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Perturbative corrections to general relativity alter the expressions for both the entropy of black holes and

their extremality bounds. We prove a universal relation between the leading corrections to these quantities.

The derivation is purely thermodynamic and the result also applies beyond the realm of gravitational

systems. In scenarios where the correction to the entropy is positive, our result proves that the perturbations

decrease the mass of extremal black holes, when holding all other extensive variables fixed in the

comparison. This implies that the extremality relations of a wide class of black holes display weak gravity

conjecture-like behavior.
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Introduction.—From a high energy physics perspective,
general relativity is a low-energy effective field theory
(EFT) of the gravitational sector. Its UV completions
generically include additional degrees of freedom whose
low-energy signatures are captured by higher-derivative
corrections. For macroscopically large black holes, these
additional operators perturbatively alter the familiar rela-
tionships between the quantities that specify the black hole
state and derived properties such as the Hawking temper-
ature, entropy, and extremality bounds.
In this Letter, we derive a universal relation between the

leading corrections to the extremality bound and entropy of
generic black holes. Consider a gravitational theory permit-
ting black holes characterized by mass M and additional

quantities Q⃗. Associated to these solutions are an entropy

S0ðM; Q⃗Þ and temperature T0ðM; Q⃗Þ. States of fixed Q⃗

generically have a minimum mass set by an extremality

bound of the form M > M0
extðQ⃗Þ.

Now consider perturbatively changing the theory in a
manner controlled by a parameter ϵ, defined precisely later
in (5). The extremality bound and entropy then become ϵ

dependent and are changed to the form M > MextðQ⃗; ϵÞ
and SðM; Q⃗; ϵÞ, where MextðQ⃗; 0Þ ¼ M0

extðQ⃗Þ and

SðM; Q⃗; 0Þ ¼ S0ðM; Q⃗Þ. In this Letter, we prove the
following, exact result under mild assumptions:

∂MextðQ⃗; ϵÞ
∂ϵ

¼ lim
M→MextðQ⃗;ϵÞ

− T

�

∂SðM; Q⃗; ϵÞ
∂ϵ

�

M;Q⃗

; ð1Þ

where T ¼ TðM; Q⃗; ϵÞ is the corrected temperature.

Using the above, we then derive further, approximate

relations which hold at leading order in a perturbative

expansion. For instance, (1) implies a leading-order expres-

sion of the form

ΔMextðQ⃗Þ ≈ −T0ðM; Q⃗ÞΔSðM; Q⃗Þj
M≈M0

extðQ⃗Þ; ð2Þ

where ΔSðM; Q⃗Þ andΔMextðQ⃗Þ are the leading corrections
to the entropy of a state with fixed M, Q⃗ and to the

extremality bound, respectively. The meaning of M ≈

M0
extðQ⃗Þ and the assumptions under which (2) is valid

are discussed in detail below. As thermodynamic quantities

do not generically admit analytic expansions in ϵ near

extremality, the conditions under which (1) follows from

(2) are not entirely trivial.

Our results are intimately connected to the weak gravity

conjecture (WGC) [1]. One facet of the WGC is that the

Uð1Þ charge-to-mass ratio of extremally charged black

holes should be larger than unity in any gravitational EFT

that admits a consistent UV completion. In particular, the

WGC posits that black holes support Q=M ≥ 1 at extrem-

ality for generic masses and the bound is expected to only

approach the classical Einstein-Maxwell extremality result

Q=M ¼ 1 in theM → ∞ limit. See [2–4] for previous EFT-

based arguments supporting this version of the conjecture.

The connection between (2) and the WGC is due

to the work of [5,6]. The authors demonstrate that, under

certain assumptions, higher-derivative corrections generate

ΔSðM; Q⃗Þ > 0 for thermodynamically stable black holes.

A similar idea was also suggested in [7]. This line of

reasoning was applied to the case of a singleUð1Þ chargeQ
in [5], where higher-derivative corrections to the entropy

and extremality bound were computed explicitly and found

to obey

ΔMextðQÞ ∝ ΔSðM;QÞjM≈Q ð3Þ
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with a negative constant of proportionality. If ΔS > 0, then

the single Uð1Þ form of the WGC follows immediately.

