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Compressive Sensing Based Stochastic Economic
Dispatch With High Penetration Renewables

Jing Li , Na Ou, Guang Lin , and Wei Wei

Abstract—This paper develops a stochastic economic dispatch
algorithm to optimize performance objectives while coping with
high-dimensional uncertainty in the distribution system. To build a
new convex deterministic optimizationmodel of economic dispatch
with randomparameters, the conic relaxation of powerflowand the
multivariate polynomial chaos expansions of random variables are
employed.As the expansion of themultivariate randomvariables in
terms of polynomial bases are approximately sparse, the weighted
l1 minimization approach is utilized to reconstruct the polynomi-
als from compressed samples. Based on the alternating direction
method of multipliers, distributed strategy is developed to solve
the economic dispatch and corresponding uncertainty quantifica-
tion iteratively. Compared with Monte Carlo sampling method,
the proposed approach not only can reduce the computational cost
for solving stochastic economic dispatch, but also provide more
accurate statistical information.

Index Terms—Compressive sensing, K-L expression, sparse
polynomial approximation, uncertainty qualification, stochastic
economic dispatch.

I. INTRODUCTION

ECONOMIC dispatch (ED) is a such problem that it sched-
ules the controllable units to minimize the overall pro-

duction costs satisfying operational constraints in the electric
power grid [1]. With the increasing number of Renewable En-
ergy Sources (RES) based distributed generators (DGs) inte-
grated in future distribution system, uncertainties are becoming
a big issue in system operations and planning.
An alternative to deal with uncertainty is to a finite set of

sampled realizations form a stochastic process model, thus the
stochastic ED problem is handled to minimize the expected
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value of cost considering a set of scenarios [2]. Besides, chance
constraint is a comprehensive way of handling uncertainty, and
it is commonly used to ensure small probability of constraint vi-
olation [3]. While a sample based approach is used to handle the
chanc constraint [4], computational tractability for large systems
is still a challenge to be address. Especially, when uncertainties
are sufficiently large, it fails to provide useful information. Ref-
erence [5] proposed a scalable robust multi-period DC-OPF
integrating storage and uncertainty related to renewable gener-
ation. Whereas DC power flow models are lack of accuracy and
unable to analysize voltage/reactive power, AC power flow is
considered and convexified in the model [6]. Assuming that the
forecast errors are small, partial linearization of AC power flow
around the forecasted operating point is employed in [7]. And it
proposes an analytical reformulation of chance constraint based
on samples of random variables. In [8], the chance constrained
AC-OPF (CC AC-OPF) is approximated by using data-driven
distributionally robust optimization.
Some advanced modeling and sampling techniques from the

field of uncertainty quantification (UQ) are adopted to the uncer-
tainty analysis of many engineering problems including power
system [9]. Spectral-method-based surrogate model is a power-
ful tool in studying UQ. Based on sparse grid interpolation [10]
and Gaussian process models [11], it approximate the stochas-
tic solution by a generalized polynomial-chaos (gPC) expan-
sion [12]. Its representation of response surface is of a linear
combination of orthonormalmultivariate polynomials, and it can
provide various statistical information [13] (e.g., moments and
probability density function). However, computationally burden
grows heavily with the number of data and dimension of random
variables. Avoiding computationally expensive sampling, un-
certainty propagation via general polynomial chaos expansion
(gPC) is applied to solve stochastic OPF [14], [15], such that
the single-period stochastic problem is reformulated as a struc-
turally equivalent deterministic problem of larger dimension.
Using Galerkin projection, the chance constraints are reformu-
lated as second order cone constraints with gPC coefficients, and
these coefficients are considered as auxiliary decision variables
to be solved.
The intrusivemethod (e.g., stochastic Galerkin [16]) and non-

intrusive method (e.g., probabilistic collocation method [17])
are the two mainly used approaches for approximating the gPC
coefficients. Particularly, the non-intrusive method is widely
used for the complex and nonlinear system as it does not need to
modify the computational model of the system. However, there
are lots of basis functions and simulation samples required for
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problemswith high-dimensional uncertainties. Some techniques
based on compressed sensing [18], reduced basis [19], low rank
decomposition [20] have been developed for high-dimensional
problem.
Compressive-sensing-based uncertainty quantification meth-

ods [21], [22] have become a powerful tool for problems with
limited data. When the number of zero terms in the gPC of the
model output is big, the l1 minimization method has approx-
imated gPC coefficients from small number of and possibly
arbitrarily positioned samples [23]. The sparsity improvement
increases not only efficiency but also accuracy of the compres-
sive sensing method.
In this paper, we adopt compressive sensing method from

the field of UQ and leverage it to impact stochastic economic
dispatch of power system. The proposed stochastic economic
dispatch problem is modeled based on a multi-period optimal
power flow formulation, chance constraints are formulated to
ensure voltage regulation within given limits with arbitrarily
high probability. Increasing penetration of RES based DGs
brings a large number of uncertainties in the power system,
the nonlinearity of optimal power equations and probabilis-
tic constraints make the problem computationally intractable.
However, the sparse gPC expansion is implemented in conjunc-
tion with the novel Karhunen-Loeve expansion (KLE) model
of the stochastic renewable power generation, and the conic
relaxation of power flow is employed to get the convex deter-
ministic optimizationmodel of economic dispatch problemwith
uncertainty. With help of gPC approximation, the chance con-
straints are represented by the conic constraints of polynomial
coefficients. Additionally, a novel method for high-dimensional
approximation based on compressed sensing techniques is de-
veloped under limited samples situation. Finally, a distributed
strategy is developed by using the alternating direction method
of multipliers (ADMM), to enable economic dispatch and com-
pressive sensing based uncertainty quantification pursue spe-
cific performance objectives. Simulations verify that the pro-
posed approach has high efficiency and accuracy for solving
stochastic economic dispatch problem with high-dimensional
uncertainty.
The contributions of our study are as follows:
� In our manuscript, the stochastic economic dispatching
problem is formulated as a multi-period CC AC-OPF
subject to the multiple period uncertainty in terms of
stochastic process over a finite optimization horizon. With
truncatedKarhunen-Love expansion (KLE), the inputmul-
tiple stochastic processes are parameterized in a reduced
dimensional stochastic space.

� To break the curse of dimensionality, we build sparse gPC
approximation of the multi-period CC AC-OPF upon the
reformulation proposed in [14]. Under limited samples sit-
uation, the weighted L-1 minimization approach is utilized
to reconstruct the gPC from compressed samples.

