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Abstract
A significant amount of research has been performed on network accessibility evaluation, but studies on incorporating acces-
sibility maximization into network design problems have been relatively scarce. This study aimed to bridge the gap by propos-
ing an integer programming model that explicitly maximizes the number of accessible opportunities within a given travel time
budget. We adopted the Lagrangian relaxation method for decomposing the main problem into three subproblems that can
be solved more efficiently using dynamic programming. The proposed method was applied to several case studies, which
identified critical links for maximizing network accessibility with limited construction budget, and also illustrated the accuracy
and efficiency of the algorithm. This method is promisingly scalable as a solution algorithm for large-scale accessibility-
oriented network design problems.

The concept of accessibility in the context of transporta-
tion planning formed more than half a century ago, yet
it did not receive sufficient emphasis and understanding
until recent decades (1). First formally defined as ‘‘the
potential of opportunities for interaction’’ by Hansen,
accessibility measures the ability or ease for travelers to
reach destinations, activities, and services (1–4). Its rela-
tionship to mobility, the ability to move between places,
has been well illustrated in the literature as well, and the
two are neither mutually incompatible nor promotive.
Having acknowledged the importance of accessibility as
a vital metric for evaluating the network performance on
how many opportunities a network configuration brings
to travelers, many metropolitan planning organizations
(MPOs) have highlighted in their plans the goal to
improve accessibility, as well as mobility. It is pointed
out, however, that traditional planning practice exercised
in the United States is more mobility-oriented, which
plans for building roads to accommodate traffic and
may, in turn, induce more traffic (3). Unwisely guided by
the sole mobility perspective, addressing accessibility
issues in transportation networks can be challenging and
demands more attention in theory and practice. In addi-
tion, lacking methods has been identified as another
obstacle in improving network accessibility (4). To this
end, in this paper, we study an accessibility maximizing

problem supporting the network planning by identifying
critical links:

(a) Considers both the travel time budget (TTB) and
road construction cost budget (CCB);

(b) Maximizes the number of origin-destination
(OD) pairs for which the travel time is below
TTB in the network by opening critical links.

The results identify critical links and routes in the net-
work that are indispensable to make travel to destina-
tions possible and below the desired travel time given
limited resources.

Literature Review

As was stated earlier, accessibility has been acknowl-
edged as an important measure for evaluating network
performance. Although not as prevalent as evaluating
traffic congestion, which is in many respects an inverse
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indicator of mobility, measuring accessibility and there-
fore evaluating transportation network have already
gained abundant research interests. El-Geneidy and
Levinson discussed several accessibility measuring meth-
ods that are commonly adopted in accessibility evalua-
tion studies (1). The cumulative opportunity measure,
reflecting the total number of potentials at the destina-
tion, is one of the most basic measures adopted in related
studies (2, 5–9). In annual reports released by the
Accessibility Observatory at the University of
Minnesota, for example, this metric was used to rank the
network accessibility for major MPOs in the United
States (10, 11). The primary interest that drove research-
ers was probably examining urban networks to detect
areas with low accessibility levels and gain insights into
system improvement. Efforts have been made in develop-
ing better approaches for reflecting the accessibility levels
of the networks. These approaches examine the network
accessibility from both the aggregated level, which mea-
sures potentials within given travel time budgets (TTBs)
and the individual level that considers the person-based
space and time constraints (12–16). The application to
transit systems is another rich literature body. A sum-
mary of methods for evaluating transit accessibility was
provided by Lei and Church (17). Taking advantage of
the General Transit Feed Specification (GTFS),
researchers were able to measure and evaluate the acces-
sibility of the transit network in a more detailed fashion
with plentiful foci that vary from the mode share to
equity issues (10, 17–21).

Evaluating accessibility stimulates research into how a
transportation network can be designed with better
accessibility in the first place, rather than mitigating
accessibility issues afterward. This leads researchers to
network design problems (NDPs) with accessibility con-
siderations. The first formulation that bears a resem-
blance to the network design problem (NDP) traces back
to 1963, which was proposed by Dantzig for good trans-
shipment (22). Later Magnanti and Wong provided a
more generic form of the NDP, the mixed integer linear
program (MILP) (23). The basic version of the problem
is to select a subset of arcs in the network so as to mini-
mize the cost for flowing all commodities produced and
consumed at the vertices in the network and the construc-
tion cost of the selected arcs. A full spectrum of varia-
tions was developed on this base and special cases of the
NDP are also well-known and studied problems. The
minimum spanning tree (MST) and the Steiner tree prob-
lem are two important problem instances among these
and plenty of solution algorithms exist. The former and
its directed version, the arborescence problem, is used to
determine a tree configuration so that all vertices are con-
nected through a spanning tree with the minimum total
cost at the edges. In the accessibility context, the solution

to a MST problem makes all the rest vertices accessible
from one vertex. The latter, in contrast, only requires a
subset of the vertices be connected. This leaves some
nodes isolated in the network. A connection between the
two classic problems and NDP exists, but the nature of
the problem is not generic enough to account for the
accessibility features that often raise concerns in a trans-
portation network (24, 25).

