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Abstract

Motivation: Many important cellular processes involve physical interactions of proteins. Therefore, de-
termining protein quaternary structures provides critical insights for understanding molecular mecha-
nisms of functions of the complexes. To complement experimental methods, many computational meth-
ods have been developed to predict structures of protein complexes. One of the challenges in compu-
tational protein complex structure prediction is to identify near-native models from a large pool of gen-
erated models.

Results: We developed a convolutional deep neural network-based approach named DOVE (DOcking
decoy selection with Voxel-based deep neural nEtwork) for evaluating protein docking models. To eval-
uate a protein docking model, DOVE scans the protein-protein interface of the model with a 3D voxel
and considers atomic interaction types and their energetic contributions as input features applied to the
neural network. The deep learning models were trained and validated on docking models available in
the ZDock and DockGround databases. Among the different combinations of features tested, almost
all outperformed existing scoring functions.

Availability: Codes available at http://github.com/kiharalab/DOVE http://kiharalab.org/dove/

Contact: dkihara@purdue.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The three-dimensional (3D) structure of a protein complex provides
fundamental information about the physicochemical nature of the protein
complex, which facilitates a better understanding of the molecular
mechanisms of its biological function in a biological pathway. Although
the experimental structural biology community, now with increasingly
powerful techniques in cryo-electron microscopy (cryo-EM), has
determined protein complex structures at a steady pace, the structures of
many important protein interactions have not yet been determined. To aid
the experimental efforts, computational modeling approaches for protein

complex structures, often called protein docking methods, have been
actively developed over the past two decades.

Protein docking methods are roughly classified into two categories,
template-based modeling methods, which wuse known global
(Anishchenko, et al., 2015) or local (Tuncbag, et al., 2011) complex
structures, and ab initio methods, which assemble two individual protein
structures without referring to known complex structures. Many ab initio
methods exist, the details of which vary greatly: Protein structure
representations used include molecular surface- (Venkatraman, et al.,
2009) and voxel-based (Pierce, et al., 2011). For docking pose search, Fast
Fourier Transform (Katchalski-Katzir, et al., 1992; Padhorny, et al., 2016)
is a popular choice; other methods, e.g. geometric hashing (Fischer, et al.,

1995; Venkatraman, et al., 2009), and particle swarm optimization (Moal
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and Bates, 2010) have also been successful. To take protein flexibility into
account, normal mode analysis (Oliwa and Shen, 2015) and protein
dynamics simulation (Gray, et al., 2003) have been applied. Methods have
also been developed that extend conventional pairwise docking, such as
multiple-chain docking (Esquivel-Rodriguez, et al., 2012; Ritchie and
Grudinin, 2016; Schneidman-Duhovny, et al., 2005) peptide-protein
docking (Alam, et al., 2017; Kurcinski, et al., 2015), and docking with
disordered proteins (Peterson, et al., 2017), docking order prediction
(Peterson, et al., 2018), and docking modeling for cryo-EM maps
(Esquivel-Rodriguez and Kihara, 2012; van Zundert, et al., 2015).

Although substantial improvements have been achieved in ab initio
protein docking, there are still unsolved shortcomings in existing methods.
One of the foremost shortcomings is the scoring of docking models
(decoys) (Moal, et al., 2013). Since a typical ab initio method produces a
large decoy set that only includes a small number of near-native models
(hits), an accurate scoring function for selecting hits critically influences
the performance of docking. Recognizing the importance of the scoring,
the Critical Assessment of Prediction of Interactions (CAPRI), the
community-wide docking prediction experiment (Lensink, et al., 2018),
has a specific category for evaluating scoring methods, where participants
are asked to select ten plausible decoys from over thousands of decoys that
the organizers provide.

Approaches that have been applied for scoring decoys include physics-
based potentials (Gray, et al., 2003; Kingsley, et al., 2016), interface
shape-based scores (Venkatraman, et al., 2009), knowledge-based
statistical potentials (Huang and Zou, 2008; Lu, et al., 2003), and machine
learning methods (Fink, et al., 2011) and evolutionary profiles of interface
residues (Nadaradjane, et al., 2018).