The result (2) is a generalization of (3) and it follows that

a generic perturbed extremal black hole is less massive than

its unperturbed counterpart with the same quantum num-

bers, if ΔS > 0. This statement is the generalization of

having an increased Q=M ratio in the case of multiple

nontrivial quantum numbers. Hence, if the ΔS > 0 con-

jecture of [5] is correct, (2) proves that the extremality

curves of a wide class of black hole systems display WGC-

like behavior. Conversely, assuming the WGC is correct,

(2) demonstrates that the conjecture also implies a preferred

sign for shifts to the entropy of near extremal black holes.

We have confirmed that (2) is consistent with the results

in [5,6,8–10] and in the final section of this Letter we

explicitly verify (1) and (2) in the case of charged,

asymptotically anti–de Sitter, four-dimensional black holes.

The derivation of (1) is purely thermodynamic and is not

specific to black holes. Relatedly, the proof has no explicit

dependence on such details as the spacetime dimensionality

or the matter content of the theory. In a general context, (1)

is a relation between the change in the energy of a system at

zero temperature and the change in the entropy at fixed

extensive variables due to an alteration of the underlying

dynamics. While (1) and its approximate descendants may

therefore find interesting applications beyond the regime of

black hole physics, in this note we remain focused on

gravitational systems.

Conventions: We work in Euclidean signature and our

curvature conventions are R
ρ
σμν¼∂μΓ

ρ
νσþ��� and Rσν¼R

ρ
σρν.

Natural units are used throughout: GN ¼ kB ¼ ℏ ¼ c ¼ 1.

General argument.—The argument for (1) follows from

considering the effects of perturbative corrections to the

free energy of generic thermodynamic systems. This

problem was addressed in [8] for the case of spinning,

four-dimensional black holes.

Consider a thermodynamic system characterized by the

entropy S and the collection of additional extensive

variables Q⃗ such that the energy of the system is

MðS; Q⃗Þ. The first law is then of the form

dM ¼ TdSþ μ⃗ · dQ⃗; ð4Þ

with μ⃗ a set of generalized chemical potentials. In a black

hole context, Q⃗ may contain conserved quantities, such as

various angular momenta and Uð1Þ charges, as well terms

not associated to any conservation law, like the “volume” of

the black hole [11] and the value of moduli fields at infinity

[12] in scenarios where variations of these latter parameters

are considered.

Let us work in the ensemble where all of the quantum

numbers Q⃗ are allowed to fluctuate. The following argu-

ment also generalizes to cases where an arbitrary subsets of

Q⃗ fluctuates; we only focus on the present ensemble for

clarity of presentation. The associated thermodynamic

potential GðT; μ⃗Þ arises from Legendre transforming

MðS; Q⃗Þ over S and Q⃗ in the usual manner. We will

simply refer to G as the “free energy” in the following.

We assume that the above free energy consists of a

dominant, zeroth order piece, G0ðT; μ⃗Þ, plus a perturbative
correction ΔGðT; μ⃗Þ. In this Letter, unperturbed quantities

will carry a 0 subscript or superscript and will often be

referred to as being “classical.” Following [8], we insert a

convenient counting parameter ϵ in front of ΔG such that

GðT; μ⃗Þ → GðT; μ⃗; ϵÞ where

GðT; μ⃗; ϵÞ≡G0ðT; μ⃗Þ þ ϵΔGðT; μ⃗Þ: ð5Þ

The quantities S, Q⃗, and M are given by:

SðT; μ⃗; ϵÞ ¼ −

�

∂G

∂T

�

μ⃗;ϵ

;

QiðT; μ⃗; ϵÞ ¼ −

�

∂G

∂μi

�

T;μj≠i;ϵ

;

MðT; μ⃗; ϵÞ ¼ GðT; μ⃗; ϵÞ þ TSþ μ⃗ · Q⃗; ð6Þ
which are the standard thermodynamic relations.

