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Abstract—The rapid development of deep neural networks (DNNs) in recent years can be attributed to the various techniques that
address gradient explosion and vanishing. In order to understand the principle behind these techniques and develop new methods,
plenty of metrics have been proposed to identify networks that are free of gradient explosion and vanishing. However, due to the
diversity of network components and complex serial-parallel hybrid connections in modern DNNs, the evaluation of existing metrics
usually requires strong assumptions, complex statistical analysis, or has limited application fields, which constraints their spread in the
community. In this paper, inspired by the Gradient Norm Equality and dynamical isometry, we first propose a novel metric called Block
Dynamical Isometry, which measures the change of gradient norm in individual blocks. Because our Block Dynamical Isometry is
norm-based, its evaluation needs weaker assumptions compared with the original dynamical isometry. To mitigate challenging
derivation, we propose a highly modularized statistical framework based on free probability. Our framework includes several key
theorems to handle complex serial-parallel hybrid connections and a library to cover the diversity of network components. Besides,
several sufficient conditions for prerequisites are provided. Powered by our metric and framework, we analyze extensive initialization,
normalization, and network structures. We find that our Block Dynamical Isometry is a universal philosophy behind them. Then, we
improve some existing methods based on our analysis, including an activation function selection strategy for initialization techniques, a
new configuration for weight normalization, a depth-aware way to derive coefficients in SeLU, and initialization/weight normalization in
DenseNet. Moreover, we propose a novel normalization technique named second moment normalization, which has 30% fewer
computation overhead than batch normalization without accuracy loss and has better performance under micro batch size. Last but
not least, our conclusions and methods are evidenced by extensive experiments on multiple models over CIFAR-10 and ImageNet.

Index Terms—Deep Neural Networks, Free Probability, Gradient Norm Equality
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1 INTRODUCTION

I T has become a common sense that deep neural networks
(DNNs) are more effective compared with the shallow

ones. However, the training of very deep models usually
suffers from gradient explosion and vanishing. To this end,
plenty of schemes and network structures have been pro-
posed. For instance: He et al. (2015) [1], Mishkin & Matas
(2015) [2], Xiao et al. (2018) [3] and Zhang et al. (2019) [4]
suggest that the explosion and vanishing can be mitigated
with proper initialization of network parameters. Ioffe &
Szegedy (2015) [5], Salimans & Kingma (2016) [6] and Qiao
et al. (2019) [7] propose several normalization schemes that
can stabilize the neural networks during training. From the
perspective of network structures, He et al. (2016) [8] and
Huang et al. (2017) [9] demonstrate that neural networks
with shortcuts can effectively avoid gradient vanishing and
explosion.
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It’s natural to ask: is there a common philosophy behind
all these studies? Such philosophy may inspire novel hyper-
parameter selection strategies and network structures.

Great efforts have been made to pursue this philosophy.
In particular, He et al. (2015) [1] and Mishkin & Matas (2015)
[2] preserve the information flow in the forward pass. Poole
et al. (2016) [10], Xiao et al. (2018) [3], Yang et al. (2019)
[11] and Schoenholz et al. (2016) [12] study the stability of
the statistics fixed point with dynamical mean-field theory.
They identify an order-to-chaos phase transition in deep
neural networks, and networks sit on the border between
two phases are trainable even with a depth of 10,000 [3].
Pennington et al. (2017, 2018) [13], [14], Tarnowski et al.
(2018) [15], and Ling & Qiu (2018) [16] argue that networks
achieving dynamical isometry (all the singular values of
the network’s input-output Jacobian matrix remain close
to 1) do not suffer from gradient explosion or vanishing.
Philipp et al. (2019) [17] directly evaluate the statistics of the
gradient and propose a metric called gradient scale coeffi-
cient (GSC) that can verify whether a network would suffer
gradient explosion. Arpit & Bengio (2019) [18] find that
networks with Gradient Norm Equality property usually
have better performance. Gradient Norm Equality means
that the Frobenius Norm of the gradient is more or less
equal in different layers’ weights, therefore the informa-
tion flow in the backward pass can be preserved and the
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gradient explosion and vanishing are prevented. However,
most of these studies only provide explanations for existing
methods, and few of them are applied in discovering novel
algorithms for cutting-edge DNN models. The major reason
is that these studies lack handy statistical tools to apply in
complex network structures.
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Fig. 1. Illustration of complex network structure.

As illustrated in Fig. 1, modern neural networks are
usually composed of several different kinds of linear or
nonlinear components like convolution, activation function,
and normalization. These components are connected either
in parallel or serial. The diversity of network components
and different kinds of connections result in two challenges:
nontrivial prerequisites and complex derivation. Because of
the former one, some studies rely on strong assumptions.
For example, to calculate the quadratic mean norm (qm
norm) of the Jacobian matrices, Philipp et al. (2019) [17]
assume that the norm of the product of Jacobian matrices
has approximate decomposability. The free probability used
in Pennington et al. (2017, 2018) [13], [14], Tarnowski et
al. (2018) [15], and Ling & Qiu (2018) [16] requires the
involved matrices to be freely independent with each other
[19], which is not commonly held and difficult to verify [20].
Because of the complex derivation, existing studies usually
require strong statistics backgrounds, which constrains their
spread in the community. For example, the derivation with
free probability requires the probability density of the eigen-
values in each Jacobian matrix, which then goes through
several complex transforms and series expansions [16]. Last,
these challenges also limit the applicable scope of existing
studies such that they only support simple serial networks
with few kinds of components [1], [3], [10], [11], [12], [18].

In this paper, we analyze neural networks with the
workflow as follows. First, we break the network down
into serial blocks (e.g. residual block in ResNet [8]) and
analyze how the Frobenius norm of the gradient evolves
during propagation in Section 3. Based on the analysis, we
propose a new metric, block dynamical isometry (Definition
3.1), that characterizes whether gradient norm equality is
achieved based on the first and second moments of Jaco-
bian matrices’ eigenvalues (referred as spectrum-moment)
in each serial block. Second, to calculate the spectrum-
moment of each block, we develop a highly modularized
statistical framework in Section 4. As each serial block is
constructed by connecting basic components like ReLU and
Convolutions in serial or parallel, we extend the conclusions
in Ling & Qiu (2018) [16] and provide two main theorems
in Section 4.2. Specifically, when the spectrum-moments of
individual components are provided, Theorem 4.1 & 4.2
compute the spectrum-moment of the whole block with
elementary arithmetic when components are connected in
serial and parallel, respectively. The prerequisites of these
theorems are thoroughly discussed in Section 4.3 in which

we present several handy sufficient conditions. At last, in
Section 4.4, a library (Table 3) is developed that summarizes
the spectrum-moments and whether the sufficient condi-
tions hold for extensive components of neural networks.

Comparing with previous studies, our norm-based met-
ric relies on much weaker prerequisites that are easier to
verify. The highly modularized framework simplifies the
complex statistical derivation to elementary arithmetic, and
our library covers the diversity of network components.

TABLE 1
Study cases.

Type Study Cases

I. Existing
Techniques

1. Initialization [1], [3], [4]
2. Normalization [5], [6], [21]
3. Self-normalizing Neural Network [22]
4. ResNet [8] & DenseNet [9]

II. Improvements

1. Impact of Activation Functions in
Initialization Techniques (Section 5.1)
2. Scaled Weight Standardization (Section 5.2)
3. Depth-aware Self-Normalizing Neural
Network (Section 5.3)
4. Initialization and Weight Normalization
in DenseNet (Section 5.5)

III. Novel Method 1. Second Moment Normalization (Section 5.2)

To show the effectiveness of our framework, we present
three types of study cases in Section 5 and 6 as summarized
in Table 1. In Type I, we show that theoretical interpretations
of comprehensive existing techniques can be provided with
a few lines of derivation under our framework. These inter-
pretations also prove that our block dynamical isometry is a
universal philosophy behind them.

In Type II, we present several improvements over exist-
ing studies based on the insights from Type I study cases. In
particular, in case II-1, we systematically evaluate the impact
of different activation functions on the spectrum-moments
and identify that although tanh used in Xiao et al. (2018) [3]
is more stable, leaky ReLU with relatively higher negative
slope coefficient is more effective in networks with moderate
depth. Besides, we modify the PReLU activation function
proposed by He et al. (2015) [1] and give a novel one called
sPReLU that automatically learns a good negative slope co-
efficient. In case II-2, we combine weight normalization with
the initialization techniques and propose a method called
scaled weight standardization. In case II-3, we identify that
the coefficients in the SeLU activation function should be
given according to the depth of the network, and provide
a new way to find these coefficients. In case II-4, we show
that initialization and weight normalization techniques for
vanilla CNNs can be directly applied to DenseNet. All these
novel methods are verified by extensive experiments on
CIFAR-10 and ImageNet.

In Type III, we propose a new normalization technique
called second moment normalization that has 30% lower
computation overhead than BN. On ImageNet-ResNet50
with proper regularization like mixup [23], our second mo-
ment normalization achieves 0.07% and 1.96% lower top-1
error than BN under normal and micro batch size scenarios,
respectively.

For the sake of clarity, we provide a description of
the default notations used throughout this paper in Ta-
ble 2. Our codes in PyTorch are publicly available at
https://github.com/apuaaChen/GNEDNN release.
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TABLE 2
Default notations.

Numbers, Arrays and Matrices
a a scalar a a column vector
A a matrix n, n ∈ R a vector or matrix
I square identify matrix

Operators
Tr(A) the trace of A tr(A) the normalized trace of A, e.g. tr(I) = 1
E[x] the expectation of r.v. x D[x] the variance of r.v. x
λA the eigenvalues of A αk(a) the kth order moment of r.v. a
f(a) a mapping function taking a as input fa the Jacobian matrix ∂f(a)

∂a
φ(A) := E[tr(A)] the expectation of tr(A) ϕ(A) φ(A2)− φ2(A)

height(A) the height of matrix A width(A) the width of matrix A
len(a) the length of vector a

Index
[A]i,j element(i, j) of A

2 RELATED WORK

2.1 Theorems of Well-behaved Neural Networks

Dynamical Isometry. A neural network is dynamical
isometry as long as every singular value of its input-output
Jacobian matrix remains close to 1, thus the norm of ev-
ery error vector and the angle between error vectors are
preserved. With the powerful theorems of free probability
and random matrix, Pennington et al. (2017) [13] investigate
the spectrum density distribution of plaint fully-connected
serial network with Gaussian/orthogonal weights and
ReLU/hard-tanh activation functions; Tarnowski et al.
(2018) [15] explore the density of singular values of the
input-output Jacobian matrix in ResNet and identify that
dynamical isometry can be always achieved regardless of
the choice of the activation function. However, their studies
only cover ResNet whose major branch consists of Gaus-
sian and scaled orthogonal linear transforms and activation
functions, and fail to provide a theoretical explanation of
batch normalization. Although our derivations of Theorem
4.1 and 4.2 are inspired by the Result 2 & 1 in Ling & Qiu
(2018) [16], their discussions are limited to the spectrum of
ResNet due to two reasons. First, their derivation requires
the detailed spectrum density of involved components; sec-
ond, they fail to realize that although the trace operator is
cyclic-invariant, the normalized trace operator is not when
rectangle matrices are involved, so that their Result 2 can
only handle square Jacobian matrices. Last but not least, a
universal problem in existing dynamical isometry related
studies is that the derivation is based on the strong assump-
tion that all the involved matrices are freely independent,
which is uncommonly held and difficult to verify [20].