� Robust optimization seeks strategies that perform best with
respect to the worst-case realization in the uncertainty set.
Nevertheless, the proposed method in our manuscript not
only obtain the optimal strategy but also give more statistic
information of variables and objectives under uncertainty.

II. PRELIMINARY

A. Representation of Power Flow

A distribution system generally has radial topology, which
can be described by a directed tree graph G = (E,Ω), where
E := {n0 , n1 , . . . , nm} denotes the vertex set representing the
nodes(buses), Ω := {ω1 , ω2 , . . . , ωm} is the edge set. ωj =
{(ni, nj )|ni ∈ E, nj ∈ E \ {n0}} denotes the line circuit from
bus ni to bus nj . The root node n0 denotes the substation bus
in the distribution system which has fixed voltage V0 . In order
to describe the relationship of edges and nodes, we construct
the matrix A, the incidence matrix of the directed tree graph
G′ =

(
N \ {n0},Ω

)
such that the elements of matrix Aij are

given as follows:

Aij =

⎧
⎪⎨

⎪⎩

+1 if ni is the child node of ωj ,

−1 if ni is the parent node of ωj ,

0 otherwise.

(1)

Let t denotes specific time periods in the planning horizon t ∈
T , T = {1, . . . , T}. For jth branch in the distribution system at
time t, let Ij (t) be the complex current from buses nπ (j ) to nj ,
Pj (t)(Qj (t)) be the sending-end active (reactive) power from
buses nπ (j ) to nj , and Rj (Xj ) be the resistance (reactance) on
the line from buses nπ (j ) to nj . For each bus at time t, let Vj (t)
be the complex voltage on bus nj , pj (t)(qj (t)) be the injected
active (reactive) power on bus nj .
Let, vj (t) := |Vj (t)|2 , lj (t) := |Ij (t)|2 . Based on the

branch model of power flow [24], that is

⎡

⎢
⎣

A 0 −R 0

0 A −X 0

2R 2X −Z AT

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

P (t)

Q(t)

l(t)

v(t)

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎣

p(t)

q(t)

v0e1

⎤

⎥
⎦ (2)

lj (t)vπ (j )(t) = P 2
j (t) + Q2

j (t); ∀j ∈ Ω. (3)

where for any given (p(t), q(t)), the state variables S(t) :=
[P (t),Q(t), l(t),v(t)]T of the distribution system can be de-
termined by above equations.

B. Nodal Power Injection

The nodal power injections are the power consumed by
load minus the sum of the electric power power export of the
renewable-based generator pr (ξ, t) and the power of energy
storage system pb(t).

p(t) = pd(t) + pcd(t) − pb(t) − pr (ξ, t). (4)

where pd(t) and pcd(t) denote the uncontrollable and control-
lable load respectively. The reactive power is

q(t) = qr (t) − qd(t). (5)

where qr (t) and qd(t) denote the reactive power of generation
and load respectively.
1) Uncertainty of Renewable Power: the renewable-based

generation referred to as the available active power, that is
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given by

pr
j (ξ, t) = p̄r

j (t) + errj (ξ, t), j ∈ EG, t ∈ T (6)

where EG is the set of generator bus, p̄r (t) is the forecast value
of jth generator at time t and errj (ξ, t) is the error associated
with the forecast . Motivated by the techniques of short-term
forecast over the dispatching horizon [25], the forecast error is
assumed to be modeled by stochastic process/random field. Ap-
plying the Karhunen-Loève expansion (KLE), the random field
can be characterized by finite dimensional random space [26].
Considering the correlations between themultiple random fields
errj (j ∈ EG ), the covariance matrix O with the element

Oij = E[erri(ξ, t)errj (ξ, t)] (7)

And then the covariance matrix is decomposed into O = LLT

by Cholesky decomposition. Incorporating the correlation into
the representation of the input forecast error errj (j ∈ EG ), the
KLE of the multiple random fields is as follows:

errj (ξ, t)≈errM
j (ξ, t)=σerrj

(
j∑

k=1

ljk

M∑

i=1

√
μi,k fi,k (t)ξi,k

)

(8)
where M is the number of KLE terms. σerrj

is the standard
deviation of errj . μi and fi(t) is eigenvalue and corresponding
eigenfunctions obtained by the spectral decomposition of co-
variance kernel of the stochastic process describing the forecast
error of renewable generation at jth bus.
Here, it is assumed that the forecast error is approximately de-

scribed by a Gaussian field [27]. Accordingly, we can simulate
the stochastic process of error with a truncated KLE representa-
tion. Motivated by the analysis and empirical evidence for a real
life example [28], [29], the normality assumption of the forecast
error is justified. The normality assumption of the forecast error
indicates that, in Eq. (8) {ξi,k}i=1,...,M ,k∈EG is a set of standard
identically independent Gaussian random variables.

Remark 1: For non-gaussian processes, higher-order statis-
tics should be considered. Nonlinear generation of KLE, which
is known as kernel principal component analysis with high or-
der polynomial kernels [30], [31], have been applied to handle
non-gaussian process. Yet, the approach we proposed in our
manuscript based on gaussian process of forecast error is general
enough to be applicable with non-gaussian stochastic processes.
2) Model of Energy Storage System (ESS): The ESS can

be considered as either a generator when it is discharged or a
load when it is charged. At jth bus in the distribution system,
let Bj (t) denote the amount of energy storage at time t ∈ T .
Approximately,

Bj (t) = Bj (t − 1) + pb
j (t)δτ . (9)

where pb
j (t) denotes the power delivered to or drawn from the

ESS and δτ is the duration of time slot (t, t + 1]. Particularly,
pb

j (t) could be either charging or discharging power of ESS, it
can be controlled and optimized.
Considering the effect on the cycle life of storage device, the

operational limits of the storage device are as follows:

Bj (t) ∈
[
Bmin

j , Bmax
j

]
, pb

j (t) ∈
[
pb min

j , pb max
j

]
(10)

where (Bmin
j , Bmax

j ) denotes the lower and upper bounds on
energy level at jth bus. Here, it is assumed that they are 20% and
90% of the installed capacity of the storage units, respectively.
And (pb min

j , pb max
j ) denotes nominal discharging and charging

rate of battery at jth bus respectively.