The most relevant NDP is probably the fixed-cost
transportation problem (FCTP) (23, 26). The problem is
typically formulated as a MILP with the following objec-
tive:

P
k

P
ij cijxij +

P
ij fijyij, in which xij and yij are con-

tinuous and binary variables representing the volume
and construction decisions, respectively. The objective is
to minimize flow-based transport variable costs and
design incurred fixed costs. A single commodity version
of the problem was studied by Ortega and Wolsey (27).
The uncapacitated problem was proposed to be solved
by a Branch-and-Cut (BC) algorithm. The Lagrangian
relaxation-based heuristic algorithm was proposed by
Aguado to solve a capacitated problem (28). Accounting
for the chronological sequence for building roads and
streets in reality, Kennington and Nicholson extended
the problem by adding a time-space index to the problem
(29). In addition to the comprehensive problem review
mentioned earlier, Crainic presented the problem in the
context of freight logistics and discussed potential budget
constraints including financial resource budget con-
straints and capacity constraints (30). By fixing the
design variables, as Crainic pointed out, an uncapaci-
tated FCTP becomes an uncapacitated multicommodity
flow problem and can be further decomposed into the
shortest path problems.

Incorporating other objectives into the network design
process, including accessibility, has attracted greater
research interest in recent years. For example, problems
such as planning an equitable transportation network to
avoid population bias, planning routes for emergency
evacuation that covers a maximum number of people,
and designing transit routes for maximizing service value
have been studied (31–33). The problem has also been
modeled as mathematical programming with an equili-
brium constraint (MPEC) that incorporates the user
equilibrium conditions in optimizing the network config-
uration (34).

We note that a few studies on NDP aim to maximize
the network accessibility, which are very limited in the lit-
erature, as is pointed out in the related work reported by
Di et al. (35). Antunes et al. modeled a city center accessi-
bility maximization problem in which accessibility is
measured as a weighted metric of the population, center
sizes, and travel costs between them (36). Local search
and simulated annealing algorithms were proposed as
solution algorithms. However, travel cost changes owing
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to design decisions were not explicitly modeled in the
model. Aboolian et al. studied a facility network design
problem that maximized the number of people gaining
benefits from facilities, in which the accessibility is
defined as the time needed for receiving services from a
facility (37). Murawski and Church studied an accessibil-
ity problem in identifying critical links between rural
areas and health facilities (38). The accessibility was
related to the population that can be covered within the
maximal acceptable distance. The problem was formu-
lated as an integer optimization problem and solved
using CPLEX. Tong et al., focused on maximizing an
individual’s accessibility, integrated space-time prism into
the transportation network design framework (4). They
modeled the problem for minimizing the number of inac-
cessible destinations given both the individual’s time bud-
get and limited financial resources. The time-space NDP
was solved by the Lagrangian relaxation (LR) algorithm.
Along the same lines, Di et al. developed a flow-based
accessibility maximization problem that incorporates
user equilibrium (UE) and system optimal (SO) princi-
ples in the bi-level optimization problem with a travel
time budget. Deterministic and stochastic demand cases
were both examined and they proposed an approxima-
tion algorithm for solving them (35).

Motivation and Contribution

We perceived that there have been fruitful studies on
evaluating transportation network using all sorts of
accessibility metrics, but relatively few place the accessi-
bility improvement as the primary goal in the network
design problems. Moreover, the overview of the
accessibility-oriented NDP literature suggests that a very
important motive, identification of potential construc-
tion of roads that will bring in more reachable destina-
tions which would not be possible without them, has not
been well articulated. To fill the perceived gap between
the accessibility measurement and the network design
problem with an emphasis on the increasing accessibility,
while at the same time complying with budget con-
straints, we proposed an optimization problem for iden-
tifying critical links for accessibility improvement. This
study extends this line of research in the following three
aspects:

� Explicitly maximizes the accessibility of the net-
work with regards to the weighted or unweighted
number of destinations/opportunities reachable
within a given TTB;

� Identifying links that are critical to inaccessible
destinations instead of further improving travel
time to destinations already reachable within a
given TTB;

� Proposes an integer program (IP) formulation of
the problem and a Lagrangian relaxation-based
solution framework which renders a natural
decomposition of the problem. Three decomposed
sub-problems lend themselves to efficient solu-
tions (algorithms) and together contribute a scal-
able algorithm for network planning problems in
real-world size.

The remainder of the paper is structured as follows.
The next section provides the mathematical formulation
of the network design problem followed by the model
limitations and discussion of the problem complexity.
Following that, we present the Lagrangian relaxation-
based solution algorithm. Case studies on both small and
large networks are presented and discussion of the model
are provided in the penultimate section. The paper con-
cludes with some future work directions.

Mathematical Formulation

In this section, we propose an IP formulation of the
NDP that is constrained by both the TTB and CCB. The
formulation minimizes the total number of OD pairs for
which the travel time is above the given travel time bud-
get in the designed network. To guarantee a feasible
model, a simple network transformation is needed in
some cases, which is briefly discussed before presentation
of the mathematical formulation. The limitation and
complexity of the formulation are briefly discussed at the
end of the section.

Problem Description

In accessibility studies, a fundamental question that is
frequently asked is given a certain travel time threshold
or budget, how many destinations, activities, and services
can travelers reach from their origins. For example, El-
Geneidy and Levinson measured the number of jobs
accessible within various TTB values (e.g., 15min,
20min, 60min and etc.) by automobile and transit for
the Twin Cities metropolitan area network (1). The net-
work design process has the aim of maximizing the net-
work accessibility, therefore, targets are identified at
potential transportation infrastructures (roads, transit
routes, ferries, and etc.) that are to be built on the exist-
ing network to bring more opportunities accessible under
the TTB. In practice, however, financial resources are
often case very limited and it is not realistic for an MPO
to perform a network redesign for the sole purpose of
maximizing accessibility. Therefore, constrained by lim-
ited resources, where to build new infrastructure to
improve accessibility for a given TTB becomes the core
question. We focus on the road network improvement
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by utilizing limited financial resources for road construc-
tion. A set of potential links that can be constructed are
given and the solution to the formulated optimization
problem determines an optimal subset that maximizes
the accessibility.

