(0.5) < 2- f;(1), then we reduce the local memory-time
product because we save half of the job’s local memory while
incurring less than twice the slowdown.

We turn this insight into a better local memory rebalanc-
ing policy by considering three factors. First, to optimize for
makespan, we should pick local memory ratios for each job
to minimize the sum of their local memory-time products
(i.e., the sum of the A’s of existing jobs in the machine). If
we had unlimited far memory, this would be sufficient. How-
ever, given that we have a limited amount of far memory
that is shared by several machines we also need to ensure
efficient allocation of far memory. Unfortunately, optimizing

E. Amaro et al.

memory allocations over all local and far memory is at least
APX-Hard [64] and thus not feasible in our setting.

To resolve this, CFM optimizes each node independently by
choosinglocal memory ratios for jobs such that they maximize
the ratio between the savings in local memory-time products
and the increase in far memory usage. This avoids global op-
timization while still using local and far memory efficiently.
We do this by solving the following optimization problem:

A-B
maximize ——
riii=1,...,N C
N
subject to Zmemi -ri=local_mem

i=1

A-B —Zmemt (1 Pz) fl(l) mem; - (1 Pz) i+ fl(rl)

N
C Z mem;-(1—p;)-(1-r;)- fi(r;)

i=1

where p; isaratio between 0 and 1 that represents the progress
of this job according to its profile, and (1 —p;) - fi(r;) is the
remaining run time for job i using local memory ratio r;.
Therefore A— B is the total local memory-time product sav-
ing, C is the total far memory-time product, and the equality
constraint ensures that local memory is fully utilized.

Eachnode tracks the progress of its own jobs (updating each
p; when the local memory ratios change) and solves the op-
timization problem when rebalance is executed. The dimen-
sion of this optimization is the number of jobs running on the
node, and it converges in a small number of iterations using
conventional optimization tools; i.e., we found that SciPy [62]
was fast enough for our scheduler and our simulator.

The memory-time policy does not prescribe how to deter-
mine whether or not a job fits on a machine; i.e, it is not
involved in job admission. For simplicity, we use the same
fit function as the variable policy. We leave more advanced
admission control schemes (e.g., [32]) for future work.

Although CFM does not primarily target latency-sensitive
production workloads, it is flexible enough to exempt these
from using far memory. We can do so by specifying a mini-
mum admission memory ratio of 100% for the job in the fit
function, and by giving the job a profile where f(1)=runtime,
and f(anything else) = co. Note that this way, other jobs can
still trade local memory for far in order to fit the far memory-
exempt job. We leave for future work analysis and evaluation
of these scenarios; in this paper we assume every workload
can be slowed down.

5.3 Scheduler Implementation

Our scheduler is comprised of a central scheduler and a per-
node daemon. We implemented both in 1500 lines of Python.
The central scheduler implements the design outlined in §5.2,

Can Far Memory Improve Job Throughput?

and uses gRPC to communicate with all daemons. When the
scheduler dispatches jobs to a daemon, the daemon creates
a cgroup with a memory limit for it— the memory limit is
defined by the memory policy being used. Often, the memory
limit is smaller than the amount of memory the job needs,
which triggers far memory usage. The scheduler can be con-
figured to not use far memory at all; in this case, the scheduler
propagates this configuration to the daemons so they will not
use far memory.

6 Evaluation
Our evaluation of CFM focuses on three main questions:

1. How does CFM perform in a real testbed? (§6.2)

2. What are the benefits of far memory and when should
one use far memory instead of local memory? (§6.3)

3. How do CFM’s individual components contribute to its
overall performance? (§6.4)

6.1 Experimental Setup

We evaluate CFM on a small testbed rack and in simulation
at rack scale using a cluster simulator.

Testbed rack. Our testbed consists of 14 machines; we use 9
as compute nodes, 1 as the scheduler, and up to 4 as memory
servers. Each machine has an 8-core Intel Xeon E5-1680 v2
CPU, 32 GB of memory and a 40 Gbps Mellanox ConnectX-
3 NIC. We use one hyperthread on each core and disable
TurboBoost and CPU frequency scaling in order to reduce
variability. Each machine runs Ubuntu 16.04 with Linux ker-
nel version 4.11. Each job runs in its own cgroup; memory
and core allocations are decided by the CFM scheduler.
Cluster simulator. We implemented our own cluster sim-
ulator in 2200 lines of Python. It implements the same fit
and rebalance functions as our testbed implementation. Our
simulator takes as input a degradation profile for each job pro-
duced by using Fastswap (§5.1), and uses these to determine
how long each job takes to complete, given the memory re-
sources allocated to it. If the cluster scheduler changes a job’s
local memory allocation during its execution, our simulator
adjusts the job’s remaining runtime accordingly. Since our
profiles are generated when applications are executed individ-
ually, our simulation results represent a best case performance
analysis of using far memory. We evaluate the accuracy of
our simulator in §6.3. Our simulated cluster consists of 1 rack
of 40 machines, each with 48 cores and 192 GB of memory.

6.1.1 Evaluated Systems. We evaluate four systems. First,
we evaluate a baseline cluster that uses only local memory,
denoted by NoFAR. To understand the benefits of additional
local memory, we use NOFAR (+X%) to denote the configura-
tion in which each machine in the baseline cluster has been
augmented with X% additional local memory. Second, we
evaluate Infiniswap [34], a system that enables applications

EuroSys 20, April 27-30, 2020, Heraklion, Greece

Benchmark Memory (GB) # cpus
linpack 1.56 4
quicksort 8.05 1
kmeans 4.73 1
tensorflow-inception 2.07 2
memcached 12.00 2
spark-pagerank 4.29 3

Table 1. Applications that comprise our workloads.

to leverage remote memory on other servers (rather that in
a dedicated memory server), via RDMA. Infiniswap requires
writing to disk to correctly function in a cluster. However,
we found that writing to disk severely degrades its perfor-
mance, so we include a modified version where we disabled
writing to disk. Infiniswap does not specify how to schedule
jobs, so we only evaluate it in single-job experiments. Third,
we implemented a Fastswap DRAM backend for comparison
and to understand how swapping operations are impacted by
RDMA performance.