C. Uncertainty Quantization Via Stochastic Collocation

1) Generalized Polynomial Expansions: The uncertainties
of injected power further influence the state variable such as
bus voltage and branch current in power system. Given the
d-dimensional random variables ξ = (ξ1 , ξ2 , . . . , ξd). Obvi-
ously S(t) depends on ξ and thus can be approximated by a
truncated generalized polynomial-chaos (gPC) expansion

S(ξ, t) ≈ So(ξ, t) =
∑

α∈Λo , d

S̃α (t)φα (ξ) (11)

inwhichΛo,d := {α ∈ Nd
0 :
∑d

i=1 αi ≤ o, ‖α‖0 ≤ d} is the set
of multi-indices and has the cardinality |Λo,d | = (o+d)!

o!d! . And the
multivariate polynomial basis functionφα (ξ) is a tensor product
of univariate polynomials φαi

(ξi), i.e.,

φα (ξ) = φα1 (ξ1)φα2 (ξ2) · · ·φαd
(ξd), α ∈ Nd

0 (12)

where Nd
0 := {(α1 , . . . , αd) : αi ∈ N ∪ {0}} is the set of

multi-indices of size d defined on non-negative integers. Each
family of polynomials corresponds to a given choice of dis-
tribution for the ξi , such as normal distribution with Hermite
polynomials, uniform with Legendre polynomials [32].
Then the expectation and variance are approximated by

E[S(ξ, t)] ≈ S̃0(t),
(
var[S(ξ, t)]

)2≈
N∑

i=1

S̃2
i (t) (13)

where N = |Λo,d | − 1.
As φα (ξ) are orthonormal to each other, the exact gPC co-

efficients S̃(t) may be computed by Galerkin projection such
that

S̃

α (t) =

∫

Ξ
S(ξ, t)φα (ξ)ρ(ξ)dξ (14)

where ρ(ξ) is the distribution function of random ξ.
2) Sparse gPC Approximation: The sparse gPC approxima-

tion Ŝ(ξ, t) :=
∑

α∈Λ̂o , d
S̃α (t)φα (ξ) is said that one may ide-

ally seek a proper index set Λ̂o,d ⊆ Λo,d , with sufficiently large
order o, such that for a given accuracy δ

Λδ
o,d := arg min

{
|Λ̂o,d | : Λ̂o,d ⊆ Λo,d ,

∥
∥
∥S(ξ, t) − Ŝ(ξ, t)

∥
∥
∥

2
≤ δ
}

(15)

where |Λδ
o,d | � |Λo,d | is the sparse index set.

III. ECONOMIC OPTIMIZATION AND UNCERTAIN

QUANTIZATION

In this section, the economic optimization of DGs is mod-
eled by the chance-constrained stochastic programming formu-
lation that the renewable power uncertainty is considered as
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the random inputs. For the random inputs are approximated by
gPC, we explore the convex approximation of the thicky chance
constraints and efficient representation of uncertainty for the
economic optimization problem.

A. Model of Stochastic Optimization

Considering the stochastic modeling of RESs’ behavior, the
complete model materializes into a stochastic nonlinear opti-
mization problem (SNO). Its objective is determining the min-
imum overall cost of operating the controllable resources and
minimum power losses across all time periods t in the opti-
mization horizon T , subject to a certain number of constraints
including chance constraints, as follows:
1) Objective Function: In this work, u(t) := (pb(t),

pcd(t))T is the design variable which includes the power of
battery and controllable load. Concerning the branch power
flow model in Eq. (2) and (3), the state variables can be spec-
ified for any given design variable. As a result of the random
error ξ to the prediction of renewable energy, the state variables
S(ξ, t) = [P (ξ, t),Q(ξ, t), l(ξ, t),v(ξ, t)]T of the power sys-
tem are random, and the power losses is stochastic as well.
Therefore, the optimal variables of the proposed DOPT are

design variableu(t) and state variableS(ξ, t), and the objective
function includes two parts: the expected value of power losses
and the cost of operating controllable resources in the system,
that is

min Eξ∈Ξ

[
∑

t∈T
fl(S(ξ, t),u(t))

]

=
∑

t∈T

(
Eξ∈Ξ [Σj∈ΩRj lj (ξ, t)] + ρbp

b(t) + ρdp
cd(t)

)

(16)

where Eξ∈Ξ is the expected value operator and Ξ is the space of
random ξ; ρd and ρb is unit cost of controllable load curtailment
and unit battery cost respectively.
2) Power Balance Contraints: Considering the branch

power flow equalities mentioned above in Eq. (2)∼(3), these
equalities constraints can be conically relaxed by the intersec-
tion of the affine set,

CS
(
ξ, t
)

= bt + u(t) + atξ; (17)

and the second order cone,

lj (ξ, t)vπ (j )(ξ, t) ≥ P 2
j (ξ, t) + Q2

j (ξ, t); ∀j ∈ Ω. (18)

which is the conic relaxed constraint of Eq. (3).
ThematrixC is the constantmatrix describing the relationship

of the voltage, current and power in the power system.

C =

⎛

⎜
⎝

A 0 −R 0

0 A −X 0

2R 2X −Z AT

⎞

⎟
⎠ (19)

And the constant bt = [p̄r (t) − pd(t), q(t), v0e1 ]T denotes
the given value, which includes the predicted power of RES,
demand power and the voltage at slack bus in the distribution
system.

In our proposed economic dispatching problem, the KLE is
performed to approximate the multiple input stochastic pro-
cesses (as shown in Eq. (8)). Let ξ := [ξ1,1 , . . . , ξM ,1 , ξ1,2 ,
. . . , ξM ,2 , . . . , ξM ,Ng

]T be the M × Ng -dimensional random
variables of the stochastic optimization problem. The constant
matrix at is also given once the KLE approximation settled
down, that is,

at = σerrLϕ(t) (20)

where σerr := [σerr1 , . . . , σerrN g
]. L is a lower triangular ma-

trix obtained by Cholesky decomposition of covariance matrix
O with ijth element given in Eq. (7). And the matrix ϕ(t) is a
block diagonal matrix,

ϕ(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ϕ1(t) 0 · · · 0

0 ϕ2(t) 0
...

. . .

0 0 ϕNg
(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(21)

where ϕj (t) := [√μ1,j f1,j (t), . . . ,
√

μM,j fM ,j (t)] is an 1 ×
M row vector that given by the spectral decomposition of
stochastic forecast error of renewable generation at j-th bus.