Some assumptions that we made in this study are as
follows:

� Link travel time is known a priori and is constant,
and one can use either congested or uncongested
travel time for different planning purposes;

� Potential OD pairs for planning for accessibility
are given, and opportunities measured at destina-
tions are given and remain constant regardless of
their accessibility status.

Network Transformation and an Example

The motive for making a network transformation is to
ensure the feasibility. A transformation is needed if there
are some origin-destinations (ODs) that are not physi-
cally connected under the existing network. The transfor-
mation is as follows: for a potential OD pair that is not
connected in the existing network, an artificial link (path)
is created by directly connecting the origin and the desti-
nation. The travel cost and construction expenditure of
these artificially created links are chosen carefully to be
slightly higher than the TTB and zero, respectively. An
example network is presented in Figure 1. The network
was adapted from a paper published by Tong et al. (4).

In the example presented in Figure 1, there are nine
existing links shown by the solid line and four candidate
links shown by the dashed line. There are three OD pairs
to be considered for accessibility improvement. These are
(A, D), (D, A) and (B, C). If in addition to these three
pairs we also want to plan for (E, D), then a direct artifi-
cial link connecting E and D should be created. This
guarantees that the model is always feasible no matter
whether E and D are connected or not at the optimal

solution. In other words, whether link FD is built or not,
the pair ED should always be connected by either an
existing physical route or an artificial one.

Notation and Formulation

Notations and parameters used throughout the paper are
documented in Table 1.

The accessibility maximization problem is formulated
as a minimization problem as below.

Min
X
k2K

dkzk ð1Þ

s:t:
X

ij2A[�A
xkij �

X
ji2A[�A

xkji = bkj , 8j 2 N , k 2 K ð2Þ

Tuzk ø
X

ij2A[�A
cijx

k
ij � T , 8k 2 K ð3Þ

xkij ł yij, 8ij 2 �A, 8k 2 K ð4ÞX
ij2�A

bijyij łB ð5Þ

xkij 2 0, 1f g, 8ij 2 A [ �A, k 2 K ð6Þ

yij 2 0, 1f g, 8ij 2 �A ð7Þ

zk 2 0, 1f g, 8k 2 K ð8Þ

The formulation presented above explicitly minimizes
the number of inaccessible OD pairs in the network
under a certain TTB. For a better illustration of this, we
introduced the accessibility indicator variable zk into the
formulation. The relative importance of an OD pair can
be measured by the parameter, dk , which specifically
reflects some feature of this OD pair. For instance, it can
be the number of people, number of jobs at the destina-
tions, or simply taking the value of 1 representing the
case in which all OD pairs are treated equally. Therefore,
the objective of the program is equivalent to maximizing
the number of opportunities reachable within the TTB
for all origins in the network.

Constraints (2) are the standard flow conservation
constraints. If for the OD pair k, node j is the origin node
then bkj is equal to negative one, and if it is the destina-
tion node, it equals one, and for the intermediate nodes,
it takes the value zero. Constraint set (3) defines the indi-
cator variable: with a big-M type of parameter, Tu, the
indicator is enforced to be 1 if the travel time between
the corresponding OD pair is greater than the travel time
budget, which indicates a inaccessible OD. Note that in
the constraint, for an OD pair k, as long as there is a
path with less than the TTB, the OD pair is accessible. In
other words, the accessibility planning emphasis is given
to those currently inaccessible OD pairs. Further

Figure 1. A small transportation network with candidate links
for construction.
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reducing the travel time for the already accessible OD
pairs is not favored for the solution of the model, which
is consistent with the goal of the study: identifying criti-
cal links that make more ODs accessible. Constraints (4)
stipulate that if for any OD pair link ij is on the path
selected to the destination at the optimal solution, then
the candidate link ij has to be constructed. If a candidate
should be built, variable yij takes the value one and oth-
erwise zero. The construction cost budget is constrained
by the inequality (5). It is because of this constraint that
the problem is of practical significance which allocates
the financial resource to links that best contribute to the
system with regard to maximizing the accessibility.
Lastly, as the three sets of the decision variables are all
binary, the formulated problem is an IP.

Model Limitation

Link travel time in this formulation is flow-independent.
In other words, regardless of whether a destination is
accessible within a given time budget, link travel times
remain invariant. From the perspective of travel demand
modeling, this may not be realistic as demand is sensitive
to travel time as opposed to travel distance. Destinations
made accessible, or shortened travel time to a

destination, may encourage travel, and as a function of
the flow link travel time varies with the flow. However,
from the accessibility perspective, as is practiced in some
related work, travel time variance and congestion effects
owing to accessibility change are not the core of these
studies. What is more important, instead, is whether the
opportunities and/or potentials at a particular destina-
tion are physically accessible within a time budget, and if
not, what improvement can be made so that the destina-
tion is reachable to travelers. Therefore, we chose not to
model congestion in the current formulation, which
allows a relatively simple model that renders an efficient
solution algorithm making it applicable to large net-
works. To support long-term network planning deci-
sions, however, one can use congested or uncongested
link travel time for different modeling purposes.