In this work, we applied a 3D convolutional neural network (CNN) to
the problem of distinguishing near-native decoys from incorrect decoys.
CNNs have been very successful in 2D (Krizhevsky, et al., 2012) and 3D
(Maturana and Scherer, 2015; Subramaniya, et al., 2019) image
recognition tasks (LeCun, et al., 2015), which motivated us to apply it to
docking decoy hit recognition. In the bioinformatics field, 3D CNNs have
been applied to drug-protein interaction scoring (Ragoza, et al., 2017),
protein functional site analysis (Torng and Altman, 2017), quality
assessment of single protein structure models (Derevyanko, et al., 2018;
Pages, et al., 2019), and secondary structure detection in cryo-EM maps
(Subramaniya, et al., 2019). To the best of our knowledge, this is the first
work to apply CNNss to the protein docking problem. Our method, DOVE
(DOcking decoy selection with Voxel-based deep neural nEtwork), takes
a docking decoy structure as input, maps the structure into a 3D grid, scans
the protein-protein interface with a 3D cube, examining inter-atom
interaction patterns and their energetic contributions, and judges if the
decoy is close to the native structure or not. Compared to popular scoring
functions used for selecting docking decoys, DOVE showed substantially
better performance.

2 Methods

We first explain the datasets used for training and testing DOVE, as well
as the statistical potentials used as input features of DOVE. Subsequently,
we describe the network architecture and the training process of DOVE.

2.1. Datasets

The primary dataset used was based on the ZDOCK benchmark dataset
ver. 4.0 (Hwang, et al., 2010). For each of the 178 protein complexes in
the dataset, there are on average 53,999 decoys (minimum: 53,962;
maximum: 54,000). For each decoy, we computed the root-mean square
deviation (RMSD) of the interface residues (iRMSD, interface residues
are defined as those within 10.0 A of any residue of the other protein),
ligand RMSD (IRMSD) and the fraction of the native contacting residue
pairs (fnat; residue pairs with any heavy atom within 5.0 A) to the native
structure as well as two statistical potential values, GOAP (Zhou and
Skolnick, 2011) and ITScore (Huang and Zou, 2008), both of which were
used as features to characterize decoys. A protein complex and all its
decoys were discarded if computing GOAP or ITScore failed or iRMSD,
IRMSD, or fnat could not be computed due to inconsistency of the
sequence in the structures provided in the ZDOCK dataset from the native
complex structure in PDB (Berman, et al., 2000), or if. After the removal
of complexes, 120 complexes remained.

For each protein complex in ZDOCK benchmark, the numbers of
correct decoys, defined as decoys of acceptable quality or better as defined
by the CAPRI criteria using iRMSD, fnat, and IRMSD of decoys (Lensink,
et al., 2018), and incorrect decoys are highly imbalanced, which makes
training the network model difficult. Thus, we augmented the number of
correct decoys by placing each of them in 24 orientations on a grid with
90 degree rotations around the Z-axis of the original coordinates in the
PDB file (thus four orientations) and with each of the six faces that was
put upwards. With this augmentation, each of 120 complexes has now on
average 8,909.4 correct decoys with the minimum 264 and the maximum
60,192. Then, we added an equal number of incorrect models to the correct
models for each complex. This augmented decoy set was only used in the
training. For testing, we report the accuracy using the original number of
correct models with the same number of incorrect models as used in the
training. In total, the training dataset of the 120 complexes include
1,069,128 correct and incorrect decoys, respectively. For testing, the
number of correct decoys was 44,547.

To remove redundancy, we grouped the 120 complexes using TM-
Score (Zhang and Skolnick, 2004). Two complexes were put in the same
group if at least one pair of proteins from the two complexes had a TM-
score of over 0.5 and sequence identity of 30% or higher. This resulted in
63 groups (Supplementary Table S1). These groups were split into four
subgroups to perform four-fold cross validation (Supplementary Table
S2). Three subsets were used for training while remaining one subset was
used for testing. Thus, for each feature combination, we have four
different models. Of the training set, 80% of the decoys were used for
training parameters under a given hyper-parameter setting and the remain-
ing 20% were used as the validation set, which was used to determine the
best hyper-parameter set for the training set.

In addition to the ZDOCK dataset, we also used the DockGround
benchmark dataset (Liu, et al., 2008) for testing. Since we found decoys
in the dataset often have residue pairs that are too close, we relaxed all the
structures by Rosetta (Conway, et al., 2014). DockGround includes 58
target complexes each with on average 9.83 correct and 98.5 incorrect

decoys.

2.2. Knowledge-based statistical contact potentials
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We used two distance-dependent contact potentials, GOAP and ITScore,
to characterize energetic contributions of atoms at the docking interfaces
of decoys. Both potentials were derived from statistics of atom pairs in
known protein structures but using different ideas. GOAP considers angles
as well as the distances of side-chains of interacting residues while
ITScore was numerically optimized to be able to distinguish native struc-
tures from incorrect decoys. We chose these two potentials because they
perform well in selecting docking decoys (Peterson, et al., 2018).