Remark 2: The inequality (18) is given by the conic relax-
ation of the branch power flow (3). For radial network, a branch
flow model has been studied and relaxed, [33]–[35] prove a
variety of sufficient conditions under which the optimal power
flow is solved via second-order cone programming technique
and the conic relaxation is exact. Here, it is assumed that both
real and reactive power flow unidirectionally for all branches in
the distribution system. According to the Proposition 2 in [34]
and the prove of Theorem in [35], the conic relaxation of AC
power flow in the proposed optimization model is feasible.
3) Control Limits: The controllable load and battery utiliza-

tion over the whole horizon is optimized subject to the following
constraints:

u(t) ∈ [u, u] ,
t∑

τ =1

u(τ) ∈
[
B,B

]
(22)

where [u, u] is the lower and upper bound of the design variable,
it means that the power of battery and controllable load should
be optimally designed within certain range. [B,B] denotes the
lower and upper bounds on energy level of battery (see (10)).
4) Chance Constraints: Given the predicted values of avail-

able renewable powers along with the associated forecasting
errors ξ, the RES based DGs and battery setpoints can be sched-
uled in a way that the limits of branch current and bus voltage
are satisfied with prescribed probabilities 1 − ε [36]. The lim-
its of bus voltages and branch currents are modeled as chance
constraints:

Prob {v(ξ, t) ≤ v} ≥ 1 − ε; (23a)

Prob {v(ξ, t) ≥ v} ≥ 1 − ε; (23b)

Prob
{
l(ξ, t) ≤ I

}
≥ 1 − ε. (23c)
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where I denotes the the upper bound of the magnitude of branch
currents. [v, v] is the bound which the magnitude of voltage
should be stay with.
Regarding the optimization problem (16)∼(23), it is the

stochastic multi-period OPF problem in which the chance con-
straints make the problem intractable in high-dimensional cases.
Applying surrogate model of uncertainties with the help of the
gPC, a convex approximation of the chance constraints is pro-
posed next.

B. Convex Approximation of Chance Constraints

The chance constraints like Eq. (23) are often nonconvex
and difficult to treat in general, these constraints can be re-
formulated using the same approach as in [37]. Under some
distributional assumptions for v(ξ, t) and l(ξ, t), the reformu-
lation of chance constraint Eq. (23) is as the following analytic
expression:

E[v(ξ, t)] ≤ v− f−1(1 − ε)var[v(ξ, t)]; (24a)

E[v(ξ, t)] ≥ v + f−1(1 − ε)var[v(ξ, t)]; (24b)

E[l(ξ, t)] ≤ I− f−1(1 − ε)var[l(ξ, t)]. (24c)

where f−1 is the inverse cumulative distribution function of the
standard normal distribution if the fluctuations of v(ξ, t) and
l(ξ, t) follow normal distribution. It is possible to accounted
for more general distribution without significant changes to the
approach [38].
Additionally, the gPC is utilized as a surrogate model to un-

derstand the influence of uncertainties on the quantity of state
variables in the distribution system, that is

v(ξ, t) =
N∑

i=0

ṽi(t)φi(ξ); l(ξ, t) =
N∑

i=0

l̃i(t)φi(ξ) (25)

Thus, the expected value and variance of random variables can
be described by the coefficient of their gPC,

E[v(ξ, t)] = ṽ0(t), var[v(ξ, t)] =

√
∑N

i=1
ṽ2

i (t); (26a)

E[l(ξ, t)] = l̃0(t), var[l(ξ, t)] =

√
∑N

i=1
l̃2i (t). (26b)

Substituting (26) into (24), the chance constraints Eq. (24) can
be further represented as convex constraints of gPC coefficients.

v− ṽ0(t) ≥ f−1(1 − ε)
√

ṽ2
1(t) + · · · + ṽ2

N (t); (27a)

ṽ0(t) − v ≥ f−1(1 − ε)
√

ṽ2
1(t) + · · · + ṽ2

N (t); (27b)

I− l̃0(t) ≥ f−1(1 − ε)
√

l̃21(t) + · · · + l̃2N (t). (27c)

Indeed, it is seen that Eq. (24) are satisfied iff ∃γ l > 0 and
γv > 0 such that

ṽ0(t) + f−1(1 − ε)γv ≤ v (28a)

ṽ0(t) − f−1(1 − ε)γv ≥ v (28b)

γv ≥
√

ṽ2
1(t) + · · · + ṽ2

N (t) (28c)

γ l ≥
√

l̃21(t) + · · · + l̃2N (t) (28d)

l̃0(t) + f−1(1 − ε)γ l ≤ I. (28e)

where ṽi(t) and l̃i(t) is the gPC coefficient of the randomv(ξ, t)
and l(ξ, t) respectively.

C. Pseudospectral Model of Stochastic Economic Dispatch

Using the gPC spectral model to approximate the random
variables, the expected value of random variable can be de-
scribed by the first coefficient in its expression. Substituting
the convex approximation of constraints (28) into the chance
constraints (23) in the SNO problem (16)∼(23), the problem is
redescribed as follows:

P : min
S̃(t),S(ξ,t),u(t)

∑

t∈T
f̃l,t (29a)

s.t. ∀t ∈ T :

CS
(
ξ, t
)

= bt + u(t) + atξ,∀ξ ∈ Ξ;
(29b)

g
(
S(ξ, t)

)
� 0, ∀ξ ∈ Ξ; (29c)

Φ(ξ)S̃(t) = S(ξ, t),∀ξ ∈ Ξ; (29d)

(22), (28). (29e)

where the objective function f̃l,t =
∑

j∈Ω Rj l̃j0(t) + ρu(t).
Φ(ξ) = [φ0(ξ),φ1(ξ), . . . ,φN (ξ)] is basis of gPC in terms
of the distribution of input ξ. The gPC coefficient S̃(t) =
[S̃0(t), S̃1(t), . . . , S̃N (t)]T is the auxiliary variable in the prob-
lem.
Constraints (29b)–(29c) are the power balance constraints at

the realizations of the random variable ξ, where the inequal-
ity (29c) is the conic shown as (18). Constraints (29d) denote
that the N th-degree gPC approximation of the random state
variables hold on every collocation points.
To solve P in (29), Monte Carlo is commonly used simple

scheme however it is to be blamed for its low convergence
rate and heavy computational cost when the system should be
solved for every samples in the stochastic space Ξ. Stochastic
collocationmethod is an alternative scheme that it need subspace
of the stochastic spaceΞ and has exponentially convergence, but
it is recognized as a computational challenge to deal with high
dimensional case.

Remark 3: To prevent the problem from becoming underde-
termined, we require the number of collocation points not to be
smaller than the number of gPC expansion terms. For the multi-
variate case, the basis is a tensor product of univariate poly-
nomials (see (12)). By using the tensor product construction,

Authorized licensed use limited to: Purdue University. Downloaded on August 30,2020 at 18:19:01 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: COMPRESSIVE SENSING BASED STOCHASTIC ECONOMIC DISPATCH WITH HIGH PENETRATION RENEWABLES 1443

the total number collocation points ismd wherem is the number
of samples in each dimension. Obviously, in order to describe
the input uncertainty, the size of samples increases exponen-
tially with the dimension of the input uncertainty if you want to
approximate gPC coefficients .

