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Abstract. The empirical scaling relations observed in disk galaxies remain challenging for
models of galaxy formation. The most striking among these is the Mass Discrepancy-
Acceleration Relation (MDAR), which encodes both a tight baryonic Tully-Fisher relation
(BTFR) and the observed diversity of galaxy rotation curves through the central surface
density relation (CSDR). Building on our earlier work [1], we propose here that the MDAR
is the result of interactions between baryons and ‘Baryon-Interacting Dark Matter’ (BIDM),
which heat up the dark matter. Following a bottom-up, hydrodynamical approach, we find
that the MDAR follows if: i) the BIDM equation of state approximates that of an ideal
gas; 11) the BIDM relaxation time is order the Jeans time; iii) the heating rate is inversely
proportional to the BIDM density. Remarkably, under these assumptions the set of hydrody-
namical equations together with Poisson’s equation enjoy an anisotropic scaling symmetry. In
the BIDM-dominated regime, this gives rise to an enhanced symmetry which fully captures
the low-acceleration limit of the MDAR. We then show that, assuming a cored pseudo-
isothermal profile at equilibrium, this set of equations gives rise to parameters reproducing
the MDAR. Specifically, in the flat part of the rotation curve the asymptotic rotational
velocity matches the parametric dependence of the BTFR. Moreover, in the central region of
high-surface brightness galaxies, the profile reproduces the CSDR. Finally, by studying the
time-dependent approach to equilibrium, we derive a global combination of the BTFR and
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CSDR, which matches the expectations in low surface-brightness galaxies. The form of the
heating rate also makes model-independent predictions for various cosmological observables.
We argue that our scenario satisfies existing observational constraints, and, intriguingly, offers
a possible explanation to the EDGES anomaly.
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1 Introduction

The nature of the dark sector of the Universe is certainly one of the most important questions
of modern physics. Over the years, a picture has emerged in which the Universe is composed
of ~ 5% baryonic matter, ~ 25% cold dark matter (CDM) — which for all practical purposes
does not interact with itself or with baryons — and the rest by a cosmological constant A.
While this ACDM model is very successful on large scales, a few tensions remain.

On cosmological scales, one notable tension is the value of the Hubble constant as in-
ferred from the Cosmic Microwave Background (CMB) — which has drifted towards smaller
values together with a larger matter density €2,, with better successive data from the WMAP
mission [2], and even more so after Planck [3] — to be contrasted with the higher value ob-
tained from measurements of Type Ia supernovae and lensing time-delays [4, 5]. Whether
this tension might be resolved through understanding systematics or whether it is a sign of
new physics is still under debate (see [6] and references therein). Meanwhile, an interesting
anomaly has surfaced around redshift z ~ 20, where the EDGES experiment has reported
an anomalously strong absorption in the measured 21 cm signal [7]. If not due to fore-
ground contamination, this signal might indicate an over-cooling of the HI gas with respect
to standard expectations, or a modification of the soft photon background beyond the CMB
contribution.



On galactic scales, a number of observational challenges to the standard ACDM model
have also been actively debated in recent years, as galactic observations and numerical simu-
lations of galaxies have improved in tandem [8]. Galaxy formation and evolution are processes
that happen on ~ kpc scales, where the physics of baryons can play a major role through
gravitational feedback in modifying the quasi-equilibrium configuration of CDM on secular
timescales.

The most interesting challenge is that baryons and dark matter (DM) in galaxies seem to
conspire in ways that were a priori unexpected, giving rise to tight scaling relations. The most
famous such scaling relation is the baryonic Tully-Fisher relation (BTFR) [9-12], relating
the fourth power of the asymptotic circular velocity of disk galaxies to their baryonic mass,
Vglat ~ My. Interestingly, when matching the mass-function of DM halos to the luminosity
function of galaxies — a procedure known as abundance matching (AM) — one gets a
stellar-to-halo mass relation that nicely reproduces the normalization of the BTFR [13, 14],
especially at baryonic masses around 1019 M.

However, as shown by [14] using Navarro-Frenk-White (NFW) profiles [15] for the as-
signed DM halos, the AM-predicted curvature of the BTFR is at odds with the data. This
might be attributable to large uncertainties in AM at low masses, but is definitely problematic
at high masses (above stellar masses of ~ 1011 M) where AM systematically overpredicts
the halo mass of disk galaxies [16]. Furthermore, the observed small intrinsic scatter (only
~ 0.025 dex for the orthogonal scatter) of the BTFR is in 3.60 disagreement with AM ex-
pectations [14]. While some outliers to the BTFR at the low and high-mass ends have been
recently pointed out [17, 18] and still need to be confirmed by more observations due to
possible systematics (e.g., on the inclination at the low mass end) or unknowns (e.g. on the
asymptotic flat velocity and on the total gas mass at the high mass end), the tightness of the
BTFR for the bulk of low-z high-quality galaxy rotation curves remains challenging in the
ACDM context.

Another aspect of the baryon-DM conspiracy is the diversity of rotation curves. Galax-
ies with the same asymptotic circular velocity — hence “twins” of identical total baryonic
mass on the BTFR — can display a broad range of rotation curve shapes, consistent with
central DM densities ranging from cuspy NFW-like central profiles as predicted in DM-only
simulations, to very large, constant-density cores of DM [19]. There is in fact a positive
correlation between the average DM density within 2 kpc and the baryon-induced rotational
velocity at that radius [20]. The circular velocity slope close to the center is thus directly
correlated to the surface density of baryons. In other words, the rotation curve shapes of
late-type spiral galaxies are all similar when expressed in units of disk scale-length [21], and
the DM core size correlates with scale-length [22].

Another way to express this correlation is the central surface density relation [CSDR, 23]
between the central surface density of stars and the central dynamical surface density, related
to the slope of the rotation curve. For small disk galaxies dominated by DM, the expectation
a priori would have been instead that galaxies at a given maximum velocity scale display
stmilar rotation curves because they should be embedded in similar DM halos. Thus this
can be considered as a strong version of the old “core-cusp” problem [24].

The diversity of galaxy rotation curves at a given velocity scale, their uniformity at a
given baryonic surface density scale, together with the BTFR, can be summarized through
what is nowadays known in disk galaxies as the Radial Acceleration Relation (RAR), or more
generally as the Mass Discrepancy-Acceleration Relation (MDAR). This encodes a unique
observational relation between the total gravitational field and the Newtonian acceleration
generated by baryons at every radius [25-29].



While the general shape of the MDAR might be a natural outcome of ACDM [13, 30-33],
and despite debates on its universality [34-36], its normalization and very small scatter, the
latter which could be entirely accounted for by observational errors on the inclination and
distance of galaxies, remain puzzling [37]. For instance, it has recently been argued that
feedback becomes efficient at a characteristic acceleration scale similar to the one present
in the MDAR, thereby explaining the transition from baryon-dominated to DM-dominated
regimes in the MDAR [38]. While interesting, this does not per se explain the details of the
diversity of rotation curves encoded in the tightness of the MDAR, which should be related
to the subtleties of the core-cusp transformation process.

While the MDAR reduces to the BTFR in the flat part of rotation curves, the fact that
galaxies obey the BTFR does not a priori imply that they will obey the MDAR in the rising
parts of rotation curves. The fact that they do observationally is at the root of the diversity
problem, as shown in [20]. As reported by [19], feedback in cosmological hydrodynamical
simulations from the EAGLE and APOSTLE projects is unable to produce large constant-
density cores of DM as required by the data in a significant fraction of low-mass disk galaxies.
On the other hand, the recent NIHAO simulations [39, 40] are much more efficient at forming
cores and predict a tight MDAR, but in turn have problems at reproducing the most cuspy,
steeply rising rotation curves [20]. This illustrates that the effect of feedback on the central
DM distribution in various cosmological hydrodynamical simulations is still far from settled,
and that reproducing in detail the observed diversity of rotation curve shapes together with
a tight MDAR still raises an interesting challenge for simulations of galaxy formation.