When the microscopic dynamics of the system are

described by an action of the form I ¼ I0 þ ϵΔI, with
I0 the leading term and ΔI a perturbative correction, ΔG is

directly determined by ΔI, at leading order in ϵ. In the

specific case of black holes, GðT; μ⃗Þ is given by [13]

βGðT; μ⃗Þ ¼ I½gμνðT; μ⃗Þ;…�; ð7Þ

where β ¼ 1=T is the inverse Hawking temperature, I is the
Euclidean action, gμν ¼ gμνðT; μ⃗Þ is the Euclideanized

metric solution parametrized in terms of T and μ⃗, the

ellipses represent other possible fields, and the correspond-

ing entropy S in (6) is the Wald entropy [14]. A subtraction

prescription is typically required to render (7) finite

[13,15,16]. For gravitational systems, the unperturbed

action I0 might be Einstein-Hilbert, Einstein-Maxwell,

etc. and ΔI could represent higher-derivative corrections,

extra matter fields, or lower derivative terms such as a

cosmological constant, for example. We only require that

the effects of ΔI are appropriately small. The Euclidean

solution is also corrected due to the change in the theory,

such that gμν ¼ g0μν þ ϵΔgμν, with g0μν a solution of I0. The

terms in (5) are, at leading order,

βG0 ¼ I0½g0μν;…�;
ϵβΔG ¼ ϵΔI½g0μν;…�

þ I0½g0μν þ ϵΔgμν;…� − I0½g0μν;…�: ð8Þ

Up to OðϵÞ, the final line above can only receive a

contribution from boundary terms and is expected to vanish
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if these (and any necessary subtraction prescriptions) are

chosen to respect the proper variational principle, essen-

tially by definition, in which case Δgμν is not required and

ΔG ∝ ΔI. This fact was explicitly demonstrated in [8], for

the case of asymptotically flat spacetimes and also occurs in

the example of the following section.

We can derive a universal relation from (5) by assuming

that we can invert (6) to switch amongst the variables T, μ⃗,

M, and Q⃗ and that the perturbative corrections to the

entropy respect the condition

lim
T→0

T

�

∂SðT; Q⃗; ϵÞ
∂ϵ

�

T;Q⃗

¼ 0; ð9Þ

which can be interpreted as a version of the third law.

We begin by considering the perturbed extremality

bound, which is now M > MextðQ⃗; ϵÞ where

MextðQ⃗; ϵÞ≡ lim
T→0

MðT; Q⃗; ϵÞ: ð10Þ

Let us characterize the effect of the perturbative corrections

by computing the ϵ derivative ofM at fixed T, Q⃗. Using (6)

and the chain rule, one finds

�

∂M

∂ϵ

�

T;Q⃗

¼
�

∂

∂ϵ
ðGþ TSþ μ⃗ · Q⃗Þ

�

T;Q⃗

¼
�

∂G

∂μ⃗

�

T;ϵ

·

�

∂μ⃗

∂ϵ

�

T;Q⃗

þ
�

∂G

∂ϵ

�

T;μ⃗

þ T

�

∂S

∂ϵ

�

T;Q⃗

þ Q⃗ ·

�

∂μ⃗

∂ϵ

�

T;Q⃗

; ð11Þ

where we considered G as a function of ðT; μ⃗; ϵÞ while S

and μ⃗ were treated as functions of ðT; Q⃗; ϵÞ. Due to (6), the
first and final terms above cancel and we are left with