Problem Complexity

Before moving on to the solution algorithm section, we
will briefly discuss the complexity of the formulation with
regards to the problem size and NP-completeness.

Problem Size. The problem can be viewed as a multicom-
modity flow and network design problem. The flow

Table 1. Notations and Parameters Used in the Study

Notation Description

Indices and sets
N Set of nodes in a transportation network
A Set of links representing existing roads in a transportation network
�A Set of candidate links representing potential roads to be constructed for improving accessibility
�A

0
Set of selected candidate links, �A

0 � �A
G N, Að Þ A graph consisting of the node set N and the link set A
K Set of origin-destination (OD) pairs to be planned for accessibility
i, j Indices for nodes, i, j 2 N
i, jð Þ Indices for links, i, jð Þ 2 A [ �A
k Indices for OD pairs, k 2 K
O kð Þ,D kð Þ Origin and destination of the OD pair k, O kð Þ,D kð Þ 2 N

Parameters and decision variables
dk Parameter reflecting a certain feature of the OD pair k, for example, travel demand,

number of jobs at the destination, population at the origin
bij Construction cost for link i, jð Þ, bij 2 R++

cij Constant travel time on link i, jð Þ, cij 2 R++

B Construction cost budget parameter, B 2 R++

T Travel time budget parameter usually in minutes, T 2 R++

Tu The estimated longest travel time in the network, Tu 2 R++

xkij Decision variables, whether link i, jð Þ is used by the path connecting OD pair k, xkij 2 0, 1f g, whose vector form is x
yij Decision variables, whether link i, jð Þ should be built, yij 2 0, 1f g, whose vector form is y
zk Decision variables, take the value 1 if the OD pair k is inaccessible and otherwise 0; zk 2 0, 1f g
mk
ij Lagrangian multipliers (LMs) whose vector form is m

lk Lagrangian multipliers (LMs) whose vector form is l
a1,a2 Step-size used in the sub-gradient updating step
l Iteration index used in the solution algorithm
g Duality gap threshold
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conservation constraints are written for each node in the
network and more importantly for each commodity, and
in our case is the set of OD pairs. Even though the for-
mulation does not seem to be complex, there are in effect
many constraints and variables even for a medium-size
transportation network. Considering the network of the
Twin Cities metro area which has more than 47,000 links
and 20,000 nodes. The number of OD pairs with positive
demand Kj jð Þ that are typically planned for by the MPO
is more than 540,000. This makes the cardinality of the
constraints huge. Constraint set (2) contains Nj j3 Kj j =
1:083 1010 equalities. Constraint set (4) contains
�A
�� ��3 Kj j inequalities, and depending on the number of
potentials the number of these inequalities is at least 105.
In all, considering both the constraint and variable number
the above problem considering the complete set of OD
pairs is a big problem. It is by no means of tractable size
for commercial optimization problem solvers. Some
decomposition of the problem seems natural considering
the size of the problem. An illustrative network example is
presented in the following section and computational time
comparison with a solver is provided for comparison.

Time Complexity. The formulated problem and its more
general case, the NDP and multi-commodity network
flow problem, are combinatorial optimization problems.
The complexity of the problem is well-studied in the liter-
ature, usually by showing its relationship to the knapsack
problem. It is NP-hard and more precisely NP-complete

(32, 39). There is not a known polynomial solution algo-
rithm for this type of problem. In the solution algorithm
section, we adopted the Lagrangian relaxation frame-
work to approach this problem, which is always in realis-
tic cases a huge problem. The adoption of the LR allows
us to ease the complexity of the problem by decomposing
it into three relatively easier problems, the shortest path
problem, the knapsack problem, and an unconstrained
minimization problem, all of which can be solved more
efficiently.

Solution Algorithm

Lagrangian relaxation has been recognized as an efficient
decomposition algorithm for converting a complex prob-
lem into more tractable ones and has been applied in
many transportation fields, such as reliable shortest paths

or network design problems (4, 28, 40). In this section,
the overview of the proposed LR approach together with
decomposed sub-problems and the multiplier updating
method is presented first. Next, a numerical example of
an illustrative network employed to show the accuracy
and efficiency of the proposed algorithm is presented.

Lagrangian Relaxation

The idea of the Lagrangian relaxation-based decomposi-
tion idea is simple: moving some ‘‘complicating’’ con-
straints to the objective function which are penalized if
constraints are not satisfied or rewarded otherwise. By
replacing the constraints, it is usually possible to have
the original problem decomposed into sub-problems that
are easier to solve. The framework works in the same
fashion as the primal-dual algorithm that improves the
gap between the primal value and dual problem value.

First, we will construct the Lagrangian function by
introducing a set of Lagrangian multipliers:

L x, y, z,m,lð Þ=
X

k2K dkzk

+
X

k2K

X
ij2�A m

k
ij xkij � yij

� �

+
X

k2K lk
1

T

X
ij2A[�A cijx

k
ij � 1� Tu

T
zk

� �
:

ð9Þ

The Lagrangian dual problem is to minimize the
Lagrangian function with respect to the LMs.