1.1 Approaches to the MDAR

In this context, it is natural to explore whether the above challenges find their root in a
modification of the fundamental nature of DM. Alternatives to ACDM exploring different
properties of the DM sector are usually concerned with changing the DM particle mass [41]
or self-interactions [42]. Interactions with photons [43] or neutrinos [44] in the early Universe
have also been considered, affecting the linear regime. Another intriguing possibility is that
DM is comprised of dark atoms, e.g., [45-47]. In self-interacting DM some recent encouraging
results have shown how underdense halos can indeed be associated with extended baryonic
disks [48-50], in line with the trend of the MDAR. While very encouraging, rotation curve
fits are still made with two parameters [50] and do not fully explain ab initio the tightness
of the BTFR, as well as, e.g., its tension with AM at high masses.

Given the tight correlation between the Newtonian gravitational field generated by
baryons and the total gravitational field, the most direct and also most radical alternative
explanation is that the gravitational law is, at least effectively, modified in galaxies [51-53].
This paradigm, known as Modified Newtonian Dynamics (MOND) [54, 55] was proposed
almost 40 years ago by Milgrom [56, 57]. Within this framework, the MDAR was actually
predicted well before it was precisely assessed by observations. The challenge with this
approach is to reproduce the large-scale successes of ACDM, in particular the exquisitely-
measured CMB temperature anisotropies. There are additional challenges with the mass
discrepancy in galaxy clusters [55, 58], subgalactic scales [e.g., 59], as well as solar system
constraints [60, 61] (though see [62]).

Less radical is the idea that DM acts as CDM cosmologically but generates an effective
modification of gravity on galactic scales through long-range interactions [63-67]. A recent
prototypical example in this category is based on DM superfluidity [68-82]. More radical
approaches include Modified DM [83-86] and Verlinde’s emergent gravity [87, 88|, both in-



spired by gravitational thermodynamics. All such approaches boil down to some version of
MOND on galaxy scales.

Another route, as yet very much unexplored, is that the tight conspiracy between the
distribution of baryons and the gravitational field in galaxies is the outcome of relatively
short-range interactions between baryons and DM, which reorganize the DM distribution in
the desired way without effectively modifying gravity.

In [1] we proposed a novel mechanism along these lines. The idea put forward was that
the desired DM profile may naturally emerge as the equilibrium configuration resulting from
DM-baryon short-range (collisional) interactions. This required replacing the traditional col-
lisionless Boltzmann equation describing the DM fluid by a collisional Boltzmann transport
equation with two fluids. The first and second order moments of this equation yield respec-
tively the traditional Jeans’ equation (akin to hydrostatic equilibrium) and a heat transport
equation describing the exchange of energy between baryons and DM. For static and isotropic
configurations, the heat equation implies an actual equilibrium between the divergence of the
heat flux within the DM fluid and the heating rate due to baryons. By retro-engineering the
observationally-inferred knowledge of the MDAR in rotationally-supported disk galaxies, it
was shown that an equilibrium configuration reproducing the MDAR, can be attained if:
i) the heating rate is inversely proportional to the DM density; and ii) if the relaxation time
of DM particles is comparable to the dynamical time.

Specifically, in [1] we concentrated on collisional interactions between heavy DM par-
ticles and baryons, in which baryons effectively cooled the DM medium. We could then
demonstrate that, as long as the BTFR was obeyed at large radii, the MDAR would be
satisfied at all radii. While setting the stage for follow-up studies, our original model suffered
from a few important caveats. Firstly, the BTFR had to be assumed at equilibrium, and
it was unclear how it might be achieved in the time-dependent case. Secondly, since the
mechanism relied on cooling the DM fluid to reach equilibrium, one would need to start from
relatively hot initial conditions, in contradiction with the successes of ACDM on large scales,
or, alternatively, the center of DM halos would need to be strongly up-scattered by very effi-
cient feedback before being allowed to cool again. An additional concern is that the cooling
mechanism could lead, in self-consistent simulations, to flattened DM halos or prominent
dark disks, once halos have an initial spin. Finally, we assumed that we could coarse-grain
the baryonic and DM distribution functions over a typical scale of a few pc, which cannot be
the case for purely collisional interactions between DM particles and stars without strongly
enhancing the DM density around stars.

1.2 Baryon-interacting DM

In this paper we build on and further develop the original scenario of [1] in several crucial
ways. Most importantly, instead of baryon-DM interactions cooling the DM medium, we now
focus exclusively on the case where the DM fluid is heated by baryons. This is a priori more
desirable from the point of view of galaxy formation, since DM heating can transform cusps
into cores in central regions of galaxy halos. It also avoids the concern of forming flattened
halos or dark disks. A second key difference pertains to the form of DM-baryon interactions.
Whereas our original analysis [1] focused exclusively on short-range particle-particle collisions
between DM and baryons, in the present analysis we remain general about the form of such
interactions, which could happen on a pc-range.

The basic framework is otherwise similar to [1]. After reviewing the MDAR in section 2,
we set up in section 3 a bottom-up approach to identify phenomenologically the kind of DM-



baryon interactions necessary to reproduce the MDAR. By taking the first few velocity
moments of a collisional Boltzmann transport equation, we obtain a hydrodynamical de-
scription of DM governed by a continuity equation, a Jeans’ or momentum equation, and,
crucially, a heat equation describing energy exchange between DM and baryon components.
These are supplemented by the standard Poisson equation determining the gravitational field.

The microphysics of DM is encoded in three physical quantities. The first quantity is
the DM equation of state, P = P(p,v), specifying the pressure as a function of density p
and velocity dispersion v (equivalently, temperature). The second quantity is the relaxation
time, trelax, Which fixes the thermal conductivity. The relaxation time is the characteristic
time for DM to reach equilibrium either through self-interactions or interactions with other
sectors, such as baryons. The third quantity is the heating rate, &, which is determined by
the microphysics of DM-baryon interactions.

Remarkably, the set of hydrodynamical equations is invariant under a one-parameter
anisotropic space-time scaling transformation, £ — A\Z, t — A%t, for any z, provided that
the DM pressure, relaxation time and heating rate transform suitably. We take this as a
powerful hint to fix the parametric dependence of each quantity. Starting with the equation
of state, it turns out that the ideal gas form

P = pv? (1.1)

is invariant for any z. What makes the ideal gas equation of state particularly appealing is
its universality. It is valid as long as DM is sufficiently dilute, in the sense that the average
inter-particle separation is large compared to the mean free path.

The scaling symmetry requires that the relaxation time transform as t.cax — A*trelax-
A natural choice in galactic dynamics which satisfies the desired scaling is the Jeans time,

t ~ ! (1.2)

relax \/ch . .
This can be achieved in disk galaxies, for instance, if DM relaxes primarily through interac-
tions with the baryonic disk, which thereby acts as a mediator of heat for the DM medium [1].
In this case the relaxation time is set by the characteristic time it takes for a DM particle
to find the baryonic disk, which is the Jeans time. This is analogous in kinetic theory to
the Knudsen regime of ultra-dilute gases, where molecules reach local thermal equilibrium
by colliding with the walls of the container rather than among themselves [89].