Order-to-Chaos Phase Transition. Poole et al. (2016)
[10] and Schoenholz et al. (2016) [12] analyze the signal
propagation in simple serial neural networks and observe
that there is an order-to-chaos phase transition determined
by a quantity: χ := φ

(
(DW)

T
DW

)
[13], where D is

the Jacobian matrix of activation function, W denotes the
weight and φ represents the expectation of the normalized
trace of a given matrix. The network is in the chaotic phase
if χ > 1 and in the order phase when χ < 1. The chaotic
phase results in gradient explosion while the order phase
causes gradient vanishing. Due to the lack of convenient

mathematic tools for analysis of “φ”, the current application
of the order-to-chaos phase transition is also limited to
vanilla serial networks.

Gradient Scale Coefficient (GSC). Philipp et al.(2018)
[17] propose a metric that evaluates how fast the gradient
explodes. Let 0 ≤ l ≤ k ≤ L be the index of the network’s
layers, the GSC is defined as

GSC(k, l) =
φ
((

Πk
i=lJi

)T (
Πk
i=lJi

))
||fk||22

||fl||22
. (1)

To efficiently calculate this metric, the authors suggest that
GSC(k, l) = Πk−1

i=l GCS(i + 1, i), which is derived under
the assumption: φ

((
Πk
i=lJi

)T (
Πk
i=lJi

))
= Πk

i=lφ(Ji
TJi).

In our work, we provide not only a solid derivation for
this assumption but also theoretical tools for networks with
parallel branches, which makes our method more solid and
applicable in more general situations.

2.2 Techniques that Stabilize the Network

Initialization. It has long been observed that neural net-
works with proper initialization converge faster and better.
Thus, handful initialization schemes have been proposed:
He et al. (2015) [1] introduce Kaiming initialization that
maintains the second moment of activations through plaint
serial neural networks with rectifier activations; Zhang et al.
(2019) [4] extend initialization techniques to networks with
shortcut connections like ResNet and achieve advanced
results without BN; Xiao et al. (2018) [3] provide an orthog-
onal initialization scheme for serial neural networks, which
makes 10,000-layer networks trainable.

Normalization. Batch normalization (BN) [5] has be-
come a standard implementation in modern neural net-
works [8], [9]. BN leverages the statistics (mean & variance)
of mini-batches to standardize the pre-activations and al-
lows the network to go deeper without significant gradient
explosion or vanishing. Despite BN’s wide application, it
has been reported that BN introduces high training latency
[24], [25] and its effectiveness drops when the batch size
is small [26]. Moreover, BN is also identified as one of the
major roots causing quantization loss [27]. To alleviate these
problems, Salimans & Kingma (2016) [6] instead normalize
the weights, whereas it is less stable compared with BN [25].
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Self-normalizing Neural Network. Klambauer et al.
(2017) [22] introduce a novel activation function called
“scaled exponential linear unit” (SeLU), which can auto-
matically force the activation towards zero mean and unit
variance for better convergence

Shortcut Connection. In He et al. (2016) [8], the concept
of shortcut in neural networks was first introduced and then
further developed by Huang et al. (2017) [9], which results
in two most popular CNNs named ResNet and DenseNet.
These models demonstrate that the shortcut connections
make deeper models trainable.

3 GRADIENT NORM EQUALITY

We analyze how the Forbenius norm of backward gradient
evolves through the network in Section 3.1 and derive our
metric for gradient norm equality in Section 3.2.

3.1 Dynamic of Gradient Norm
Without loss of generality, let’s consider a neural network
consists of serial blocks:

f(x0) = fL,θL ◦ fL−1,θL−1
◦ ... ◦ f1,θ1 (x0) , (2)

where θi is the vectorized parameter of the ith layer. We
represent the loss function as L(f(x),y) wherein y denotes
the label vector. At each iteration, θi is updated by θi −
∆θi = θi − η ∂

∂θi
L(f(x),y), where η is the learning rate.

With the chain rule, we have

∂

∂fi
L(f(x),y) =

(
∂fi+1

∂fi

)T ∂

∂fi+1
L(f(x),y),

∂

∂θi
L(f(x),y) =

(
∂fi
∂θi

)T ∂

∂fi
L(f(x),y).

(3)

For the sake of simplicity, we denote ∂fj
∂fj−1

:= Jj ∈ Rmj×nj ,
and ∆θi is given by

∆θi = η

(
∂fi
∂θi

)T (
Πi+1
j=LJj

)T ∂

∂f(x)
L(f(x),y). (4)

Further, we denote Ki+1 :=
(
∂fi
∂θi

)T (
Πi+1
j=LJj

)T
and u :=

∂
∂f(x)L(f(x),y). We represent the scale of ∆θi with its For-
benius norm: ||∆θi||22 = η2uTKT

i+1Ki+1u. As KT
i+1Ki+1

is a real symmetric matrix, it can be broken down with
eigendecomposition: KT

i+1Ki+1 = QTΛQ, where Q is an
orthogonal matrix. Therefore we have:

||∆θi||22 = η2(Qu)TΛ(Qu),

E
[
||∆θi||22

]
= η2E

∑
j

λj [Qu]2j

 . (5)

With the symmetry, we can assume ∀i, j, E[[Qui]
2] =

E[[Quj ]
2], E[λi] = E[λj ] and λj is independent of [Qu]j ,

then we have

E
[
||∆θi||22

]
= η2

∑
j

E[λj ]E
[
[Qu]2i

]
≈ η2φ

(
KT

i+1Ki+1

)
E
[
||u||22

]
.

(6)

If E[||∆θi||22]→ 0, the update of parameters of the ith layer
would be too tiny to make a difference and thus the gradient

vanishing occurs; If E[||∆θi||22]→∞, the parameters of the
ith layer would be drastically updated and thus the gradient
explosion happens. Therefore, the network is stable when
φ
(
KT

i+1Ki+1

)
neither grows nor diminishes exponentially

with the decreasing of i, which accords with the definition
of gradient norm equality [18].

3.2 Block Dynamical Isometry

In order to simplify the derivation of

φ
(
KT

i+1Ki+1

)
=φ

((
Πi+1
j=LJj

) ∂fi
∂θi

(
∂fi
∂θi

)T (
Πi+1
i=LJj

)T)
,

(7)
we temporarily propose Hypothesis 3.1, which is inspired
by the assumption on approximate decomposability of the
norm of the product of Jacobians in Philipp et al. (2018) [17].

Hypothesis 3.1. Under some prerequisites, given a set of Jaco-
bian matrices {JL, ...,Ji+1,

∂fi
∂θi
}, we have

φ

((
Πi+1
j=LJj

) ∂fi
∂θi

(
∂fi
∂θi

)T (
Πi+1
i=LJj

)T)

= φ

(
∂fi
∂θi

(
∂fi
∂θi

)T)
Πi+1
j=Lφ

(
JjJj

T
)
.

(8)

With the theoretical tools developed in Section 4, this
hypothesis can be easily proved and the prerequisites can
be confirmed (Remark 4.1). In Hypothesis 3.1, the only term
that may result in the unsteady gradient is Πi+1

j=Lφ(JjJj
T ).

Therefore, the gradient norm equality can be achieved by
forcing ∀j, φ(JjJj

T ) ≈ 1.
However, the above condition is not sufficient for neu-

ral networks with finite width. We have tr
(
JjJj

T
)

=
1
mj

∑mj
i=1 λi, where λi denotes the ith eigenvalue of JjJj

T .
Under the assumption that ∀p, q 6= p, λp is independent of
λq , the variance of tr(JjJj

T ) is given by

D[tr(JjJj
T )] =

1

mj

mj∑
i=1

E[λ2i ]− E2[λi]

= φ

((
JjJj

T
)2)
− φ2

(
JjJj

T
)

:= ϕ
(
JjJj

T
)
.

(9)

As a result, for networks that are not wide enough, in order
to make sure that the φ(JjJj

T ) of each block sits steadily
around 1, we expect ϕ(JjJj

T ) of each block to be small.
Therefore, our metric can be formally formulated as below.

Definition 3.1. (Block Dynamical Isometry) Consider a neu-
ral network that can be represented as a sequence of blocks as
Equation (2) and the jth block’s Jacobian matrix is denoted as Jj.
If ∀j, φ(JjJj

T ) ≈ 1 and ϕ(JjJj
T ) ≈ 0, we say the network

achieves block dynamical isometry.

As φ(JjJj
T ) and ϕ(JjJj

T ) can be regarded as the first
and second moment of eigenvalues of Jj, we name them
as spectrum-moments. While φ(JjJj

T ) ≈ 1 addresses the
problem of gradient explosion and vanishing, ϕ(JjJj

T ) ≈ 0
ensures that φ(JjJj

T ) ≈ 1 is steadily achieved. Actually, we
find that in many cases, φ(JjJj

T ) ≈ 1 is enough to instruct
the design or analysis of a neural network.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 30,2020 at 18:36:06 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3010201, IEEE
Transactions on Pattern Analysis and Machine Intelligence

5

We name our metric as “Block Dynamical Isometry”
is because it is quite similar to the dynamical isometry
discussed in Saxe et al. (2013) [28] and Pennington et
al. (2017;2018) [13], [14]. The original dynamical isometry
expects that every singular value of the whole network’s
input-output Jacobian matrix remains close to 1, while ours
expects them to have average value 1 and small variance in
every sequential block. Definition 3.1 allows us to use divide
and conquer in the analysis of a complex neural network: a
network can be first divided into several blocks connected
in serial, and then conquered individually.