�

∂M

∂ϵ

�

T;Q⃗

¼ ΔG½T; μ⃗ðT; Q⃗; ϵÞ� þ T

�

∂S

∂ϵ

�

T;Q⃗

; ð12Þ

where we used that ð∂G=∂ϵÞT;μ⃗ ¼ ΔGðT; μ⃗Þ, by definition.
Finally, if we take the T → 0 limit and use the third law

assumption (9), we find

lim
T→0

�

∂M

∂ϵ

�

T;Q⃗

¼ lim
T→0

ΔG½T; μ⃗ðT; Q⃗; ϵÞ�: ð13Þ

Next, the change in the entropy at fixed M, Q⃗ is

characterized by ð∂S=∂ϵÞ
M;Q⃗

. A straightforward generali-

zation of the argument in [8] (see [17], also) yields the

result

−T

�

∂S

∂ϵ

�

M;Q⃗

¼ ΔGðTðM; Q⃗; ϵÞ; μ⃗ðM; Q⃗; ϵÞÞ: ð14Þ

The proof is similar to the derivation of (12): it is a

straightforward exercise in the chain rule and the use of

thermodynamic identities, including the first law (4).

It is then evident that (13) and (14) coincide if the latter is

evaluated at the extremal point M ¼ MextðQ⃗; ϵÞ corre-

sponding to T ¼ 0 in the perturbed theory:

lim
T→0

�

∂M

∂ϵ

�

T;Q⃗

¼ lim
M→MextðQ⃗;ϵÞ

−TðM;Q⃗;ϵÞ
�

∂S

∂ϵ

�

M;Q⃗

: ð15Þ

As argued below, we expect the left side of (15) to be finite,

in which case ð∂S=∂ϵÞ
M;Q⃗

must diverge as ∼T−1 as

M → MextðQ⃗; ϵÞ, though SðM; Q⃗; ϵÞ itself need not diverge
in this limit. The above is an exact identity for any system

of the form (5), irrespective of whether ΔG is small in any

sense. However, we anticipate that in applications the role

of ϵ will be played by a combination of EFT coefficients

and the free energy will only take the form (5) in a leading-

order expansion, in which case (15) is exact only for the

truncated system.

The result (15) relates properties of corrected states in the

perturbed theory. Through suitable approximations, it is

also possible to interpret (15) as a comparison between

states in the classical and corrected theories, but there are

subtleties in this analysis. In particular, the right side of the

relation is suggestive of a comparison of entropies of states

with fixed M, Q⃗, but cannot immediately be understood as

such if MextðQ⃗; ϵÞ < M0
extðQ⃗Þ. This is due to the fact that

the derivative is evaluated at MextðQ⃗; ϵÞ and there was no

state carrying mass MextðQ⃗; ϵÞ and quantum numbers Q⃗ in

the unperturbed theory, in this scenario.

In the aforementioned case, we can instead evaluate right

side of (15) at the unperturbed extremal point M0
extðQ⃗Þ,

rather than MextðQ⃗; ϵÞ. This corresponds to a valid com-

parison between states in the classical and perturbed

theories, as such a state exists in both cases, by assumption.

The result is the approximate relation

lim
T→0

�

∂M

∂ϵ

�

T;Q⃗

≈ lim
M→M0

extðQ⃗Þ
− TðM; Q⃗; ϵÞ

�

∂S

∂ϵ

�

M;Q⃗

; ð16Þ

with the error controlled by ϵ.

In this regime, the temperature must also be proportional

to a power of ϵ. Moreover, one expects the power to be

fractional, in the generic case, due to the fact that the

unperturbed extremal state will typically only continue to

exist in the corrected theory for one sign of ϵ (an imaginary

temperature indicating the erasure of the state). Similar

consideration apply to SðM; Q⃗; ϵÞ. For instance, possible
expansions for S and T which are consistent with results in

the literature [10,17] are

S½M0
extðQ⃗Þ; Q⃗; ϵ� ≈ S0extðQ⃗Þ þ ϵλΔS½M0

extðQ⃗Þ; Q⃗�
T½M0

extðQ⃗Þ; Q⃗; ϵ� ≈ ϵ1−λΔT½M0
extðQ⃗Þ; Q⃗�; ð17Þ
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where 0 < λ < 1. In contrast, we expect the mass to have