The final ingredient is the heating rate. To fix its form, we assume that the heating
rate explicitly breaks scaling invariance for any z except z = 1/2. This choice is empirically
motivated by the BTFR, since the relevant ratio Vi, /M, is invariant under the z = 1/2
transformation. We will argue in section 3.4 that this scaling, together with physically-
plausible assumptions, fixes the dependence of the heating rate to

£ ~ aov& . (1.3)
m p
The proportionality constant, which has units of acceleration, has been fixed empirically to
match the MDAR characteristic acceleration scale ag. This scale must somehow emerge from
the microphysics of DM-baryon interactions.

Once the equation of state, relaxation time and heating rate are fixed, we will show that

in the DM-dominated regime our equations enjoy a larger, approximate symmetry. Namely,



the circular velocity curves Vi(R) and Va(R) of two DM-dominated exponential disks with
different scale lengths Ly and Ly and different total baryonic masses M, ; and My, o must be

related by:
Moo \Y* (L
Va(R) = <sz) Vi <1R) . (1.4)

This encodes both the BTFR and the CSDR, at the root of the diversity of rotation curves.

We will then explore in more details in section 4 how egs. (1.1)—(1.3) are sufficient
ingredients to reproduce the MDAR. Specifically, we begin in section 4.1 by recalling how a
cored pseudo-isothermal profile can, for suitable choice of its central density and core radius,
reproduce the MDAR. Our working assumption, therefore, is that DM halos, through baryon-
DM energy exchange and/or DM self-interactions, reach a cored pseudo-isothermal profile in
the region enclosing the galactic disk.

By focusing on static, equilibrium configurations, we proceed in section 4.2 to show that
the cored pseudo-isothermal profile, with suitable parameters to reproduce the MDAR, is a
solution to our hydrodynamical equations. Specifically, in the flat part of the rotation curve
the rotational velocity asymptotes to

R
Vb ~ aoG My, log 70 . (1.5)

The prefactor matches the parametric dependence of the BTFR. Unfortunately within the
static analysis we are unable to determine the arbitrary radius Ry (which must be larger
than the galaxy) or its scatter. Meanwhile, in the central region of galaxies, we show in
section 4.3 that, for high-surface brightness (HSB) galaxies which are baryon-dominated
near the center, the DM profile reproduces the CSDR with the behavior of the ‘simple’
interpolating function of MOND [90]. In section 4.4 we go beyond the equilibrium treatment
and study the time-dependent approach to equilibrium, considering only average quantities
suitable for the DM-dominated regime. This allows us to derive a particular combination
of the DM velocity dispersion and surface density, which matches the combination of BTFR
and CSDR. Therefore, if one takes the BTFR as a given (per the equilibrium analysis), this
constraint yields the central density relation naturally for DM-dominated galaxies.

We move on in section 5 to analyze the astrophysical and cosmological implications
of our model. The form of the heating rate (1.3) allows us to derive very general results,
irrespective of the underlying microphysical model. The only assumption is that whatever
DM-baryon interactions are at the root of this heat exchange still apply in the astrophys-
ical /cosmological context of interest. For this purpose, the inverse-density dependence of
E /m is a welcome feature phenomenologically. It implies a suppressed heat exchange in the
early universe, allowing us to comfortably satisfy constraints from the CMB and the large
scale structure. Intriguingly, as shown in section 5.3 the heat exchange between DM and
baryons, which acts to cool the neutral gas prior to the Cosmic Dawn, provides a possible
explanation to the anomalous EDGES signal at z ~ 17. This is unlike other DM-baryon
explanations of the EDGES excess, such as millicharged DM, which typically run afoul of
CMB constraints [91, 92].

It remains to construct a full-fledged model of particle physics that realizes the desired
interactions. In the Conclusions section (section 6) we will discuss various promising avenues
for model building to be pursued elsewhere.



2 The MDAR and galactic scaling relations

Since the MDAR (or MOND-like phenomenology) is an empirical fact about rotationally-
supported galaxies, the scaling relations it implies must emerge in any phenomenologically-
viable DM model. To set the stage, we begin with a brief review of the galactic scaling
relations of interest.

The MDAR is a relation between the total gravitational field g and the Newtonian
acceleration g, generated by the observed distribution of baryons [28]:

9b gb > Qo
= 2.1
g { Vvaogs g <K ap, 21)

where a9 ~ 1071m/s?. Numerically, this characteristic acceleration coincides with the
Hubble scale ag ~ %CHO. The DM interpretation of the MDAR is that DM should only
dominate when the baryonic acceleration drops below ag, and furthermore the effect of DM
in this regime should be such that g ~ | /aggy.

An immediate corollary of the MDAR is the BTFR [11]. At large distances outside
the baryon distribution, the baryonic acceleration can be approximated by g, ~ GM,/r?,
where M), is the total baryonic mass. Furthermore, in this regime the DM-dominated relation

g =~ \/apgp applies. Substituting g = foat /7, where Vi, is the rotational velocity, we obtain
Vﬂ4at = aoGMb . (2.2)

Thus the MDAR implies the BTFR in the flat part of rotation curves, but the fact that
galaxies obey the BTFR does not imply that they will obey the MDAR in the rising parts
of rotation curves. The fact that they observationally do is at the root of the diversity of
rotation curve shapes problem [19, 20].

The diversity of shapes is related to the central surface density relation [CSDR, 23],
which is another consequence of the MDAR:

¥ (0) E(0) > @

=0 { VEED0) m0) <%, =
where the central dynamical surface density $(0) = [*_dz p(Z), with z denoting the coordi-
nate transverse to the disk, can be evaluated from the rotation curve. Similarly, the baryonic
surface density is Xy, = ffooo dz pp(#). The dynamical surface density ¥ is the sum of ¥, and
the DM central surface density, >py. For a spherically-symmetric DM profile, the latter is
defined by

YoM = 2/000 dr p(r). (2.4)

High-surface brightness (HSB) galaxies correspond to X, > ao/G and are baryon-dominated
in the central region. Low-surface brightness (LSB) galaxies have ¥}, < aog/G and are DM-
dominated everywhere.

LSB galaxies are particularly interesting because they imply a scaling symmetry, which
is at the root of the MOND paradigm [56, 57, 93]. Indeed the idea of MOND is that below
the acceleration scale ag, corresponding to the DM-dominated regime, dynamics are invariant
under the space-time scaling

T — AT, t— At. (2.5)



This implies, in particular, that, two LSB exponential disks of same total mass M but
different scale-lengths L1 and Lo, will have identical rotation curves expressed in scale-length
units. More generally, combining this with the BTFR, the circular velocities V; and V5 of
two LSB disks should be related by

o= (3) " ()

where R is the axisymmetric radius within the galactic plane of each galaxy.

One can think of the above scaling relations as follows. The BTFR (2.2) is a global
constraint, relating the asymptotic rotational velocity to the total baryonic mass at large
R. The CSDR (2.3) constrains the total and baryonic central surface densities as R — 0.
For DM-dominated LSB galaxies, these two scaling relations can be summarized by the
scale invariant equation (2.6). More generally, all these scaling relations can be summarized
by the MDAR (2.1), which is a local relation between the baryonic and DM gravitational
accelerations valid at every point in the galaxy.