4 ANALYSIS OF SPECTRUM-MOMENTS

Definition 3.1 shows that we can identify networks that
achieve gradient norm equality by examining the spectrum-
moment, i.e. φ(JJT ) and ϕ(JJT ), of its serial blocks. Let
the Jacobian matrices of the block’s components be {Ji}, we
have J = ΠiJi and J =

∑
i Ji when they are connected in

serial and parallel, respectively. In this section, we develop
a highly modularized framework to compute the spectrum-
moments of each block. While Section 4.1 presents the inspi-
ration of our framework, Section 4.2 introduces Theorem 4.1
and 4.2 that build bridges between φ(JJT ) and ϕ(JJT ) and
the spectrum moment of individual components, φ(JiJi

T )
and ϕ(JiJi

T ), in serial and parallel connections. Unlike
previous studies that use arbitrary assumptions like freely
independent, the prerequisites of the theorems in our paper
are thoroughly discussed in Section 4.3, and two sufficient
conditions, Proposition 4.1 and 4.2, are provided. Therefore,
only moderate assumptions are required in our paper. A
library (Table 3) that summarizes the spectrum-moment of
common neural network components and whether prereq-
uisites hold is introduced in Section 4.4. Last but not least,
the proof of Hypothesis 3.1 is discussed in Remark 4.1. The
workflow with our framework is as follows. For each block,
we look up the spectrum-moment of its components from
Table 3, check the prerequisites with sufficient conditions
in Section 4.3, and compute the spectrum-moments of the
block with Theorem 4.1 and 4.2. Finally, we exam the block
with block dynamical isometry in Definition 3.1.

4.1 Inspiration: Propagation of Forbenius Norm in a
Rotational-Invariant System
Definition 4.1. (Rotational-Invariant Distribution) Given a
random vector gi, we say it has rotational-invariant distribution
if it has the same distribution with Ugi, for any unitary matrix
U independent of gi.

Let the gradient of the ith layer be ∂
∂fi
L(f(x),y) = gi,

where gi has a rotational-invariant distribution (Definition
4.1). Under this assumption, intuitively, its elements share
the same second moment. The gradient of its previous
layer is ∂

∂fi−1
L(f(x),y) = gi−1 = Ji

∂
∂fi
L(f(x),y) = Jigi,

where Ji is a Jacobian matrix. As the values in the Jacobian
matrix are trainable, we can also assume that it is a random
matrix. With the singular value decomposition, we have
Ji = UΣVH , where U and V are unitary matrices, and Σ
is a diagonal matrix whose diagonal entries are the singular
values (σ1, σ2, ...) of Ji. When we calculate UΣVHgi, VH

first rotates the origin distribution to the new orthogonal
basis, and then Σ stretches each basis by the corresponding

singular value. At last. U rotates the distribution to the
output orthogonal basis.

On the one hand, the distribution of gi is invariant under
the rotation of VH . On the other hand, since U is a unitary
matrix, it doesn’t change the L2 norm of ΣVHgi. Therefore,
we have

E
[
||gi−1||22

]
= E

[
||[σ1[gi]1, σ2[gi]2, ..., σm[gi]m]T ||22

]
=

m∑
j=1

E[σ2
j ]E[[gi]

2
j ] = φ

(
JiJi

T
)
E
[
||gi||22

]
.

(10)

The above derivation is valid when gi is invariant under
rotation. Therefore, if we want to calculate the L2 norm of
the gradient of all the layers with Equation (10), we have
to make sure that any rotation of its intermediate value will
not change φ

(
(ΠiJi)(ΠiJi)

T
)
.

4.2 Main Theorems
Inspired by the previous discussions as well as Tarnowski et
al. (2018) [15], we formulate the main theorems of this paper
as below.

Definition 4.2. (kth Moment Unitarily Invariant) Let
{Ai} := {A1,A2...,AL} be a series independent random
matrices. Let {Ui} := {U1,U3...,UL} be a series independent
haar unitary matrices independent of {A1,A2...,AL}. We say
that (ΠiAi)(ΠiAi)

T is the kth moment unitarily invariant if
∀0 < p ≤ k, we have

φ
((

(ΠiAi)(ΠiAi)
T
)p)

= φ
((

(ΠiUiAi)(ΠiUiAi)
T
)p)

.

(11)
And we say that (

∑
i Ai)(

∑
i Ai)

T is kth moment unitarily
invariant if ∀0 < p ≤ k, we have

φ

((
(
∑
i

Ai)(
∑
i

Ai)
T

)p)
=φ

((
(
∑
i

UiAi)(
∑
i

UiAi)
T

)p)
.

(12)

Definition 4.3. (Central Matrix) A matrix A is called a central
matrix if ∀i, j, we have E[[A]i,j ] = 0.

Definition 4.4. (R-diagonal Matrices) (Definition 17 in Cak-
mak (2012) [29]) A random matrix X is R-diagonal if it can be
decomposed as X = UY, such that U is Haar unitary and free
of Y =

√
XXH .

Theorem 4.1. (Multiplication). Given J := Π1
i=LJi, where

{Ji ∈ Rmi×mi−1} is a series of independent random matrices.
If (Π1

i=LJi)(Π
1
i=LJi)

T is at least the 1st moment unitarily
invariant (Definition 4.2), we have

φ
(

(Π1
i=LJi)(Π

1
i=LJi)

T
)

= Π1
i=Lφ

(
JiJi

T
)
. (13)

If (Π1
i=LJi)(Π

1
i=LJi)

T is at least the 2nd moment unitarily
invariant (Definition 4.2), we have

ϕ
(

(Π1
i=LJi)(Π

1
i=LJi)

T
)

= φ2
(

(Π1
i=LJi)(Π

1
i=LJi)

T
)∑

i

mL

mi

ϕ
(
JiJi

T
)

φ2
(
JiJi

T
) . (14)

(Proof: Appendix A.2)
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TABLE 3
Common components in neural networks (Proof: Appendix A.6).

Part φ(JJT ) ϕ(JJT ) Def. 4.5 Def. 4.3
Activation Functions 1

ReLU(P (x > 0) = p) p p− p2
√

×

leaky ReLU(P (x > 0) = p), γ: negative slop coefficient p+ γ2(1− p) γ4(1− p) + p−
(p+ γ2(1− p))2

√
×

tanh 1 0
√

×
Linear Transformations

Dense(u := Ky), K ∈ Rm×n ∼ i.i.d.N(0, σ2) nσ2 mnσ4 √ √

CONV(u := K ? y), K ∈ Rcout×cin×kh×kw ∼ i.i.d.N(0, σ2) cink̃hkwσ
2, 1 √ √

Orthogonal(u := Ky, KKT = β2I) β2 0
√ √

Normalization
Data Normalization(u := norm(y)), D[y ∈ Rm×1] = σ2

B
1
σ2
B

2
mσ4

B

√
×

1 The k̃hkw denotes the effective kernel size, which can be simply calculated from Algorithm 2.

Theorem 4.2. (Addition). Given J :=
∑
i Ji, where {Ji} is a

series of independent random matrices. If at most one matrix in
{Ji} is not a central matrix (Definition 4.3), we have

φ
(
JJT

)
=
∑
i

φ
(
JiJi

T
)
. (15)

If (
∑
i Ji)(

∑
i Ji)

T is at least the 2nd moment unitarily invari-
ant (Definition 4.2), and ∀i,UiJi is R-diagonal (Definition 4.4),
we have

ϕ
(
JJT

)
= φ2

(
JJT

)
+
∑
i

ϕ
(
JiJi

T
)
− φ2

(
JiJi

T
)
. (16)

(Proof: Appendix A.3)

Definition 4.2 defines the rotational-invariant system
described in Section 4.1, and Theorem 4.1 and 4.2 handle
the serial and parallel connections in neural networks.

4.3 Discussion of Prerequisites
Although sufficient conditions of Theorem 4.1 and 4.2 are
provided, it is still difficult to judge whether a series of
Jacobian matrices satisfies them. In this section, we further
provide a few sufficient conditions of Definition 4.2.

Definition 4.5. (Expectant Orthogonal Matrix) A random
matrix J is called an expectant orthogonal matrix if it satisfies: 1©
∀i, p 6= i,E[[JTJ]p,i] = 0; 2©∀i, j,E[[JTJ]i,i] = E[[JTJ]j,j ].

Proposition 4.1. (Π1
i=LJi)(Π

1
i=LJi)

T is at least the 1st mo-
ment unitary invariant if: 1© ∀i, j 6= i, Ji is independent of
Jj; 2© ∀i ∈ [2, L], Ji is an expectant orthogonal matrix. (Proof:
Appendix A.4)

Remark 4.1. With Proposition 4.1, as long as ∀j,Jj is an expec-
tant orthogonal matrix, (Πi+1

j=LJj)
∂fi
∂θi

is the 1st moment unitarily
invariant. According to Theorem 4.1, as long as (Πi+1

j=LJj)
∂fi
∂θi

is the 1st moment unitarily invariant, the decomposition in
Equation (8) holds and Hypothesis 3.1 is confirmed.

Proposition 4.2. (Properties of Expectant Orthogonal Ma-
trices and Central Matrices)

• If {Ji} is a series independent expectant orthogonal ma-
trices, ΠiJi is also an expectant orthogonal matrix.

• If Ji is a central matrix, for any random matrix A
independent of Ji, JiA and AJi are also central matrices.

(Proof: Appendix A.5)

Proposition 4.1 and 4.2 are two sufficient conditions that
allow us to judge whether a network structure satisfies
the prerequisites by evaluating its components. For the 2nd

moment unitary invariant, we will discuss in specific cases
when required. Notably, as the conditions we provided are
sufficient but not necessary, Theorem 4.1 and 4.2 may still
hold for networks that do not satisfy these conditions.

4.4 Components Library
We provide a library that summarizes some commonly used
components in neural networks. We theoretically analyze
the expectation and variance of their input-output Jacobian
matrix J’s eigenvalues as well as whether J satisfies Defi-
nition 4.5 and 4.3 of all these components under moderate
assumptions. The detailed proofs are in Appendix A.6.

5 SERIAL NEURAL NETWORKS

A serial neural network is the neural network whose com-
ponents are connected in serial, such as LeNet [30] and VGG
[31]. We have the following proposition for serial networks:

Proposition 5.1. For any neural network, if it is composed of
parts given in Table 3 and its Jacobian matrix can be calculated
by J = (ΠiJi), then (ΠiJi)(ΠiJi)

T is at least the 1st moment
unitary invariant.

Proof. According to Table 3, all the components satisfy Def-
inition 4.5, so they are all expectant orthogonal matrices.
Under the assumption that the Jacobian matrices of different
components are independent, according to Proposition 4.1,
we have (ΠiJi)(ΠiJi)

T is at least the 1st moment unitary
invariant.

Proposition 5.1 reflects that Equation (13) is applicable in
this section. We will show that with our framework, the con-
clusions of several previous studies including initialization
[1], [3], normalization [5], [6], [21], self-normalizing neural
network [22] and DenseNet [9] can be easily reached or even
surpassed with several lines of derivation.

5.1 Initialization Techniques
It has long been aware that a good initialization of network
parameters can significantly improve the convergence and
make deeper networks trainable [1], [2], [3], [32], [33]. In
this subsection, we will discuss some of the most popular
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initialization techniques. We consider a simple network
block with a single linear transform (the weight kernel is
K ∈ Rm×n) and an activation function. The Jacobian matrix
of the whole block is denoted as Ji. Since the activation
functions are commonly applied right after linear trans-
forms, we assume that the mean of input pre-activations is
zero, thus p = P (x > 0) = 1/2. Moreover, Equation (14) can
be applied if the kernel follows i.i.d. Gaussian distribution.