Finally, we evaluate CFM using the memory-time policy
unless specified otherwise. We use FAR (+X%) to denote the
configuration in which the cluster runs CFM and has been
provisioned with far memory such that the cluster’s total
memory is X% more than in NoFarR. When evaluating any
FAR configuration, we use one fewer server per rack than in
NOFAR to ensure that there is available space in the rack for a
memory server to support far memory.> In addition, when far
memory is in use, CFM dedicates at least one core per server to
running the reclaimer. We found that one core was sufficient
for the reclaimer on our 8-core testbed machines; based on
its utilization (39.5% on average), we estimate that our larger
simulated 48-core machines require 3 reclaimer cores and
thus we give three fewer cores per simulated server for CFM.

6.1.2 Jobsand Workloads. Inthe experiments that follow,
a job can be any of the applications described in Table 1. We
focus on applications that can benefit from cluster through-
put improvements such as analytics applications. We now
describe each application in more detail. linpack is a linear al-
gebra performance benchmark, and we use an Intel provided
binary which we limit to use 4 CPUs [7]. quicksort uses the
C++ standard library to sort 8GB of integers. kmeans uses
sklearn to classify 15M samples [9]. tensorflow-inception
does inference on an inception reference implementation for
benchmarking [10]. memcached uses memaslap to SET 30M
keys and then query 100M keys using the ETC distribution
(i.e, 5% SET, 95% GET), while memcached is pinned to another
CPU [12, 34]; memcached could be used as a parameter server
in this context. spark-pagerank uses a dataset of 685K nodes
and 7.6M edges [45].

3Because the CFM configurations use one fewer server, FAR (+0%) has one
server’s worth of far memory, to yield the same total rack memory as NoFAR.

EuroSys 20, April 27-30, 2020, Heraklion, Greece

m2c NorFaR FAR(+0%) FAR(+11%) FAR(+33%)
1.0 1.00 1.05 1.04 1.07
1.2 1.00 1.12 1.08 1.10
1.4 1.00 1.07 1.12 1.1
1.6 1.00 1.15 1.21 1.28

Table 2. Makespan improvement in testbed normalized to
NOFAR (i.e., 9 node cluster without far memory).

A workload is a list of 6000 mixed jobs with uniformly ran-
dom arrivals. Every workload has at least one instance of
each job from Table 1. We characterize workloads using two
properties: m2c and packability.* m2c captures how a work-
load’s demand for memory relative to compute compares to
that of the underlying cluster. For a workload W with N jobs
and a cluster C with C,,, cores and Cp,er, GB of memory, we
define m2c as:

N .
2j=ymemj-duration; Cc,,
N

soicpuj-duration; Cmem

m2c(W,C)=

For example, a workload that consists of jobs that require the
full memory but only half the cores of any machine in the
cluster has an m2c of 2. To produce workloads with a given
range of m2c values, we randomly generate many workloads
by varying the ratio of each job in the workload, and then
select those that have an m2c¢ within the given range.

Packability captures how easily a workload’s jobs can be
scheduled in a cluster without using far memory. We de-
fine the packability metric for a workload and cluster as the
makespan achieved when all of a cluster’s resources (memory
and cores) are pooled into one large server (eliminating any
resource fragmentation),® divided by the makespan achieved
in the default NoFAR configuration. Thus, a packability of
close to one indicates that a workload suffers little from re-
source fragmentation; as fragmentation increases, packability
decreases.®

6.2 Testbed Performance

We use our testbed to evaluate how far memory behaves in
real executions using our far memory-aware scheduler (§5)
and Fastswap (§4). In this subsection, FAR (+0%) is an 8-node
rack with 32 GB of far memory, and NoFAR is a 9-node rack
without far memory. We further explore the performance of
FAR by adding 32 GB and 96 GB of memory to the far memory
server, yielding the FAR (+11%) and FAR (+33%) configurations.
We evaluate workloads that have m2c between 1.0 and 1.6,
with a granularity of 0.2; in each case, we picked a single
workload with an m2c close to the prescribed value.

4Both of these properties depend on the infrastructure on which the workload
is run. Since we use a particular rack configuration as a baseline, we refer
to these two measures without specifically mentioning the infrastructure.
3This pooling approach mimics the upper bound described in [32].

Note that packability is defined with respect to a certain cluster scheduling
algorithm; we assume jobs are scheduled as described in §5.2.

E. Amaro et al.

=== Far (+0%) == = Far (+11%) Far (+33%)
1.0 P 1.0
B "', -.‘/’
0.8 = P L0.8
. q ‘l , o
u| .I p
4 L ~ -
e 0.6 7 7 0.6
... (S0~ A
© 0.4 | = L0.4
| v
021 | F, L0.2
R
0.0 J : . —— : . 0.0
08 10 12 14 16 08 1.0 1.2 1.4 1.6
Job execution slowdown
a) m2c=1.2 b) m2c=1.6

Figure 6. Job execution time slowdown when using far
memory, relative to execution time in NOFAR, in our testbed.
Left shows workloads with m2c = 1.2 and right shows
workloads with m2c=1.6.

Table 2 shows the makespan improvement over NOFAR.
We make three key observations from these results. First,
for memory-constrained workloads, using far memory re-
duces makespan. Most notably, with the same amount of total
memory, FAR (+0%) outperforms NoFAR in throughput by 5-
15%. Second, far memory helps more when workloads have
a higher m2c. In the extreme case, FAR (+33%) outperforms
NoOFAR by 28%. Third, additional far memory does not always
lead to better performance. The reasons are two-fold: (1) Addi-
tional memory can help only when memory is the constrain-
ing resource. Therefore, when workloads have a low m2c, a
small amount of far memory can sufficiently mitigate con-
tention over memory, so additional far memory provides mini-
mal benefits. (2) As we observe from FAR (+11%) and FAR (+33%)
foran m2c of 1.4, adding more far memory can slightly degrade
performance. We believe this is due to our overeager admis-
sion policy; i.e, memory-time uses the variable policy for
admission control (see §5.2). In other words, it is possible that
a job is admitted using a large fraction of far memory, while a
better decision would have been to wait and admit the job later
using less far memory, resulting in lighter slowdown. Weleave
the design of a better admission control policy as future work.