3 Baryon-Interacting Dark Matter

We begin with a brief review of the general framework laid out in [1]. The starting point
is a generalization of the usual collisionless Boltzmann equation for DM to a Boltzmann
transport equation, which includes a collisional integral encoding interactions between DM
particles and baryons. For simplicity, we will restrict our attention to the zeroth, first and
second velocity moments of this equation, which respectively enforce mass, momentum and
energy conservation:

dp = o
Ag+mﬁ M+laﬁﬁ—ﬁ (3.1b)
3 (0 S\ T 1, 1= £
il Iy L IPU s+ -V = —
2<8t+u V)m—i-pP 8Zu]+qu —- (3.1c)

Here, @ = (%) is the bulk DM velocity, PY¥ = p <(v’ — uz) (vj - u])> is the pressure tensor,
T = 2(v — ul?) is the local DM temperature, and ¢ = 2p((7 — @)|7 — %) is the heat
flux. The local heating rate £ is due to interactions with baryons. The (total) gravitational
acceleration ¢ is determined as usual by the Poisson equation

V.-§=—47G (p+ pp) - (3.2)

The baryon mass density pp(Z) will be treated as an input specified by observations. More-
over, in what follows we will be interested in velocity distributions that are approximately
isotropic, in which case

P;j ~ Po;; valid for |u] < v, (3.3)

where we have introduced the one-dimensional velocity dispersion v = \/T'/m.



3.1 General scaling symmetry

Having reviewed the framework of [1], let us discuss the scaling properties of the above
equations. Setting £ = 0 temporarily, notice that (3.1) and (3.2) are invariant under the
anisotropic space-time scaling transformation

T — AT, t— \°t, (3.4)
valid for arbitrary z, with the various quantities transforming as!

v — )\l_zv;
4 — N7
g» N )\1—2,2—',
Gp — \"*Gp; (3.5)
Gpp = A #Gpy;
P \2-%pij .
7— N3¢,

Notice that the transformation laws for P¥ and ¢ are compatible with their definition in
terms of p, ¥ and 4. The above is a symmetry of the collisionless equations. In order for it
to survive as a symmetry of the collisional equations (i.e., with non-zero & ), the heating rate

must transform as . )
£yt (3.6)

m m
The transformation rules (3.5) and (3.6) could at first glance be dismissed as a trivial
consequence of dimensional analysis, with units of length and time kept separate due to
the non-relativistic nature of our system. This becomes more manifest by rescaling p, pp,
P, ¢ and & in egs. (3.5) and (3.6) by a factor of G — a procedure that does not affect
egs. (3.1). Nevertheless, in what follows we will demand that this scaling is actually an
emergent symmetry of the DM sector and its interactions with baryons, at least for a specific
value of z. This requirement, together with some physically-motivated assumptions, will
place stringent constraints on the DM equation of state, the heat flux, and the heating rate.

3.2 DM equation of state

In order to solve egs. (3.1) one must specify, among other things, an equation of state for
DM, which for our purposes will be a relation of the form P = P(p,v). The explicit form
of such a relation depends on the microscopic details of the DM sector. The requirement
that the equation of state be scale invariant for some particular value of z places a nontrivial
constraint on its functional form.

Remarkably, there is a very general assumption one can make to obtain an equation of
state that is scale invariant for any z. Namely, we assume that DM is sufficiently dilute, in
the sense that n\? < 1, where n = % is the number density of DM particles, and A = ﬁ
their mean thermal wavelength. In this regime one can perform a virial expansion of the DM

equation of state, which at lowest order generically reduces to that for an ideal gas:

P=pm?. (3.7)

!Note that this scaling symmetry is different than the one considered in [1] because py, transforms differently.
They agree only for z = 1/2.



It is easy to check that this relation is the only equation of state that is invariant under the
symmetry transformations (3.5) for arbitrary z.
3.3 Heat flux and relaxation time

In the limit where deviations from thermal equilibrium are small,2 Fourier’s law provides us
with an approximate yet explicit expression for the heat flux ¢

7~ —kmVov?, (3.8)
where k is the thermal conductivity,
14 U2trelax

and t,e1ax denotes the relaxation time. This parameter can be thought of as the characteristic
time for DM to reach equilibrium due to interactions with other sectors, e.g. with baryons,
and/or self-interactions.
The scaling transformations (3.5) immediately imply that t.e.x must transform as a
time scale:
trelax — \* Trelax - (310)

Once again one might be tempted to attribute this scaling to dimensional analysis and there-
fore conclude that it is devoid of any physical significance. However, a generic relaxation
mechanism will emphatically not give rise to a tyelax With this scaling property for arbitrary
values of z. Imagine for instance that DM reaches thermal equilibrium due to self-interactions.
The cross section for such processes will generically have a velocity dependence of the form
o = oo(c/v)® for a fixed a, and with op a constant built out of microscopic scales and
couplings. The relaxation time is in turn the inverse of the self-interaction rate onwv, i.e.,

trelax = mt(;;{o fj)a. We conclude therefore that in this scenario tpa.x — /\(3*O‘)Z*H°‘trelax, which

agrees with (3.10) only for one particular value of z, namely z = %:—g

More broadly, one should keep in mind that multiple relaxation mechanisms might be
at play over different characteristic time scales, in which case the relaxation time should
be the shortest of such scales. Given that there is currently no direct evidence for sizable
DM self-interactions, it is plausible that the associated time scale could be longer than the
dynamical time in galaxies. It is then important to consider the possibility of other relaxation
mechanisms. This naturally suggests another time scale, which interestingly scales like (3.10)
for any z — the Jeans time ﬁ.

A possible mechanism giving rise to such a relaxation time was discussed in [1], which
relies on DM relaxing primarily through interactions with baryons. In this case the relaxation
time in disk galaxies would be set by the characteristic time it takes for DM particles to find
the baryonic disk. For DM particles orbiting at distances not much larger than the size of the
disk, this time scale is set by dynamical time or Jeans time. This mechanism is inspired by the
Knudsen regime in kinetic theory, where molecules in ultra-dilute gases reach local thermal
equilibrium by colliding with the walls of the container rather than among themselves. In
our case, the disk effectively plays the role of the wall while the inner DM halo around the

disk can be thought of as the container.

2To be more precise, in the spherically symmetric case we will consider later on, Fourier’s law is valid
< 1.

dlog v?
dlogr

provided ‘
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Phenomenologically, we will see below that indeed, in order to reproduce the MDAR,
the relaxation time must indeed be proportional to the Jeans time, i.e.,

(3.11)

In the flat part of the rotation curve, where p(r) ~ #érz, this reduces to trelax ~ 5. Com-
bining this expression with the one for the thermal conductivity in eq. (3.9), we obtain

rm =N gUQ, (3.12)

where A is some O(1) constant.

3.4 Heating rate

By working in the dilute limit and assuming that t,ca.x is determined by the Jeans time,
we have been able to “kick the can down the road” and preserve scale invariance without
committing to any particular value of z. In order to write down an explicit expression for
the heating rate, we will now have to fix z.

To this end we will use the BTFR as an observational guiding principle. The fact
that the ratio Vﬂ‘;t /M), appears to be a universal constant in rotationally-supported galaxies
suggests that this quantity should not transform under our scaling symmetry. This will be
the case only if the scaling exponent takes the value

Z2=1/2. (3.13)

We henceforth assume that our heating rate explicitly breaks scale invariance for any z down
to scale invariance for z = 1/2 only.
We will now show, based on plausible physical assumptions, that the z = 1/2 scaling
symmetry ) )
£ unt : (3.14)
m m
fixes the parametric dependence of the heating rate & /m due to DM-baryon interactions.
On physical grounds, we expect & /m to depend on p,py, both of which transform as
P, p — Aoy, p, as well as the velocity of DM and baryon components. In rotationally-
supported galaxies it is reasonable to neglect the DM bulk velocity relative to its velocity
dispersion, |i| < v. Indeed, in most of our analysis we will focus on equilibrium situations
and ignore the spin of the halo. We will assume the opposite for baryons, v, < ]Vb\, which
is also justified in disk galaxies. This leaves us with two velocity variables, v and V4. These
two are comparable in the flat part of rotation curves, whereas V}, < v in the central region
of galaxies. To simplify the discussion, we shall only keep track of the dependence on v,
keeping in mind that & /m more generally will depend on both v and V4.
Given the transformation law v — AY2v, the most general form for the heating rate

compatible with (3.14) is

£ v?

