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Abstract 
Motivation: Many important cellular processes involve physical interactions of proteins. Therefore, de-

termining protein quaternary structures provides critical insights for understanding molecular mecha-

nisms of functions of the complexes. To complement experimental methods, many computational meth-

ods have been developed to predict structures of protein complexes. One of the challenges in compu-

tational protein complex structure prediction is to identify near-native models from a large pool of gen-

erated models. 

Results: We developed a convolutional deep neural network-based approach named DOVE (DOcking 

decoy selection with Voxel-based deep neural nEtwork) for evaluating protein docking models. To eval-

uate a protein docking model, DOVE scans the protein-protein interface of the model with a 3D voxel 

and considers atomic interaction types and their energetic contributions as input features applied to the 

neural network. The deep learning models were trained and validated on docking models available in 

the ZDock and DockGround databases. Among the different combinations of features tested, almost 

all outperformed existing scoring functions. 

Availability: Codes available at http://github.com/kiharalab/DOVE  http://kiharalab.org/dove/ 

 
Contact: dkihara@purdue.edu 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 Introduction  

The three-dimensional (3D) structure of a protein complex provides 

fundamental information about the physicochemical nature of the protein 

complex, which facilitates a better understanding of the molecular 

mechanisms of its biological function in a biological pathway. Although 

the experimental structural biology community, now with increasingly 

powerful techniques in cryo-electron microscopy (cryo-EM), has 

determined protein complex structures at a steady pace, the structures of 

many important protein interactions have not yet been determined. To aid 

the experimental efforts, computational modeling approaches for protein 

complex structures, often called protein docking methods, have been 

actively developed over the past two decades. 

Protein docking methods are roughly classified into two categories, 

template-based modeling methods, which use known global 

(Anishchenko, et al., 2015) or local (Tuncbag, et al., 2011) complex 

structures, and ab initio methods, which assemble two individual protein 

structures without referring to known complex structures. Many ab initio 

methods exist, the details of which vary greatly: Protein structure 

representations used include molecular surface- (Venkatraman, et al., 

2009) and voxel-based (Pierce, et al., 2011). For docking pose search, Fast 

Fourier Transform (Katchalski-Katzir, et al., 1992; Padhorny, et al., 2016) 

is a popular choice; other methods, e.g. geometric hashing (Fischer, et al., 

1995; Venkatraman, et al., 2009), and particle swarm optimization (Moal 

http://kiharalab.org/dove/
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and Bates, 2010) have also been successful. To take protein flexibility into 

account, normal mode analysis (Oliwa and Shen, 2015) and protein 

dynamics simulation (Gray, et al., 2003) have been applied. Methods have  

also been developed that extend conventional pairwise docking, such as 

multiple-chain docking (Esquivel-Rodriguez, et al., 2012; Ritchie and 

Grudinin, 2016; Schneidman-Duhovny, et al., 2005) peptide-protein 

docking (Alam, et al., 2017; Kurcinski, et al., 2015), and docking with 

disordered proteins (Peterson, et al., 2017), docking order prediction 

(Peterson, et al., 2018), and docking modeling for cryo-EM maps 

(Esquivel-Rodriguez and Kihara, 2012; van Zundert, et al., 2015). 

Although substantial improvements have been achieved in ab initio 

protein docking, there are still unsolved shortcomings in existing methods. 

One of the foremost shortcomings is the scoring of docking models 

(decoys) (Moal, et al., 2013). Since a typical ab initio method produces a 

large decoy set that only includes a small number of near-native models 

(hits), an accurate scoring function for selecting hits critically influences 

the performance of docking. Recognizing the importance of the scoring, 

the Critical Assessment of Prediction of Interactions (CAPRI), the 

community-wide docking prediction experiment (Lensink, et al., 2018), 

has a specific category for evaluating scoring methods, where participants 

are asked to select ten plausible decoys from over thousands of decoys that 

the organizers provide. 

