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Perturbative corrections to general relativity alter the expressions for both the entropy of black holes and
their extremality bounds. We prove a universal relation between the leading corrections to these quantities.
The derivation is purely thermodynamic and the result also applies beyond the realm of gravitational
systems. In scenarios where the correction to the entropy is positive, our result proves that the perturbations
decrease the mass of extremal black holes, when holding all other extensive variables fixed in the
comparison. This implies that the extremality relations of a wide class of black holes display weak gravity

conjecture-like behavior.
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Introduction.—From a high energy physics perspective,
general relativity is a low-energy effective field theory
(EFT) of the gravitational sector. Its UV completions
generically include additional degrees of freedom whose
low-energy signatures are captured by higher-derivative
corrections. For macroscopically large black holes, these
additional operators perturbatively alter the familiar rela-
tionships between the quantities that specify the black hole
state and derived properties such as the Hawking temper-
ature, entropy, and extremality bounds.

In this Letter, we derive a universal relation between the
leading corrections to the extremality bound and entropy of
generic black holes. Consider a gravitational theory permit-
ting black holes characterized by mass M and additional

quantities Q. Associated to these solutions are an entropy

So(M, é) and temperature To(M, @) States of fixed O
generically have a minimum mass set by an extremality

bound of the form M > M°,(Q).

Now consider perturbatively changing the theory in a
manner controlled by a parameter ¢, defined precisely later
in (5). The extremality bound and entropy then become ¢
dependent and are changed to the form M > M (Q,¢)
and  S(M,Q.€), where M.(Q.0) =M% (Q) and
S(M, Q,0) = Sy(M, Q). In this Letter, we prove the
following, exact result under mild assumptions:

OM ((Q, €) — fm - T(@S(M, Q, €)> ’ ()
e M=Moy(Dee) e .

where T = T(M, é €) is the corrected temperature.
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Using the above, we then derive further, approximate
relations which hold at leading order in a perturbative
expansion. For instance, (1) implies a leading-order expres-
sion of the form

AM(Q) ~ ~To(M. Q)AS(M. Q)| pp 3 (2)

where AS(M, Q) and AM,,(Q) are the leading corrections
to the entropy of a state with fixed M, Q and to the
extremality bound, respectively. The meaning of M =

ngt(é) and the assumptions under which (2) is valid
are discussed in detail below. As thermodynamic quantities
do not generically admit analytic expansions in € near
extremality, the conditions under which (1) follows from
(2) are not entirely trivial.

Our results are intimately connected to the weak gravity
conjecture (WGC) [1]. One facet of the WGC is that the
U(1) charge-to-mass ratio of extremally charged black
holes should be larger than unity in any gravitational EFT
that admits a consistent UV completion. In particular, the
WGC posits that black holes support Q/M > 1 at extrem-
ality for generic masses and the bound is expected to only
approach the classical Einstein-Maxwell extremality result
Q/M = 1inthe M — oo limit. See [2-4] for previous EFT-
based arguments supporting this version of the conjecture.

The connection between (2) and the WGC is due
to the work of [5,6]. The authors demonstrate that, under
certain assumptions, higher-derivative corrections generate

AS(M, é) > 0 for thermodynamically stable black holes.
A similar idea was also suggested in [7]. This line of
reasoning was applied to the case of a single U(1) charge Q
in [5], where higher-derivative corrections to the entropy
and extremality bound were computed explicitly and found
to obey

AM . (Q) x AS(M, Q)|MzQ (3)
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with a negative constant of proportionality. If AS > 0, then
the single U(1) form of the WGC follows immediately.

The result (2) is a generalization of (3) and it follows that
a generic perturbed extremal black hole is less massive than
its unperturbed counterpart with the same quantum num-
bers, if AS > 0. This statement is the generalization of
having an increased Q/M ratio in the case of multiple
nontrivial quantum numbers. Hence, if the AS > 0 con-
jecture of [5] is correct, (2) proves that the extremality
curves of a wide class of black hole systems display WGC-
like behavior. Conversely, assuming the WGC is correct,
(2) demonstrates that the conjecture also implies a preferred
sign for shifts to the entropy of near extremal black holes.

We have confirmed that (2) is consistent with the results
in [5,6,8-10] and in the final section of this Letter we
explicitly verify (1) and (2) in the case of charged,
asymptotically anti—de Sitter, four-dimensional black holes.