We modified the original codes of GOAP and ITScore so that they
output the binding energy of each atom, which is the sum of the interaction
energy between the atom and all other atoms within 30 A in the decoy.
Using this modified output, we mapped the atom-wise interaction energy
to each position of interface atoms of a decoy. Interface atoms are defined
as those which locate within 10 A of any atom of the other protein in the

complex.

2.3. Network architecture of DOVE

DOVE uses the convolutional neural networks (CNN) to capture features
of protein interactions in decoys. Figl. Shows the architecture of the net-
work.
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Fig. 1. The network architecture of DOVE. DOVE takes atom positions and potentials
in a 20*20*20 input cube that is placed at the docking interface of a decoy and predicts if
the decoy is in the CAPRI acceptable quality or not. 100, 200, 200, 400, 400 are the number
of filters in each layer. 20 (40), 18, 16, 8, 6, 3 are the output cube size of each layer. 10800,
1000, 100 denotes the number of neurons for fully connected layer. Block means that the
data is a 3D cube; Flat is to make a 1D vector from a 3D cube; Pool is a max-pooling, and
FC is fully-connected network. Dropout of 0.3 was applied to FC.

DOVE takes a docking decoy as an input and judges if the decoy has
an acceptable quality or not based on the CAPRI criteria (Lensink, et al.,
2018). The actual input data for a decoy is atom positions and atom-wise
statistical potential values within a 20> A3 or 40° A? size cube that is placed
at the protein-protein docking interface. The cubes are centered on the in-
terface, where the interface is defined as the set of heavy atoms that locate
within 10.0 A to any heavy atoms of the other protein in the complex. We
considered positions of carbon, oxygen, nitrogen, and other atoms at the
interface separately in four different channels (the left part of the network
in Fig. 1). For a channel of an atom type, the number of the atoms of the
type is counted and stored in each voxel of a size of 13 A® within the cube
of 20 A% or voxels of 23 A% within the cube of 40° A® (thus the input data
size is always 20%). The deep learning models that use the 20° A® or the
403 A3 cube are referred as DOVE-Atom?20 or -Atom40, respectively.

Furthermore, as described in the previous section, we used the contact
potentials, GOAP and ITScore, as input features. Fig. 2 illustrates how the
GOAP potential mapped to atoms distribute on a protein surface. We
visualized GOAP mapped on atoms in a ligand protein in the correct (the
pose on the left in Fig. 2A, Fig. 2B) and in an incorrect pose (the pose on
the right in Fig. 2A, Fig. 2C). As shown in the color scale, in the correct
bound form binding energies of atoms at the interface become more

favorable upon docking (blue), while interface atoms in the incorrect pose
have more unfavorable energy.

Fig. 2. Example of atom-wise contact potential mapped on protein surface. GOAP was
mapped to a ligand protein (ones with the surface representation) when it is in the isolated
state and in a bound state, and the difference between the two states was visualized in a
color scale. Blue shows the atoms have more preferable binding energy in the bound form
relative to the isolated form while red shows the binding energy went worse in the bound
form. The complex used is pancreatic a-amylase complexed with an inhibitor, tendamistat
(PDB ID: 1bvn). A, the receptor, a-amylase, is shown in the ribbon representation in gray.
The inhibitor is shown in the surface representation in two poses: On the left, the inhibitor
in the acceptable bound pose (iIRMSD: 1.27 A; fnat: 0.71); right, in an incorrect pose
(iRMSD: 20.6 A; fnat: 0.0). B, the binding interface surface (facing toward us) of the in-
hibitor in the acceptable pose. C, the interface in the incorrect pose.

Similar to how the atom-based features were represented, the atom-
wise energy of atoms within each voxel are summed and assigned as a
feature value of the voxel in the cube. The deep learning models using
GOAP and ITScore are referred to as DOVE-GOAP and DOVE-ITScore,
respectively. For using the contact potentials, we used the cube of 40> A3,
We also tested models with two features, a combination of Atom40 and
GOAP (DOVE-Atom40+GOAP), Atom40 and ITScore (DOVE-
Atom40+ITScore), and GOAP and ITScore (DOVE-GOAP+ITScore).
Finally, we also tested with all the features, DOVE-
Atom40+GOAP+ITScore. Values of a feature (i.e. channel) are
normalized so that the distribution is zero-centered by considering
maximum and minimum values of the feature in the training dataset.