Approaches that have been applied for scoring decoys include physics-

based potentials (Gray, et al., 2003; Kingsley, et al., 2016), interface 

shape-based scores (Venkatraman, et al., 2009), knowledge-based 

statistical potentials (Huang and Zou, 2008; Lu, et al., 2003), and machine 

learning methods (Fink, et al., 2011) and evolutionary profiles of interface 

residues (Nadaradjane, et al., 2018). 

In this work, we applied a 3D convolutional neural network (CNN)  to 

the problem of distinguishing near-native decoys from incorrect decoys. 

CNNs have been very successful in 2D (Krizhevsky, et al., 2012) and 3D 

(Maturana and Scherer, 2015; Subramaniya, et al., 2019) image 

recognition tasks (LeCun, et al., 2015), which motivated us to apply it to 

docking decoy hit recognition. In the bioinformatics field, 3D CNNs have 

been applied to drug-protein interaction scoring (Ragoza, et al., 2017), 

protein functional site analysis (Torng and Altman, 2017), quality 

assessment of single protein structure models (Derevyanko, et al., 2018; 

Pages, et al., 2019), and secondary structure detection in cryo-EM maps 

(Subramaniya, et al., 2019). To the best of our knowledge, this is the first 

work to apply CNNs to the protein docking problem. Our method, DOVE 

(DOcking decoy selection with Voxel-based deep neural nEtwork), takes 

a docking decoy structure as input, maps the structure into a 3D grid, scans 

the protein-protein interface with a 3D cube, examining inter-atom 

interaction patterns and their energetic contributions, and judges if the 

decoy is close to the native structure or not. Compared to popular scoring 

functions used for selecting docking decoys, DOVE showed substantially 

better performance. 

2 Methods 

We first explain the datasets used for training and testing DOVE, as well 

as the statistical potentials used as input features of DOVE. Subsequently, 

we describe the network architecture and the training process of DOVE. 

2.1. Datasets 

The primary dataset used was based on the ZDOCK benchmark dataset 

ver. 4.0 (Hwang, et al., 2010). For each of the 178 protein complexes in 

the dataset, there are on average 53,999 decoys (minimum: 53,962;  

maximum: 54,000). For each decoy, we computed the root-mean square 

deviation (RMSD) of the interface residues (iRMSD, interface residues 

are defined as those within 10.0 Å of any residue of the other protein), 

ligand RMSD (lRMSD) and the fraction of the native contacting residue 

pairs (fnat; residue pairs with any heavy atom within 5.0 Å) to the native 

structure as well as two statistical potential values, GOAP  (Zhou and 

Skolnick, 2011) and ITScore (Huang and Zou, 2008), both of which were 

used as features to characterize decoys. A protein complex and all its 

decoys were discarded if computing GOAP or ITScore failed or iRMSD, 

lRMSD, or fnat could not be computed due to inconsistency of the 

sequence in the structures provided in the ZDOCK dataset from the native 

complex structure in PDB (Berman, et al., 2000), or if. After the removal 

of complexes, 120 complexes remained. 

For each protein complex in ZDOCK benchmark, the numbers of 

correct decoys, defined as decoys of acceptable quality or better as defined 

by the CAPRI criteria using iRMSD, fnat, and lRMSD of decoys (Lensink, 

et al., 2018), and incorrect decoys are highly imbalanced, which makes 

training the network model difficult. Thus, we augmented the number of 

correct decoys by placing each of them in 24 orientations on a grid with 

90 degree rotations around the Z-axis of the original coordinates in the 

PDB file (thus four orientations) and with each of the six faces that was 

put upwards. With this augmentation, each of 120 complexes has now on 

average 8,909.4 correct decoys with the minimum 264 and the maximum 

60,192. Then, we added an equal number of incorrect models to the correct 

models for each complex. This augmented decoy set was only used in the 

training. For testing, we report the accuracy using the original number of 

correct models with the same number of incorrect models as used in the 

training. In total, the training dataset of the 120 complexes include 

1,069,128 correct and incorrect decoys, respectively. For testing, the 

number of correct decoys was 44,547. 