The derivation of (1) is purely thermodynamic and is not
specific to black holes. Relatedly, the proof has no explicit
dependence on such details as the spacetime dimensionality
or the matter content of the theory. In a general context, (1)
is a relation between the change in the energy of a system at
zero temperature and the change in the entropy at fixed
extensive variables due to an alteration of the underlying
dynamics. While (1) and its approximate descendants may
therefore find interesting applications beyond the regime of
black hole physics, in this note we remain focused on
gravitational systems.

Conventions: We work in Euclidean signature and our
curvature conventions are Rf,, =9,Is+--- and R,, =R,
Natural units are used throughout: Gy = kg =h =c = 1.

General argument.—The argument for (1) follows from
considering the effects of perturbative corrections to the
free energy of generic thermodynamic systems. This
problem was addressed in [8] for the case of spinning,
four-dimensional black holes.

Consider a thermodynamic system characterized by the
entropy S and the collection of additional extensive

variables é such that the energy of the system is
M(S, Q). The first law is then of the form

dM = TdS +ji - dO, (4)

with i a set of generalized chemical potentials. In a black

hole context, @ may contain conserved quantities, such as
various angular momenta and U(1) charges, as well terms
not associated to any conservation law, like the “volume” of
the black hole [11] and the value of moduli fields at infinity
[12] in scenarios where variations of these latter parameters
are considered.

Let us work in the ensemble where all of the quantum
numbers Q are allowed to fluctuate. The following argu-
ment also generalizes to cases where an arbitrary subsets of

é fluctuates; we only focus on the present ensemble for

clarity of presentation. The associated thermodynamic
potential G(T,j) arises from Legendre transforming

M(S,Q) over S and Q in the usual manner. We will
simply refer to G as the “free energy” in the following.

We assume that the above free energy consists of a
dominant, zeroth order piece, Go(T, i), plus a perturbative
correction AG(T, ). In this Letter, unperturbed quantities
will carry a O subscript or superscript and will often be
referred to as being “classical.” Following [8], we insert a
convenient counting parameter ¢ in front of AG such that
G(T, i) —» G(T, i, e) where

G(T.ji.€) = Go(T.ji) + eAG(T. ). (5)

The quantities S, @ and M are given by:

- 0G
wrs0--(%)
e

- 0G
Ql(Tyﬂae)__<aﬂ> )
i/ Topjgie

M(T,ji,e) = G(T,ji,e) + TS +ji- O, (6)

which are the standard thermodynamic relations.

When the microscopic dynamics of the system are
described by an action of the form I = I, + ¢Al, with
I, the leading term and A/ a perturbative correction, AG is
directly determined by Al, at leading order in e. In the
specific case of black holes, G(T, i) is given by [13]

PG(T, i) = 119 (T f), -], (7)

where § = 1/T is the inverse Hawking temperature, I is the
Euclidean action, g,, = g,,(T.4) is the Euclideanized
metric solution parametrized in terms of 7 and j, the
ellipses represent other possible fields, and the correspond-
ing entropy S in (6) is the Wald entropy [14]. A subtraction
prescription is typically required to render (7) finite
[13,15,16]. For gravitational systems, the unperturbed
action I, might be FEinstein-Hilbert, Einstein-Maxwell,
etc. and A/ could represent higher-derivative corrections,
extra matter fields, or lower derivative terms such as a
cosmological constant, for example. We only require that
the effects of Al are appropriately small. The Euclidean
solution is also corrected due to the change in the theory,
such that g,, = g5, + €Ag,,, with g0, a solution of /,. The
terms in (5) are, at leading order,

BGo = Iolghy -],
epAG = eAl[g),, ...]

+ Iolgh, + €Ag. .| = Lo[gh. ...). (8)

Up to Ofe), the final line above can only receive a
contribution from boundary terms and is expected to vanish
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if these (and any necessary subtraction prescriptions) are
chosen to respect the proper variational principle, essen-
tially by definition, in which case Ag,, is not required and
AG « Al. This fact was explicitly demonstrated in [8], for
the case of asymptotically flat spacetimes and also occurs in
the example of the following section.