L mð Þ= inf
x, y, z

L x, y, z,m,lð Þ

= inf
x, y, z

X
k2K dk

X
ij2A[�A[~A cijx

k
ij +

X
k2K

X
ij2�A m

k
ij xkij � yij

� �
+

X
k2K lk

1

T

X
ij2A[�A cijx

k
ij � 1� Tu

T
zk

� �� �

s:t: 2ð Þ, 5ð Þ, 6ð Þ

ð10Þ

The problem defined in Equation 10 can be further
decomposed into three sub-problems by regrouping the
variables which are presented below.

Sub-problem of x – Paralleled Shortest Path Problems. The first
sub-problem is related to the decision variables x. The
problem presented in Equation 11 is, in fact, a set of
shortest path problems on the graph G N ,A [ �Að Þ. Given
the fixed value of the Lagrangian multipliers (LMs), one
can simply update the generalized cost for each link and
solve the paralleled shortest path problems efficiently
using network algorithms such as label correcting. Note
that the generalized travel cost on the graph G is origin-
destination based as the LM lk is OD specific which
results in different link costs even for the same link.
Furthermore, the computation of the generalized cost of
existing links and candidate links are slightly different.
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Having the cost updating step implemented correctly,
the sub-problem can be addressed.

Lx m,lð Þ= min
x

X
k2K

X
ij2A

lk

T
cijx

k
ij +

X
ij2�A

lk

T
cij +mk

ij

� �
xkij

0
@

1
A

s:t:
X

ij2A[�A[~A
xkij �

X
ji2A[�A[~A

xkji = bkj , 8j 2 N

xkij 2 0, 1f g, 8ij 2 A [ �A, 8k 2 K

ð11Þ

The time complexity of the above shortest path prob-
lem is, if taking the label setting algorithm with some pri-
ority queue structure as the fundamental tool for solving
the shortest path problem, O Kj j Aj j+ Nj jlog Nj jð Þð Þ.

Sub-problem of y – Knapsack Problem. The second decom-
posed sub-problem relates to decision variables y, which
takes the following form:

Ly mð Þ= min
y

�
X
k2K

X
ij2�A

mk
ijyij

s:t:
X
ij2�A

bijyij łB

yij 2 0, 1f g, 8ij 2 �A

ð12Þ

The problem presented in Equation 12 is a knapsack
problem. The analogy to the knapsack problem is select-
ing candidate links for a construction that maximizes the
benefits that are measured using the LMs given the lim-
ited capacity of the knapsack. The authors want to
remark that as the LMs mk

ij are defined for each con-
straint in the set (4), the ‘‘value’’ of an item—a physical
candidate link—is actually the sum of the LMs for all
OD pairs. That is, if we define mij to be the ‘‘value’’, it is
computed as:

mij =
X
k2K

mk
ij: ð13Þ

As is well known, the knapsack problem is NP-hard as
well, but the dynamic programming approach can solve
the problem in pseudo-polynomial time.

Sub-problem of z – Unconstrained Minimization Problem. The
last sub-problem is related to the accessibility indicator
decision variable. The problem is fairly easy as there are
no additional constraints on zk besides the definition con-
straints. The problem takes the following form:

Lz lð Þ= min
z

X
k2K

dk � lk
Tu

T

� �
zk

s:t: zk 2 0, 1f g, 8k 2 K:

ð14Þ

The solution to the problem is obvious: if the compo-
nent coefficient dk � lk

Tu
T

is evaluated to be a positive
number, zk takes 0 and otherwise, it takes 1.

By solving the three sub-problems separately and then
adding up the optimal values of the three problems and
an extra term, we can find the lower bound LBð Þ of the
original problem. This can be defined as:

LB= Lx m,lð Þ� + Ly mð Þ� + Lz lð Þ� �
X

k2K lk , ð15Þ

In which Lx m,lð Þ�, Ly mð Þ�, and Lz lð Þ� represents the
optimal value at the current iteration obtained by solving
the sub-problems of x, y, and z for the given m and l.
The last term in Equation 15 should be computed using
the incumbent value of the LMs.

The upper bound UBð Þ of the problem can be calcu-
lated by evaluating the number of inaccessible OD pairs
on the given graph G N ,A [ �A

0� �
, in which the set �A

0

denotes the selected candidate links by the optimal solu-
tion of the sub-problem y. It is a valid UB because the
solution for the knapsack problem is always feasible for
the original problem and moreover if the algorithm con-
verges the UB value is the optimal value of the original
problem. One can apply the shortest path algorithm on
the graph and compare the travel time with TTB to
obtain the UB.

In the framework of LR, after computing the UB and
LB of the problem, we aim to decrease the gap between
the two. To decrease the duality gap and update the sub-
problems, we adopted the sub-gradient method. In the
literature, the sub-gradient method has been widely used
to find the direction for updating the LMs (4). The
Lagrangian multiplier (LM) updating strategy is pre-
sented as follows:

m
k l+ 1ð Þ
ij =m

k lð Þ
ij +a

lð Þ
1 xk�ij � y�ij

� �
, 8ij 2 �A, k 2 K, ð16Þ

l
l+ 1ð Þ
k = llk +a

lð Þ
2

1

T

X
ij2A[�A cijx

k�
ij � 1� Tu

T
z�k

� �
, k 2 K,

ð17Þ

In which xk�ij , y�ij, and z�k are the optimal solutions of the

corresponding sub-problems respectively, and a
lð Þ
1 and

a
lð Þ
2 are the step-size parameters that usually take on a

positive number between 0 and 2, as suggested by the lit-
erature (40). Suggestions from the literature and our
prior tests found that it is good practice to include the
gap measure in the adjustment of the step-size. In this
paper, we multiplied the second term in Equations 16
and 17 with the ratio of the difference of the incumbent
UB and LB to l2 -norm of the sub-gradient. If we com-
pact the coefficient for travel time updating as a vector c,