As shown in Fig. 1, the input channels are connected to two
convolutional layers with the size of 18° and 16°, respectively, each of
which has 100 and 200 filters of the size of 3*3*3. The CNN layers were
connected to a max pooling layer, followed by another set of convolutional
layers followed by a max pooling layer. Then, the outputs from these
layers are fed to fully connected (FC) layers followed by a sigmoid
function, which finally outputs the probability that the input decoy has an
acceptable model quality. The overall architecture is similar to the one
used in an earlier work of local protein structure analysis by Torng &
Altman (2017). DOVE was implemented using the Keras (Chollet, 2015)
and Tensorflow (Abadi, et al., 2016) packages.

2.4. Training the deep learning models

For training, we used cross entropy (Goodman, 2001) as the loss function.
nadam (Dozat, 2016) with an adaptive learning rate and the default decay
rate of 0.004 was used for optimizing the weights. Weights were initial-
ized using the glorot-uniform (Glorot and Bengio, 2010) to have a zero-
centered distribution for each network layer. Bias was initialized to 0 for
all layers (Glorot and Bengio, 2010). Dropout (Srivastava, et al., 2014) of
0.3 and L2 regularization was used for the FC layers.
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As described in the Dataset section, we performed four-fold cross
validation. The resulting hyper-parameter combinations are provided in
Supplementary Table S3. Since a decoy set of a protein complex contains
many more incorrect models than acceptable models, we balanced the data
of the two classes by choosing the same number of acceptable quality
models as incorrect models in every batch for training. The batch size was

set to 128. Usually the training converged in around 10 epochs.

3 Results

We tested DOVE first on the ZDOCK benchmark dataset with the four-
fold cross validation. Then, the trained model was further tested on the
DockGround benchmark dataset.

3.1. Performance on the ZDOCK benchmark dataset

We compared the performance of DOVE with eight different feature com-
binations on the test set in comparison with five existing scoring functions,
GOAP, ITScore, Zrank (Pierce and Weng, 2007), Zrank2 (Pierce and
Weng, 2008), and IRAD (Vreven, et al., 2011). During the cross-valida-
tion process, DOVE’ accuracies were consistent over the four training and
validation subsets (Supplementary Figure S1). The average standard devi-
ation of the accuracy of the four training sets and the validation sets were
0.0298 and 0.0300, respectively. Determined hyper-parameter values
were also very consistent across the four-fold validation (Supplementary
Table S3). Thus, throughout the training process results of accuracy and
identified parameters were very consistent and stable.

Fig. 3 shows the fraction of target complexes in the ZDOCK dataset
for which a method produced at least one correct (i.e. CAPRI acceptable)
model within top k rank. GOAP and ITScore were run in two different
ways; one as originally designed and the other by taking interaction scores
only from interface regions that are within 10.0 A of interacting protein
(GOAP/ITScore-Interface). Thus, in total there were seven existing refer-
ence methods DOVE was compared against.

Overall, DOVE (dashed lines) was more successful than the existing
methods in ranking correct models within earlier ranks in many target
complexes. For example, at the top 10 (x=10), six out of eight feature
combinations of DOVE had a higher hit rate than any of the existing scores
(Fig. 3A). The remaining two combinations (DOVE-Atom40-ITScore and
DOVE-GOAP-ITScore) were better than all the existing scores except
IRAD. The results were almost the same when the 63 groups of target
complexes rather than individual 120 complexes were considered to com-
pute the hit rate (Fig. 3B). In general, the DOVE variations showed higher
hit rate than existing scoring functions. DOVE-Atom20 and DOVE-
Atom40 were consistently the two best scores in both Fig. 3A and 3B.
Among the existing scores, IRAD performed the best and GOAP showed
the lowest accuracy.

We also examined the hit rates of models of medium quality, a better
quality class than the acceptable quality in the CAPRI criteria (Supple-
mentary Figure S2). An issue when using medium quality models is that
they constitute a small fraction, 11.3% (5,046 out of 44,547), of acceptable
quality models. Among the 120 complexes in the dataset, 21 of them had
0 medium quality models; these targets were excluded in the evaluation.
Overall hit rate of medium models (see Supplementary Figure S2) was

lower than the hit rate for acceptable models, which probably occurred due

to the small number of medium quality models in decoy sets. Relative per-
formance of the methods were similar with Figure 3 except that irad,
ZRANK, and ITScore came among top in performance. When top 10 mod-
els were considered, the highest hit rate was marked by DOVE-ITScore,
followed by irad, DOVE-ATOM40, DOVE-ATOM20, and ZRANK in
this order. Results for DOVE would improve if it is trained to distinguish
medium quality models from incorrect models, but the current dataset in-

cludes a too small number of medium quality models for training.