an analytic expansion in ϵ about T ¼ 0,

lim
T→0

MðT; Q⃗; ϵÞ ≈M0
extðQ⃗Þ þ ϵΔMextðQ⃗Þ; ð18Þ

since, on physical grounds, zero temperature states of fixed

Q⃗ should exist in both the classical and unperturbed

theories for generic perturbations, and hence for either

sign of ϵ, unlike those of fixed ðM; Q⃗Þ with M near

extremality. Plugging (17) and (18) into (16), we are then

left with the leading-order result

ΔMextðQ⃗Þ ¼ −λΔTðM; Q⃗ÞΔSðM; Q⃗Þj
M¼M0

extðQ⃗Þ; ð19Þ

in this example. Behavior such as (17) where the temper-

ature is dominated by the ϵ-dependent corrections was

interpreted in [5] as a breakdown of the perturbative

calculation, but (16) remains valid in this regime as long

as the higher-order corrections in ϵ are small.

Finally, by further modifying (15) we can derive an

approximate relation which is applicable regardless of

whether MextðQ⃗; ϵÞ is larger or smaller than M0
extðQ⃗Þ.

Specifically, we evaluate the right side of (15) a mass

range slightly above M0
extðQ⃗Þ where corrections to the

temperature are additionally small, i.e., where we satisfy

M−M0
extðQ⃗Þ

M0
extðQ⃗Þ

≪1;
TðM;Q⃗;ϵÞ−T0ðM;Q⃗Þ

T0ðM;Q⃗Þ
≪1: ð20Þ

The latter condition further indicates that M > MextðQ⃗; ϵÞ,
meaning that states in this mass range exist in the perturbed

theory for either sign of ϵ. Hence, we expect that both T and

S will admit analytic expansions in ϵ of the form

TðM; Q⃗; ϵÞ ≈ T0ðM; Q⃗Þ þ ϵΔTðM; Q⃗Þ;
SðM; Q⃗; ϵÞ ≈ S0ðM; Q⃗Þ þ ϵΔSðM; Q⃗Þ: ð21Þ

with T0 ≫ ϵΔT, S0 ≫ ϵΔS. In practice, we access this

region by working at M ¼ M0
extðQ⃗Þ × ð1þ δÞ with δ ≪ 1,

as required by the first half of (20), and with δ generically

bounded nontrivially from below by the second half of (20).

As in (2), we refer to this part of parameter space as M ≈

M0
extðQ⃗Þ and evaluating the right side of (15) here gives

lim
T→0

�

∂M

∂ϵ

�

T;Q⃗

≈ −TðM; Q⃗; ϵÞ
�

∂S

∂ϵ

�

M;Q⃗

j
M≈M0

extðQ⃗Þ ð22Þ

with the error now controlled both by ϵ and δ. Inserting (21)

into (22) results in the claimed, leading-order relation (2).

We conclude this section by commenting on related

work. The relation (2) valid for M ≈M0
extðQ⃗Þ has been

confirmed to be in agreement with the results in [5,6,8,10].

A near-horizon metric based explanation for why the shifts

to the black hole extremality bound and entropy are related

was given in Sec. 6.3 of [5], which gives a complementary

argument for (2) in the restricted case of gravitational

systems. The relation valid in the strict M ¼ MextðQ⃗Þ limit

(16) has been checked against [9,10,17] and, again, exact

agreement is found. In particular, [10,17] have results of the

form (19) with λ ¼ 1=2 while in [9] it was demonstrated

that there are cases where (16) trivializes with ΔMext ¼
T ¼ 0, but ΔS ≠ 0. We expect such degenerate cases to be

highly nongeneric.

Example: charged black holes in AdS4—.In this section,

we explicitly confirm the relations (1) and (2) for the case

of extremally charged black holes in a four-dimensional,

asymptotically anti–de Sitter (AdS) spacetime. First, we

treat the scenario where cosmological constant plays the

role of the perturbing parameter, in which case we confirm

the exact result (1). Then, additional higher-derivative

operators are included in the action and we verify the

approximate M ≈MextðQ⃗Þ result (2) for large, extremal

black holes.