Remark 4: For the choice of the collocation points ξk :=
(ξk

1 , ξk
2 , . . . , ξk

d ), which is a vector of sampling points for the d
random variables, it has become popular to use points which lie
on a sparse grid in the stochastic space generated by Smolyak’s
algorithm [16]. While this approach performs well when o and
d are small, it may become impractical for high-dimensional
random inputs.
Due to the limited computational sources, it is significant in

exploiting the approximate sparsity of the coefficient S̃(t) in
high-dimensional cases. The techniques from the field of com-
pressive sampling [39] can achieve an accurate reconstruction
with a small number of samples. Moreover, a small portion of
collocation points in k ∈ K is randomly selected as training sets
to approximate coefficients, to enhance the efficiency of solving
(29) in the following section.

IV. COMPRESSIVE SENSING BASED OPTIMIZATION

In this section, sparse polynomial chaos approximation is
proposed to quantify uncertainty in economic dispatch ofDGs as
the distribution system has high-dimensional stochastic inputs.
To this end, we extend ideas from the field of compressive
sampling.

A. Compressive Function Approximation

Suppose that {ξk}K
k=1 ⊂ Ξ is a finite sample set of

realizations, typically chosen randomly from an appropriate
distribution, let ξ = (ξ1 , ξ2 , . . . , ξK ) and consider the corre-
sponding model outputs S(ξ, t) = [S(ξ1 , t), . . . ,S(ξK , t)]T .
Specifically, we would like to approximate the coefficients
S̃(t) = [S̃0(t), S̃1(t), . . . , S̃N (t)]T , K < N , by solving the
following optimization problem [40]:

S̃∗(t) = arg min
S̃(t)

{∥∥
∥S̃(t)

∥
∥
∥

0

∣
∣
∣ΨS̃(t) = S

(
ξ, t
)}

(30)

where the semi-norm ‖S̃(t)‖0 is the number of non-zero com-
ponents of S̃(t). The measurement matrix Ψ is generated by
setting Ψij = φi(ξj ).
In general, the global minimum solution of (30) is not unique

and is NP-hard to compute. Further developments in compres-
sive sampling resulted in a convex relaxation of problem (30) by
minimization of the l1-norm instead. Columns of Ψ with large
anticipated coefficients should not be heavily penalized when
used in the approximation. Accordingly, it is reasonable to use
this a priori information to improve the accuracy of sparse ap-
proximations. In this work, we explore the use of a priori knowl-
edge of the gPC coefficients as a weighted l1-minimization:

S̃∗
W (t) = arg min

S̃(t)

{∥∥
∥WS̃(t)

∥
∥
∥

1
| ΨS̃(t) = S(ξ, t)

}
(31)

where the matrix W is a diagonal positive-definite matrix. A
natural choice for the (i, i) entry in this matrix for this case is
Wii = ‖Ψi‖2 .

Note that, the purpose of weighting the l1 cost function with
W is to prevent the optimization from biasing toward the non-
zero entries in S̃(t) whose corresponding columns in Ψ have
large norms. Further more, the optimal solution S̃∗

W (t) in (30)
can be obtained by solving the following unconstraint problem:

S̃

λ(t) = arg min

S̃(t)

{∥
∥
∥WS̃(t)

∥
∥
∥

1
+

1
2λS

∥
∥
∥ΨS̃(t) − S

(
ξ, t
)∥∥
∥

2

2

}

(32)
where λS ≥ 0 is interpreted as a relative weight or trade-
off parameter between the two terms. Moreover, for λS >
‖ΨT S(ξ, t)‖∞, S̃


λ(t) ≈ 0, and for λS → 0, S̃

λ(t) converges

to the optimum solution S̃∗(t) in (30).
Remark 5: In order to approximate S(ξ, t), it suffices to

approximate its coefficients S̃(t) from the measurements of
model outputs S(ξ, t). There are two main goals should be
considered: 1) the estimation ΨS̃(t) to be close to S(ξ, t); 2) it
should involve as few columns from Ψ as possible.

B. Distributed Implementation

Based on a small number of samples, the technique of com-
pressive seeks a sparse approximation of the gPC to reconstruct
solution in the random space. Thus, to exploit approximate spar-
sity of the coefficients S̃(t) in high-dimensional cases, the l1
norm of coefficients should also be considered in the minimiza-
tion. Mathematically speaking, our goals are to minimize both
‖‖1 and cost function of economic dispatch in (P). Accordingly,
we transform this multi-objective optimization problem into a
regularized problem by solving problem:

P1 : min
S(ξ,t),S̃(t),u(t)

∑

t∈T

(
f̃l,t +

∥
∥
∥WS̃(t)

∥
∥
∥

1

)
(33a)

s.t. ∀t ∈ T :

CS
(
ξ, t
)

= bt + u(t) + atξ; (33b)

g
(
S
(
ξ, t
))

� 0; (33c)

ΨS̃(t) = S
(
ξ, t
)
; (33d)

(22), (28). (33e)

The methods discussed above are a good way to accomplish
the stochastic economic dispatch, and it can get a reliable solu-
tion to P1 in (33) with little programming effort. However, for
large-scale applications, general purpose optimizers seem slow
and can perhaps be improved by special purpose techniques. We
define two subproblems: one (P2) in the economical dispatch-
ing variables {S(ξ, t),u(t)}t∈T and one (P3) in UQ variables
{S̃(t)}t∈T .
It is observed that the problem P1 is able to decomposed into

P2 and P3 except for the coupled linear equality constraints
(33d). Forming the augmented Lagrangian corresponding to the
constraints (33d) (with the Lagrange multiplier μ) and combin-
ing the linear and quadratic terms in the augmented Lagrangian,
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Fig. 1. The flowchart of the proposed algorithm.

that is

L0

(
S
(
ξ, t
)
, S̃(t),u(t),μ

)
=
∑

t∈T

(
f̃l,t +

∥
∥
∥WS̃(t)

∥
∥
∥

1

+
1
2λ

∥
∥
∥ΨS̃(t) − S

(
ξ, t
)

+ β
∥
∥
∥

2

2
+

1
2λ

‖β‖2
2

)
(34)

where β = λμ is the scaled dual variable, λ > 0 is a parameter.
Thus the distributed optimization algorithm based on the scaled
ADMM is proposed.
As the flowchart of proposed algorithm shown in Fig. 1, the

input data including the randomly selected samples of random
variables ξ in their space Ξ, gPC basis associated with ξ, and
system parameters (e.g., impedance, topology of electric net-
work). What is more, the distributed algorithm consists of the
following steps:
Step 1:Generate input samples ξ = (ξ1 , ξ2 , . . . , ξK )T based

on the distribution of ξ.
Step 2: Select gPC basis functions {Φn}N

n=1 associated with
ξ and then generate the measurement matrixΨ by settingΨij =
Φi(ξj ). And generate the weighted matrix W by setting Wii =
‖Ψi‖2 .