Proposition 5.2. A neural network is the∞th moment unitarily
invariant if it is composed of cyclic central Gaussian transform
with i.i.d. entries and any network components. (Proof: Appendix
A.8)

Kaiming Normal(KM) [1]. We denote the Jacobian ma-
trix of the ith layer as Ji. With Equation (13)-(14), we have

φ
(
JiJi

T
)

= nσ2 × 1

2
=

1

2
σ2n,

ϕ
(
JiJi

T
)

= φ2(JiJi
T )

(
m

m

1
4

( 1
2 )2

+
m

m

mnσ4

(nσ2)2

)
.

(17)

We can force φ(JiJi
T ) = 1 to achieve the block dynamical

isometry, which yields σ =
√
2√
n

and ϕ(JiJi
T ) = 1 + m

n . For
fully-connected layers, n denotes the width of the weight
matrix; for convolutional layers, n = cink̃hkw, and cin = 1
for point-wise convolution [34]. Although using the effective
kernel size k̃hkw provides more accurate estimation, we
empirically find that replacing khkw with k̃hkw only has
trifling impact on accuracy. The reason is that most of the
feature maps are large enough, and the cutting-off effect
caused by padding (see Appendix A.6) is less significant
compared with other factors like parameter update. The
optimal σ for other activation functions like leaky ReLU and
tanh can be obtained in the same way, and we summarize
the results in Table 4.

TABLE 4
Optimal σ for ReLU, leaky ReLU and tanh with Gaussian kernel.

ReLU leaky ReLU. γ: negative
slope coefficient tanh

φ(JiJi
T ) 1

2
σ2n 1

2
σ2n(1 + γ2) ≈ σ2n

Optimal σ
√

2√
n

√
2

n(1+γ2)
1√
n

ϕ(JiJi
T )

under
optimal σ

1 + m
n

(
1−γ2
1+γ2

)2
+ m

n
m
n

sPReLU. Instead using a fixed negative slope coefficient
like leaky ReLU, PReLU [1] replaces it with a trainable
parameter α. Although He et al. (2015) [1] initialize weights
with

√
2√
n

, we find it might be problematic when the network
is deep: for an L-layer network, we have Π1

i=Lφ(JiJi
T ) =

(1 + α2)L. He et al. (2015) [1] found that the learned α in
some layers are significantly greater than 0, therefore the
original setup may not be stable in relatively deep networks.

Since α is kept updating during training, it is difficult
to address the above issue by initialization. So we modify
PReLU by simply rescaling the output activations with

1√
1+α2 as follows, which is named as “sPReLU”:

sPReLU(x) =
1√

1 + α2

{
x if x > 0
αx if x ≤ 0

. (18)

With the rescaling, we have Π1
i=Lφ(JiJi

T ) = 1. However,
leaving α without any constraint may lead to an unstable
training process, thus we clip it within [0, 0.5].

Orthogonal Initialization. [3] Because our target is to
have φ(JiJi

T ) = 1 and ϕ(JiJi
T ) ≈ 0, one intuitive idea

is to initialize Ji to have orthogonal rows. Proposition 5.3
demonstrates that Equation (14) is applicable for blocks con-
sisting of orthogonal kernels and any activation functions.

Proposition 5.3. A neural network block composed of an orthog-
onal transform layer and any activation function is at least the
2nd moment unitarily invariant. (Proof: Appendix A.9)

As illustrated in Table 3, from the perspective of φ, β2

is equivalent with nσ2, therefore we can easily obtain the
optimal β for different activation functions.

TABLE 5
Optimal β for ReLU, leaky ReLU and tanh with orthogonal kernel.

ReLU leaky ReLU. γ: negative
slope coefficient tanh

Optimal β
√
2

√
2

1+γ2
≈ 1

ϕ(JiJi
T )

under
optimal β

1
(

1−γ2
1+γ2

)2
≈ 0

Comparison. Table 4&5 show that with proper initializa-
tion, all the activation functions can achieve φ(JiJi

T ) = 1,
whereas their ϕ(JiJi

T ) are quite different. For example,
ReLU has the highest ϕ, while tanh has the lowest with
more stability. However, since rectifiers like ReLU have non-
saturating property [35] and produce sparse representations
[36], they are usually more effective than tanh. Besides,
unlike rectifiers that preserve the forward and backward
flows simultaneously [18], we find that the second moment
of the forward information is diminished with tanh.

Leaky ReLU provides us an opportunity to trade off be-
tween stability and nonlinearity. Although its nonlinearity
is the most effective when γ is around a certain value (i.e.
1/5.5 [37]), a relatively greater γ can effectively reduce ϕ.
However, the optimal γ has to be explored experimentally.

sPReLU has a similar effect with leaky ReLU, as argued
in He et al. (2015) [1], it learns a greater α to keep more
information in the first few layers, which provides more
stability. In the later stage when the nonlinearity is required,
the learned α is relatively small to preserve the nonlinearity.

The comparison of ϕ(JiJi
T ) under optimal initialization

in Table 4&5 also indicates that the orthogonal initialization
provides much lower ϕ compared with the Gaussian initial-
ization, since the orthogonal kernel’s ϕ is 0.

Relationship to Existing Studies. In some neural net-
work structures, our theorems can even be used to analyze
the information flow in the forward pass owing to Proposi-
tion 5.4 and 5.5.

Definition 5.1. (General Linear Transform) Let f(x) be a
transform whose Jacobian matrix is J. f is called general linear
transform when it satisfies:

E

[ ||f(x)||22
len(f(x))

]
= φ

(
JJT

)
E

[ ||x||22
len(x)

]
. (19)
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Proposition 5.4. Data normalization with 0-mean inputs, linear
transforms and rectifier activation functions are general linear
transforms (Definition 5.1). (Proof: Appendix A.10)

Proposition 5.5. For a serial neural network f(x) composed of
general linear transforms and its input-output Jacobian matrix is
J, we have

E

[ ||f(x)||22
len(f(x))

]
= φ

(
JJT

)
E

[ ||x||22
len(x)

]
. (20)

(Proof: Appendix A.11)

According to Proposition 5.4, the rectifier activation
functions and linear transforms in He et al. (2015) [1] are all
general linear transforms. Therefore, Proposition 5.5 shows
that φ(JJT ) also describes the evolution of the second
moment/variance of activations in the forward pass, which
is equivalent to He et al. (2015) [1] but more convenient.
5.2 Normalization Techniques
Even if the parameters in a neural network are properly
initialized, there is no guarantee that their statistic prop-
erties remain unchanged during training, especially under
high learning rate. To address this issue, normalization tech-
niques are introduced to maintain the parameters’ statistic
properties during training.

Weight Normalization (WN) [6]. Let W denote the
weight matrix, WN can be represented as Ŵ = g

||W||W,

where g is a constant scaling factor and Ŵ is what we use
for training and inference. To further improve the perfor-
mance, a mean-only batch normalization is usually applied
[6]. Under this setup, the standard deviation of a normalized
kernel is σŴ = g and φ(JJT ) = ng2. Salimans & Kingma
(2016) [6] take g = es/

√
n, which may not be the optimal

setup of activation functions, for there is no guarantee that
φ(JJT ) = e2s ≈ 1. Therefore, it has been observed that WN
is less stable in deep networks [25].

Scaled Weight Standardization (sWS). Inspired by WN,
we propose a new weight-related normalization technique,
which is defined as: K̂ = g

σK
(K − µK), where µK and

σK denote the kernel’s mean and variance, respectively.
Therefore, we have µK̂ = 0 and σK̂ = ng2, and the
mean-only batch normalization is no longer required. As the
most intuitive idea is to normalize the weights to “Kaiming
Normal (KM)” during the training, the optimal g values for
different activation functions are listed in Table 6.

TABLE 6
Optimal g for ReLU, leaky ReLU and tanh with sWS.

ReLU leaky ReLU. γ: negative
slope coefficient tanh

Optimal g
√
2√
n

√
2

n(1+γ2)
1√
n

Similar conclusion for ReLU has been reached by Arpit et
al. (2016) [21]. It proposes a scheme called Normprop which
normalizes the hidden layers with theoretical estimation as
follows:

oi =
1√

1
2 (1− 1

π )

[
ReLU

(
γiW

T
i x

||Wi||F
+ βi

)
−
√

1

2π

]
, (21)

where oi denotes the ith output, and γi and βi are trainable
parameters initialized with 1/1.21 and 0, respectively. Wi

is the weight corresponding to the ith input xi. Because of

||Wi||F =
√
nσ2

W and 1

1.21
√

1
2 (1−

1
π )
≈ 1.415 ≈

√
2, the

scaling of the weight is exactly the same with our derivation.
Data Normalization (DN) [5], [26], [38]. This has become

a regular component of deep neural networks, for it enables
us to train deeper networks, use large learning rates and
apply arbitrary initialization schemes [5]. In DN, the pre-
activations are normalized to N(0, 1) by

x̂ =
x− E[x]√
D[x] + ε

, y = γx̂ + β. (22)

DN can be explained by slightly extending Proposition 5.5.

Proposition 5.6. We consider a serial network block composed
of general linear transforms (Definition 5.1). The 2nd moment
of the block’s input activation is α(0)

2 and the block’s Jacobian
matrix is J. If the Jacobian matrix of its last component Jl satisfies
φ(JlJl

T ) = β

α
(l−1)
2

wherein β is a constant value and α(l−1)
2 is

the 2nd moment of its input data, then we have φ(JJT ) = β

α
(0)
2

.

Proof. Since the network is composed of general linear trans-
forms, with Proposition 5.5, we have

α
(l−1)
2 = Π1

i=l−1φ
(
JiJi

T
)
α
(0)
2 . (23)

Therefore, we further have

φ
(
JJT

)
= Π1

i=l−1φ
(
JiJi

T
) β

Π1
i=l−1φ

(
JiJi

T
)
α
(0)
2

=
β

α
(0)
2

.

(24)

According to Ioffe & Szegedy (2015) [5], DN is performed
right after the linear transforms, thus its inputs have zero-
mean, and we further have σ2

B = α2,B . For instance, the
input of the block shown in Fig. 2 is the output of a BN
layer, therefore its 2nd moment α(0)

2 is 1. With Proposition
5.6, we have φ(JJT ) = 1, thus DN can effectively address
gradient explosion or vanishing.

ReLU CONV BN ReLUBN

𝛼"
($) = 1

𝜙 𝑱𝑱* = 1/𝛼"
($) = 1

… …

Fig. 2. Example block for Proposition 5.6.