< :vF<pb,> . (3.15)
m p’p

In order to fix completely the form of £, we will make two additional assumptions. First,

since in our scenario DM heats up due to interactions with baryons, it is natural to assume
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that it is an extensive quantity as a function of the number of baryons. In other words, the
heating rate should be linear in py,:

> 2
E_,m» <U> . (3.16)
m p’\p

From a model-building perspective, this is certainly the simplest possibility. This is arguably
also the most reasonable behavior one can have in the DM dominate regime pp/p < 1. We
will assume however that eq. (3.16) holds more generally.

Notice that f has dimensions of acceleration. Therefore, the second assumption we will
make is that the f is approximately constant, and of order the characteristic acceleration
scale ag appearing in the MDAR. Thus the heating rate is fixed to be

£ = C’aovp—b , (3.17)
m p

where C is another constant. For concreteness we will assume C' ~ O(1071), which offered
a good fit to rotation curves in the cooling case [1]. The assumption that f is of order
ap is also quite natural from a phenomenological viewpoint, given that we are trying to
reproduce a result such as the MDAR which features a characteristic acceleration scale.
At the same time, the obvious downside of treating ag as a fundamental scale is that it is
unclear why it should numerically coincide with a cosmological acceleration scale. We will
assume that this “coincidence” is resolved by a different mechanism that operates over much
longer, cosmological time scales, such that ag can be treated as a constant parameter for our
purposes. This appears to be well supported by current observations [94]. It is also worth
noting that the inverse density dependence in (3.17) is helpful for the phenomenological
viability of the mechanism. As we will see in section 5, it suppresses the heating rate in
high-density environments, such as the early universe.

Finally, a brief word about the sign of C, which determines whether DM is cooled
(£ < 0) or heated (£ > 0) by baryons. Whereas [1] primarily studied the cooling case for
concreteness, here we focus exclusively on the heating case. Concretely, a net transfer of heat
from baryons to DM can be achieved, for instance, if DM is light (m < my) and scatters
elastically with baryons [1]. In this case, even though v > vy, in disk galaxies, baryons can
be much hotter than DM (mpvg > mo?). This results in a heat transfer to DM, with a
heating rate that depends both on v and the baryon bulk velocity [1]. Alternatively, the bulk
motion of baryons in the disk could result in the (Cerenkov or bremsstrahlung) emission
of light quanta, such as collective excitations (e.g., phonons) of the DM medium, which
would effectively heat the DM. In either case, the challenge remains to devise microscopic
interactions that would yield a heating rate with the desired density and velocity dependence.

Phenomenologically, DM heating is a priori more desirable, since it can transform the
cusps into cores in the central regions of galaxy halos. Moreover, the opposite case of DM
cooling can lead to flattened halos, or too prominent dark disks, once the halos have an
initial spin. These unwanted features are absent with DM heating. Finally, we will argue in
section 4.4 that with heating it is possible to derive a combination of the BTFR and CSDR
by studying the dynamical approach to equilibrium.
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3.5 Deep-MOND scaling as an approximate enhanced symmetry

To summarize, given our expressions for the equations of state, the heat flux and the heating
rate, egs. (3.1) reduce to:

N (o) =0 1
8t+v (p) =0; (3.18a)
O 5.9 a+ 29 (n?) = 7 (3.18b)

ot ) ’ '
Z(;+ﬁ-€)v2+v2ﬁ~ﬁ—;ﬁ- N\/gvzﬁiﬂ :CGOU%Q (3.18¢)
V.-§=—47G (p+ pp) - (3.184)

As discussed previously, these equations are invariant under the scaling transformations (3.4)
and (3.5) with z = 1/2.

In fact, in the DM-dominated regime, where py, can be neglected compared to p in the
Poisson equation (3.18d),3 our equations enjoy a larger, approximate symmetry under the
rescaling

T— AT,

t— Nt

v— MYy

i — NV (3.19)

g ATHg;

Gp — \"%Gp;
Gp, — NGy,
for an arbitrary y [1]. These transformations reduce to our original z = 1/2 scale symmetry
for y = 1/2, but for other values of y they represent a new type of symmetry that is only
approximately valid in DM-dominated regions.
Despite its approximate validity, this enhanced symmetry has interesting observational

consequences. Imagine that a galaxy with scale length L;, total baryonic mass My ; and

rotation curve V; is a solution to our equations. It immediately follows that our equations
must also admit a solution with Lo, My, o and V5 given by

Lo = ALy ; My = "%My 1 ; Va(AZ) = ANV (D) (3.20)

)

This is equivalent to the statement that the rotation curves of two galaxies with different
scale lengths and different total baryonic masses must be related as follows:

L (M \Yt L (L
VQ(x>_(Mb,1) i{7,7) (3.21)

which precisely matches (2.6).

3Notice that in this limit one cannot necessarily neglect the righthand side of eq. (3.18¢). For instance,
for equilibrium solutions the right-hand side is exactly equal to the last term on the left-hand side, and is
therefore not negligible.
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In the particular case of y = 1, the scaling transformations (3.19) reduce to the “rel-
ativistic” deep-MOND scaling law [93], and the result (3.20) becomes particularly simple:

two galaxies with the same total baryonic mass but different scale lengths L; and Lo have

rotation curves related by 172(95') =W (%f) This behavior appears to be supported by

observations [21].

4 MDAR as spontaneous breaking of scale invariance

As shown above, the scaling of our equations implies that, in the DM-dominated regime,
the baryonic mass-asymptotic velocity scaling should follow the BTFR scaling, M}, folat.
Regarding the normalization of the BTFR, it is known that if one starts from abundance
matching with NFW halos, one typically reproduces the correct zero-point of the relation
in the baryonic mass range ~ 10'°°Mg, to ~ 10" Mg, albeit with too large scatter [14]. The
curvature of the predicted BTFR then implies too large Via¢ (or too large enclosed DM mass)
at the low-mass end, still with too large scatter. Given that we are starting from the right
normalization in the intermediate-mass regime, one would expect that our heating mechanism
expels DM out of the baryonic disk region of low-mass disk galaxies, thereby bringing Vaat
down to follow the M, folat scaling with the zero-point set by intermediate-mass galaxies.
In order to make more concrete analytic predictions hereafter, we will now assume that,
through their own self-interactions together with the baryon-DM energy exchange mecha-
nism, DM halos reach a cored pseudo-isothermal profile in the region where the baryonic disk
is sitting. In this section we will demonstrate that the set of equations (3.18) is fully consistent
with such a cored pseudo-isothermal profile, with parameters that reproduce the MDAR.

4.1 Cored pseudo-isothermal profile

Let us now first show how the cored pseudo-isothermal profile parameters should be arranged
to reproduce the MDAR. The profile has the following form:

Po
plr) = —20 . (4.1)
1+ (2)
Thus it is specified by two parameters: the central density, pp, and the core radius, rc.
Equivalently, the core radius can be traded for the (asymptotic) velocity dispersion, denoted
by veo, using

Voo
= 4.2
" \/27TG[)0 ( )

Note that vy is defined at infinity because the velocity dispersion profile we are considering
is not strictly isothermal.