Step 3: Initializeκ = 0, set the initial solutionβ0 and S̃0(t) =
1,∀t ∈ T .
Step 4: Increment κ by 1 and perform the following steps:
1) Receive {S̃κ−1(t)}t∈T from the problem P3 at the last

iteration. Update {Sκ(ξ, t),uκ(t)}t∈T by solving the op-
timization problem P2 in (35).

min
S(ξ,t),u(t)

∑

t∈T

(
f̃l,t +

1
2λ

∥
∥
∥ΨS̃κ−1(t)

− S
(
ξ, t
)
− βκ−1

∥
∥
∥

2

2

)

s.t. ∀t ∈ T : (22), (33b), (33c). (35)

2) Receive {Sκ(ξ, t),uκ(t)}t∈T from the problem P2. Up-
date S̃κ(t) by solving the optimization problem P3 in (36)
for all t ∈ T :

min
S̃(t)

∥
∥
∥WS̃(t)

∥
∥
∥

1
+

1
2λ

∥
∥
∥ΨS̃(t) − Sκ

(
ξ, t
)
− βκ−1

∥
∥
∥

2

2

s.t. (28). (36)

3) Scaled dual variable update:

βκ = βκ−1 + ΨS̃κ(t) − Sκ
(
ξ, t
)

(37)

4) Stopping rule: Compute the residual errors

Δ1 = max
t∈T

∥
∥uκ(t) − uκ−1(t)

∥
∥
∞

Δ2 = max
t∈T

∥
∥
∥ΨS̃κ(t) − Sκ

(
ξ, t
)∥∥
∥
∞

(38)

If the errors are smaller than some predetermined thresh-
old, stop. Otherwise, apply another iteration.

Step 5: Output the optimal economic dispatched power of
DGs u
(t) = uκ(t) over time t, meanwhile, set S̃
(t) = S̃κ(t)
and construct gPC expansion S(ξ, t) ≈ Φ(ξ)S̃
(t) to accom-
plish the uncertainty quantification of the state variable, such as
voltage and current, in the distribution system with DGs.

Remark 6: Note that, in above proposed algorithm, the sep-
arate sub-problems P2 and P3 are solved in parallel. Since all
the feasible sets of these optimization problems are convex,
it guarantee the convergence of the proposed distributed algo-
rithm [41], [42].

C. Stability of the Sparsest Compressive Sensing Solution

The ability of weighted l1-minimization to accurately de-
termine the large coefficients of the gPC is determined by the
properties of thematrixΨ and the sparsity of aPC representation
of the stochastic state output S(ξ, t).
Comparing the optimal solution S̃


λ(t) in (32) with a so-
lution S̃
(t) := (S̃


0(t), S̃


1(t), . . . , S̃



N (t)) , which is the vec-

tor of gPC coefficient calculated by above Galerkin projection
(14), the truncation error ‖S̃


λ(t) − S̃
(t)‖2 incurred from the
sparse approximation. The small level of truncation error im-
plies that the exact reconstructions are themselves approximated
by a sparse solution.

Definition 1: (Mutual Coherence [18]) The mutual coher-
ence is a tractable property of the measurement matrix Ψ ∈
RK×N for calculation, it is given by:

μ(Ψ) = max
1≤i,j≤N,i �=j

|ΨT
i Ψj |

‖Ψi‖2‖Ψj‖2
(39)

where Ψi , Ψj are corresponding column of Ψ.
The mutual coherence is an indicator of dependence between

columns of the matrix Ψ. In general, small μ(Ψ) yields better
ability to recover a sparse solution with the compressive sensing
method.

Theorem 1: Let S0(ξ, t) = ΨS̃0(t) be the sparse gPC ap-
proximation of S(ξ, t) in problem P (29), it satisfies

∥
∥
∥S̃0(t)

∥
∥
∥

0
< (1 + 1/μ(Ψ))/4 (40)
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and

‖S0(ξ, t) − S(ξ, t)‖2 ≤ δ (41)

where δ is the error tolerance of the sparse representation. The
iterative solution S̃κ(t) in P1 (33) obtained by the distributed
algorithm proposed in IV-B satisfies ‖S̃κ(t) − S̃
(t)‖2 ≤ c1 ,
then it must obey

∥
∥
∥S̃κ(t) − S̃0(t)

∥
∥
∥

2
≤ c1 + c2 (42)

where c2 = 4δ 2

1−μ(Ψ)(4‖S̃0 (t)‖0 −1)
and S̃
(t) is the optimal solu-

tion of (33) calculated by centralized algorithm.
Proof: The left part of Eq. (42) equal to

∥
∥
∥S̃κ(t) − S̃0(t)

∥
∥
∥

2
=
∥
∥
∥S̃κ(t) − S̃
(t) + S̃
(t) − S̃0(t)

∥
∥
∥

2

≤
∥
∥
∥S̃κ(t) − S̃
(t)

∥
∥
∥

2
+
∥
∥
∥S̃
(t) − S̃0(t)

∥
∥
∥

2

where the above inequality is in terms of the triangle inequal-
ity of the vector norm. According to the Stability Theorem 8
in [43], if the assumed condition is satisfied, the weighted l1
minimization solution S̃
(t) must obey

∥
∥
∥S̃
(t) − S̃0(t)

∥
∥
∥

2
≤ 4δ2

1 − μ(Ψ)
(
4
∥
∥
∥S̃0(t)

∥
∥
∥

0
− 1
)

And the distributed solution S̃κ(t) is convergent to the cen-
tralized solution S̃
(t) with the error tolerance c2 . So this con-
cludes the proof.
The compressive sensing based strategy enables an accurate

recovery of the solution to stochastic optimization problemwith
high-dimensional random inputs. In the pseudospectral model
of stochastic economic dispatch (see (29)), the gPC is introduced
to approximately represent the random state variables of power
system. By exploiting the approximate sparsity of the gPC co-
efficients, we seek to achieve an accurate reconstruction with a
number of random solution samples that is significantly smaller
than the cardinality of the gPC basis. Theorem 1 discusses the
quality of the solution identified from the proposed algorithm.
And the stabilitymeans that the gPC coefficients recovered from
the weighted l1 minimization do not blow up in the presence of
the truncation error.