10
‘l,’

08 0
v
157
&
&

06{ ¥

@ if

3 L/

&

H

0.4

02

0.0
0 5 10 15 20 25 30 35 40 45 50

Top ranks considered

10

o8

2

5

= 06

£

a

E

B

o

04

02

o 5 10 15 20 25 30 35 40 a5 50
Top ranks considered
—— GOAP Dove-ATOM40
GOAP-Interface Dove-GOAP
——— [TScore ===~ Dove-ITScore
—— [TScore-Interface Dove-ATOMA40+GOAP
—— ZRANK Dove-ATOM40+(TScore
— ZRANK2 Dove-GOAP+ITScore
irad Dove-ATOM40+GOAP+ITScore

Dove-ATOM20

Fig. 3. Comparison on the ZDOCK Benchmark dataset. A, The fraction complexes
among the 120 complexes in the benchmark set for which each method selected at least one
acceptable model (within top x scored models) was shown. Results shown are from test
sets. In addition to DOVE with eight different feature combinations, performance of GOAP,
GOAP-Interface, ITScore, ITScore-Interface, Zrank, Zrank2, and irad are shown. B, Con-
sidering the similar complexes that were grouped into 63 groups (Supplementary Table S1),
the hit rates for complexes in each group were averaged and re-averaged over the 63 groups
for each x.

We have also computed the enrichment factor (EF) as the evaluation
measure of decoy selection (Fig. 4). The EF is defined as the fraction of
correct hits within the models up to the score rank x that is currently con-
sidered relative to the total fraction of the correct models in the entire de-
coys of the target complex. Thus, the EF reduces the bias to the evaluation
by using the hit rate (Fig. 3) that is caused by the difference of the number
of correct decoys in the decoy set of each target. As shown by the plots
(Figs. 3 and 4), essentially the consistent results in the relative perfor-
mance of the scoring functions was observed in terms of the EF. Quanti-
tatively, the margin actually increased between the top feature combina-
tions, DOVE-Atom40, DOVE-Atom20, and DOVE-ITScore, and scores
that follow them.
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Fig. 4. Comparison of the enrichment factor (EF) on the ZDOCK Benchmark dataset.
A, For each method, the average EF over the 120 complexes in the benchmark set were
plotted considering the top x ranks. B, the EFs of complexes in the same group was aver-
aged, which was further averaged over the 63 groups.

To illustrate how DOVE classifies decoys, we used t-SNE to visualize
DOVE’s encoding of decoys (Fig. 5). Two features, DOVE-Atom40 and
DOVE-GOAP, which performed relatively well among other feature sets
(Figs. 2 and 3) were used for this illustration. In both plots, most of the
acceptable models (black circles) are clearly separated from a large cluster
of incorrect models (crosses), indicating that the networks have success-
fully distinguished the two decoy groups.

Since GOAP and ITScore were used as original independent scores
and also as atom-based features of DOVE, we compared performance of
these two schemes in Fig. 6. For each target complex, the fraction of cor-
rect models within the top 20 models ranked by GOAP/ITscore and Dove-
GOAP/DOVE-ITScore were plotted on the x- and y-axis, respectively.
DOVE selected more correct models than GOAP and ITScore for 93 and
85 targets, respectively, out of 120 target complexes. Both GOAP and
ITScore evaluate a structure model by the sum of pairwise interaction en-
ergies of atoms while DOVE convolves atom-wise energy mapped at the
docking interface by CNN. Therefore, the results imply that DOVE is cap-
turing multi-body interaction energy patterns at the interfaces of correct
and incorrect decoys.

On the other hand, there are cases where DOVE made results worse
than GOAP and ITscore (data points at bottom right of Fig. 6A and 6B).
Although it is not easy to understand why a deep learning method worked
or did not work on particular input data, we observed that DOVE scores
for the top 20 scoring decoys were higher and more consistent for cases