The ability of such cored pseudo-isothermal profile to fit galactic rotation curves has
been well-studied, e.g., [95]. Consider first the large distance r > r. regime:

2 2
pPoT; Vo
~ = . 4.3
plr>re) r2 2rGr? (4.3)
This implies a flat rotation curve with Via, = v20s. Hence DM dominates in this regime,
and the assumption of spherical symmetry is justified. To match the BTFR (2.2), the velocity
dispersion must be related to the total baryonic mass via

1
vl = 1A0G M. (4.4)

— 14 —



This fixes one parameter of the cored pseudo-isothermal profile (4.1), which thus simplifies to

1 VagGMy
plr) = — VAT, (4.5)
ArG ri+r
The second parameter can be fixed by the CSDR (2.3). For the cored pseudo-isothermal
profile, (2.4) gives
YpM = TpoTe - (4.6)
To proceed, we must distinguish between LSB galaxies, which are DM-dominated every-
where, and HSB galaxies, where baryons dominate in the central region. For LSB galaxies

(3p < ap/G), (2.3) implies
_2 /0
POTc = - 27TGZb(O) . (4.7)

Combined with (4.2) and the first constraint (4.4), we can solve for the core radius of LSB
galaxies:

Te = i 27;}]0]\4(})0) (LSB galaxies) . (4.8)
For HSB galaxies (X, > ag/G), on the other hand, the CSDR (2.3) does not directly con-
strain Xpy. The answer depends on the assumed functional form for the MDAR. (In the
MOND parlance, this reflects the freedom in choosing the interpolating function.)

From a symmetry perspective, the cored pseudo-isothermal profile spontaneously breaks
the z = 1/2 scaling symmetry by introducing an explicit scale, . (or equivalently, pp). Notice,
however, that the scaling symmetry is restored in the flat part of the rotation curve (i.e.,
r > rc). Indeed, in this region p(r) approximates a singular isothermal profile (4.3), which
transforms covariantly for any z:

2

UOO —4z
Gp(r) ~ 52 A"22Gp(r) . (4.9)

The spontaneous symmetry breaking scale r. (as well as vy) will be fixed through other
sources of spontaneous breaking, namely baryons.

4.2 Flat part of the rotation curve and the BTFR

We now show that a cored pseudo-isothermal profile, with suitable parameters to reproduce
the MDAR, is a solution to the set of equations (3.18). We will primarily be interested in
equilibrium solutions to these equations with negligible DM halo spin. In this case, the DM
bulk velocity can be set to zero, i.e., @ = 0, and the continuity equation (3.18a) is trivially
satisfied. Equations (3.18b)—(3.18d) then reduce to

v (pvz) = pg; (4.10a)

- / - C
V- ( gv2V02) = —Nvaopb; (4.10b)
V.-G=—4nG(p+ pp) . (4.10¢)

In the flat part of the rotation curve (r > r.), the gravitational field is dominated by
DM (p > py,), and spherical symmetry is a good approximation. The Jeans equation (4.10a)
and Poisson equation (4.10c) are approximately solved by

V()

plr) =555, (4.11)
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where, as we will verify a posteriori, v(r) is a slowly-varying function. Meanwhile, the velocity
profile v(r) is determined by the heat equation (4.10b), which, upon assuming spherical
symmetry and using (4.11), simplifies to

1d /4, dv
. 4.12
o (o 5) = - 5 s (112)

Approximating v as nearly constant on the right-hand side, this can be readily integrated
once:

dovt 1 C
— = M, 4.1
"1 BT NCLOG b - (4.13)
In turn this implies
1 C Ry
vi(r) = —aogG M, log (4.14)

Var N

where Rg is an arbitrary scale. Thus v only varies 10garithmically, which justifies our as-
sumption.

Some remarks are in order. First, the logarithmic dependence of v(r) implies that scale
invariance is not quite restored for r > r.. Rather it is spontaneously broken, analogously to
the breaking of scale invariance by radiative corrections (as in Coleman-Weinberg [96]), with
Ry playing the role of a dimensional transmutation scale. Second, using the approximate
relation V ~ 1/2v, the rotation curve is nearly flat with

R
Vite ~ agG My, log 70 . (4.15)

It is encouraging that the prefactor matches the parametric dependence of the BTFR (2.2).
Unfortunately within our static equilibrium analysis we are not able to fix the scale Ry, nor
determine its scatter. To do so, we will need to go beyond the equilibrium treatment and
analyze the dynamical evolution towards equilibrium. This will be the focus of section 4.4.

4.3 Cored region and the central density relation in HSB galaxies

Consider the central region of galaxies (r < r¢). In this region the DM density can be
approximated as nearly constant, p ~ pg, hence (4.10a) reduces to

Vol ~ . (4.16)
The solution is v? = —® + av?, where a is an O(1) constant. The precise value of this
constant is irrelevant for us. The important point is that v? approaches ~ v2 near the
origin, while its gradient is fixed by the gravitational field.

To make headway analytically, we imagine working sufficiently close to the center that
the baryon distribution looks like an infinite disk but sufficiently far that the disk appears
infinitely thin. In other words, we work in the regime L, < r < L, where L, is the scale
height and L the disk length of the baryon distribution. As a result, the baryon distribution
is approximated by a surface density >i:

pb >~ Xpd(z2). (4.17)

For distances < L, the surface density is nearly homogeneous and given by the central value,
¥1(0).
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With this approximation, the heat equation (4.10b) implies a discontinuity in the normal
component of the heat flux, which by symmetry fixes its magnitude:

C
\ /%vmvaﬂ = 537905 (0). (4.18)
Using (4.2), (4.6), and (4.16), this implies
fm C
EDMQJ_ = EWaOEb(O) . (4.19)

The transverse component of the gravitational field is solved similarly by integrating
Poisson’s equation (4.10c). For HSB galaxies, which are baryon-dominated near the center,
this gives

g5B ~ 272G'%,(0) . (4.20)
It then follows from (4.19) that
T C ag .
EDM == \/;2_/\/’277G (HSB galaXI%) . (421)

Thus our heat equation implies Ypy ~ ag/G. This matches behavior of the ‘simple’ inter-
polating function [90], and is consistent with observations [97].

4.4 Approach to equilibrium and central density relation in LSB galaxies

Up to now our analysis has focused on static, equilibrium configurations. Within this frame-
work, we were able to reproduce the parametric dependence of the BTFR, up to the logarithm
of a scale Ry whose magnitude and scatter remain undetermined. We were also able to derive
the CSDR for HSB galaxies.

By going beyond the equilibrium treatment and considering the approach to equilibrium,
we will now show how the central density relation, which is at the root of the problem of di-
versity of rotation curves, can be naturally reached by our DM-fluid interacting with baryons.
Specifically, we will derive a constraint on a particular combination of the DM temperature
and surface density, which matches the combination of BTFR and CSDR. Therefore, if one
takes the BTFR as a given (per the equilibrium analysis), then this constraint yields the
central density relation naturally.

We begin with a few general comments. In the standard ACDM model, halo virialization
is achieved through violent relaxation, a manifestly non-equilibrium process that drives the
DM distribution towards the attractor NF'W profile within a few dynamical times. Our
proposed DM-baryon interactions offer another relaxation channel. These interactions have
a characteristic time on the order of a dynamical time and thus “compete” with violent
relaxation [1]. Therefore we do not expect our halos to necessarily reach a NFW profile early
on. Crucially, since the interactions considered here tend to heat up DM, they can plausibly
prevent the formation of cold central cusps and instead generate constant density cores, as
needed in most LSB galaxy halos.

A rigorous dynamical analysis to back this intuition would require numerical simula-
tions, which is beyond the scope of this work. In what follows we offer a simple, back-of-the-
envelope analysis of the time-dependent problem. Because the derivation ignores density and
velocity gradients, and relies instead on average quantities, it can only reproduce the CSDR
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in the DM-dominated regime (valid for LSB galaxies). This is sufficient for our purposes,
since we have already established the central density relation in HSB galaxies within the
equilibrium treatment.