V. NUMERICAL TESTS

A. System Setup

The distribution system considered for the test is the modified
33-buses benchmark examples. As shown in Fig. 2(a), it is a
12.66 kV distribution system with a peak load of 5084.26 +
j2547.32 kVA. Moreover, the data of the system are given in
[27]. The optimization horizon, T = {1, 2, . . . , 24}, is taken to
be a day, andwe discretize the day into 24 uniform time intervals,
each of which is equal to 1 hour. There are two kinds of DGs
such as photovoltaic system and wind turbine considered in our
study. It is assumed that the solar-based DGs are placed at node
4, 7, 8, 24, 25, and wind-based DGs are placed at node 14, 16,
20, 30, 32.

Fig. 2. (a) The modified 33-buses distribution system with DGs and ESSs.
(b) Hourly average load and power generated by solar/wind based-DG of a day.

The forecast errors are modeled as zero mean Gaussian ran-
dom variables with a standard deviation corresponding to 10%
of the forecasted production. It is assumed that the renewable
based distributed generator is operating withe a constant power
factor 0.95 capacitive. The acceptable violation probability is
set to ε = 5%.

And the cost of the battery is $30/kWh. The battery stor-
age system are injected at the node 7, 14, 15, 20, 24 and 25.
The power of battery is designed to be dispatched economically
to maintain the minimum active power loss in the distribution
system, where the optimization model is described in Eq. (29).
Here, the 3rd-order generalized Polynomial-chaos (gPC) ex-
pansion for the corresponding random state variables in the
distribution system is utilized.

B. The Model of Uncertainty

In order to assess the feasibility of the KLE approach for
representing forecast error, the chronological weather data of
the Zhoushan islands in China over about the four years period
is selected [44]. These data are recorded by a cup generator
anemometer, radiation sensor and thermometer at a height of
50m. And the weather forecast model [28] is employed to pro-
vide day-ahead prediction of wind power and solar power in a
specific region. The resulting hourly-average renewable power
of a day is shown in Fig. 2(b).
The hourly error between the daily power samples and

the predicted hourly-average power can be constructed to be
independent samples from a 24-dimensional random field.
Given a set of discrete realizations of a 24-dimensional field
{[err(ξk , 1), . . . , err(ξk , 24)]}k , the 24× 24 covariancematrix
can be estimated from these realizations [30]. Thus, the eigen-
valuesμi and eigenvectors fi(t) in KLE (as shown in Eq. (43)) is
obtained via the principal component analysis of the covariance
matrix.

err(ξ, t) =
24∑

i=1

√
μifi(t)ξi (43)

Define σv (M) as the percentages of the total variance ex-
plained by truncated M-th order KLE.

σv (M) =

∫
T var

[
errM (ξ, t)

]
dt

∫
T var [err(ξ, t)] dt

=
∑M

i=1 μi∑24
i=1 μi

(44)
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Fig. 3. Percentage of the total variance as increasing number of KLE terms.

Fig. 4. (a) The samples of the stochastic forecast error. (b) Histograms of the
forecast error samples (depicted in blue) and distribution of error at time t = 18
(depicted in red). The PDF for a Gaussian distribution is shown in orange line.

Fig. 5. Convergence of the distributed optimization algorithm for stochastic
economic dispatch.

In Fig. 3, we illustrate the influence of the order terms on the
fractional variance given in Eq. (44). It can be seen that M = 5
are sufficient to capture approximately 95%of the total variance.
The truncated KLE errM (ξ, t) with M = 5 terms is utilized

to model the input random process of the forecast error. Fig. 4(a)
shows the samples of the stochastic forecast error and an exami-
nation of the sample histograms provided in Fig. 4(b). As can be
seen in Fig. 4 that the Gaussian distribution can approximately
fit the forecast error distributions for the wind plants, and the
synthesized samples of fifth-order truncated KLE approxima-
tion can match the target well.

C. Results of the Stochastic Economic Dispatch

1) Convergence of the Distributed Implementation: Fig. 5
shows the convergence of distributed stochastic optimization
using the algorithm described in Section IV-B. As can be seen

Fig. 6. The mean absolute error of the bus voltage.

from the relative residual error versus the number of iterations
in Fig. 5, the distributed optimization algorithm requires dozens
of iterations to achieve any relative error bellow 10-5. It can be
concluded that the proposed distributed algorithm is convergent
and efficient.
2) Feasibility of Conic Relaxation in Power Flow: By

using the proposed compressive sensing-based distributed
algorithm (CS-algorithm), we obtain the optimal solution
(v
(ξ, t), u
(t), t = 1, . . . , T ). To investigate the exactness of
the conic relaxation of power flow in proposed strategy, let the
controllable injected power be u
(t) then the non-linear power
flow equations are calculated by using the traditional Newton-
Raphson iteration. Hence, we describe the difference in the
value of calculated bus voltage between the optimal solution
v
(ξ, t) and Newton-Raphson method v′(ξ, t), so as to verify
the accuracy of the conic relaxation.
Define the mean absolute error (MAE) of the bus voltage

magnitude as

MAEj = max
t∈T

1
K

K∑

k=1

∣
∣v


j (ξk , t) − v′
j (ξ

k , t)
∣
∣ (45)

The deviations of voltage magnitude at all buses between the
CS-algorithm solution and the Newton-Raphson solution are
illustrated in Fig. 6. The maximum mean absolute error of the
bus voltage magnitude is about 10−4 which is almost negligibly
small for practical purposes.
3) Effect of Stochastic Optimization: Based on the pseu-

dospectral model of stochastic economic dispatch developed
in this paper, two other approaches are introduced to compare
the accuracy of the proposed CS-algorithm: (C1) The stochastic
collocation method: solve the problem P in Eq. (29) with 5000
collocation points in the random space generated by Smolyak’s
algorithm. (C2) The Monte Carlo (MC) simulation: solve the
economic dispatch problem P in Eq. (29) via 107 random sam-
ples of the forecast uncertainty drawn from a multivariate Gaus-
sian distribution.
As shown in Table I, it summarizes the test results. The

stochastic collocation method obtain the nearly optimal solu-
tion, it indicates the rationality of the pseudospectral model of
the optimization problem. The operation cost and average active
power losses of the proposed economic dispatch strategy CS-
algorithm are 1.8275 MWh and $12524.83 respectively, which
are similar to the results of MC simulation methods. According
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TABLE I
COMPARISON OF DIFFERENT APPROACHES OF SOLVING