that DOVE-GOAP/-ITscore showed better performance (i.e. top left in the
plots) than cases where DOVE deteriorated (bottom right). The average
and the standard deviation of the top 20 scores by DOVE-GOAP/-ITscore
when DOVE showed substantial improvement (x < 0.3 & y > 0.7) were
avg: 0.78/0.79, std: 0.04/0.04 (Fig. 6A/6B) whereas the values were avg:
0.72/0.69, std: 0.11/0.06 (Fig. 6A/6B) when DOVE did not work (x >0.7
& y < 0.3). Thus, DOVE was less confident (smaller average) and less
consistent (larger std. deviation) when it did not work well.
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Fig. 5. t-SNE plots of decoy selection. Decoys from five target complexes, 1US7, 1BKD,
1HEL, 20T3, 2CFH, which include 817 acceptable models (solid circles) and 1087 incor-
rect models (crosses) were used. Encoded features of the decoys taken from the output of
the fully connected network in Fig. 1 were projected into a two-dimensional space using t-
SNE. A, DOVE-Atom40 was used for the feature set. B, DOVE-GOAP.
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Fig. 6. Comparison of the fraction of correct models within top 20 ranked models by
GOAP/ITScore and DOVE-GOAP/DOVE-ITScore. Each data point represents a target
complex from the 120 complexes in the ZDOCK dataset. Since top 20 models were con-
sidered, the fractions of correct models have discrete values from 0, 0.05 = 1/20, 0.1, ,, 1.0
= 20/20. A, Comparison between GOAP (x-axis) and DOVE-GOAP (y-axis). DOVE-
GOAP was better than GOAP for 93 cases, tied for 5 cases, and worse in 22 cases. B,
Comparison between ITScore (x-axis) and DOVE-ITScore (y-axis). DOVE-ITScore was
better than ITScore for 85 cases, tied for 14 cases, and worse for 21 cases. Comparison on
top 10 and top 50 ranked decoys are shown in Supplementary Figure S3.
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3.2. Testing on the DockGround benchmark dataset

We further tested DOVE on another dataset, DockGround (Liu, et al.,
2008). From the four-fold cross validation on the ZDOCK dataset, we
have four deep learning models for each feature combination. Thus, here,
for evaluating a decoy we considered the average probability of the four
models. The accuracies of the four models do not vary much as shown in
Supplementary Fig. S3. The average standard deviation of the top10 hit
rates by the eight feature combinations was 0.03.

In Fig. 7, the hit rate results were shown in two panels, panel A report-
ing results for 33 target complexes which are independent from the
ZDOCK set while panel B shows results on the remaining 25 targets that
are grouped to at least one target in the ZDOCK set (i.e. at least one pair
of proteins from the two complexes had a TM-score of over 0.5 and
sequence identity of 30% or higher). In both panels, DOVE performed
consistently better than the existing scores as we observed on the ZDOCK
benchmark dataset. Particularly, consistent with the results on the ZDOCK
dataset (Figs. 2 & 3), DOVE with Atom40 showed the top performance
on the independent dataset (Fig. 7A). On this dataset, DOVE-Atom40
showed an outstanding hit rate at early ranks relative to other scoring func-
tions (Fig. 7A). At the rank 5, DOVE-Atom40 had a hit rate of 66.7%, and
reached a 1.0 rate at the rank of 7. On the dataset of complexes that are
similar to ZDOCK, Atom40 was among top performing feature combina-
tions together with DOVE-GOAP and DOVE-Atom20.

Hit Rate
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Top ranks considered

Hit Rate
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Fig.7. Decoy selection performance on the DockGround dataset. A, 33 target complexes
that are independent from the ZDOCK benchmark dataset. B, 25 targets that have structural

similarity to any of the complexes in ZDOCK set.

4 Discussion

In this work we developed DOVE for docking decoy selection, which uses
CNN to capture multi-body physical and energetic interactions patterns
that are observed at protein docking interface. In protein structure predic-
tion, the importance of considering multi-body (atom or residues) interac-
tions has been long discussed and often actually shown to be effective in
selecting native-like protein structure models (Gniewek, et al., 2011; Kim
and Kihara, 2014; Kim and Kihara, 2016; Olechnovic and Venclovas,
2017). Each such method used an original idea to capture multiplicity of
interactions. When it comes to capturing interaction multiplicity in molec-
ular structures, 3D CNN is very natural and easy to use as we did in this
work. Therefore, 3D CNN will continue to be actively applied to various
tasks of protein structural bioinformatics for several more years. We have
made the source code available on GitHub (https:/github.com/ki-
haralab/DOVE), and a webserver of DOVE is available at http:/ki-
haralab.org/dove/. Among the feature combinations we tested, we recom-
mend users to use the top-performing features in Figs. 3-5, which include
DOVE-Atom20 and DOVE-Atom40. The source code also allows users
to add new input features of decoys.

The current version of DOVE uses essentially two types of features,
atom types and their locations and the atom-wise statistical potentials. It
is expected that other structural features, such as sequence conservation
and flexibility of atoms from molecular dynamics simulation etc. can fur-
ther improve the performance. Also, a different network architecture, such
as ResNet (He, et al., 2016), may also contribute to exhibit a higher accu-
racy.

Funding

This work has been partly supported by the National Institutes of Health
(RO1IGM123055), the National Science Foundation (DMS1614777, CMMI1825941,
MCB1925643).