While CFM improves cluster throughput, it does increase
the execution time of individual jobs. Figure 6 shows the CDF
of execution time slowdown when using far memory relative
to the same job’s execution time in NOFAR, in our testbed.
When the workloads are lightly memory constrained (i.e.,
m2c=1.2), using far memory slows down jobs by 0.2%-1.1%
at the median, and by 35%-37% at the 99" percentile. As the
workloads become more constrained by available memory,
our scheduler can use more far memory at the expense of job
execution time. As such, when m2c=1.6, using far memory
slows down jobs by 2%—-13.4% at the median, and 28%-45% at
the 99" percentile.

Can Far Memory Improve Job Throughput?

6.3 Rack-scale Evaluation

We use our simulator to evaluate the benefits of far memory
for a full rack of 40 machines.

6.3.1 Simulation Validation. To validate that our simu-
lator accurately emulates the behavior of our testbed exper-
iment, we simulated the executions presented in Table 2. We
found that our simulated makespans ranged from 9% less than
to 3% more than the actual makespans measured in the testbed.

6.3.2 Benefits of Far Memory. We quantify the benefits
of far memory in a rack by simulating many workloads with
different amounts of far memory. Each workload has 6000
mixed jobs from Table 1, and lasts for an average of 107 min-
utes of simulated time. For this experiment, we consider three
different ranges of m2c values: [0.75,0.85], [1.15,1.25] and
[1.55,1.65]; each range includes 260 different workloads and
each makespan is the average of 15 trials. Every workload is
simulated without far memory (i.e., NoraRr) and with different
amounts of added far memory (i.e., FAR (+X%)); we compute
the percent improvement in makespan, relative to NoFAR, for
each far memory configuration.

In Figure 7, each CDF shows the distribution of workload
makespan improvements for a given m2c range and amount
of far memory. Figure 7a demonstrates that for workloads
that are on average CPU-constrained rather than memory-
constrained (m2c values between 0.75 and 0.85), adding far
memory imposes a small performance penalty of 6% at the
median and 7% at the 99 percentile. This is because with
far memory the rack has one fewer server, and if far mem-
ory is used, each server dedicates 3 cores to handle memory
reclamation leaving fewer cores for jobs.

For workloads that are on average slightly or significantly
memory-constrained, adding far memory provides benefits
for all workloads and amounts of far memory. Even for the
configuration with the smallest amount of far memory (i.e.,
192 GB, or FAR (+0%)), which replaces a compute server with
amemory server with an equivalent amount of far memory,
makespan improves at the median by 3% and 11%, as Figure 7b
and 7c show. Even though this configuration has the same
total amount of memory and many fewer cores per rack than
NOFAR, it achieves lower makespans because the presence of a
sharable far memory allows jobs to be packed onto machines
that have available cores but not memory, thereby enabling
resources to be used more efficiently.

Adding additional far memory continues to provide further
benefits. For m2c values in [1.15,1.25], improvements relative
to NOFAR plateau at a median of 12% with FAR (+17.5%); for
m2c values in [1.55,1.65] improvements continue until our
largest far memory point FAR (+37.5%) with a median improve-
ment of 47%. We expect improvements to plateau because our
memory policy prevents jobs from being admitted if doing so
would require shrinking any job beyond its minimum ratio.

EuroSys 20, April 27-30, 2020, Heraklion, Greece

Further, when a previously memory-constrained node has
enough far memory, memory stops being the constraining
resource, CPUs become the limiting resource, and additional
far memory provides no benefit.

While we explicitly controlled the m2c ratio in our work-
loads, packability (as defined in §6.1) arises from the difficulty
of packing jobs from each workload in the rack. Figure 8 shows
improvement in makespan for FAR (+17.5%), relative to NOFAR,
for a wide range of m2c values ([1.15,1.65]). It illustrates the
effect that packability has on throughput improvement when
far memory is available. As packability decreases, workloads
are harder to pack in NOFAR, so far memory is able to provide
more benefit; the median improvement at (0.93,0.96] is 12.5%
while the median improvement at (0.85,0.88] is 25.8%. Thus
we observe that both m2c and packability can significantly im-
pact the makespan improvements a workload achieves from
far memory.

6.3.3 Adding Far Memory vs. Local Memory. We now
evaluate system performance when adding far memory com-
pared to adding memory locally to each machine, i.e., NOFAR
(+X%). We aim to answer the question “If I purchase X GB of
memory, should I add % GB to each machine or X GB to a
shared memory server?” We again consider different ranges
of m2c values. For each range and memory configuration,
Figure 9 plots the median percent improvement in makespan,
relative to NOFAR.

When we add memory locally to each server, we can only
do so in a few discrete amounts dictated by the current mem-
ory configuration and standard DIMM sizes (§2.1). For our
simulated rack where each machine has 192 GB of memory,
we consider two ways of initially provisioning each machine:
(1) with 12x16 GB DIMMs, and (2) with 24x8 GB DIMMs. The
smallest feasible upgrade for case 1 involves purchasing 48
GB per server, for an additional rack memory of 1.92 TB and
a total rack memory of 9.6 TB. The smallest feasible upgrade
for case 2 requires purchasing 12x16 GB=192 GB and discard-
ing 12x8 GB=96 GB per machine, resulting in an additional
3.84 TB of memory in the rack and a total purchased memory
of 15.36 TB (including the discarded memory). We simulate
these two upgrade options and illustrate them in Figure 9 with
the stars at x=9.6 TB (NoFAR (+25%)) and x=15.36 TB (NOFAR
(+50%)), respectively.