THE STOCHASTIC ECONOMIC DISPATCH

TABLE II
MAXIMUM OBSERVED VIOLATION PROBABILITY εJ AND OPERATION COST FOR

DIFFERENT SETTINGS OF VIOLATION PROBABILITY ε

to the size of required samples, the proposed CS-algorithm has
more advantages since it only needs 200 samples to accomplish
the stochastic economic dispatch and reach required accuracy.
The maximum observed probability (εJ ) of constraint violation
for three different method is listed in the sixth column of Table I.
Additionally, to check whether the assumption of a Gaussian

distribution leads to accurate results, we perform the sample
test via Monte Carlo simulation with 107 samples after solv-
ing the problem. The sample test is performed to analyze the
constraint violations for voltage limit and current limit. For dif-
ferent settings of violation probability in chance constraints, the
cost of economic dispatch and results of sample test are listed in
Table II. The operation cost decrease as the violation probabil-
ity ε is increased from 1% to 10%. The probability of meeting
voltage and current constraint is not expected to strictly hold.
There is inaccuracies due to non-normally distributed samples,
the difference is however not particularly large, and the solution
of the proposed method is conservative when the value of ε is
large. Although the actual current and voltage magnitude are
not normally distributed, the Gaussian assumption appears to
be reasonable in our studies.
The ESS devices are located at the same bus as DGs and is

able to directly manage the fluctuated renewable energy. The
operating schedule for the ESS devices on different buses are
shown in Fig. 7. It can be seen from the figure that the ESS
devices can absorb the surplus energy when the power generated
by DGs reached peak level at midday. However, during the
periods when there is less renewable power, the ESS devices
generate power.
In addition to the optimal result of this chance constrained

stochastic OPF, we can obtain the gPC of the uncertain voltage
and current directly, thus the average and variance of the random
variable can be computed by the coefficients of gPC. As can be
see in Fig. 8, the error bar represent the fluctuation range of bus
voltage at time t = 9. The proposed algorithm drives the voltage
magnitudes within the desired range in spite of forecasting error.

Fig. 7. The hourly output power of ESS on corresponding buses.

Fig. 8. The error bar of bus voltage at time t = 9.

TABLE III
MOMENTS OF THE 33-BUS EXAMPLE

D. Performance of Associated UQ

Take one bus voltage and system power loss as example, we
use the following results to display the performance of com-
pressive sensing based uncertainty quantification.
In order to check the accuracy, Table III compares the mean

values and standard deviations from the MC and compressive
sensing algorithm, where the voltage of bus 13 and active power
losses of the distribution system at time t = 9 are taken for
example to be certified. The results are very close.
We display the approximate upper bound on coefficients of

3-rd order gPC obtained from the proposed algorithm in Fig. 9,
where the blue squares represent the reference and the red
asterisks circles the non-zero coefficients of the proposed al-
gorithm. The reference is the gPC coefficient obtained using a
sparse grid, with resulted in an approximation error below 10−8 .
To measure the performance of an approximation, we will

use the Root-Mean-Square Error (RMSE). Specifically given a
set of samples Ξtest = {ξk}K ′

k=1 and the corresponding samples
of the true state variables, such as the bus13 voltage v13(ξk , t),
and the gPC approximation vN

13(ξ
k , t), we compute

RMSEt =

√
1
K ′

∑K ′

k=1

∣
∣vN

13(ξk , t) − v13(ξk , t)
∣
∣2
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Fig. 9. Approximate gPC coefficients obtained by proposed algorithm vs. the
reference coefficients.

Fig. 10. Convergence of the RMSE, with respect to increasing sample size,
in the 3-rd order gPC approximation of (a) the bus13 voltage and (b) the system
power loss.

Fig. 11. Comparison of RMSE in the 3-rd order gPC approximation of power
loss computed via Monte Carlo, l1 -minimization and the proposed weighted
compressive sensing.

As shown in Fig. 10, it plots the RMSE := maxt∈T RMSEt in
the polynomial approximations for increasing number of sam-
ples. Fig. 10(a) and (b) plots the approximation error for 3-rd or-
der gPC approximation of the bus13 voltage and system power
loss respectively. With increasing sample number, the RMSE
decrease sharply. Therefore, it is a feasible way choice to ac-
complish the stochastic dispatching of the 69-buses example by
using 100 samples of 10 random variables.
Fig. 11 displays a comparison between the accuracy of

l1-minimization (l1-min), weighted l1-minimization and Monte
Carlo(MC). With subset of realizations of uncertain variables,
it is observed that both l1-minimization (l1-min) and weighted
l1-minimization algorithm result in smaller RMSE, compared

to the MC. Additionally, for small sample size, the proposed
weighted l1-minimization outperforms the l1-minimization.
This is expected as the prior knowledge on the decay of co-
efficient has comparable effect on the accuracy as the solution
realizations do.

VI. CONCLUSION

This paper has proposed a stochastic economic dispatch al-
gorithm based on the sparse polynomial approximation and
compressive sensing method. The economic dispatch problem
is modeled by the chance-constrained stochastic programming
formulation that it minimize the cost subject to power flow
constraints, chance constraints and so on. The stochastic solu-
tions are represented by the sparse polynomial chaos expansions
obtained via weighted l1 minimization. Although polynomial
coefficients are considered additionally as auxiliary variables
in the optimization problem, the chance constraints can be re-
stated by the conic constraints of coefficients. To approximate
the stochastic solution, there are lots of basis functions and sim-
ulation samples for problem with high-dimensional uncertainty.
However, the proposed compressive sensing based algorithm
can get the deterministic equivalents of the stochastic program-
ming problem based on compressive samplings. The number of
samples we need to calculate the optimal solution can be less
than the number of basis functions. That is, the weighted l1
minimization techniques is employed to break the curse of di-
mensionality, since multivariate functions posses expansions in
orthogonal polynomial bases are approximately sparse. Finally,
a distributed strategy is developed by using the alternating di-
rection method of multipliers (ADMM), to enable economic
dispatch and compressive sensing based uncertainty quantifica-
tion pursue specific performance objectives.
Future work will investigate whether the compressive sens-

ing based algorithm can benefit from the economic dispatch of
renewable power with non-stationary non-gaussian stochastic
process of forecast error. Moreover, we would like to investi-
gate how the algorithm can be extended to solve the problem
with original non-approximated AC power flow.
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