Conflict of Interest: none declared.

References

Abadi, M., et al. (2016) Tensorflow: Large-scale machine learning on heterogeneous
distributed systems, arXiv preprint arXiv:1603.04467.

Alam, N., et al. (2017) High-resolution global peptide-protein docking using
fragments-based PIPER-FlexPepDock, PLoS Comput Biol, 13, €1005905.
Anishchenko, 1., ef al. (2015) Structural templates for comparative protein docking,
Proteins, 83, 1563-1570.

Berman, H.M., et al. (2000) The Protein Data Bank, Nucleic Acids Res, 28, 235-242.
Chollet, F. (2015) Keras.

Conway, P., et al. (2014) Relaxation of backbone bond geometry improves protein
energy landscape modeling, Protein Sci, 23, 47-55.

Derevyanko, G., et al. (2018) Deep convolutional networks for quality assessment
of protein folds, Bioinformatics, 34, 4046-4053.

Dozat, T. (2016) Incorporating nesterov momentum into adam.
Esquivel-Rodriguez, J. and Kihara, D. (2012) Fitting Multimeric Protein Complexes
into Electron Microscopy Maps Using 3D Zernike Descriptors, J Phys Chem B, 116,
6854-6861.

Esquivel-Rodriguez, J., Yang, Y.D. and Kihara, D. (2012) Multi-LZerD: Multiple
protein docking for asymmetric complexes, Proteins, 80, 1818-1833.


http://kiharalab.org/dove/
http://kiharalab.org/dove/

Protein Docking Evaluation with Deep Learning

Fink, F., et al. (2011) PROCOS: computational analysis of protein-protein
complexes, J Comput Chem, 32, 2575-2586.

Fischer, D., et al. (1995) A geometry-based suite of molecular docking processes, J
Mol Biol, 248, 459-477.

Glorot, X. and Bengio, Y. (2010) Understanding the difficulty of training deep
feedforward neural networks. Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics. pp. 249-256.

Gniewek, P., et al. (2011) Multibody coarse-grained potentials for native structure
recognition and quality assessment of protein models, Proteins, 79, 1923-1929.
Goodman, J. (2001) Classes for fast maximum entropy training. Acoustics, Speech,
and Signal Processing, 2001. Proceedings.(ICASSP'01). 2001 IEEE International
Conference on. IEEE, pp. 561-564.

Gray, J.J., et al. (2003) Protein-protein docking with simultaneous optimization of
rigid-body displacement and side-chain conformations, J Mol Biol, 331, 281-299.
He, K., et al. (2016) Deep residual learning for image recognition, 2016 [EEE
Conference on Computer Vision and Pattern Recognition (CVPR), 770-778.

Huang, S.Y. and Zou, X. (2008) An iterative knowledge-based scoring function for
protein-protein recognition, Proteins, 72, 557-579.

Hwang, H., et al. (2010) Protein-protein docking benchmark version 4.0, Proteins,
78,3111-3114.

Katchalski-Katzir, E., ef al. (1992) Molecular surface recognition: determination of
geometric fit between proteins and their ligands by correlation techniques,
Proceedings of the National Academy of Sciences, 89, 2195-2199.

Kim, H. and Kihara, D. (2014) Detecting local residue environment similarity for
recognizing near-native structure models, Proteins, 82, 3255-3272.

Kim, H. and Kihara, D. (2016) Protein structure prediction using residue- and
fragment-environment potentials in CASP11, Proteins, 84 Suppl 1, 105-117.
Kingsley, L.J., et al. (2016) Ranking protein-protein docking results using steered
molecular dynamics and potential of mean force calculations, J Comput Chem, 37,
1861-1865.

Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012) Imagenet classification with
deep convolutional neural networks, Advances in Neural Information Processing
Systems, 1, 1097-1105.

Kurcinski, M., et al. (2015) CABS-dock web server for the flexible docking of
peptides to proteins without prior knowledge of the binding site, Nucleic Acids Res,
43, W419-424.

LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep learning, Nature, 521, 436-444.
Lensink, M.F., et al. (2018) The challenge of modeling protein assemblies: the
CASPI12-CAPRI experiment, Proteins, 86 Suppl 1, 257-273.

Liu, S., Gao, Y. and Vakser, [.A. (2008) Dockground protein—protein docking decoy
set, Bioinformatics, 24, 2634-2635.

Lu, H., Lu, L. and Skolnick, J. (2003) Development of unified statistical potentials
describing protein-protein interactions, Biophys J, 84, 1895-1901.