the two ratios are UB�LB
x��y�k k2

and UB�LB

ctx��1�Tu
T
z�k k

2

respectively.
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To summarize, the LR-based solution algorithm con-
verts a complex problem, which is also possibly very large
in real transportation networks, into three much easier
problems: a set of parallel shortest path problems on a
given graph, a knapsack problem, and an unconstrained
minimization problem. All of the sub-problems can be
addressed relatively fast and this significantly reduces the
computational time. A comparison of the proposed algo-
rithm with a commercial solver is provided in the next
sub-section and the case study section to cast light on the
efficiency and accuracy of the LR-based algorithm. The
complete steps of the LR-based algorithm are summar-
ized below.

Illustrative Example

To gain further insights into the solution algorithm, we
solved the illustrative example shown in Figure 1 using
the proposed LR algorithm. The travel time, construc-
tion cost, and OD pairs are shown in the figure. For
these tests, the dk values are all set to 1.0. We tested out
the following travel time budget and construction budget
combinations: T = 10,B= 5, and T = 10,B= 8, and
T = 12,B= 12: Here, we will refer to this case using the
abbreviation T_B_ with T and B followed by the selected
TTB and CCB values. These problems were also solved
using the commercial solver, GUROBI 8.1.1, which was
coded in Python and carried out on a personal computer
with an i5-4590s Intel processor and 16GB RAM.

There are four candidate links in the illustrative net-
work and it costs $11 in total to build them all. In the
existing network, the shortest travel time for the OD
pairs (A, D), (D, A), and (B, C) are 11, 15, and 18,
respectively. Given a TTB of 10 and CCB of 5, the sys-
tem can improve the accessibility by constructing links
BE and FC which bring the travel time for (B, C) below
TTB. This results in a total travel time of 32 which would
have been 44 without any candidate links being con-
structed. Two out of three OD pairs are still inaccessible
in this case. Increasing the construction budget, the algo-
rithm outputs an additional link, FD, to build, which
reduces the travel time for (A, D) to 9 and improves the
accessibility of network. This results in a total travel time
of 30. Increasing the construction budget will not
improve the system anymore as the TTB becomes criti-
cal. Therefore, in the third test, we increased the TTB to
12, which is the shortest possible travel time for (D, A).
Then, the program determined that all candidate links
should be built to maximize the accessibility under the
TTB of 12, which results in a total travel time of 27.
Considering the results across the scenarios, the model
can indeed improve the accessibility of the network by
selecting the optimal links to open and the byproduct of
this is the reduced total travel time.

We compared our results with the solutions obtained
using Gurobi. The solutions (optimal value, selected can-
didate links) provided by the LR method are exactly the
same as those produced using Gurobi for each case. The
comparison of the two showed the accuracy of the pro-
posed LR algorithm. In addition, the decomposition
algorithm solves the problem faster than the commercial
solver with an average computational time of only one-
tenth of that used by Gurobi. This is encouraging as the
network design problem in practice can be very large
and the computational time can be a problem if resorting
to a commercial solver.

In Figure 2, we plotted the convergence paths of the
three tests. By updating the LMs and therefore the three
sub-problems, each iteration rendered improved upper or
lower bounds. This ultimately leads to a reduction of the
duality gap and a converged solution. For these tests, the
algorithm tends to find the optimal solution at the each
stage of the process. The optimal values were obtained in
the second iteration and the duality gap improved in the
rest iterations until convergence.

Case Study

In this section, we provide two case studies for the net-
work design problem—one is the Sioux Falls network
and the other is the Twin Cities metro area network. The
purpose of the two examples is twofold: (1) validating the

Step 0
(Initialize):

Initialize LMs m and l with non-
negative numbers; set duality
gap threshold g; set l to 0

Step 1
(Solve sub-problems):

Update travel cost and network
topology; Solve shortest path
problems in (11), the knapsack
problem in (12) with Equation
13 using dynamic
programming, and the
minimization problem in (14);
Denote their optimal solutions
as x�, y�, and z�.

Step 2
(Update bounds):

Compute incumbent LB using
Equation 15, update the LB if
the incumbent is larger;
Compute UB using y�, update
the UB if the incumbent is
smaller.

Step 3
(Update LM, gap)

Update the LMs using Equations
16 and 17;

Update the gap by
UB� LBð Þ=UB

Step 4:
(Termination)

If UB�LB
UB <g, terminate the

algorithm; Otherwise, go back
to step 1, increment iteration
number l by 1.
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proposed solution algorithm; and (2) showing the practi-
cal applications of the proposed model.

Sioux Falls Network

Sioux Falls network is comprised of 24 nodes and 76
links. We created seven pairs of candidate links (14 direc-
tional links in total) on the existing network. Their free-
flow travel time (FFTT) was estimated from the known
free-flow travel times for the existing links. We extracted
528 OD pairs with a positive demand between them and
tried to maximize the number of OD pairs that can be
traveled from/to within the given TTBs. The construc-
tion cost was generated approximately proportionally to
their length. Parameter Tu takes the value of 40. Details
of the candidate links are presented in Figure 3.