Proposition 5.6 can be interpreted from another perspec-
tive. As illustrated in Equation (23), in a network composed
of general linear transforms, the pre-activations’ 2nd mo-
ment α(l−1)

2 contains the information about the status of all
layers it has passed through, and a network component with
φ ∝ 1

α
(l−1)
2

can effectively offset the influence of these layers.
This explains why DN techniques like BN are more stable
with less awareness of the initialization and sustainable to
the high learning rate.

Comparison. The common topic for all the normaliza-
tion techniques is standardizing the 1st and 2nd moments of
the pre-activations, and the only difference is what the mo-
ments are estimated upon. Specifically, DN gets its 1st and
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2nd moments from the pre-activations, while WN estimates
the 2nd moment from the weight kernel. However, differ-
ent sources of estimation will result in different execution
efficiency, stability, and convenience.

For execution efficiency, as the weight kernels usually
contain fewer data compared with pre-activations, estimat-
ing moments from the weight kernels usually has lower
computational overhead. For stability, while WN depends
on the “Gaussian Assumption”, which is not necessarily
held during training, Proposition 5.6 is valid for any linear
transforms. Moreover, each WN sweeps the snow from its
own doorstep, whereas DN improves the condition of all
the layers before it, thus even if one or two DN layers mal-
function, the following ones would compensate for them.
For convenience, as WN is born out of weight initialization,
its hyper-parameters require careful selection, which makes
it less suitable for complex network structures. Oppositely,
DN can automatically improve the network’s condition
without handcrafted hyper-parameters.

Second Moment Normalization (SMN). Inspired by the
above comparison, we propose the last piece of puzzle of
normalization methods: SMN, wherein the 1st moment is
obtained from the weight kernel while the 2nd moment
is estimated from the pre-activations. In SMN, the pre-
activations are normalized by

x̂ =
x√

E [[x]2i ]
,y = γx̂ + β. (25)

Since our derivation is based on the assumption that the
weight kernels have zero expectation, which may be vio-
lated during training, we further add weight centralization
onto each weight:

K̂ = K− E[[K]i]. (26)

For stability and convenience, similar to DN, we have

φ
(
x̂xx̂Tx

)
≈ 1

α2
2

, ϕ
(
x̂xx̂Tx

)
≈ 0, (27)

where x̂x satisfies Definition 4.5 but defies Definition 4.3.
The proof is in Appendix A.7. Because of φ(x̂xx̂Tx ) ≈ 1

α2
2

, the
2nd moment normalization can achieve similar effect with
DN when applied right after linear transforms. Therefore,
SMN is as stable and convenient as DN. For execution
efficiency, we have

SMN : x̂ =
x√

E [[x]2i ]
, K̂ = K− E[[K]i],

WN : x̂ = x− E [[x]i] , K̂ =
K

E[[K]2i ]]
.

(28)

SMN can be viewed as a reversed version of WN, and
there is only one additional element-wise square operator
compared with WN, so it has fewer computational over-
head than DN. Following the analysis in Chen et al. (2019)
[24], in Appendix A.15, we find that SMN has 30% fewer
computation overhead than BN.

We provide the detailed algorithm for SMN in the con-
volutional layer in Algorithm 1. Inspired by Ioffe & Szegedy
(2015) [5], we centralize the mean of the weight kernels of
each output channel rather than shifting the mean of of

Algorithm 1: Second Moment Normalization
Data: Input pre-activation

x ∈ [batch size, cin, Hi,Wi]; Convolving
kernel: K ∈ [cout, cin, h, w]; Scaling factor
γ ∈ [cout]; Bias β ∈ [cout]

Result: Normalized pre-activation
y ∈ [batch size, cout, Ho,Wo];

begin
µK = mean(K[cout, :])
K̂ = K− µK //weight centralization
x = K̂ ∗ x
α2 = mean(square(x)[cout, :])
y = β + γ√

α2
x

return y

the whole weight to zero. Similarly, the 2nd moment is also
standardized in a channel-wise manner. Also, the trainable
parameters γ and β in BN are introduced to represent the
identity transform [5]. Besides the 2nd moment, according to
prior work [39], we can also use L1-norm to further reduce
the complexity:

x̂ =
x

E [|[x]i|]
, K̂ = K− E[[K]i]. (29)

Although our SMN can statistically replace BN, it some-
how has weaker regularization ability, because estimating
the 1st moment from pre-activations introduces Gaussian
noise that can regularize the training process [40]. Fortu-
nately, this can be compensated by addition regularization
like mixup [23].

5.3 Self-Normalizing Neural Network

Klambauer et al. (2017) [22] propose a self-normalizing
property empowered by SeLU activation function given by

SeLU(x) = λ

{
x if x > 0
αex − α if x ≤ 0

(30)

where α ≈ 1.6733, λ ≈ 1.0507. However, the setup in [22]
only works for weights whose entries follow N(0, 1

n ). Here
we generally let the linear transform have φ(JJT ) = γ0.

Proposition 5.7. Let J be the Jacobian matrix of SeLU. When the
pre-activations obey N(0, σ2), we have the following conclusions:

φ
(
JJT

)
= λ2α2e2σ

2

cdf(−2σ2, N(0, σ2)) +
λ2

2
,

E[SeLU2(x)] =
1

2
λ2σ2 +

1

2
λ2α2+

λ2α2

(
e2σ

2

cdf(−2σ2, N(0, σ2))−2e
σ2

2 cdf(−σ2, N(0, σ2))

)
,

E[SeLU(x)] = λαe
σ2

2 cdf(−σ2, N(0, σ2))− λα

2
+

√
σ2

2π
λ.

(31)

(Proof: Appendix A.12)

Let SeLU be applied layer-wisely and the 2nd moment of
output activations have a fixed point of 1. With Proposition
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5.5, the variance of pre-activations equals γ0. Then, with
Proposition 5.7, the optimal α and λ can be solved from(
λ2α2e2γ0cdf(−2γ0, N(0, γ0)) +

λ2

2

)
γ0 = 1 + ε,

λ2α2
(
e2γ0cdf(−2γ0, N(0, γ0))− 2e

γ0
2 cdf(−γ0, N(0, γ0))

)
+

1

2
λ2α2 +

1

2
λ2γ0 =1.

(32)

The former equation constrains φ(JiJi
T ) ≈ 1 and the latter

one ensures the fixed point of the 2nd moment. ε is a small
constant near 0, which prevents SeLU from degenerating
back to ReLU. When ε = 0, γ0 = 1, the only solution of
Equation (32) is λ =

√
2, α = 0, which is equivalent to

the KM initialization with ReLU. One explanation is that
if ε = 0, we would have α2(xout)/α2(xin) = φ(JJT ),
which is only held when the network satisfies Proposition
5.5. Notably, the original SeLU in [22] can be solved from
Equation (32) by letting γ0 = 1, ε ≈ 0.0716.

Although φ(JiJi
T ) ≈ 1 can be achieved from multi-

ple initialization schemes, SeLU’s strength comes from its
attractive fixed point [22], which is effective even when
the assumptions and initial statistic properties are violated.
However, this attractive property takes over 80-page proofs
in [22], so it is challenging to extend to more general situa-
tion. In this work, we provide an empirical understanding
by analogizing it with data normalization.

In Proposition 5.6, we demonstrate that a network com-
ponent with φ(JlJl

T ) = β

α
(l−1)
2

can stabilize the general
linear network block based on the information contained
in α(l−1)

2 , here we discuss a more general situation in which
φ(JlJl

T ) = hl(α
(l−1)
2 ) where hl is a real function. We fur-

ther assume that the network component satisfies Definition
5.1. When hl(α

(l−1)
2 ) satisfies

1 < hl(α
(l−1)
2 ) <

β

α
(l−1)
2

, if α
(l−1)
2 < β;

1 > hl(α
(l−1)
2 ) >

β

α
(l−1)
2

, if α
(l−1)
2 > β.

(33)

Since Π1
i=lφ(JiJi

T ) = hl(α
(l−1)
2 )α

(l−1)
2 /α

(0)
2 , we have∣∣∣∣∣Π1

i=l−1φ
(
JiJi

T
)
− β

α
(0)
2

∣∣∣∣∣ >
∣∣∣∣∣Π1

i=lφ
(
JiJi

T
)
− β

α
(0)
2

∣∣∣∣∣ ,
(34)

which illustrates that Π1
iφ(JiJi

T ) converges to the fixed
point of β

α
(0)
2

. As the convergence may take several layers,

we call it as “partial normalized”. Similarly, when ∀α(l−1)
2 ,

hl(α
(l−1)
2 ) satisfies

hl(α
(l−1)
2 ) >

β

α
(l−1)
2

, if α
(l−1)
2 < β;

0 < hl(α
(l−1)
2 ) <

β

α
(l−1)
2

, if α
(l−1)
2 > β,

(35)

we have(
Π1
i=lφ

(
JiJi

T
)
− β

α
(0)
2

)(
Π1
i=l−1φ

(
JiJi

T
)
− β

α
(0)
2

)
< 0.

(36)

Π1
iφ(JiJi

T ) swings around the fixed point of β

α
(0)
2

but there
is no guarantee for convergence, so we name its as “over
normalized”.

0 1 2 3 4 5
(l 1)
2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(J l
J lT )(

-) 
or

 
(l) 2

/
l

1
2

(
) 1/ (l 1)

2
= 0.20
= 0.07
= 0.03

= 0.00
partial normalized
over normalized

Fig. 3. φ(JlJl
T ) (the solid line) and α

(l)
2 /α

(l−1)
2 (the dashed line) of

SeLU under different ε. We have γ0 = 1 for all the configurations.

For SeLU, we have α(0)
2 =β=1, and we plot φ(JlJl

T ) ∼
α
(l−1)
2 and α

(l)
2 /α

(l−1)
2 ∼ α

(l−1)
2 of different configurations

in Fig. 3. It shows that 1) when ε is relatively small, we have
φ(JlJl

T ) ≈ α
(l)
2 /α

(l−1)
2 , and SeLU can be seen as a general

linear transform; 2) when ε > 0, φ(JlJl
T ) is in the “partial

normalized” region, which suggests that it will take a few
layers to converge to a fixed point. Moreover, the φ(JlJl

T )
of the configurations with greater ε is closer to 1

α
(l−1)
2

, lead-
ing to faster convergence; whereas a too large ε will result
in gradient explosion, because of Π1

i=Lφ(JiJi
T ) = (1 + ε)L.

For a neural network with finite depth, we have

(1 + ε)L = 1 + Lε+
L∑
i=2

CiLε
i. (37)

As a result, taking ε < 1
L can effectively constrain the gradi-

ent norm while maintaining good normalization efficiency.