Maturana, D. and Scherer, S. (2015) VoxNet: A 3D convolutional neural network
for real-time object recognition, /EEE/RSJ International Conference on Intelligent
Robots and Systems, 922-928.

Moal, I.H. and Bates, P.A. (2010) SwarmDock and the use of normal modes in
protein-protein docking, /nt J Mol Sci, 11, 3623-3648.

Moal, I.H., et al. (2013) The scoring of poses in protein-protein docking: current
capabilities and future directions, BMC Bioinformatics, 14, 286.

Nadaradjane, A.A., Guerois, R. and Andreani, J. (2018) Protein-Protein Docking
Using Evolutionary Information, Methods Mol Biol, 1764, 429-447.

Olechnovic, K. and Venclovas, C. (2017) VoroMQA: Assessment of protein

structure quality using interatomic contact areas, Proteins, 85, 1131-1145.

Oliwa, T. and Shen, Y. (2015) cNMA: a framework of encounter complex-based
normal mode analysis to model conformational changes in protein interactions,
Bioinformatics, 31, 1151-160.

Padhorny, D., et al. (2016) Protein-protein docking by fast generalized Fourier
transforms on 5D rotational manifolds, Proc Natl Acad Sci U S A, 113, E4286-4293.
Pages, G., Charmettant, B. and Grudinin, S. (2019) Protein model quality assessment
using 3D oriented convolutional neural networks, Bioinformatics.

Peterson, L.X., er al. (2017) Modeling disordered protein interactions from
biophysical principles, PLoS Comput Biol, 13, e1005485.

Peterson, L.X., et al. (2018) Improved performance in CAPRI round 37 using LZerD
docking and template-based modeling with combined scoring functions, Proteins, 86
Suppl 1, 311-320.

Peterson, L.X. et al. (2018) Modeling the assembly order of multimeric
heteroprotein complexes, PLoS Comput Biol, 14, ¢1005937.

Pierce, B. and Weng, Z. (2007) ZRANK: reranking protein docking predictions with
an optimized energy function, Proteins, 67, 1078.

Pierce, B. and Weng, Z. (2008) A combination of rescoring and refinement
significantly improves protein docking performance, Proteins: Structure, Function,
and Bioinformatics, 72, 270-279.

Pierce, B.G., Hourai, Y. and Weng, Z. (2011) Accelerating protein docking in
ZDOCK using an advanced 3D convolution library, PloS one, 6, €24657.

Ragoza, M., et al. (2017) Protein-Ligand Scoring with Convolutional Neural
Networks, J Chem Inf Model, 57, 942-957.

Ritchie, D.W. and Grudinin, S. (2016) Spherical polar Fourier assembly of protein
complexes with arbitrary point group symmetry, J Appl Crystallogr, 49, 158-167.
Schneidman-Duhovny, D., et al. (2005) Geometry-based flexible and symmetric
protein docking, Proteins, 60, 224-231.

Srivastava, N., ef al. (2014) Dropout: a simple way to prevent neural networks from
overfitting, Journal of machine learning research, 15, 1929-1958.

Subramaniya, S.R.M.V., Terashi, G. and Kihara, D. (2019) Protein Secondary
Structure Detection in Intermediate Resolution Cryo-EM Maps Using Deep
Learning, Nat Methods, in press.

Torng, W. and Altman, R.B. (2017) 3D deep convolutional neural networks for
amino acid environment similarity analysis, BMC Bioinformatics, 18, 302.
Tuncbag, N., et al. (2011) Predicting protein-protein interactions on a proteome scale
by matching evolutionary and structural similarities at interfaces using PRISM, Nat
Protoc, 6, 1341-1354.

van Zundert, G.C.P., Melquiond, A.S.J. and Bonvin, A. (2015) Integrative Modeling
of Biomolecular Complexes: HADDOCKing with Cryo-Electron Microscopy Data,
Structure, 23, 949-960.

Venkatraman, V., et al. (2009) Protein-protein docking using region-based 3D
Zernike descriptors, BMC Bioinformatics, 10, 407.

Vreven, T., Hwang, H. and Weng, Z. (2011) Integrating atom-based and residue-
based scoring functions for protein-protein docking, Protein Sci, 20, 1576-1586.
Zhang, Y. and Skolnick, J. (2004) Scoring function for automated assessment of
protein structure template quality, Proteins-structure Function & Bioinformatics, 57,
702.

Zhou, H. and Skolnick, J. (2011) GOAP: a generalized orientation-dependent, all-
atom statistical potential for protein structure prediction, Biophys J, 101, 2043-2052.