To remove redundancy, we grouped the 120 complexes using TM-

Score (Zhang and Skolnick, 2004). Two complexes were put in the same 

group if at least one pair of proteins from the two complexes had a TM-

score of over 0.5 and sequence identity of 30% or higher. This resulted in 

63 groups (Supplementary Table S1). These groups were split into four 

subgroups to perform four-fold cross validation (Supplementary Table 

S2). Three subsets were used for training while remaining one subset was 

used for testing. Thus, for each feature combination, we have four 

different models. Of the training set, 80% of the decoys were used for 

training parameters under a given hyper-parameter setting and the remain-

ing 20% were used as the validation set, which was used to determine the 

best hyper-parameter set for the training set. 

In addition to the ZDOCK dataset, we also used the DockGround 

benchmark dataset (Liu, et al., 2008) for testing. Since we found decoys 

in the dataset often have residue pairs that are too close, we relaxed all the 

structures by Rosetta (Conway, et al., 2014). DockGround includes 58 

target complexes each with on average 9.83 correct and 98.5 incorrect 

decoys.  

2.2. Knowledge-based statistical contact potentials 
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We used two distance-dependent contact potentials, GOAP and ITScore, 

to characterize energetic contributions of atoms at the docking interfaces 

of decoys. Both potentials were derived from statistics of atom pairs in 

known protein structures but using different ideas. GOAP considers angles 

as well as the distances of side-chains of interacting residues while 

ITScore was numerically optimized to be able to distinguish native struc-

tures from incorrect decoys. We chose these two potentials because they 

perform well in selecting docking decoys (Peterson, et al., 2018). 

We modified the original codes of GOAP and ITScore so that they 

output the binding energy of each atom, which is the sum of the interaction 

energy between the atom and all other atoms within 30 Å in the decoy. 

Using this modified output, we mapped the atom-wise interaction energy 

to each position of interface atoms of a decoy. Interface atoms are defined 

as those which locate within 10 Å of any atom of the other protein in the 

complex. 

2.3. Network architecture of DOVE 

DOVE uses the convolutional neural networks (CNN) to capture features 

of protein interactions in decoys. Fig1. Shows the architecture of the net-

work. 

 

 

 

Fig. 1. The network architecture of DOVE. DOVE takes atom positions and potentials 

in a 20*20*20 input cube that is placed at the docking interface of a decoy and predicts if 

the decoy is in the CAPRI acceptable quality or not. 100, 200, 200, 400, 400 are the number 

of filters in each layer. 20 (40), 18, 16, 8, 6, 3 are the output cube size of each layer. 10800, 

1000, 100 denotes the number of neurons for fully connected layer. Block means that the 

data is a 3D cube; Flat is to make a 1D vector from a 3D cube; Pool is a max-pooling, and 

FC is fully-connected network. Dropout of 0.3 was applied to FC. 

 

DOVE takes a docking decoy as an input and judges if the decoy has 

an acceptable quality or not based on the CAPRI criteria (Lensink, et al., 

2018). The actual input data for a decoy is atom positions and atom-wise 

statistical potential values within a 203 Å3 or 403 Å3 size cube that is placed 

at the protein-protein docking interface. The cubes are centered on the in-

terface, where the interface is defined as the set of heavy atoms that locate 

within 10.0 Å to any heavy atoms of the other protein in the complex. We 

considered positions of carbon, oxygen, nitrogen, and other atoms at the 

interface separately in four different channels (the left part of the network 

in Fig. 1). For a channel of an atom type, the number of the atoms of the 

type is counted and stored in each voxel of a size of 13 Å3 within the cube 

of  203 Å3 or voxels of 23 Å3 within the cube of 403 Å3 (thus the input data 

size is always 203). The deep learning models that use the 203 Å3 or the 

403 Å3 cube are referred as DOVE-Atom20 or -Atom40, respectively. 