Tests were carried out to reflect the impacts of both
the financial budget and TTB. By fixing the TTB to 15,
we tested how the financial budget affects the accessibil-
ity. A piece of useful background information is: if the
construction budget is 0, there are 144 inaccessible OD
pairs. Given a budget of 50 units, 2 links out of 14 can be
built and this makes 38 more OD pairs accessible.
Increasing the budget to 100units and 150units, 4 and 6
links are selected and the improvement is 44 and 50 rela-
tive to the base case. If the budget is enlarged to
200units, 8 links should be built and this enables the
travel time for 3 more ODs to be below 15minutes.
Please refer to Table 2 for solution details. On the other
hand, to demonstrate how TTB affects the results, for
each budget level described above we increased the TTB
to 20minutes. Increased accessible pairs were found as

expected. The other conclusion that we can draw from
this comparison is that the critical links can be different
for different TTB settings. Note that the number of links
to open for T20B150 and T20B200 is 1 fewer than their
corresponding case in T15, which indicates that some
links that are critical for T15 are no longer critical for
T20. To better present the results for T equal to 20 and
to show how the financial budget can change the con-
struction decision, graphs of the selected links are shown
in Figure 3.

We recorded the optimal values (and solutions) and
computational time for the same tests using Gurobi in
Table 2. The optimal solutions obtained using the pro-
posed algorithm are identical to those obtained using the
optimization solver. For the Sioux Falls network, the
computational time of two is rather comparable.
Generally, we found that a larger TTB case requires less
computational time. Although we cannot draw any gen-
eral conclusion about the computational time sensitivity
on the TTB, we discussed the issue in the following sec-
tion. To show the convergence trajectory, in Figure 4 we
plotted iteration-by-iteration duality gaps for these tests
for 50 iterations. The duality gap is measured by
UB� LBð Þ=UB. In cases in which TTB is 20, the gap
decreases drastically in the few iterations at the beginning
and the final optimal link solution is in effect found at
the very beginning as well. In the figure, one can observe
that a 1.0% gap can be reached within just a few itera-
tions. In contrast, in the case of T15, the optimal solu-
tions tend to be found relatively later, which results in a
slower convergence speed. For example, in T15B200, the
optimal solution was found at the 28th iteration and for

Figure 2. Convergence paths of the LR algorithm for various combinations of TTB and CCB.
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Figure 3. Sioux Falls network with candidate links and optimal network design results: (a) candidate links are marked with indices and
FFTT (in minutes) and construction costs and (b) the subfigure shows the existing links and optimal links to build for given TTB and CCB.
In subfigures (b), the CCBs are 50, 100, 150, and 200, respectively and all with the same TTB 20 min.

Table 2. Comparison of Solution Details Between the LR Algorithm and Gurobi

Network Case
# Opened

links
# Accessible
destinations

Optimal
value

Computation
time (s)

Gurobi
optimal value

Gurobi
computation time (s)

Sioux Falls T15 B50 2 422/528 106.0 10.30 106.0 6.48
B100 4 428/528 100.0 5.46 100.0 5.92
B150 6 434/528 94.0 10.11 94.0 7.00
B200 8 437/528 91.0 9.16 91.0 6.63

T20 B50 2 520/528 8.0 4.68 8.0 5.31
B100 4 522/528 6.0 1.39 6.0 4.59
B150 5 523/528 5.0 6.56 5.0 3.70
B200 7 524/528 4.0 9.74 4.0 3.87

Twin Cities T15 B50 2 4386/9090 4704 7800 – –
B100 3 4434/9090 4656 7672 – –

T30 B50 2 5708/9090 3382 4216 – –
B100 3 6978/9090 2112 3944 – –
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T15B150 at the 46th. This explains the longer computa-
tion time for T15 cases. However, by tuning the initial
LMs, as our tests suggested, the convergence speed can
be improved. For the two sets of tests, the LMs were set
to be the same.

Twin Cities Network

The case study on the Twin Cities metro area network is
designed to show the potential applications of the pro-
posed model and the solution algorithm in practice. The
network is comprised of 20,784 nodes, 47,393 links (not
including the centroid connectors), and 3,030 traffic anal-
ysis zones (TAZs). The east campus of the University of
Minnesota was used as the test subject, which is con-
nected to the west campus by bridges across the
Mississippi River. The question we want to answer
through tests is which bridges are critical to the students,
faculty, and staff working in the university with regards
to providing them the largest accessibility to other desti-
nations. The three TAZs (shown in dark red in Figure 5)
that the campus consists of translate to 9,090 ODs and a
collection of 11 bridges that are surrounding the campus
were considered. The problem is of practical relevance
for network accessibility evaluation as well, for example,
evaluating road closures for special events. Tu in the
model was chosen to be 120 (in minutes), which provides
an UB for the travel time in the Twin Cites network.

Results and Analysis. Four tests were performed with com-
binations of the 15- and 30-minute TTB and 50- and 100-
unit CCB. Figure 5 on each panel shows four accessibility
zones: zones already accessible within the given TTB (in

blue), zones becoming accessible with construction of the
selected bridges (in light red), zones becoming accessible
with more selected bridges owing to a larger CCB (in yel-
low), and zones inaccessible in any case (in white).