5.4 Shallow Network Trick
Let’s consider a neural network with sequential blocks:

f(x0) = fL,θL ◦ fL−1,θL−1
◦ ... ◦ f1,θ1 (x0) , (38)

and the Jacobian matrix of the ith block is Ji. We as-
sume that J = Π1

i=LJi is at least the 1st moment unitar-
ily invariant (Definition 4.2). With Theorem 4.1, we have
φ(JJT ) = Πiφ(JiJi

T ). In order to prevent the gradient
explosion or vanishing, we expect ∀i, φ(JiJi

T ) ≈ 1, which
can be achieved with all the techniques discussed above.
However, it might be influenced by many factors including
the update of parameters under a large learning rate, invalid
assumptions or systematic bias (like the cutting-off effect
of padding), thus the actual φ(JiJi

T ) can be represented
as 1 + γi and φ(JJT ) can be ΠL

i=1(1 + γi). Even if γi for
single layer is small enough, when L is large, the influence
of single γi might accumulate and result in gradient explo-
sion or vanishing. As a result, techniques like initialization,
weight standardization and SeLU are less stable under large
learning rates in deep networks. Fortunately, this can be
addressed by the following proposition.

Proposition 5.8. (Shallow Network Trick). Assuming that
for each of L sequential blocks in a neural network, we have
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φ(JiJi
T ) = ω + τφ(J̃iJ̃i

T
) where Ji is its Jacobian matrix.

Given λ ∈ N+ < L, if CλL(1−ω)λ and CλLτ
λ are small enough,

the network would be as stable as a λ-layer network when both
networks have ∀ i, φ(JiJi

T ) ≈ 1.

Proof. Because of φ(JiJi
T ) = ω + τφ(JiJi

T ), the optimal
φ(JiJi) is 1−ω

τ . We consider both the absolute and relative
errors of φ(JiJi) by representing it as 1−ω

τ (1+γi) and 1−ω
τ +

δi, respectively. For both kinds of error, we have

φ
(
JJT

)
=ΠL

i=1(1 + (1− ω)γi)=1 +
L∑
i=1

CiL(1− ω)iΠjγj ,

φ
(
JJT

)
= ΠL

i=1(1 + τδi) = 1 +
L∑
i=1

CiLτ
iΠjδj .

(39)

When ω → 1−, we have τ → 0+, limi→∞(1 − ω)i =
limi→∞ τ i = 0, and the error would diminish as i is large.

Here we borrow the concept of effective depth proposed
in Philipp et al. (2018) [17]: assuming that CiL(1 − ω)iΠjγj
and CiLτ

iΠjδj are neglectable when i > λ, λ < L, all the
errors are only influential within λ layers, thus it would be
as stable as a λ-layer shallow network.

5.5 DenseNet

We denote the activations as xi ∈ Rcisfm×1 where ci is the
number of channels and sfm is the size of feature maps, and
denote δi = ci − ci−1. In DenseNet [9], the output of each
layer within a dense block is concatenated with the input on
the channel dimension to create dense shortcut connections,
which is illustrated as follows:

xi = [xi−1,Hi (xi−1)] ,
∂xi
∂xi−1

=

[
I

Hi

]
:= Ji, (40)

where Hi ∈ Rδisfm×ci−1sfm , I ∈ Rci−1sfm×ci−1sfm . Since

Ji
TJi =

[
I HT

i

] [ I
Hi

]
=
[
I + HT

i Hi

]
(41)

and Hl is composed of the parts defined in Table 3, with
Proposition 4.2, the non-diagonal entries of I + (Hl)

T
Hl

have a zero expectation while the diagonal entries share
an identical expectation, and Jl satisfies Proposition 4.1.
Therefore, φ(JiJi

T ) can be calculated by

φ
(
JiJi

T
)

=
ci−1
ci

+
δi
ci
φ
(
HiHi

T
)
. (42)

As a result, in order to achieve block dynamical isometry,
we expect φ(HiHi

T ) ≈ 1, which can be achieved with the
methods discussion in previous subsections. We will eval-
uate some configurations in Section 7.2. Equation (42) also
reveals that DenseNet is an instance of the shallow network
trick (Proposition 5.8), thus it is more stable compared with
vanilla serial neural networks under the same depth.

6 SERIAL-PARALLEL HYBRID NETWORKS

Serial-parallel hybrid networks consist of a sequence of
blocks connected in serial, while each block may be com-
posed of several parallel branches. Famous serial-parallel
hybrid networks include Inception [41], ResNet [8], and

NASNet [42]. With Proposition 5.1, as long as the input-
output Jacobian matrices of all the blocks satisfy Definition
4.5, the network is at least the 1st moment unitary invariant.

Proposition 6.1. Let {Ji} denote a group of independent input-
output Jacobian matrices of the parallel branches of a block.

∑
i Ji

is an expectant orthogonal matrix, if it satisfies: 1) ∀i, Ji is an
expectant orthogonal matrix; 2) at most one matrix in {Ji} is not
central matrix. (Proof: Appendix A.13)

According to Proposition 4.2, as long as each branch is
composed of the parts in Table 3 and at most one branch
does not contain a zero-mean linear transform, with Propo-
sition 6.1, the series-parallel hybrid network is at least the
1st moment unitarily invariant.

ResNet [8] is one of the most popular network structures
that can avoid gradient explosion and vanishing, it is also
the simplest serial-parallel hybrid network. The Jacobian
matrix of each residual block is Ji = I + J̃i, with Equation
(15), we have

φ

(
J
(l)
i J

(l)
i

T
)

= 1 + φ

(
J̃i

(l)J̃i
(l)
T)

. (43)

From the above equation, ResNet can be viewed as an
extreme example of the shallow network trick (Proposition
5.8) wherein (1 − ω) → 0. As a result, its extremely low
effective depth provides higher stability.

Data Normalization in ResNet. The 2nd moment of
the activations of ResNet with BN does not stay at a
fixed point but keeps increasing through the layers [4].
Let’s consider a ResNet whose lth block is represented as
xl+1 = BN(f(xl)) + xl. Since the 2nd moment of BN ’s
output is 1, under the assumption that the outputs of the
major branch and the shortcut branch are independent,
we have α(l+1)

2 = 1 + α
(l)
2 . At the down-sampling layers,

since the shortcut connection is also handled by BN, α(l+1)
2

would be reset to 2. We denote the Jacobian matrix of the
major branch as J̃(l), with Proposition 5.5, it’s easy to obtain

φ(J̃(l)J̃(l)
T

) = 1

α
(l−1)
2

, and then we have

φ

(
J
(l+1)
i J

(l+1)
i

T
)

= 1 +
1

αl2
=
α
(l+1)
2

α
(l)
2

,

Πl
i=Lφ

(
J
(i)
i J

(i)
i

T
)

=
α
(L)
2

α
(l−1)
2

.

(44)

As the 2nd moment of the activations in ResNet linearly
rather than exponentially increases, and such an increasing
is periodically stopped by down-sampling. Thus with Equa-
tion (44), gradient explosion or vanishing will not happen in
ResNet when the depth is finite.

Fixup Initialization [4]. Without loss of generality, we
consider a ResNet consisting of L residual blocks, wherein
each block has m convolutional layers activated by ReLU.
The feature maps are down-sampled for d times throughout
the network. We assume that the convolutional layers are

properly initialized such that φ(J
(c)
i J

(c)
i

T
) = α, and the

convolutional layers in the down-sampling shortcuts are

initialized to have φ(J
(c)
i J

(c)
i

T
) = αd. For a single block

whose number of input channels equals the number of
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output channels, we have φ(JiJi
T ) = 1 + (α2 )m; for the

down-sampling block, we have φ(JiJi
T ) = αd + (α2 )m.

When L is finite, we have the following proposition:

Proposition 6.2. (“Plus One” Trick). Assume that for each of
the L sequential blocks of a series-parallel hybrid neural network,
we have φ(JiJi

T ) = 1 + φ(J̃iJ̃i
T

) where Ji is its Jacobian
matrix. The network has gradient norm equality as long as

φ
(
J̃iJ̃i

T
)

= O(
1

Lp
), p > 1. (45)

(Proof: Appendix A.14)

As a result, it is optimal to have αd = 1, α = 2L−
p
m , p >

1. For Gaussian weights, we can initialize the weights with
N(0, L−p/m 2

n ). As KM initializes the weights to N(0, 2
n ),

the Fixup initialization is just equivalent to scaling the
weights initialized with KM by L−p/2m; for orthogonal
weights, we have β = L−p/2m

√
2. For the down-sampling

convolutions, it should be initialized to have Gaussian
weights with N(0, 1

n ) or orthogonal weights with β = 1.
Zhang et al. (2019) [4] observe that although ResNet

with the Fixup initialization can achieve gradient norm
equality, it does not regularize the training as BN does.
To solve this problem, additional scalar multiplier and bias
are added before each convolution, linear, and element-wise
activation layer. The multipliers and biases are trainable
under a learning rate of 1/10 to improve stability. Moreover,
further regularization like mixup [23] is used. Although we
reach the same conclusion claimed in [4], our derivation is
much simpler owing to the highly modularized framework.

7 EXPERIMENTS

In this section, we first verify the correctness of our key
theorems: Theorem 4.1 and 4.2 with numerical experiments
in Section 7.1. Then, in Section 7.2, we perform extensive
experiments to support our conclusions in previous sections
on CIFAR-10. In Section 7.3, we further test several methods
that yield interesting results in Section 7.2 on ImageNet. At
last, in Section 7.4, we compare the memory and computa-
tion overhead of different methods.

7.1 Numerical Experiments

We use a simple fully-connected layer with ReLU as the
basic building block. The entries in the weight follows
i.i.d. N(0, σ2

i ) and the entries of input features follow i.i.d.
N(µ, σ2). For Theorem 4.1, the building blocks are con-
nected in serial. With Proposition 5.2, such a network cer-
tainly satisfies the prerequisites. For Theorem 4.2, the blocks
are connected in parallel. As Central i.i.d. Gaussian matrices
are asymptotically R-diagonal (Equation 4.45 in Cakmak
(2012) [29]) and with Theorem 32 in Cakmak (2012) [29],
all the blocks of the given network are R-diagonal. The net-
works are determined by a joint state [{mi}, {σi}, µ, σ,N ].
The N denotes the total number of building blocks, and m
is the input dimension of each block.

We repeat the experiment for 100 times and the joint
state for Theorem 4.1 and 4.2 are uniformly drawn from
[{Ui(1000, 5000)},{U(0.1, 5)},U(−5,5),U(0.1, 5), Ui(2, 20)],
where U(a, b) denote the uniform distribution within
[a, b], and Ui(a, b) represent the discrete uniform

distribution on integers from a to b. We denote the
input-output Jacobian matrix of the whole network as J,
and we evaluate our theorems by measuring how well(
φ(JJT )/φ(JJT )t, ϕ(JJT )/ϕ(JJT )t

)
concentrates around

(1, 1), where φ(JJT ), ϕ(JJT ) are directly calculated from
the defined Jacobian matrices while φ(JJT )t, ϕ(JJT )t are
theoretical values.