We see that overall it is better to add memory locally on
every machine, rather than add the same total amount of mem-
ory as far memory, in terms of the makespan. For example,
when m2c>1.15 and 9.6 TB of memory are given to the rack,
NOFAR (+25%) has a makespan that is lower by 2.5% on average
across the different m2c ratios, relative to FAR (+25%) (see x =
9.6 TB in Figure 9). Similarly, when we add 3.84 TB to the rack,
doing so locally results in a makespan that is lower by 9.7% on
average, relative to FAR (+50%), shown by the right-most set
of stars vs. the right-most dots. However, with far memory we

EuroSys 20, April 27-30, 2020, Heraklion, Greece

Far (+2.5%)

=@= Far (+0%)

Lo g : _ ; :] Lo

0.8 USSR SORRONNS SURRION SO SOOI 0.8 :
50-6%-- . 0.6
Q0.4 Op.gi

0.2} @-inee

0.0 0.0
-10% 0% 10% 20% 30% 40% 50% -10%

== Far (+7.5%)

E. Amaro et al.

== Far (+17.5%) == Far (+37.5%)

0.8} fof

0.0
-10% 0% 10% 20% 30% 40% 50%

Improvement in makespan

(a) [0.75, 0.85]

(b) [1.15, 1.25]

(c) [1.55, 1.65]

Figure 7. The percent improvement in workload makespan, relative to the NofFaRr configuration, for workloads with three

different ratios of memory to compute (m2c).

packability
(0.85,0.88] =%~ (0.91,0.93]
(0.88,0.91] == (0.93,0.96]

5% 10% 15% 20% 25% 30%
Improvement in makespan

Figure 8. The impact of packability on far memory’s ability
to improve makespan with FAR (+17.5%) for workloads with
1.15<m2c<1.65.

canadd memory at finer granularity. Thus, if we do not want to
invest the money required to add memory to all machines in a
rack, we can reap much of the performance benefits by adding
memory to afar memory server instead at a fraction of the cost.
For example, for an m2c ratio in [1.75,1.79], we could achieve
a median makespan improvement of 36% by adding 48 GB lo-
cally to each machine, or we could achieve 58% of that improve-
ment by adding 30% as much far memory with FAR (+7.5%).

These results also have implications for how racks should
be constructed in the future. Figure 9 demonstrates that for
m2c>1.15, the smallest far memory configuration FAR (+0%)
achieves an average of 9.3% improved makespan relative
to NofAR (+0%). This suggests that if your workloads are
even slightly memory-constrained when you build your rack,
you will achieve better performance by equipping it with 39
servers and 1 memory server with an equivalent amount of
memory, than by equipping it with 40 servers, despite the
loss of one server’s worth of cores. Furthermore, this design
allows you to easily add more memory as workloads change
in the future.

@® Far (+X%) * Nofar (+X%)

m2c
= [0.75, 0.85] === [1.15,1.25] == [1.55, 1.65]
=ex= [0.95,1.05] === [1.35,1.45] [1.75, 1.79]
Far/Nofar Far/Nofar Far Nofar
£ (+0%) (+25%) (+50%) (+50%)
1.6
8 : *
X ®
214 = et
£ O/*_-.—..
£1.2 PPl X
E &.—.—-ﬁ——.——.
o ~
51.0 1 P * *)
Q.
E 75 85 9.5 105 11.5 12,5 135 145 155

Total purchased memory (TB)

Figure 9. Makespan improvement as we add memory to the
cluster in different ways, for workloads with different m2c
values. Dots show addition of far memory, while stars are
addition of local memory, for a given amount of purchased
memory.

6.4 Microbenchmarks

We now use microbenchmarks to study CFM’s performance
and how it is impacted by Fastswap’s design elements. The
benchmarks in this subsection were executed in our testbed
setup, unless noted otherwise.

6.4.1 Page Fetch Rate. In this benchmark, we measure
how quickly Fastswap can fetch pages over the network. Our
benchmark triggers page fetches as quickly as possible by per-
forming memory reads that are strided by the size of a page (4
KB) such that each memory read causes a major page fault. To
isolate the performance of fetches, we prevent evictions from
occurring during the experiment. We run multiple instances
of the benchmark process and pin each to its own core.

We evaluate Fastswap as well as a variant of Fastswap in
which all page fetches (including those for the faulting page)
raise interrupts on completions (Fastswap-interrupt-only).
We also evaluate Infiniswap, both with and without asynchro-
nous writes to disk enabled, and a DRAM backend, which

Can Far Memory Improve Job Throughput?

== DRAM == Fastswap Fastwap-interrupt-only

=#=_Infiniswap w/o disk Infiniswap

% 1250

©

C

31000 — o9

3

o

e

£ 750/

|9

b

» 500

=

2 250 g —————yy =4 o =%

&

& : :
1 2 3 4 5 6 7

CPUs

Figure 10. Page fetch rates supported by different swapping
backends when eviction is disabled (prefetch set size is 8
pages).

provides an upper bound on achievable performance using
Linux’s swapping mechanisms.

As shown in Figure 10, the DRAM backend’s fetch rate
scales sublinearly and achieves a peak page fault rate of 1.02M
pages/sec with 5 cores. Fastswap can achieve up to 80% of
this, peaking at 818,000 pages/sec with 7 cores. Even though
DRAM can copy a page in <1us [57] compared to 3.9us’ for an
RDMA read of 4KB, Fastswap achieves 80% of the fetch rate
of DRAM because of its hybrid polling-interrupt mechanism
to fetch pages. DRAM has no asynchronous mechanism: it
copies all pages synchronously whether for prefetching or
reading the faulting page. Meanwhile, Fastswap only waits for
the faulting page, and handles prefetched pages via interrupts.
Fastswap-interrupt-only demonstrates the benefits of polling
for the fetched page; when all pages generate interrupts, it
takes even longer to finish fetching the faulting page, leading
to lower fetch throughput.

Infiniswap achieves significantly lower page fault rates,
peaking at 320k pages per second with 6 cores (39% of Fast-
swap), even without writes to disk. Unfortunately these rates
are insufficient to support our experiments. For our testbed
experiments described in §6.2 we observed peak page access
rates of 431k pages per second with m2c=1.6; therefore, In-
finiswap would not be able to support them.