We can derive a universal relation from (5) by assuming
that we can invert (6) to switch amongst the variables T, i,
M, and é and that the perturbative corrections to the
entropy respect the condition

limT <8S<Té€>> . 0, )

T—0 Oe 5

which can be interpreted as a version of the third law.
We begin by considering the perturbed extremality
bound, which is now M > M (Q, ¢) where

Mey(Q.€) = limM(T. Q.¢). (10)

Let us characterize the effect of the perturbative corrections

by computing the e derivative of M at fixed 7, é Using (6)
and the chain rule, one finds

OM 0 L=

(@)T@ - [@G”””'Q)L@
(), (), (&)
Ol T.e Oe 7.0 €)1

oS ~ (O
+T<§)T.Q+Q' <§)Té an

where we considered G as a function of (7, /i, ¢) while S

and ji were treated as functions of (7, é, €). Due to (6), the
first and final terms above cancel and we are left with

oM i 2 s
(50), o 2erar e (g) o 02

where we used that (0G/0Je)r ; = AG(T, ji), by definition.
Finally, if we take the 7 — O limit and use the third law
assumption (9), we find

oM

;1_{% (%) . = ?_r)r(l)AG[T,u(T, Q,¢)l. (13)

Next, the change in the entropy at fixed M, Q is
characterized by (0S/0e),, 5. A straightforward generali-
zation of the argument in [8] (see [17], also) yields the
result

—T(%)M - AG(T(M, O.¢€).i(M, D.¢)). (14)

The proof is similar to the derivation of (12): it is a
straightforward exercise in the chain rule and the use of
thermodynamic identities, including the first law (4).

Itis then evident that (13) and (14) coincide if the latter is
evaluated at the extremal point M = M, (Q,€) corre-
sponding to 7 = 0 in the perturbed theory:

1im(8—M> = lim —T(M,é,e)<§> . (15)
T-0\ 0¢ ) 1.5 M-M(Se) 9e) us

As argued below, we expect the left side of (15) to be finite,
in which case (9S/0e),, o must diverge as ~T71 as

M — Mexl(@, €), though S(M, é €) itself need not diverge
in this limit. The above is an exact identity for any system
of the form (5), irrespective of whether AG is small in any
sense. However, we anticipate that in applications the role
of ¢ will be played by a combination of EFT coefficients
and the free energy will only take the form (5) in a leading-
order expansion, in which case (15) is exact only for the
truncated system.

The result (15) relates properties of corrected states in the
perturbed theory. Through suitable approximations, it is
also possible to interpret (15) as a comparison between
states in the classical and corrected theories, but there are
subtleties in this analysis. In particular, the right side of the
relation is suggestive of a comparison of entropies of states
with fixed M, Q, but cannot immediately be understood as

such if M, (0, €) < M, (Q). This is due to the fact that
the derivative is evaluated at M (Q, €) and there was no

state carrying mass M, ext(é, ¢) and quantum numbers Qin
the unperturbed theory, in this scenario.

In the aforementioned case, we can instead evaluate right
side of (15) at the unperturbed extremal point MY, (Q),

rather than Mext(é, €). This corresponds to a valid com-
parison between states in the classical and perturbed
theories, as such a state exists in both cases, by assumption.
The result is the approximate relation

lim(a—M) ~ lim —T(M,é,e)(§) . (16)
-0\ 9¢ /1.5  M-mO () e ) mo

ext

with the error controlled by e.

In this regime, the temperature must also be proportional
to a power of €. Moreover, one expects the power to be
fractional, in the generic case, due to the fact that the
unperturbed extremal state will typically only continue to
exist in the corrected theory for one sign of € (an imaginary
temperature indicating the erasure of the state). Similar

consideration apply to S(M, é, ¢). For instance, possible
expansions for S and 7" which are consistent with results in
the literature [10,17] are

3l
T|

Q

0:(9), O, €] = $%(Q) + ' AS[MY,(9), O
0

M
M%(Q), O, €] ~ e *ATIMY (), O], (17)
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where 0 < 4 < 1. In contrast, we expect the mass to have
an analytic expansion in € about 7 = 0,

lmM (T, Q.¢) » MO(Q) + eAM (D). (18)

since, on physical grounds, zero temperature states of fixed

é should exist in both the classical and unperturbed
theories for generic perturbations, and hence for either

sign of e, unlike those of fixed (M, é) with M near
extremality. Plugging (17) and (18) into (16), we are then
left with the leading-order result

AM . (Q) = —IAT(M, Q)AS(M, Q) (19)

Iv=nt, (B
in this example. Behavior such as (17) where the temper-
ature is dominated by the e-dependent corrections was
interpreted in [5] as a breakdown of the perturbative
calculation, but (16) remains valid in this regime as long
as the higher-order corrections in € are small.