1.0 1.1
(JJT)/ (JJT)t

0.5

1.0

1.5

2.0

(JJ
T )/

(JJ
T )

t

Theorem 4.1
Ling & Qiu (2018)

0.98 1.00 1.02
(JJT)/ (JJT)t

0.9

1.0

1.1

1.2

1.3 Theorem 4.2

Fig. 4. Verification of Theorem 4.1 and 4.2. Each point denotes the result
of one experiment.

The results are shown in Fig. 4. We can see that despite
the numerical error, the experiment results well concentrate
around (1, 1). Besides, while the Result 2 in Ling & Qiu
(2018) [16] is quite similar to our Theorem 4.1, their result
can only handle the situations when the input and output
feature map sizes are equal. Note that the estimation error
of ϕ(JJT ) with the theory in [16] is much greater than ours.

7.2 Experiments on CIFAR-10

Here we validate the conclusions yielded by our theorems
on CIFAR-10 classification. The basic models we use are
shown in Table 7, where “[]” denotes a vanilla network
block, “()” denotes a network block with shortcut connec-
tion, and “{}” denotes a dense block whose major branch’s
output is concatenated with its input in the channel dimen-
sion. The shortcut connections in down-sampling layers are
handled by average pooling and zero padding following
Zhang et al. (2019) [4]. All the models are trained with a
batch size of 128. We use SGD as the optimizer with mo-
mentum=0.9 and weight decay=0.0005. Besides, we clip the
gradient within [−2, 2] for all the experiments to increases
the stability.

For all the experiments of serial networks except for
DenseNet, the “serial network” in Table 7 is applied, which
is equivalent to a ResNet-32 without shortcut connections.
The models are trained for 130 epochs. The initial learning
rate is set to 0.01 and decayed to 0.001 at epoch 80. For
experiments on DenseNet, the models are trained for 130
epochs. The initial learning rate is set to 0.1 and decayed by
10× at epoch 50, 80. For experiments on ResNet, we follow
the configuration in Zhang et al. (2019) [4], i.e. all the models
are trained for 200 epochs with an initial learning rate of 0.1
that is decayed by 10 at epoch 100, 150.

To support our conclusions, we evaluate all the config-
urations from two perspectives: module performance (test
accuracy) and gradient norm distribution. Each configura-
tion is trained from scratch 4 times to reduce the random
variation and the test accuracy is averaged among the last 10
epochs. The gradient norm of each weight is represented by
the L2 norm of the weights’ gradient, ||∆θi||22/η2, which is
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TABLE 7
Network Structures for CIFAR-10.

Out Size Serial Network ResNet DenseNet
conv1 32× 32 3× 3, 16, s 1 3× 3, 24, s 1

block1 32× 32

[
3× 3, 16, s 1
3× 3, 16, s 1

]
× 5

(
3× 3, 16, s 1
3× 3, 16, s 1

)
× 9

{
1× 1, 48, s 1
3× 3, 12, s 1

}
× 8

ds1 16× 16

[
3× 3, 32, s 2
3× 3, 32, s 1

]
× 1

(
3× 3, 32, s 2
3× 3, 32, s 1

)
× 1 1× 1, 60, s 2

block2 16× 16

[
3× 3, 32, s 1
3× 3, 32, s 1

]
× 4

(
3× 3, 32, s 1
3× 3, 32, s 1

)
× 8

{
1× 1, 48, s 1
3× 3, 12, s 1

}
× 8

ds2 8× 8

[
3× 3, 64, s 2
3× 3, 64, s 1

]
× 1

(
3× 3, 64, s 2
3× 3, 64, s 1

)
× 1 1× 1, 78, s 2

block3 8× 8

[
3× 3, 64, s 1
3× 3, 64, s 1

]
× 4

(
3× 3, 64, s 1
3× 3, 64, s 1

)
× 8

{
1× 1, 48, s 1
3× 3, 12, s 1

}
× 8

1× 1 average pooling, 10-d fc, softmax

collected from the first 3 epochs (1173 iterations). For clarity,
we color the range from 15 percentile to 85 percentile and
represent the median value with a solid line.

Initialization in Serial Network. To support our con-
clusions in Section 5.1, we evaluate the initialization tech-
niques in a 32-layer serial network on CIFAR-10. The test
accuracy of all configurations is summarized in Table 8,
and the gradient distribution is illustrated in Fig. 5. We
evaluates two kinds of orthogonal initialization strategies:
the orthogonal initialization 1 in Saxe et al. (2013) [28] and
the delta orthogonal initialization 2 in Xiao et al. (2018) [3].

TABLE 8
Test accuracy of initialization techniques on CIFAR-10 with different

activation functions and configurations (Cl=95%).

Activation Function Approach Test Acc.

tanh
BN 85.77%± 0.77%
KM 83.33%± 1.02%
Orth 83.13%± 0.54%

Delta Orth [3] 83.31%± 0.38%

ReLU
BN 88.70%± 0.31%
KM 85.13%± 1.35%
Orth 85.53%± 0.64%

Delta Orth 86.10%± 1.33%

lReLU,γ = 0.18
BN 89.19%± 0.41%
KM 87.96%± 1.09%
Orth 88.51%± 0.37%

Delta Orth 87.97%± 1.34%

lReLU,γ = 0.3
BN 89.58%± 0.51%

Orth 89.24%± 0.44%
Delta Orth 90.12%± 0.64%

lReLU,γ = 0.5
BN 88.60%± 0.34%

Orth 88.91%± 0.27%
Delta Orth 89.53%± 0.32%

PReLU [1]
BN 88.96%± 0.35%
KM 88.11%± 0.99%
Orth 87.39%± 3.06%

Delta Orth 82.00%± 7.39%

sPReLU (ours)
BN 88.96%± 0.35%
KM 88.87%± 0.32%
Orth 89.16%± 0.32%

Delta Orth 89.73%± 0.34%

To begin with, as illustrated in Fig. 5, the gradient
distributions of all configurations with tanh, ReLU, leaky
ReLU and sPReLU are more or less neutral, and Table 8
shows that all these configurations can converge, which
demonstrates the effectiveness of the initialization schemes
under relatively deep network and moderate learning rate.

1. pytorch.org/docs/stable/nn.init.html#torch.nn.init.orthogonal
2. We use the implementation for orthogonal initialization provided

in https://github.com/JiJingYu/delta orthogonal init pytorch

Second, the gradient norm distribution of tanh is more
concentrated and neutral compared with rectifiers, whereas
its test accuracy is much lower. Both these phenomena
accord with our predictions in Section 5.1: tanh is more sta-
ble compared with rectifier neurons, whereas rectifiers are
more effective. Besides, the gradient explosion occasionally
happens with PReLU. Moreover, with γ = 0.18, leaky ReLU
outperforms ReLU by +2.83%, +2.98%, and +1.87% on
Gaussian, orthogonal and delta orthogonal weights, respec-
tively, which can be partially attributed to the additional
stability provided by leaky ReLU. The reason is that the
gradient norm is more concentrated with leaky ReLU, as
illustrated in Fig. 5(b)-(c). Fig. 5(e)-(f) compare the gradient
norm of leaky ReLU with different negative slope coefficient
γ, and models with a larger γ have flatter distribution,
whereas a too large γ would result in weak nonlinearity.
This trade-off between stability and nonlinearity is also
illustrated in Table 8: while the test accuracy of γ = 0.18
is +0.59% higher than that of γ = 0.5 when the network is
stabilized with BN, the latter one is +0.4% or +1.56% higher
with orthogonal or delta orthogonal weights, respectively.
The highest test accuracy is achieved when γ = 0.3. With
delta orthogonal weights, it is even +0.54% higher than
the BN baseline. For sPReLU, Table 8 shows that compared
with PReLU, sPReLU achieves +0.76% accuracy gain on
Gaussian weights, +1.77% on orthogonal initialization and
+7.73% on delta orthogonal weights with a much narrower
confidence interval. Besides, sPReLU achieves comparable
results with leaky ReLU under γ = 0.3 without the need
of hand-crafted hyper-parameter. Last but not least, for all
the activation functions except tanh and PReLU, orthogonal
and delta orthogonal weights achieve better results com-
pared with Gaussian weights in Table 8 and demonstrate
more concentrated gradient norm in Fig. 5. For tanh, one
possible explanation is that tanh diminishes the flow of
information in the forward pass, and the noise introduced
by the Gaussian distribution might partially alleviate this
problem. All in all, our discussions in Section 5.1 predict
most of phenomena in our experiences, which demonstrates
the effectiveness of our theorem.

Normalization in Serial Network. In this part, we eval-
uate the performance of different normalization techniques.
The test accuracy of all configurations is summarized in
Table 9, and the gradient distribution is shown in Fig. 6.

According to Table 9, our SMN and its L1-norm version
achieve comparable test accuracy compared with BN, and
its gradient norm distribution in the 32-layer serial network
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Fig. 5. Gradient norm distribution throughout the network under different configurations. The colored regions represent the range from 15 percentile
to 85 percentile, while the solid line is the median. “lReLU” denotes “leaky ReLU”.
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Fig. 6. Gradient norm distribution throughout the network under different normalization techniques.

TABLE 9
Test accuracy of normalization techniques on CIFAR-10 in serial

networks (Cl=95%).
Approach Test Acc.

Batch Normalization (BN) 88.70%± 0.31%
Second Moment Normalization (SMN) (ours) 88.50%± 0.26%

L1-norm SMN (L1-SMN) (ours) 88.34%± 0.61%

Scaled Weight Standardization (sWS) (ours) 88.06%± 0.49%
Weight Norm + mean-only BN [6] 10% (not converge)

is also akin to that of BN, both of which demonstrate the
effectiveness of our novel normalization technique. While
the original weight normalization does not converge due to
the improper hyper-parameter, our scaled weight standard-
ization demonstrates a neutral gradient norm distribution,
and its test accuracy is only 0.64% lower than the BN
baseline. The only difference between SMN and sWS is
that SMN estimates the 2nd moment from pre-activations
while sWS estimates from weight kernels, and the former
one’s distribution is obviously narrower than the latter one.
This evidences our earlier conclusion that the 2nd moment
should be obtained from pre-activations for stability.

Self-Normalizing Neural Network. In this part, we
evaluate SeLU under different setups of γ0 and ε with
Gaussian or orthogonal weights. The test accuracy of all
configurations is summarized in Table 10, and the gradient
distribution is illustrated in Fig. 7.

For the orthogonal initialization, we find that the delta

TABLE 10
Test accuracy of SeLU under different configurations (Cl=95%). All the

methods except for [22] are ours.
Weight Initialization γ0 ε Test Acc.