6.4.2 Cgroup Memory Bandwidth. In this experiment,
we measure the memory bandwidth that cgroups using Fast-
swap provide to applications. We use STREAM, a well-known
industry standard benchmark [53]. This benchmark performs
operations over large regions of memory, triggering both
fetches and evictions. We configure the benchmark to use
4 GB of memory. As Figure 11 shows, we set the percent-
age of local memory to 90%, 50% and 10%. We report the
Triad component of the benchmark and measure the average
bandwidth instead of the peak bandwidth. Fastswap provides
6-78% higher bandwidth than Infiniswap with 1 CPU and 25-
110% higher bandwidth with 4 CPUs. At 100% local memory,
1 CPU achieves 13,867 MB/s and 4 CPUs achieve 32,253 MB/s,

7 Average 4KB RDMA read latency measured in our testbed.

EuroSys 20, April 27-30, 2020, Heraklion, Greece

System - CPU Count

Infiniswap nodisk-1 727 Infiniswap-1
Infiniswap nodisk-2 @77 Infiniswap-2
Infiniswap nodisk-4 m@@ Infiniswap-4

O Fastswap-1
MR Fastswap-2
Bl Fastswap-4

(A2

LT
AR

0% 50%
Local memory ratio

Figure 11. Memory bandwidth achieved by the STREAM
benchmark for Fastswap and Infiniswap with different core
counts and local memory ratios.

Workloads % of kernel time Kernel time reduction
linpack 61.8% 37.7%
quicksort 72.9% 30.8%
kmeans 74.3% 25.5%
tensorflow-inception 76.7% 85.3%
spark 84.9% 35.6%

Table 3. Fraction of kernel time spent on direct mem-
ory reclamation without the Fastswap reclaimer and the
percentage reduction when the Fastswap reclaimer is used.

demonstrating that local memory can achieve 12.5X or 14.6x
as much bandwidth as far memory, respectively. This high-
lights the importance of continuing research efforts on lower-
ing swapping overheads to further improve its performance.

6.4.3 Memory Reclaimer. We evaluate the efficacy of the
Fastswap reclaimer (§4.3) by measuring the percent of kernel
time spent performing reclamation both with and without
the reclaimer. We run each application with 50% local mem-
ory and measure the time spent doing reclamation. Table 3
shows that without the reclaimer, 61.8-84.9% of kernel time
is spent performing direct reclaim. However, enabling the
reclaimer reduces this significantly so that applications spend
up to 85.3% less kernel time performing direct reclamation.
The reason why kernel time reduction is not 100% is that
the reclaimer cannot offload all memory reclaim when large
memory allocations occur, i.e., larger than @ =8MB (see §4.3).

6.4.4 MemoryRebalance Policies. We use simulation to
compare the three memory rebalance policies we introduced
before: uniform, variable, and memory-time (§5.2). We simu-
late the execution of 1000 workloads following our setup for
§6.3 with m2c values between 1.4 to 1.8 in a cluster that mimics
our testbed cluster. We use high m2c workloads to highlight
the differences between memory rebalance policies, because
this is where far memory provides the most benefit. We set
the amount of far memory to 128 GB. Overall, memory-time
always performs slightly better than variable, and variable

EuroSys 20, April 27-30, 2020, Heraklion, Greece

always performs significantly better than uniform. The me-
dian makespan improvement of memory-time over uniform
is 12.4%, and the median improvement of memory-time over
variable is 2%.

We believe memory-time performs only slightly better than
variable for two reasons. First, memory-time uses the vari-
able policy for job admission; therefore, memory-time can
improve performance relative to variable only by choosing
better shrink ratios. Second, memory-time’s improvements
over variable arise from non-linearity in job degradation pro-
files, but most of the jobs in this experiment have close to
linear degradation profiles. This is because at these high m2c
values, most jobs are memory-intensive jobs such as quicksort
and memcached, which have close to linear degradation pro-
files, rather than jobs like spark or kmeans whose profiles are
less linear (see Figure 4). We believe that a greater diversity
of job degradation profiles amongst the memory-intensive
applications would yield larger makespan improvements for
memory-time relative to variable.

7 Related work

Hardware resource disaggregation. The idea of disaggre-
gating hardware resources in datacenters has gained popular-
ity inrecent years. Asaresult, recent work has considered how
to adapt various components of datacenters to support disag-
gregation, proposing new hardware designs [8, 11, 16, 25, 41,
48], operating systems [49, 58], memory abstractions [1, 59],
and network stacks [21], and studying the requirements im-
posed on underlying networks [30]. CFM’s scheduling poli-
cies and faster swapping mechanisms are complimentary to
these efforts.

Far memory access. Several previous systems have used
paging over a network to leverage remote memory [15, 18,
27, 29, 37, 48]. More recent efforts such as HPBD [47] and
Infiniswap [34] leverage RDMA to implement swapping over
the network with lower latency. Though Fastswap also imple-
ments swapping over RDMA, it overcomes several challenges
that limit the latency and throughput of swapping of these ex-
isting systems (§3.2.1). Another recent approach implements
“far memory” by compressing cold pages and storing them
locally in DRAM [43]. With this approach, the authors were
able to store about 20% of their data compressed in DRAM.
However, this approach has a limited ability to address the
ever-increasing demands for memory. Fabric Attached Mem-
ory [42] proposes to use far memory without paging; however,
to the best of our knowledge no publicly available implemen-
tation of hardware exists yet.

Cluster scheduling. Many existing cluster schedulers such
as Decima [51], Tetris [32], and others [31, 33, 38] have con-
sidered how to pack jobs onto compute clusters in order to
maximize for efficient use of cluster resources such as memory,
CPU, disk, and network. Cluster managers such as Borg [61],
Omega [56], YARN [60], and Mesos [36] schedule jobs across

E. Amaro et al.

machines at a large-scale (e.g., thousands of machines), while
also addressing issues such as failures and heterogeneous
hardware. However, none of these approaches specify how to
schedule jobs when their memory can be split across local and
shared remote memory; we expect that Fastswap’s policies
could be incorporated into many of these schedulers.