Furthermore, as described in the previous section, we used the contact 

potentials, GOAP and ITScore, as input features. Fig. 2 illustrates how the 

GOAP potential mapped to atoms distribute on a protein surface. We 

visualized GOAP mapped on atoms in a ligand protein in the correct (the 

pose on the left in Fig. 2A, Fig. 2B) and in an incorrect pose (the pose on 

the right in Fig. 2A, Fig. 2C). As shown in the color scale, in the correct 

bound form binding energies of atoms at the interface become more 

favorable upon docking (blue), while interface atoms in the incorrect pose 

have more unfavorable energy. 

  

 

 

Fig. 2. Example of atom-wise contact potential mapped on protein surface. GOAP was 

mapped to a ligand protein (ones with the surface representation) when it is in the isolated 

state and in a bound state, and the difference between the two states was visualized in a 

color scale. Blue shows the atoms have more preferable binding energy in the bound form 

relative to the isolated form while red shows the binding energy went worse in the bound 

form. The complex used is pancreatic a-amylase complexed with an inhibitor, tendamistat 

(PDB ID: 1bvn). A, the receptor, a-amylase, is shown in the ribbon representation in gray. 

The inhibitor is shown in the surface representation in two poses: On the left, the inhibitor 

in the acceptable bound pose (iRMSD: 1.27 Å; fnat: 0.71); right, in an incorrect pose 

(iRMSD: 20.6 Å; fnat: 0.0). B, the binding interface surface (facing toward us) of the in-

hibitor in the acceptable pose. C, the interface in the incorrect pose. 

Similar to how the atom-based features were represented, the atom-

wise energy of atoms within each voxel are summed and assigned as a 

feature value of the voxel in the cube. The deep learning models using 

GOAP and ITScore are referred to as DOVE-GOAP and DOVE-ITScore, 

respectively. For using the contact potentials, we used the cube of 403 Å3. 

We also tested models with two features, a combination of Atom40 and 

GOAP (DOVE-Atom40+GOAP), Atom40 and ITScore (DOVE-

Atom40+ITScore), and GOAP and ITScore (DOVE-GOAP+ITScore). 

Finally, we also tested with all the features, DOVE-

Atom40+GOAP+ITScore. Values of a feature (i.e. channel) are 

normalized so that the distribution is zero-centered  by considering 

maximum and minimum values of the feature in the training dataset. 

As shown in Fig. 1, the input channels are connected to two 

convolutional layers with the size of 183 and 163, respectively, each of 

which has 100 and 200 filters of the size of 3*3*3. The CNN layers were 

connected to a max pooling layer, followed by another set of convolutional 

layers followed by a max pooling layer. Then, the outputs from these 

layers are fed to fully connected (FC) layers followed by a sigmoid 

function, which finally outputs the probability that the input decoy has an 

acceptable model quality. The overall architecture is similar to the one 

used in an earlier work of local protein structure analysis by Torng & 

Altman (2017). DOVE was implemented using the Keras (Chollet, 2015) 

and Tensorflow (Abadi, et al., 2016) packages. 

2.4. Training the deep learning models 

For training, we used cross entropy (Goodman, 2001) as  the loss function. 

nadam (Dozat, 2016) with an adaptive learning rate and the default decay 

rate of 0.004 was used for optimizing the weights. Weights were initial-

ized using the glorot-uniform (Glorot and Bengio, 2010) to have a zero-

centered distribution for each network layer. Bias was initialized to 0 for 

all layers (Glorot and Bengio, 2010).  Dropout (Srivastava, et al., 2014) of 

0.3 and  L2 regularization was  used for the FC layers. 
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As described in the Dataset section, we performed four-fold cross 

validation. The resulting hyper-parameter combinations are provided in 

Supplementary Table S3. Since a decoy set of a protein complex contains 

many more incorrect models than acceptable models, we balanced the data 

of the two classes by choosing the same number of acceptable quality 

models as incorrect models in every batch for training. The batch size was 

set to 128. Usually the training converged in around 10 epochs.  