The classical Euclidean action we consider is

I0½g; A� ¼ −
1

16π

Z

M

d4x
ffiffiffi

g
p �

R − F2 þ 6

l
2

�

−
1

8π

Z

∂M

d3x
ffiffiffi

h
p

K; ð23Þ

with M the spacetime manifold and ∂M its boundary.

Above, F2 ¼ FμνF
μν, l is the AdS radius, hij is the metric

induced on ∂M, and K is the trace of extrinsic curvature

of ∂M.

The action (23) is divergent when evaluated on a solution

and we will regulate these divergence as in [18] by

subtracting off the action of empty AdS spacetime. The

divergence could alternatively be treated using holographic

counterterms along the lines of [15,16], for instance, but we

do not pursue this direction here.

The black hole solution of (23) with charge Q and mass

M has a background metric and vector potential,

g0μνdx
μdxν ≡ ds2

0
and A0

μ, given by:

ds2
0
¼ ΣðrÞdt2 þ ΣðrÞ−1dr2 þ r2dΩ2

2
;

ΣðrÞ≡ 1 −
2M

r
þQ2

r2
þ r2

l2
;

A0
μdx

μ ¼ iQ

r
dt; ð24Þ

where dΩ2

2
is the standard line element on a two sphere.

There are, of course, more general solutions with nontrivial

angular momentum and magnetic charge; see [19], for

instance, for a study of AdS Kerr-Newman thermodynam-

ics in a more general setting.
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We begin by confirming the exact result (1) for the above

system, with 1=l2 playing the role of the perturbing

parameter. In order to make this explicit, we rescale

l → l=
ffiffiffi

ϵ
p

in the following. It is a standard exercise to

derive the thermodynamic quantities associated to (24) and

the resulting mass and temperature of the system can be

expressed via the exact relations

MðS;Q; ϵÞ ¼ Sþ πQ2

2
ffiffiffiffiffiffi

πS
p þ ϵS3=2

2π3=2l2
;

TðS;Q; ϵÞ ¼ S − πQ2

4
ffiffiffi

π
p

S3=2
þ 3ϵ

ffiffiffi

S
p

4π3=2l2
: ð25Þ

The fact that the mass can naturally be written in the exact

form M ¼ M0ðS;QÞ þ ϵΔMðS;QÞ implies that (1) will in

fact hold to all orders in ϵ for this system, as follows from

the microcanonical ensemble version of the proof from the

preceding section. That is, we do not need to restrict to

small black hole states which are only perturbatively

corrected by l.

A derivative of (25) determines ð∂S=∂ϵÞM;Q to be

−T

�

∂S

∂ϵ

�

M;Q

¼ S3=2

2π3=2l2
: ð26Þ

The extremal value of S is found by solving (25) at T ¼ 0.

Plugging the result into the above gives the extremal value

of the derivative, denoted here as:

−T

�

∂S

∂ϵ

�

M;Q

jext ¼
lð−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 12Q2ϵ

l2

q

Þ
3=2

12
ffiffiffi

6
p

ϵ3=2
: ð27Þ

On the other hand, inserting this value of S into the first

relation in (25) gives the extremality bound:

MextðQ; ϵÞ ¼ 12Q2 þ l
2ð−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 12Q2ϵ=l2
p

Þ

3
ffiffiffiffiffi

6ϵ
p

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 12Q2ϵ=l2
p

q : ð28Þ

Taking the derivative of the (28) and simplifying demon-

strates that ð∂Mext=∂ϵÞQ precisely coincides with (27),

confirming the exact relation (1).