Finally, by further modifying (15) we can derive an
approximate relation which is applicable regardless _of
whether M., (Q,¢€) is larger or smaller than M9, (Q).
Specifically, we evaluate the right side of (15) a mass

range slightly above ngt(é) where corrections to the
temperature are additionally small, i.e., where we satisfy

<1, IML-TM.Q)
To(M,Q)

M—-M%(Q)
M9 (Q)

The latter condition further indicates that M > M, ext(@, €),
meaning that states in this mass range exist in the perturbed
theory for either sign of €. Hence, we expect that both 7" and
S will admit analytic expansions in € of the form

T(M,Q.€) ~ To(M, Q) + eAT(M, Q).
S(M, D, €) ~ So(M, Q) + eAS(M, Q). (21)

with Ty > eAT, Sy > €AS. In practice, we access this
region by working at M = M (Q) x (1 +§) with 6 < 1,
as required by the first half of (20), and with ¢ generically
bounded nontrivially from below by the second half of (20).

As in (2), we refer to this part of parameter space as M ~
M, (Q) and evaluating the right side of (15) here gives

. [OM > a8
%1_1{(1) (E) 5 ~-T(M,Q,e) (&) M’Q|MzM2x[(é) (22)

with the error now controlled both by € and é. Inserting (21)
into (22) results in the claimed, leading-order relation (2).
We conclude this section by commenting on related

work. The relation (2) valid for M zngt(é) has been

confirmed to be in agreement with the results in [5,6,8,10].
A near-horizon metric based explanation for why the shifts
to the black hole extremality bound and entropy are related
was given in Sec. 6.3 of [5], which gives a complementary
argument for (2) in the restricted case of gravitational

-

systems. The relation valid in the strict M = M (Q) limit
(16) has been checked against [9,10,17] and, again, exact
agreement is found. In particular, [10,17] have results of the
form (19) with A = 1/2 while in [9] it was demonstrated
that there are cases where (16) trivializes with AM,, =
T =0, but AS # 0. We expect such degenerate cases to be
highly nongeneric.

Example: charged black holes in AdS,—.In this section,
we explicitly confirm the relations (1) and (2) for the case
of extremally charged black holes in a four-dimensional,
asymptotically anti-de Sitter (AdS) spacetime. First, we
treat the scenario where cosmological constant plays the
role of the perturbing parameter, in which case we confirm
the exact result (1). Then, additional higher-derivative
operators are included in the action and we verify the
approximate M ~ M. (Q) result (2) for large, extremal
black holes.

The classical Euclidean action we consider is

1 6
Io[g,A] = —E Md4x\/§<R—F2 +ﬁ>

1
- / &xVhK, (23)
87 Jom

with M the spacetime manifold and dM its boundary.
Above, F2 = F WF”", ¢ is the AdS radius, h; j is the metric
induced on OM, and K is the trace of extrinsic curvature
of OM.

The action (23) is divergent when evaluated on a solution
and we will regulate these divergence as in [18] by
subtracting off the action of empty AdS spacetime. The
divergence could alternatively be treated using holographic
counterterms along the lines of [15,16], for instance, but we
do not pursue this direction here.

The black hole solution of (23) with charge Q and mass
M has a background metric and vector potential,
¢, dxtdx? = ds} and AY, given by:

ds} = Z(r)de* + Z(r)~'dr* + r?dQ3,
2M Q* P
sN=1-"4% 0
(r) St ata
iQ
Addxt = Tdt, (24)

where dQ3 is the standard line element on a two sphere.
There are, of course, more general solutions with nontrivial
angular momentum and magnetic charge; see [19], for
instance, for a study of AdS Kerr-Newman thermodynam-
ics in a more general setting.
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We begin by confirming the exact result (1) for the above
system, with 1/#2 playing the role of the perturbing
parameter. In order to make this explicit, we rescale
¢ — ¢/+/e in the following. It is a standard exercise to
derive the thermodynamic quantities associated to (24) and
the resulting mass and temperature of the system can be
expressed via the exact relations

S+r0*  eS?
M S, s - )
( Q €) 2 /_ﬂ'S 2][3/2{2
_S—70%  3eVS
T(S,0.¢) = 4\/7’[5*3/2 473202 (25)

The fact that the mass can naturally be written in the exact
form M = My(S, Q) + eAM(S, Q) implies that (1) will in
fact hold to all orders in € for this system, as follows from
the microcanonical ensemble version of the proof from the
preceding section. That is, we do not need to restrict to
small black hole states which are only perturbatively
corrected by 7.
A derivative of (25) determines (0S/0e)y o to be

a8 §3/2
- ($> M.0 ez (26)