8 Conclusion

This paper studies the confluence of two trends: the increasing
memory requirements of cluster workloads, and the emer-
gence of memory disaggregation. We focus on two main ques-
tions: (1) can we develop fast swapping techniques and sched-
uling algorithms that make far memory feasible, and (2) can
we characterize some scenarios where the use of far memory
leads to reduced makespans for memory-intensive workloads.
Our results suggest that the answer to both questions is “yes”.

Acknowledgements

We thank our shepherd Sergey Blagodurov, the anonymous
reviewers, James McCauley, and other members of NetSys for
their useful feedback. We thank Peter Gao for his feedback on
an early version of this work. We thank Kostadin Ilov for his
technical support in the testbed cluster. Emmanuel Amaro was
partially supported by a UCMEXUS-Conacyt Fellowship. This
work was funded by NSF Grants 1817115, 1817116, 1704941,
and was supported by Intel, VMware and Microsoft.

References

[1] MarcosK. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel
Gandhi, Stanko Novakovic, Arun Ramanathan, Pratap Subrahmanyam,
Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and Michael
Wei. 2018. Remote Regions: A Simple Abstraction for Remote Memory.
In USENIX Annual Technical Conference (USENIX ATC °18). 775-787.
Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard,
Jayneel Gandhi, Pratap Subrahmanyam, Lalith Suresh, Kiran Tati,
Rajesh Venkatasubramanian, and Michael Wei. 2017. Remote Memory
in the Age of Fast Networks. In ACM Symposium on Cloud Computing
(S0CC’17).121-127. https://doi.org/10.1145/3127479.3131612

[3] Anonymous. Accessed 2019/09/7. Frontswap. https:
//www.kernel.org/doc/html/latest/vm/frontswap.html.

[4] Anonymous. Accessed 2019/1/1. Recommended Intel Xeon SP Memory
Configurations. http://bladesmadesimple.com/wp-content/uploads/
2019/06/Intel_Xeon_SP_Memory_Recommendations_v4.pdf.

[5] Anonymous. Accessed 2019/11/3. Cgroups v2. https:
//www.kernel.org/doc/Documentation/cgroup-v2.txt.

[6] Anonymous. Accessed 2019/9/24. The Machine: A new kind of computer.
https://www.hpl.hp.com/research/systems-research/themachine/.

[7] Anonymous. Accessed 2020/3/5. Intel Optimized LINPACK Benchmark
for Linux. https://software.intel.com/en-us/mkl-linux-developer-
guide-intel-optimized-linpack-benchmark-for-linux.

[8] Anonymous. Accessed 2020/3/5. Intel Rack Scale Design (Intel
RSD). https://www.intel.ca/content/www/ca/en/architecture-and-
technology/rack-scale-design-overview.html.

[9] Anonymous. Accessed 2020/3/5. Machine Learning in Python.
https://scikit-learn.org/stable/.

[10] Anonymous. Accessed 2020/3/5.
https://github.com/tensorflow/benchmarks/.

[2

—

TensorFlow benchmarks.

Can Far Memory Improve Job Throughput?

(11]

[12]

[15

=

(16]

[22

—

(23]

[24]

[25]

[26]

(27]

(28]

Krste Asanovic. 2014. Firebox: A Hardware Building Block for 2020
Warehouse-scale Computers. In Keynote presentation at the USENIX
Conference on File and Storage Technologies (FAST 14).

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. 2012. Workload Analysis of a Large-scale Key-Value Store.
In ACM SIGMETRICS Performance Evaluation Review (SIGMETRICS’12).
53-64. https://doi.org/10.1145/2254756.2254766

Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy
Ranganathan. 2017. Attack of the Killer Microseconds. Commun. ACM
60, 4 (2017), 48-54. https://doi.org/10.1145/3015146

Luiz André Barroso, Urs Holzle, and Parthasarathy Ran-
ganathan. 2018. The Datacenter as a Computer: Designing
Warehouse-scale Machines. Morgan & Claypool Publishers.
https://doi.org/10.2200/S00874ED3V01Y201809CAC046

Haogang Chen, Yingwei Luo, Xiaolin Wang, Binbin Zhang, Yifeng Sun,
and Zhenlin Wang. 2008. A Transparent Remote Paging Model for Vir-
tual Machines. In International Workshop on Virtualization Technology.
I-Hsin Chung, Bulent Abali, and Paul Crumley. 2018. Towards a
Composable Computer System. In International Conference on High
Performance Computing in Asia-Pacific Region (HPC Asia 2018). 137-147.
https://doi.org/10.1145/3149457.3149466

Dan Colglazier, Joseph Jakubowski, and Jamal Ayoubi. Accessed
2019/11/1. Intel Xeon Scalable Family Balanced Memory Configurations.
https://lenovopress.com/lp0742.pdf.

Douglas E. Comer and James Griffioen. 1990. A New Design for
Distributed Systems: The Remote Memory Model. Technical Report
90-977. Purdue University, Department of Computer Science.

CCIX Consortium et al. Accessed 2019/9/24. Cache Coherent Inter-
connect for Accelerators (CCIX). http://www.ccixconsortium.com.
GenZ Consortium et al. Accessed 2019/9/24. GenZ Consortium.
https://www.genzconsortium.org.