When the travel time budget was 15minutes, without
building any bridge the accessible zones are mostly dis-
tributed in the east bank of the river, which indicates
that trips across the river are not possible because of the
lack of connecting infrastructure. If two bridges that are
very close to the campus are included in the network, the
accessible region largely extends to the west, which was
not reachable before, and this increases the number of
accessible zones by 150% from 598 to 1,495. If there is
more budget, however, even though one more bridge is
to be included in the network, the number of accessible
zones increases by less than 20. Compared with the pre-
vious increment, this is not significant. It alludes to the
accessibility analysis, and the existence of some critical
links which can greatly boost the number of accessible
zones making other links seemingly less significant. This
phenomenon was also revealed in Murawski and
Church’s work, which found that ‘‘even a modest level of
road improvement’’ can lead to a substantial increase in
accessibility (38). It also warns us that one may ignore
the capacity and congestion issue when solely focusing
on the accessibility. Again, accessibility is only one
aspect of the network performance and there is more
beyond that that is well worth planning for.

When the travel time budget is 30minutes, an increase
of 20% in accessibility from 1945 to 2330 ODs was
observed. It is a positive increase, but a less significant
increase compared with a 15-minute TTB. One can see
that even without those bridges many zones in the west
area are already accessible. This indicates that for

Figure 4. Iteration-by-iteration duality gap for various cases of the Sioux Falls network design problem.
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different TTBs critical links can be different, and some
links that are critical under a smaller TTB may not be
important for a larger TTB. This was also supported by
the optimal bridges found using the solution algorithm.
In the case of T30B10, two different bridges were selected
for accessibility maximization compared with T15B10. It
can be seen that between T30 and T15 the same issue is
found, that increasing the budget does not significantly
help the accessibility improvement. The phenomenon can
be related to the limited number of candidate links. In
short, building two or three critical bridges can greatly
enhance the accessibility level for the campus.

Computational Time Discussion. The authors implemented
the proposed algorithm using C++ programming lan-
guage and the above tests were carried out on the same
personal computer as mentioned before. For all of the
tests recorded in Table 2, the duality gap threshold was
set to 3.0% and on average it took 67 iterations for con-
vergence. It was realized that in the proposed algorithm
the most computationally expensive component is the
shortest path computation—solving the sub-problem of
x. For the above case, in each iteration of the algorithm,
more than 9,000 shortest path problem solutions are
needed in the worst case. It should be noted that the
problem cannot be solved for each origin, but needs to
be solved for each OD pair, because of the varied OD-

specific LMs used for updating the link cost. One tech-
nique, however, is to pre-process the network: remove
those OD pairs for which travel time is already below
the preset TTB in the existing network. The objective
value, the number of inaccessible ODs, will not be
altered without these OD pairs because building more
links will only reduce the travel time between them,
rather than increasing them. By conducting this, we can
reduce the number of OD pairs by 19% and 63% for
T15 and T30, respectively. This is the why, in the tests
for the Twin Cities network, the computational time for
T30 cases is significantly smaller than for the T15 cases,
as shown in Table 2. Taking advantage of the indepen-
dent shortest path sub-problem, one can further decrease
the computational time by parallel computing, which
could be a future working direction for this study.

Conclusion

Aiming to bridge the gap between network accessibility
evaluation studies and NDPs, this paper studied the
accessibility maximization NDP. The objective of the
proposed integer programming model is consistent with
the prevalent accessibility measuring metric and the
model further articulates the fundamental concern for
the accessibility maximization problem: making more
opportunities reachable within a given TTB rather than

Figure 5. TAZs that are accessible for different TTB and CCB combinations. A zoomed-in view of the campus region and selected
bridges to build is shown in the lower-left corner for B50 case: (a) accessible zones within a 15-minute TTB and (b) accessible zones
within a 30-minute TTB.
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reducing the travel time for getting the opportunities
already accessible. We proposed to decompose the OD-
specific constrained problem into three sub-problems
including a set of independent shortest path problems, a
knapsack problem, and an unconstrained minimization
problem. Thanks to the LR decomposition technique,
we can deal with each one of the sub-problems more effi-
ciently, with the former two being addressed using
dynamic programming approach, and the latter one ren-
dering an obvious solution. Various tests have been con-
ducted on small to large-scale networks. We compared
our solution with the commercial solver’s optimal solu-
tion and proved the accuracy of the solution algorithm
and showed the computational time was comparable or
even faster than that of the solver. The method was also
successfully applied to the Twin Cities metropolitan area
network for identifying critical bridges that cross the
Mississippi River which are capable of maximizing the
number of destinations for people on campus. The paper
extends the existing literature in the following aspects:
(1) incorporating the TTB into the NDP for measuring
accessibility and explicitly maximizing the number of
reachable destinations within a given TTB; (2) provided
a promisingly scalable solution framework for the prob-
lem which is likely to be large in real applications.

On the efficiency of the model, it is worth noting that
the problem by definition is origin- (or destination-) spe-
cific instead of OD-specific. An origin-specific type of
formulation can significantly reduce the computational
time as we found that the shortest path computation was
the most time-consuming component compared with the
others. In addition, in real applications, the OD pairs are
often in the millions, whereas making it O- or D-specific
reduces the size to a few thousand. If incorporated with
parallel computing, a significant enhancement in the effi-
ciency of the algorithm is expected. The problem can also
be extended to study a network design problem with the
objective of minimizing the travel time for all OD pairs.
It would also be interesting to compare the results of the
two models with different objectives and see how the
objective affects the network performance with respect to
the accessibility level for a varied TTB.
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