The starting point is our set of DM fluid equations (3.18). It is convenient to translate
these equations in terms of the entropy density per DM particle, given by the Sackur-Tetrode
equation: s

s=In <(27r)3/2m”> 42 (4.22)
p 2
This allows us to eliminate v and express our equations (3.18) in terms of p, @ and s. In
what follows we will keep v around for simplicity, but it should be understood via (4.22) as
an implicit function of p and s. It is straightforward to combine the continuity (3.18a) and
heat equation (3.18¢) to obtain an equation for the entropy density:

o = 1o ., €&

with the heat flux expressed as
2 .
q= —§N g#v (s+1np) . (4.24)

This equation is supplemented by the continuity (3.18a), momentum (3.18b) and Pois-
son (3.18d) equations.

To simplify the analysis, at this point we approximate mass and entropy densities as
nearly uniform, thereby neglecting their gradients: ﬁs, ﬁp ~ (. In other words, we treat p
and s as average quantities. It follows from (4.24) that the heat flux can also be neglected,
¢~ 0. Hence (4.23) simplifies to

Os _ & (4.25)
ot mu?
Not surprisingly, the entropy of DM particles increases as they are heated by baryons.

Assuming that the initial DM entropy (at virialization) is negligible compared to its final

value (at equilibrium), (4.25) can be schematically integrated over a relaxation time to give
% trolax ~ 1. (4.26)

This expresses the condition for equilibrium. Substituting (3.17) and (3.11), we obtain

23
DM, 90Pb (4.27)

02 T Gr
where we have used (4.2) and (4.6) to estimate the DM surface density as Ypy ~ \/%.
Meanwhile, we know that the central baryonic surface density of an exponential disk
of scale-length L is ¥,(0) = QJX—EQ. Assuming an approximate linear relation L, ~ L/8
between disk scale-length and scale-height, we can approximate the mean baryon density by

3/2
pp ~ P~ E\b/ﬁ:). Substituting into (4.27), we obtain

ao¥1(0) 3/2
Shu N ( G ) (4.28)
v2 VaoGM,
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Hence, taking the BTFR v? ~ /agGM,, as a given, we get

aOEb(O)
7G .

This is the desired CSDR, valid for DM-dominated (LSB) galaxies. Because the analysis
relied on the average density, it is not surprising that the result matches the DM-dominated
CSDR. On the other hand, we have already seen within the equilibrium treatment that such
a relation holds for HSB galaxies.

It will be important to quantify the numerical coefficient in (4.28), as well as its scatter.
This will require numerical simulations of galaxy formation within our scenario, which is
beyond the scope of the present analysis. It is nevertheless encouraging that the correct
parametric dependence of the scaling relations derives from a back-of-the-envelope analysis.

5 Cosmological implications and constraints

In this section we consider a few astrophysical and cosmological implications of our model.
We will be able to derive very general results, using only the form of the heating rate (3.17),
without specifying an explicit microphysical model. The analysis does rely, however, on the
assumption that the physics underlying our DM-baryon interactions still apply in the various
environments studied below, such as in the early universe. Whether this is justified will
depend on the detailed microscopic interactions (e.g., elastic scattering or radiative transfer)
giving rise to our heating rate. For instance, if heat transport is due to collective excitations
of a DM medium (e.g., fluid or solid), our working assumption is that this DM condensed
state is a valid description in these environments.

For comparison with the constraints below, we will set C' = % for concreteness and
assume ap = 1078 cm/s?. Our heating rate (3.17) then becomes

&
Z =107" p—bv % (5.1)
m p s

Thus the predicted heating rate is determined simply by the DM-to-baryon fraction and
velocity dispersion in the relevant environments.

5.1 Early universe

DM-baryon interactions can affect the evolution in the early universe. In the case of interest
where baryons heat up DM, the dominant constraint comes spectral distortions of the CMB
taking place in the redshift range 10* < z < 106 [98]. In the standard cosmological model,
baryons are kept in thermal equilibrium with photons by Compton scattering until z ~ 200.
This process effectively cools photons, causing small spectral distortions. This cooling will
be enhanced if baryons shed part of their thermal energy to DM, resulting in larger and
potentially observable spectral distortions.

This effect was studied in detail in the case of light DM (m < my,) scattering elastically
with baryons and/or photons [98]. It is straightforward to translate their result to a constraint
on the energy exchange rate &. Consider the energy exchange rate per baryon, %‘, relative to
the thermal energy ~ mbvg per baryon, where ny, and vy, are respectively the baryon number
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density? and velocity dispersion. Let us compare this to the Hubble rate by defining

r‘jn/nb B g agv
Hmbvﬁ 6 va ’

€= (5.2)
where the last step follows from (3.17).
The effect on spectral distortions will be negligible if ¢ <« 1 in the redshift range
10* < 2 <105, It is easy to check that e increases in time in this range, hence the con-
straint is most stringent at z ~ 10%. Since baryons are in thermal equilibrium with radiation,
we have vZ = T, /my, with T, denoting the CMB temperature. Substituting 7, ~ 2eV and
H ~ 10727 eV at z ~ 10%, together with our fiducial values C' = % and ap = 107® cm/s?,
we obtain v
€l,_10914 > 10 . (5.3)

Since our DM particles are assumed non-relativistic at that time, v < ¢, the resulting spectral
distortions are indeed negligible.

5.2 Merging clusters
Merging galaxy clusters constrain the DM self-interaction cross section per unit mass [99-102],

cm2

o
— < — 5.4
z 5= (54)
The precise numerical value of the coefficient depends on the assumptions, but is O(1) or
less [101, 102]. This can be translated to a constraint on the heating rate of DM per unit

mass, % ~ p%v?’, where we have used a characteristic energy exchanged per collision of muv?
for DM-DM scattering. Substituting the characteristic density p ~ 10~24g/cm? and velocity
v ~ 103 km/s for merging clusters, the bound (5.4) translates to
£ _ om?
— S - (5.5)
m s
Although (5.4) was derived assuming DM self-interactions, the end result applies equally
well to our heating rate obtained from DM-baryon scattering. Substituting into (5.1) the
DM-baryon ratio p ~ 10 p}, in clusters and relative velocity v ~ 103 km/s, we obtain
¢ cm?
° ~ 1028 (5.6)

3
M | clusters 5

This comfortably satisfies (5.5). On the flip side, a couple order of magnitude improvement
in the observational bound (5.4) would probe our predicted heating rate, thereby highlighting
the power of merging clusters for detecting DM-baryon interactions.

5.3 Cosmic Dawn and the EDGES anomaly

The recent measurement of the 21-cm absorption spectrum from the Cosmic Dawn epoch
by the EDGES collaboration revealed an excess signal [7]. If real, the excess could indicate
that the hydrogen gas at z ~ 17 was cooler than predicted by the standard ACDM model.
A possible explanation is that interactions between DM and baryons acted to cool the neutral
gas prior to the Cosmic Dawn [103].

4For the purpose of this simple estimate, we ignore the distinction between nuclei and free electrons.
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For instance, sub-GeV DM particles scattering elastically with baryons with velocity-
dependent cross section,

ot (0) = o1 <1 2 /S> - (5.7)

o1 21072 em?. (5.8)

would explain the signal if

The strong velocity dependence of (5.7) is necessary to evade cosmological and astrophys-
ical bounds [103-105]. Detailed model-building analyses, however, show that it is dif-
ficult to construct explicit particle physics models that are compatible with other con-
straints [91, 106-108], though see [109] for recent progress in this direction.