Paolo Costa, Hitesh Ballani, Kaveh Razavi, and Ian Kash. 2015.
R2C2: A Network Stack for Rack-scale Computers. In ACM Special
Interest Group on Data Communications (SIGCOMM’15). 551-564.
https://doi.org/10.1145/2785956.2787492

Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin,
Anshuman Gupta, Brian Fahs, Dima Rubinstein, Enrique Cauich
Zermeno, Erik Rubow, James Alexander Docauer, Jesse Alpert, Jing
Ai, Jon Olson, Kevin DeCabooter, Marc De Kruijf, Nan Hua, Nathan
Lewis, Nikhil Kasinadhuni, Riccardo Crepaldi, Srinivas Krishnan,
Subbaiah Venkata, Yossi Richter, Uday Naik, and Amin Vahdat. 2018.
Andromeda: Performance, Isolation, and Velocity at Scale in Cloud
Network Virtualization. In Symposium on Networked Systems Design
and Implementation (NSDI'18). 373-387.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Orion Hodson, and
Miguel Castro. 2014. FaRM: Fast Remote Memory. In Symposium on
Networked Systems Design and Implementation (NSDI’14). 401-414.
Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe,
Siying Dong, Kim Hazelwood, Chris Petersen, Asaf Cidon, and
Sachin Katti. 2018. Reducing DRAM Footprint with NVM in Face-
book. In European Conference on Computer Systems (EuroSys’18).
https://doi.org/10.1145/3190508.3190524

Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and Dejan Milojicic.
2015. Beyond Processor-centric Operating Systems. In Workshop on
Hot Topics in Operating Systems (HotOS’15).

Viacheslav Fedorov, Jinchun Kim, Mian Qin, Paul V. Gratz, and
A. L. Narasimha Reddy. 2017. Speculative Paging for Future NVM
Storage. In International Symposium on Memory Systems (MEMSYS’17).
399-410. https://doi.org/10.1145/3132402.3132409

Edward W. Felten and John Zahorjan. 1991. Issues in the Implementa-
tion of a Remote Memory Paging System. Technical Report. University
of Washington, Department of Computer Science and Engineering.
Werner Fischer. Accessed 2019/11/1. Optimize Memory Performance of
Intel Xeon Scalable Systems. https://www.thomas-krenn.com/en/wiki/

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

EuroSys 20, April 27-30, 2020, Heraklion, Greece

Optimize_memory_performance_of_Intel_Xeon_Scalable_systems.
Michail D. Flouris and Evangelos P. Markatos. 1999. The Network
RamDisk: Using Remote Memory on Heterogeneous NOWs. Cluster
Computing 2, 4 (1999), 281-293.

Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin
Han, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. 2016.
Network Requirements for Resource Disaggregation. In Symposium
on Operating Systems Design and Implementation (OSDI’16). 249-264.
Tonel Gog, Malte Schwarzkopf, Adam Gleave, Robert N. M. Watson, and
Steven Hand. 2016. Firmament: Fast, Centralized Cluster Scheduling at
Scale. In Symposium on Operating Systems Design and Implementation
(OSDI’16). 99-115.

Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram
Rao, and Aditya Akella. 2014. Multi-resource Packing for Cluster
Schedulers. In ACM Special Interest Group on Data Communications
(SIGCOMM’14). 455-466. https://doi.org/10.1145/2619239.2626334
Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and
Janardhan Kulkarni. 2016. Graphene: Packing and Dependency-aware
Scheduling for Data-parallel Clusters. In Symposium on Operating
Systems Design and Implementation (OSDI’16). 81-97.

Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G. Shin. 2017. Efficient Memory Disaggregation with
INFINISWAP. In Symposium on Networked Systems Design and
Implementation (NSDI'17). 649-667.

Md E. Haque, Yong hun Eom, Yuxiong He, Sameh Elnikety, Ri-
cardo Bianchini, and Kathryn S. McKinley. 2015. Few-to-Many:
Incremental Parallelism for Reducing Tail Latency in Interactive
Services. In International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’15). 161-175.
https://doi.org/10.1145/2694344.2694384

Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi,
Anthony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011.
Mesos: A Platform for Fine-grained Resource Sharing in the Data
Center. In Symposium on Networked Systems Design and Implementation
(NSDI’11). 295-308.

Michael R. Hines, Mark Lewandowski, and Kartik Gopalan. 2005.
Anemone: Adaptive Network Memory Engine. = Technical Report
TR-050128. Florida State University, Department of Computer Science.
Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal
Talwar, and Andrew Goldberg. 2009. Quincy: Fair Scheduling for Dis-
tributed Computing Clusters. In ACM Symposium on Operating Systems
Principles (SOSP’09). 261-276. https://doi.org/10.1145/1629575.1629601
Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design
Guidelines for High Performance RDMA Systems. In USENIX Annual
Technical Conference (USENLX ATC ’16). 437-450.

Uksong Kang, Hak-Soo Yu, Churoo Park, Hongzhong Zheng, John
Halbert, Kuljit Bains, S. Jang, and Joo Sun Choi. 2014. Co-architecting
Controllers and DRAM to Enhance DRAM Process Scaling. In The
memory forum.

K. Katrinis, D. Syrivelis, D. Pnevmatikatos, G. Zervas, D. Theodor-
opoulos, I. Koutsopoulos, K. Hasharoni, D. Raho, C. Pinto, F. Espina,
S. Lopez-Buedo, Q. Chen, M. Nemirovsky, D. Roca, H. Klos, and T.
Berends. 2016. Rack-scale Disaggregated Cloud Data Centers: The
dReDBox Project Vision. In Design, Automation and Test in Europe
Conference and Exhibition (DATE’16). 690-695.

Kimberly Keeton. 2017. Memory-driven Computing. In Keynote
presentation at the USENIX Conference on File and Storage Technologies
(FAST’17).

Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal,
Radoslaw Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan
Deng, Junaid Shahid, Greg Thelen, Kamil Adam Yurtsever, Yu Zhao,
and Parthasarathy Ranganathan. 2019. Software-defined Far Memory
in Warehouse-scale Computers. In International Conference on Archi-
tectural Support for Programming Languages and Operating Systems

EuroSys 20, April 27-30, 2020, Heraklion, Greece

(ASPLOS’19). 317-330. https://doi.org/10.1145/3297858.3304053
[44] Seok-Hee Lee. 2016. Technology Scaling Challenges and Opportunities
of Memory Devices. In IEEE International Electron Devices Meeting.
[45] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W.
Mahoney. 2009. Community Structure in Large Networks: Natural
Cluster Sizes and the Absence of Large Well-defined Clusters. Internet
Mathematics 6, 1 (2009), 29-123.
[46] Jing Li, Kunal Agrawal, Sameh Elnikety, Yuxiong He, I-Ting Angelina
Lee, Chenyang Lu, and Kathryn S. McKinley. 2016. Work Stealing for
Interactive Services to Meet Target Latency. In ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP’16).
https://doi.org/10.1145/2851141.2851151
Shuang Liang, Ranjit Noronha, and Dhabaleswar K. Panda. 2005.
Swapping to Remote Memory over InfiniBand: An Approach using
a High Performance Network Block Device. In IEEE International
Conference on Cluster Computing.
Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan,
Steven K. Reinhardt, and Thomas F. Wenisch. 2009. Disaggregated
Memory for Expansion and Sharing in Blade Servers. In Interna-
tional Symposium on Computer Architecture (ISCA’09). 267-278.
https://doi.org/10.1145/1555754.1555789
[49] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung,
Jichuan Chang, Parthasarathy Ranganathan, and Thomas F. Wenisch.
2012. System-level Implications of Disaggregated Memory. In IEEE
Symposium on High-Performance Computer Architecture (HPCA’12).
https://doi.org/10.1109/HPCA.2012.6168955
Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin
Meza, Aman Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and
Onur Mutlu. 2014. Characterizing Application Memory Error Vul-
nerability to Optimize Datacenter Cost via Heterogeneous-reliability
Memory. In International Conference on Dependable Systems and
Networks (DSN’14). 467-478. https://doi.org/10.1109/DSN.2014.50
Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan,
Zili Meng, and Mohammad Alizadeh. 2019. Learning Schedul-
ing Algorithms for Data Processing Clusters. In ACM Special
Interest Group on Data Communications (SIGCOMM’19). 270-288.
https://doi.org/10.1145/3341302.3342080
Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,
William C. Evans, Steve Gribble, Nicholas Kidd, Roman Kononov,
Gautam Kumar, Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas Valancius, Xi
Wang, and Amin Vahdat. 2019. Snap: A Microkernel Approach to
Host Networking. In ACM Symposium on Operating Systems Principles
(SOSP’19).399-413. https://doi.org/10.1145/3341301.3359657
John D McCalpin. 1995. Memory Bandwidth and Machine Balance
in Current High Performance Computers. IEEE Technical Committee
on Computer Architecture Newsletter 2, 19-25 (1995).
Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using
One-sided RDMA Reads to Build a Fast, CPU-efficient Key-value Store.
In USENIX Annual Technical Conference (USENLX ATC’13). 103-114.
Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and
Michael A. Kozuch. 2012. Heterogeneity and Dynamicity of Clouds at
Scale: Google Trace Analysis. In ACM Symposium on Cloud Computing
(S0CC’12). https://doi.org/10.1145/2391229.2391236
Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John
Wilkes. 2013. Omega: Flexible, Scalable Schedulers for Large Compute
Clusters. In European Conference on Computer Systems (EuroSys’13).
351-364. https://doi.org/10.1145/2465351.2465386
Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu,
Phillip B. Gibbons, Michael A. Kozuch, and Todd C. Mowry. 2013.
RowClone: Fast and Energy-efficient in-DRAM Bulk Data Copy and Ini-
tialization. In IEEE/ACM International Symposium on Microarchitecture

(47

—

(48

[t

[50

[

[51

—

(52

—

(53

—

(54

[l

(55

[

(56

—

[57

—

[58]

[59]

[60]

[61]

[62]

[63]

[64]

E. Amaro et al.

(MICRO-46). 185-197. https://doi.org/10.1145/2540708.2540725
Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018.
LegoOS: A Disseminated, Distributed OS for Hardware Resource
Disaggregation. In Symposium on Operating Systems Design and
Implementation (OSDI’18). 69-87.

Shin-Yeh Tsai and Yiying Zhang. 2017. LITE Kernel RDMA Support
for Datacenter Applications. In ACM Symposium on Operating Systems
Principles (SOSP’17). 306-324. https://doi.org/10.1145/3132747.3132762
Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agar-
wal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh
Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay
Radia, Benjamin Reed, and Eric Baldeschwieler. 2013. Apache Hadoop
YARN: Yet Another Resource Negotiator. In ACM Symposium on Cloud
Computing (SOCC’13). https://doi.org/10.1145/2523616.2523633
Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Op-
penheimer, Eric Tune, and John Wilkes. 2015. Large-scale Cluster
Management at Google with Borg. In European Conference on Computer
Systems (EuroSys’15). https://doi.org/10.1145/2741948.2741964

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson,
Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R.J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, ilhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold,
Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Anténio H. Ribeiro, Fabian Pedregosa, Paul van
Mulbregt, and SciPy 1.0 Contributors. 2019. SciPy 1.0-Fundamental
Algorithms for Scientific Computing in Python. arXiv e-prints (July
2019). arXiv:1907.10121

Carl A. Waldspurger, Trausti Saemundson, Irfan Ahmad, and Nohhyun
Park. 2017. Cache Modeling and Optimization Using Miniature
Simulations. In USENIX Annual Technical Conference (USENLX ATC ’17).
487-498.

Gerhard J. Woeginger. 1997. There is No Asymptotic PTAS for Two-
dimensional Vector Packing. Inform. Process. Lett. 64, 6 (1997), 293-297.

	Abstract
	1 Introduction
	2 Context
	2.1 Memory Provisioning
	2.2 Deployment Scenarios

	3 CFM Overview
	3.1 Approach
	3.2 Challenges and Contributions

	4 Fastswap
	4.1 RDMA Backend
	4.2 Page Fault Handler
	4.3 Memory Reclaim

	5 Far Memory-Aware Scheduler
	5.1 Job Degradation Profiles
	5.2 Far Memory Scheduling Policies
	5.3 Scheduler Implementation

	6 Evaluation
	6.1 Experimental Setup
	6.2 Testbed Performance
	6.3 Rack-scale Evaluation
	6.4 Microbenchmarks

	7 Related work
	8 Conclusion
	References