Next, we verify the approximate M ≈MextðQ⃗Þ relation
(2) by adding the following higher-derivative operators to

the system:

ΔI ¼ l
2

16π

Z

M

d4x
ffiffiffi

g
p ðα1F4 þ α2l

2F6 þ α3l
4F8Þ; ð29Þ

where the factors of l were introduced for convenience. If

tracking powers of ϵ, each αi would be accompanied by an

ϵ, but we omit these factors in what follows. We have

focused on a small set of higher-derivative matter operators

chosen such that empty AdS spacetime with a radius l

remains a solution of the corrected action and such that no

additional boundary terms are required to render the action

well-posed, choices made for simplicity. Analyses involv-

ing curvature-dependent operators whose results are com-

patible with our relations can be found in [5,6,8–10], for

instance.

The operators in (29) change both the metric and vector

potential, but neither correction is needed for the verifica-

tion of (2). The correction to the vector potential produced

by (29) changes the action by a boundary term which

vanishes as ∂M is taken to infinity. The correction to the

metric also only changes the action by a boundary term and

after regulating the result as described above, the result is

again trivial as ∂M is taken to infinity, in direct analogy to

what was found in [8].

The free energy corresponding to the classical action

(23) in the small-T limit is

G0ðT; μÞ ¼ −
lð−1þ μ2Þ3=2

ffiffiffi

3
p þOðTlÞ; ð30Þ

as determined by a standard calculation. The leading

correction to the free-energy then arises from simply

evaluating (29) on the zeroth order solution (24) expressed

as a function of μ and T using the zeroth order relations

between (M, Q) and (μ, T). The calculation is straightfor-

ward and gives

ΔGðT; μÞ ¼ α1

ffiffiffi

3
p

lμ4

5

ffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 − 1

p − α2
2μ6l

ffiffiffi

3
p

ðμ2 − 1Þ3=2

þ α3
36

ffiffiffi

3
p

lμ8

13ðμ2 − 1Þ5=2 þOðTlÞ: ð31Þ

We use (30) and (31) to study large, Q ≫ l extremal

black holes for the remainder of this Letter, with the limit

taken for simplicity. In the classical theory (23), the

extremality bound in this limit is (28)

M0
extðQÞ ¼ 2Q3=2

271=4l1=2

�

1þO

�

l

Q

��

: ð32Þ

In order to find ΔMextðQÞ, we evaluate ΔGðT; μÞ (31) on
the classical expression for μðQÞ in the T → 0 limit, with

the result

ΔMextðQÞ ¼ lim
T→0

ΔG½T; μ0ðQ; TÞ�

¼ 31=4Q3=2

65l1=2
ð39α1 − 130α2 þ 540α3Þ; ð33Þ

valid at leading order in a l=Q expansion. By computing

the free energy to higher orders in T, one can also

determine TðM;QÞ near extremality. Evaluating the result
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at M ¼ ð2Q3=2Þ=ð271=4l1=2Þ × ð1þ δÞ, the leading-order

result is

T ≈
121=4

π

Q1=2

l3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ −
3

130
ð39α1 − 130α2 þ 540α3Þ

r

; ð34Þ

which is consistent with (33). The result (34) also dem-

onstrates that satisfying the requirements in (20) demands

1 ≫ δ ≫ α1; α2; α3: ð35Þ

There is no difficulty in satisfying the above for any natural

values of the αi.

Finally, we compute −TðM;QÞΔSðM;QÞ by again

retaining higher order terms in the free energy and using

(6). This straightforward exercise gives

−TΔS ≈
31=4Q3=2

65l1=2
ð39α1 − 130α2 þ 540α3Þ; ð36Þ

when evaluated in the range (35), up to relative

Oðδ1=2; αi=δ;l=QÞ corrections. Comparing (33) and

(36), we see that (2) is confirmed. We have also verified

that the system defined by (30) and (31) obeys the third law

condition (9) at leading order in αi.
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Note added.—The central derivation in this Letter has been

improved. The original Letter only contained the approxi-

mate relation (2) which was derived for M ≈M0
extðQ⃗Þ,

whereas the current version proves the exact result (1), from

which (2) follows. The relation (1) explains subtleties

which can arise in the strict M ¼ M0
extðQ⃗Þ limit and is

consistent with [9,10,17] which probe this regime.

References [9,10] appeared after the initial version of this

Letter.
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