3 Results 

We tested DOVE first on the ZDOCK benchmark dataset with the four-

fold cross validation. Then, the trained model was further tested on the 

DockGround benchmark dataset.  

3.1. Performance on the ZDOCK benchmark dataset 

We compared the performance of DOVE with eight different feature com-

binations on the test set in comparison with five existing scoring functions, 

GOAP, ITScore, Zrank (Pierce and Weng, 2007), Zrank2 (Pierce and 

Weng, 2008), and IRAD (Vreven, et al., 2011). During the cross-valida-

tion process, DOVE’ accuracies were consistent over the four training and 

validation subsets (Supplementary Figure S1). The average standard devi-

ation of the accuracy of the four training sets and the validation sets were 

0.0298 and 0.0300, respectively. Determined hyper-parameter values 

were also very consistent across the four-fold validation (Supplementary 

Table S3). Thus, throughout the training process results of accuracy and 

identified parameters were very consistent and stable. 

Fig. 3 shows the fraction of target complexes in the ZDOCK dataset 

for which a method produced at least one correct (i.e. CAPRI acceptable) 

model within top k rank. GOAP and ITScore were run in two different 

ways; one as originally designed and the other by taking interaction scores 

only from interface regions that are within 10.0 Å of interacting protein 

(GOAP/ITScore-Interface). Thus, in total there were seven existing refer-

ence methods DOVE was compared against. 

Overall, DOVE (dashed lines) was more successful than the existing 

methods in ranking correct models within earlier ranks in many target 

complexes. For example, at the top 10 (x=10), six out of eight feature 

combinations of DOVE had a higher hit rate than any of the existing scores 

(Fig. 3A). The remaining two combinations (DOVE-Atom40-ITScore and 

DOVE-GOAP-ITScore) were better than all the existing scores except 

IRAD. The results were almost the same when the 63 groups of target 

complexes rather than individual 120 complexes were considered to com-

pute the hit rate (Fig. 3B). In general, the DOVE variations showed higher 

hit rate than existing scoring functions. DOVE-Atom20 and DOVE-

Atom40 were consistently the two best scores in both Fig. 3A and 3B. 

Among the existing scores, IRAD performed the best and GOAP showed 

the lowest accuracy. 

We also examined the hit rates of models of medium quality, a better 

quality class than the acceptable quality in the CAPRI criteria (Supple-

mentary Figure S2). An issue when using medium quality models is that 

they constitute a small fraction, 11.3% (5,046 out of 44,547), of acceptable 

quality models. Among the 120 complexes in the dataset, 21 of them had 

0 medium quality models; these targets were excluded in the evaluation. 

Overall hit rate of medium models (see Supplementary Figure S2) was 

lower than the hit rate for acceptable models, which probably occurred due 

to the small number of medium quality models in decoy sets. Relative per-

formance of the methods were similar with Figure 3 except that irad, 

ZRANK, and ITScore came among top in performance. When top 10 mod-

els were considered, the highest hit rate was marked by DOVE-ITScore, 

followed by irad, DOVE-ATOM40, DOVE-ATOM20, and ZRANK in 

this order. Results for DOVE would improve if it is trained to distinguish 

medium quality models from incorrect models, but the current dataset in-

cludes a too small number of medium quality models for training. 

 

Fig. 3. Comparison on the ZDOCK Benchmark dataset. A, The fraction complexes 

among the 120 complexes in the benchmark set for which each method selected at least one 

acceptable model (within top x scored models) was shown. Results shown are from test 

sets. In addition to DOVE with eight different feature combinations, performance of GOAP, 

GOAP-Interface, ITScore, ITScore-Interface, Zrank, Zrank2, and irad are shown. B, Con-

sidering the similar complexes that were grouped into 63 groups (Supplementary Table S1), 

the hit rates for complexes in each group were averaged and re-averaged over the 63 groups 

for each x. 