The extremal value of S is found by solving (25) at T = 0.
Plugging the result into the above gives the extremal value
of the derivative, denoted here as:

2 3/2
£(=1+ /1 +129%)
—T(aS)MQ|m _ GIAY

e 121/663/2

Oe

On the other hand, inserting this value of § into the first
relation in (25) gives the extremality bound:

N 120% + 2 (=1 4+ /1 + 12Q%/¢?) (28)
3\/6_€f\/—1 + /1 + 120%/ >

Taking the derivative of the (28) and simplifying demon-
strates that (OM.y/0e), precisely coincides with (27),
confirming the exact relation (1). .

Next, we verify the approximate M ~ M, (Q) relation
(2) by adding the following higher-derivative operators to
the system:

Mext(Q’ 6)

2
ar=2_
167 M

d*x\/g(a1 F* + oy FO + az*F8),  (29)
where the factors of Z were introduced for convenience. If
tracking powers of €, each a; would be accompanied by an
e, but we omit these factors in what follows. We have
focused on a small set of higher-derivative matter operators

chosen such that empty AdS spacetime with a radius ¢
remains a solution of the corrected action and such that no
additional boundary terms are required to render the action
well-posed, choices made for simplicity. Analyses involv-
ing curvature-dependent operators whose results are com-
patible with our relations can be found in [5,6,8-10], for
instance.

The operators in (29) change both the metric and vector
potential, but neither correction is needed for the verifica-
tion of (2). The correction to the vector potential produced
by (29) changes the action by a boundary term which
vanishes as O M is taken to infinity. The correction to the
metric also only changes the action by a boundary term and
after regulating the result as described above, the result is
again trivial as 0 M is taken to infinity, in direct analogy to
what was found in [8].

The free energy corresponding to the classical action
(23) in the small-7" limit is

(142
V3

as determined by a standard calculation. The leading
correction to the free-energy then arises from simply
evaluating (29) on the zeroth order solution (24) expressed
as a function of y and T using the zeroth order relations
between (M, Q) and (u, T). The calculation is straightfor-
ward and gives

Go(T.u) = — +0(12),  (30)

V3eut 2u?
AG(T, u) = -
( lu) a] Sm a2 \/§(/,{2 _ 1)3/2
8
SOV3E O(T?). (31)

a3 13(ﬂ2 _ 1)5/2

We use (30) and (31) to study large, Q > ¢ extremal
black holes for the remainder of this Letter, with the limit
taken for simplicity. In the classical theory (23), the
extremality bound in this limit is (28)

2032 ¢

In order to find AM.(Q), we evaluate AG(T, u) (31) on
the classical expression for y(Q) in the 7' — 0 limit, with
the result

ngt(Q) =

AMext(Q) = %ILI(I)AG[T’ /"O(Q9 T)}
31/4Q3/2

— W (39(11 - 130&2 + 540&3), (33)

valid at leading order in a #/Q expansion. By computing
the free energy to higher orders in 7, one can also
determine 7'(M, Q) near extremality. Evaluating the result
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at M = (20%/%)/(274¢'/%) x (1 + §), the leading-order
result is

121/4 Q1/2 3
Tr—— 55 \[0 = 135 (3% — 1300, + 540a;),  (34)

which is consistent with (33). The result (34) also dem-
onstrates that satisfying the requirements in (20) demands

1> 6> a, 0, 3. (35)

There is no difficulty in satisfying the above for any natural
values of the ;.

Finally, we compute —7(M,Q)AS(M,Q) by again
retaining higher order terms in the free energy and using
(6). This straightforward exercise gives

31/4Q3/2

(39a; — 130, + 540a3),  (36)

when evaluated in the range (35), up to relative
O(8'2,a;/8,¢£/Q) corrections. Comparing (33) and
(36), we see that (2) is confirmed. We have also verified
that the system defined by (30) and (31) obeys the third law
condition (9) at leading order in a;.
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Note added.—The central derivation in this Letter has been
improved. The original Letter only contained the approxi-
mate relation (2) which was derived for M ~ M2, (Q),
whereas the current version proves the exact result (1), from
which (2) follows. The relation (1) explains subtleties

-

which can arise in the strict M = M%,(Q) limit and is

consistent with [9,10,17] which probe this regime.
References [9,10] appeared after the initial version of this
Letter.
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