Equations (5.7) and (5.8) can be translated to a heating rate per unit mass using % o~
npoimt (v)v3. Substituting the cosmological baryon number density ny, = 2x10~7(142)% cm ™3
evaluated at z ~ 17, together with the characteristic velocity v = 1 km/s, the bound (5.8
translates to ) )

& _g cm
- =10 el (5.9)
This is how large the heating rate ought to be to explain the EDGES excess. In our case,
substituting into (5.1) the cosmological ratio p ~ 6 py, together with v = 1 km/s, our
predicted heating rate is
(c/" 2
= ~2x107°
Mi=17

cm

= (5.10)

Thus our heating mechanism can explain the EDGES excess.

6 Conclusions

Among the small-scale challenges of ACDM [8], the conspiracy between DM and baryon dis-
tributions in disk galaxies, embodied in the MDAR, is arguably one of the most tantalizing.
The MDAR is a unique relation between the total gravitational field and the Newtonian ac-
celeration generated by baryons alone at every radius in disk galaxies. In particular, both the
tightness of the BTFR and the diversity of galaxy rotation curves that it implies [20] remain
challenging within the ACDM framework, where this conspiracy must arise through feedback
processes. While semi-empirical arguments based on abundance matching can reproduce the
general shape of the MDAR, its normalization, and especially its very small scatter, remain
challenging [37]. Relatedly, it has recently been pointed out that stellar feedback is related to
a characteristic acceleration of order ag. While promising, this is not sufficient yet to explain
the details of the diversity of rotation curves encoded in the tightness of the MDAR, which
should be related to the subtleties of the core-cusp transformation process. On the numerical
front, much progress has been made in obtaining the MDAR from hydrodynamical simula-
tions of galaxy formation, as reviewed in the Introduction, though challenges — related to
the extreme tightness of the BTFR and diversity of rotation curves — still remain.

Given these challenges, it is worthwhile to entertain the alternative possibility that the
baryon-DM conspiracy embodied by the MDAR is due to new, non-gravitational interactions
between the two sectors. Traditionally, work in this direction has focused on postulating
a new long-range force acting on baryons, thereby effectively modifying gravity. This force
could be either fundamental or, as in superfluid DM, emergent from the DM medium.
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The idea pursued in this paper, building on our earlier work [1], is that the MDAR is
the result of direct (non-gravitational) interactions between DM and baryons, instead of an
effective modification of gravity or feedback processes. The main difference with our earlier
work is to consider that this interaction heats the DM-fluid. The approach followed has been
completely “bottom-up”. Using a hydrodynamical description of DM, our goal has been to
identify which such DM-baryon interactions are necessary to reproduce the MDAR.

In this framework, the microphysics of DM is encoded in three physical quantities:
the DM equation of state, P = P(p,v); the relaxation time, t,¢ax, which enters in the
heat conductivity; and the energy exchange rate £, which is determined by DM-baryon
interactions. A key result of this work is that the MDAR is obtained if the following conditions
are satisfied:

1. The equation of state is approximately that of an ideal gas, P = pv?. This will generi-
cally be realized in the dilute limit, where the average inter-particle separation is large
compared to the mean free path.

2. The relaxation time is set by the Jeans time, tioax ~ This can be achieved

1
. . . . . Gp )
naturally, for instance, if DM is in a Knudsen regime [1].
3. The heating rate satisfies the master relation % ~ Caov%b. This is the most important
relation as it informs us about the necessary DM-baryon particle interactions.

To be clear, we do not claim that these are unique nor necessary, but they are sufficient
to obtain the MDAR. Remarkably, with these assumptions the set of hydrodynamical equa-
tions, together with Poisson’s equation, enjoy an anisotropic scaling symmetry, which offers
yet another guide for model building. Moreover, in DM-dominated regions this scaling sym-
metry is enhanced to a one-parameter family of scalings, implying the scaling relation (2.6),
which fully captures the low-acceleration limit of the MDAR.

In this paper, we built on and further developed the original scenario of [1] in several
crucial ways. Most importantly, as stated above, instead of baryon-DM interactions cooling
the DM medium, we focused exclusively on the case where the DM fluid is heated by baryons.
This is indeed a priori more desirable from the point of view of galaxy formation, since DM
heating can transform cusps into cores in the central regions of galaxy halos. It also avoids
the concern of forming flattened halos or dark disks. A second key difference pertains to
the form of DM-baryon interactions. Whereas our original analysis [1] focused exclusively
on short-range particle-particle collisions between DM and baryons, in the present analysis
we remained general about the form of such interactions. This opens up a wider range of
possibilities for particle physics model-building.

We then showed how, assuming a cored pseudo-isothermal profile, the above hydrody-
namical ingredients give rise at equilibrium to suitable parameters reproducing the MDAR.
Specifically, in the flat part of the rotation curve the asymptotic rotational velocity matches
the parametric dependence of the BTFR, up to a logarithm in r. Meanwhile, in the cen-
tral region of HSB galaxies, where baryons dominate, the DM profile reproduces the CSDR
with the behaviour of the ‘simple’ interpolating function of MOND. Finally, by studying
the time-dependent approach to equilibrium, we derived a constraint on a combination of
the DM velocity dispersion and surface density, which matches the combination of BTFR
and CSDR. Therefore, if one takes the BTFR as a given (per the equilibrium analysis), this
constraint yields the CSDR naturally.
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Remarkably, the form of the heating rate makes definite, model-independent predictions
for various cosmological and astrophysical observables. The only assumption of course is that
the underlying DM-baryon effective theory responsible for the heating rate is still valid in
these different environments. Assuming this is the case, we argued that our model satis-
fies various observational constraints, and, intriguingly, offers a possible explanation to the
EDGES excess. Of course, there will be many more phenomenological loops to go through
once we have an explicit particle physics realization, but it is reassuring that our heating rate
so far appears to be observationally viable.

Our framework offers a number of avenues for further development. Three particularly
important directions are:

e Including the dynamics of baryons. In our framework we focused our attention on
the dynamics of the DM sector, treating baryons as an external source. This is a
reasonable approximation provided that the typical energy lost by a baryon is not
significant enough to affect its dynamics over the time scales of interest. Using the
expression (3.17) for our heating rate &, one can estimate the energy lost by a baryon
per unit length to be dd% > Cm\/#;‘“’. Even keeping in mind that C' ~ O(107!), this
quantity could become large enough in some LSBs, and a more accurate treatment
would require including the dynamics of baryons.

e Numerical simulations of galaxy formation. Our scenario is ripe for a fully dynamical
study of galaxy formation. Because our equations are cast in simple hydrodynamical
terms, it should be straightforward to modify existing hydrodynamical codes to include
our heating rate. For this purpose, the formulation in terms of entropy density presented
in section 4.4 may be most convenient. Such numerical studies would inform us, among
other things, on the stability of the equilibrium solution, in particular whether the
outskirts of galaxy disks are not too severely perturbed by interactions with DM. It
would allow us to check whether the equilibrium configuration is reached dynamically
on the predicted time scale. Furthermore, such an analysis would also allows us to
quantify the expected scatter for the BTFR, in particular for the characteristic scale
Ry appearing in the logarithm.

e Building a particle physics model. In this paper we have adopted a purely bottom-up
approach based on an effective hydrodynamical description of the DM sector. It would
be very interesting to deduce what type of constraints the heating rate (3.17) poses on
the underlying microscopic interactions between baryons and DM. One promising way
of ensuring that our scenario is compatible with small-scale (e.g., solar system) con-
straints would be to consider interactions that involve collective excitations emerging at
scales of O(pc). We leave the exploration of this interesting possibility for future work.
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