We have also computed the enrichment factor (EF) as the evaluation 

measure of decoy selection (Fig. 4). The EF is defined as the fraction of 

correct hits within the models up to the score rank x that is currently con-

sidered relative to the total fraction of the correct models in the entire de-

coys of the target complex. Thus, the EF reduces the bias to the evaluation 

by using the hit rate (Fig. 3) that is caused by the difference of the number 

of correct decoys in the decoy set of each target. As shown by the plots 

(Figs. 3 and 4), essentially the consistent results in the relative perfor-

mance of the scoring functions was observed in terms of the EF. Quanti-

tatively, the margin actually increased between the top feature combina-

tions, DOVE-Atom40, DOVE-Atom20, and DOVE-ITScore, and scores 

that follow them. 
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Fig. 4. Comparison of the enrichment factor (EF) on the ZDOCK Benchmark dataset. 

A, For each method, the average EF over the 120 complexes in the benchmark set were 

plotted considering the top x ranks. B, the EFs of complexes in the same group was aver-

aged, which was further averaged over the 63 groups. 

 

To illustrate how DOVE classifies decoys, we used t-SNE to visualize 

DOVE’s encoding of decoys (Fig. 5). Two features, DOVE-Atom40 and 

DOVE-GOAP, which performed relatively well among other feature sets 

(Figs. 2 and 3) were used for this illustration. In both plots, most of the 

acceptable models (black circles) are clearly separated from a large cluster 

of incorrect models (crosses), indicating that the networks have success-

fully distinguished the two decoy groups. 

Since GOAP and ITScore were used as original independent scores 

and also as atom-based features of DOVE, we compared performance of 

these two schemes in Fig. 6. For each target complex, the fraction of cor-

rect models within the top 20 models ranked by GOAP/ITscore and Dove-

GOAP/DOVE-ITScore were plotted on the x- and y-axis, respectively. 

DOVE selected more correct models than GOAP and ITScore for 93 and 

85 targets, respectively, out of 120 target complexes. Both GOAP and 

ITScore evaluate a structure model by the sum of pairwise interaction en-

ergies of atoms while DOVE convolves atom-wise energy mapped at the 

docking interface by CNN. Therefore, the results imply that DOVE is cap-

turing multi-body interaction energy patterns at the interfaces of correct 

and incorrect decoys. 

On the other hand, there are cases where DOVE made results worse 

than GOAP and ITscore (data points at bottom right of Fig. 6A and 6B). 

Although it is not easy to understand why a deep learning method worked 

or did not work on particular input data, we observed that DOVE scores 

for the top 20 scoring decoys were higher and more consistent for cases 

that DOVE-GOAP/-ITscore showed better performance (i.e. top left in the 

plots) than cases where DOVE deteriorated (bottom right). The average 

and the standard deviation of the top 20 scores by DOVE-GOAP/-ITscore 

when DOVE showed substantial improvement (x ≤ 0.3 & y ≥ 0.7) were 

avg: 0.78/0.79, std: 0.04/0.04 (Fig. 6A/6B) whereas the values were avg: 

0.72/0.69, std: 0.11/0.06 (Fig. 6A/6B) when DOVE did not work (x ≥0.7 

& y ≤ 0.3). Thus, DOVE was less confident (smaller average) and less 

consistent (larger std. deviation) when it did not work well. 

 

 

Fig. 5. t-SNE plots of decoy selection. Decoys from five target complexes, 1US7, 1BKD, 

1HE1, 2OT3, 2CFH, which include 817 acceptable models (solid circles) and 1087 incor-

rect models (crosses) were used. Encoded features of the decoys taken from the output of 

the fully connected network in Fig. 1 were projected into a two-dimensional space using t-

SNE. A, DOVE-Atom40 was used for the feature set. B, DOVE-GOAP.  

 

 

 

 

Fig. 6. Comparison of the fraction of correct models within top 20 ranked models by 

GOAP/ITScore and DOVE-GOAP/DOVE-ITScore. Each data point represents a target 

complex from the 120 complexes in the ZDOCK dataset. Since top 20 models were con-

sidered, the fractions of correct models have discrete values from 0, 0.05 = 1/20, 0.1, ,, 1.0 

= 20/20. A, Comparison between GOAP (x-axis) and DOVE-GOAP (y-axis). DOVE-

GOAP was better than GOAP for 93 cases, tied for 5 cases, and worse in 22 cases. B, 

Comparison between ITScore (x-axis) and DOVE-ITScore (y-axis). DOVE-ITScore was 

better than ITScore for 85 cases, tied for 14 cases, and worse for 21 cases. Comparison on 

top 10 and top 50 ranked decoys are shown in Supplementary Figure S3. 
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3.2. Testing on the DockGround benchmark dataset 

We further tested DOVE on another dataset, DockGround (Liu, et al., 

2008). From the four-fold cross validation on the ZDOCK dataset, we 

have four deep learning models for each feature combination. Thus, here, 

for evaluating a decoy we considered the average probability of the four 

models. The accuracies of the four models do not vary much as shown in 

Supplementary Fig. S3. The average standard deviation of the top10 hit 

rates by the eight feature combinations was 0.03. 

In Fig. 7, the hit rate results were shown in two panels, panel A report-

ing results for 33 target complexes which are independent from the 

ZDOCK set while panel B shows results on the remaining 25 targets that 

are grouped to at least one target in the ZDOCK set (i.e. at least one pair 

of proteins from the two complexes had a TM-score of over 0.5 and 

sequence identity of 30% or higher).  In both panels, DOVE performed 

consistently better than the existing scores as we observed on the ZDOCK 

benchmark dataset. Particularly, consistent with the results on the ZDOCK 

dataset (Figs. 2 & 3), DOVE with Atom40 showed the top performance 

on the independent dataset (Fig. 7A). On this dataset, DOVE-Atom40 

showed an outstanding hit rate at early ranks relative to other scoring func-

tions (Fig. 7A). At the rank 5, DOVE-Atom40 had a hit rate of 66.7%, and 

reached a 1.0 rate at the rank of 7. On the dataset of complexes that are 

similar to ZDOCK, Atom40 was among top performing feature combina-

tions together with DOVE-GOAP and DOVE-Atom20. 

 

 

Fig.7. Decoy selection performance on the DockGround dataset. A, 33 target complexes 

that are independent from the ZDOCK benchmark dataset. B, 25 targets that have structural 

similarity to any of the complexes in ZDOCK set.  

 

4 Discussion 

In this work we developed DOVE for docking decoy selection, which uses 

CNN to capture multi-body physical and energetic interactions patterns 

that are observed at protein docking interface. In protein structure predic-

tion, the importance of considering multi-body (atom or residues) interac-

tions has been long discussed and often actually shown to be effective in 

selecting native-like protein structure models (Gniewek, et al., 2011; Kim 

and Kihara, 2014; Kim and Kihara, 2016; Olechnovic and Venclovas, 

2017). Each such method used an original idea to capture multiplicity of 

interactions. When it comes to capturing interaction multiplicity in molec-

ular structures, 3D CNN is very natural and easy to use as we did in this 

work. Therefore, 3D CNN will continue to be actively applied to various 

tasks of protein structural bioinformatics for several more years. We have 

made the source code available on GitHub (https://github.com/ki-

haralab/DOVE), and a webserver of DOVE is available at http://ki-

haralab.org/dove/. Among the feature combinations we tested, we recom-

mend users to use the top-performing features in Figs. 3-5, which include 

DOVE-Atom20 and DOVE-Atom40. The source code also allows users 

to add new input features of decoys. 

The current version of DOVE uses essentially two types of features, 

atom types and their locations and the atom-wise statistical potentials. It 

is expected that other structural features, such as sequence conservation 

and flexibility of atoms from molecular dynamics simulation etc. can fur-

ther improve the performance. Also, a different network architecture, such 

as ResNet (He, et al., 2016), may also contribute to exhibit a higher accu-

racy. 
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