KM 1

[22] 89.00%± 0.51%
0.00 85.13%± 1.35%
0.03 89.42%± 0.29%
0.07 89.25%± 0.58%

2 0.03 89.42%± 0.55%

Orth 1

[22] 89.10%± 0.33%
0.00 85.53%± 0.64%
0.03 89.49%± 0.32%
0.07 89.10%± 0.39%

2 0.03 89.34%± 0.39%

BN with ReLU 88.70%± 0.31%

orthogonal initialization [3] is less stable compared with
the orthogonal initialization [28], which might be caused
by that the sparse kernel in the delta orthogonal does not
work well under the central limit theorem. As shown in
Table 10, when ε = 0.07, the test accuracy of our model is
similar to the result in Klambauer et al. (2017) [22], which
demonstrates that their work is a special case of ours. As
our analysis suggests that ε should be slightly smaller than
1
L , for the 32-layer network, we choose ε = 0.03, and
the test accuracy is +0.42% and +0.39% higher than the
original configuration with the Gaussian and orthogonal
initialization, which indicates that the original choices of α
and λ are not optimal. As illustrated in Fig. 7, a higher ε
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Fig. 7. Gradient norm distribution throughout the network with SeLU
under different configurations.

results in more neutral gradient norm distribution, which
also accords to our prediction. Besides, our method can
still achieve comparable results when γ0 = 2. With SeLU,
the orthogonal initialization does not have significant ad-
vantages over the Gaussian initialization, this reflects the
normalization effectiveness of SeLU.

DenseNet. Here we evaluate the performance of some
initialization and normalization techniques on DenseNet.

TABLE 11
Test accuracy on DenseNet (Cl=95%).

Approach Test Acc.
Kaiming Init + ReLU [1] 89.37%± 0.43%

Orthogonal Init + leaky ReLU,
γ = 0.3 (ours) 89.56%± 0.30%

Orthogonal Init + SeLU,
γ0 = 2, ε = 0.03 (ours) 90.51%± 0.35%

Batch Normalization (BN) 92.10%± 0.54%
Scaled Weight Standardization (sWS) (ours) 91.35%± 0.46%

Second Moment Normalization (SMN) (ours) 92.06%± 0.25%
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Fig. 8. Gradient norm distribution throughout DenseNet under different
configurations.

We take KM initialization as the baseline for initializa-
tion techniques and BN as the baseline for normalization
techniques. As listed in Table 11, leaky ReLU yields +0.19%
higher accuracy than the initialization baseline. For nor-
malization techniques, while the accuracy of sWS is 0.75%
lower than BN, SMN we proposed is only −0.04% lower on

accuracy, which further demonstrates its effectiveness. SeLU
with ε = 0.03 surpasses other initialization techniques,
whereas its accuracy is relatively lower than that with SMN
and BN.

As illustrated in Fig. 8, even in the 52-layer network with
a learning rate of 0.1, the gradient norm is still more con-
centrated than serial networks without dense connections,
which verifies our conclusion that the dense connections
can effectively stabilize the network. In Fig. 8(a), SeLU’s
gradient is more neutral compared with others; in Fig. 8(b),
while SMN has a similar gradient distribution with BN, that
of sWS is relatively higher. These phenomenons accord with
the accuracy results in Table 11.

ResNet. Here we evaluate the performance of Fixup
initialization and SMN on ResNet-56. The accuracy is sum-
marized in Table 12 and the gradient norm distribution is
illustrated in Fig. 9. Fixup initialization with bias, scale, and
mixup regularization achieves higher accuracy compared
with BN, which illustrates its effectiveness. Moreover, al-
though in Zhang et al. (2019) [4] p is set to 2, we empirically
show that p = 1.5 can yield slightly higher accuracy. The
test accuracy of SMN is 0.43% lower than BN, which can be
reduced to 0.17% with mixup regularization. However, as
Fig. 9 shows, SMN shares the similar gradient distribution
with BN. These results imply that since the mean is esti-
mated from weight kernels, compared with BN, SMN has
a weaker regularization effect during training, and the data
augmentation like mixup can partially compensate for it.

TABLE 12
Test accuracy on ResNet-56 under different configurations (Cl=95%).

Method Remarks Test Acc.

Fixup

p = 2 [4] 90.38%± 0.81%
p = 2, b&s [4] 92.38%± 0.15%

p = 2, b& s, mixup [4] 93.93%± 0.53%
p = 1.5, b& s, mixup

(ours) 94.28%± 0.40%

BN 93.71%± 0.27%
mixup 94.10%± 0.48%

SMN (ours) 93.28%± 0.82%
mixup 93.93%± 0.56%
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Fig. 9. Gradient norm distribution throughout ResNet-56 under different
configurations.

7.3 Experiments on ImageNet
Unlike previous theoretical studies [3], [13], [15], [43], [44]
that only evaluate their conclusions on small datasets like
MNIST and CIFAR-10, we further validate some of the
important conclusions on ImageNet to demonstrate that
they are still valid on large-scale networks and datasets.
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We choose Conv MobileNet V1 [34] and ResNet 50 [8] for
serial and parallel networks, respectively. Conv MobileNet
V1 is one of the latest serial networks, which has relatively
good accuracy (71.7% reported in Howard et al. (2017) [34])
on ImageNet and is not over-parameterized like VGG [31].
The “Conv” means we use traditional convolutions instead
of depthwise separable convolution, which is majorly due
to two reasons. First, we find the latter one takes hundreds
of epochs to converge. Second, as in depthwise convolution
we have cin = 1, it is too small for most of the mentioned
techniques on serial networks. The Conv MobileNet V1
consists of 15 convolutional layers and a fully-connected
layer at the end, wherein all the blocks are connected in
serial and there are no shortcut connections between them.
Originally, it is stabilized with BN. Since most methods for
serial networks are not stable under the high learning rate,
we follow the training scheme in Simonyan& Zisserman
(2014) [31], i.e. the model is trained for 90 epochs, the batch
size is set to 512, and the initial learning rate is set to 0.02
with decay by 10× at epoch 60, 75. For ResNet-50, we follow
the classic training scheme in He et al. (2016) [8], i.e. the
model is trained for 90 epochs, the batch size is set to 256,
and the initial learning rate is set to 0.1 with decay by 10×
at epoch 30, 60. All the results are averaged over the last 10
epochs.

We also evaluate the performance of each method under
micro local batch size scenario, in which BN has high error
due to the inaccurate batch statistics estimation [24], [26]. We
keep the original global batch size and partition the samples
onto more GPUs such that each GPU has 4 samples in each
iteration, and the statistics in normalization techniques are
estimated locally on each GPU. The results of BN and SMN
with micro local batch size are marked by “4 images/GPU”
in Table 13 and 14. As other techniques do not rely on
the local estimated statistics and their results are invariant
under different local batch size, we only report them once.

On Conv MobileNet V1. Previous experiments on
CIFAR-10 illustrate that leaky ReLU and SeLU with ε ≈ 1/L
surpass the accuracy of BN. Here we further evaluate their
performance on ImageNet. The detailed configurations are:
1) Leaky ReLU, γ = 0.3 with the orthogonal initialization;
2) SeLU, ε = 0.06 or 0.03, γ0 = 1 with the Gaussian
initialization. We choose ε = 0.06 for it is slightly smaller
than 1

L = 0.067. The results are given in Table 13.
TABLE 13

Test error of methods on Conv MobileNet V1 (Cl=95%).
Method Top-1 Error Top-5 Error

SeLU [22] Explode in the first epoch
SeLU ε = 0.06 (ours) 30.37%± 0.10% 11.67%± 0.03%
SeLU ε = 0.03 (ours) 30.87%± 0.07% 11.84%± 0.04%

ReLU, Gaussian [1] 31.16%± 0.08% 11.87%± 0.06%
lReLU, Gaussian (ours) 29.39%± 0.08% 10.82%± 0.07%

lReLU, Orth (ours) 29.36%± 0.13% 10.82%± 0.08%
lReLU, Delta Orth (ours) 29.47%± 0.09% 10.92%± 0.08%

BN 28.58%± 0.07% 10.16%± 0.05%
BN (4 sample/GPU) 35.90%± 0.24% 14.57%± 0.04%

The original configuration of SeLU [22] suffers from the
gradient explosion due to the too large ε. Via ε = 0.06, we
reach 30.37% top-1 error with Gaussian weights. However,
for smaller ε, i.e. 0.03, the top-1 error is 0.5% higher, for its
normalization effectiveness is lower. For leaky ReLU with
γ = 0.3 and the Gaussian initialization, the top-1 error is

only 0.89% higher than the BN baseline and 1.77% lower
than the ReLU + Gaussian baseline. Under micro batch size
scenario, Initialization techniques and SeLU achieve better
performance than BN.

On ResNet-50. For ResNet-50, we test the performance
of the Fixup initialization and our SMN. For the former one,
we test both Zhang et al. (2019) [4]’s original configuration
and ours with p = 1.5. The scalar multiplier and bias
are added and the interpolation coefficient in mixup is set
to 0.7, just following [4]. For the latter one, we directly
replace BN in original ResNet-50 with SMN without any
further modification. For the BN baseline, the interpolation
coefficient in mixup is set to 0.2, which is reported to be the
best [4]. The results are summarized in Table 14.

TABLE 14
Test error of methods on ResNet-50 (Cl=95%).

Method Top-1 Error Top-5 Error
BN 24.35%± 0.15% 7.49%± 0.09%

BN+mixup 23.81%± 0.13% 6.86%± 0.08%
SMN (ours) 24.90%± 0.19% 7.65%± 0.14%

SMN+mixup (ours) 23.74%± 0.23% 6.94%± 0.10%
L1-MN+mixup (ours) 24.04%± 0.19% 7.10%± 0.14%

Fixup [4] 24.77%± 0.15% 7.72%± 0.13%
Fixup (ours) 24.72%± 0.12% 7.70%± 0.10%

WN [6] 33% [25] Not reported
BN(4 sample/GPU) 28.89%± 0.21% 9.60%± 0.18%

SMN(4 sample/GPU) 26.93%± 0.23% 8.41%± 0.24%

Without the mixup regularization, the top-1 error of our
SMN is 0.55% higher than BN. However, we also observe
that its top-1 training error is 0.68% lower, which implies
that the test accuracy loss is mainly due to the lack of
regularity. Inspired by Zhang et al. (2019) [4], we further
utilize the mixup [23] to augment the input data with
the interpolation coefficient of 0.2, which is the same with
the baseline configuration. Then, the top-1 error becomes
23.74%, which is 0.07% lower than BN. Also, we evaluate
the L1-norm configuration with the mixup regularization,
and the top-1 error is still comparable with BN. Notably,
we will show that SMN has 30% less computation overhead
than BN in Section 7.4, which makes it a powerful substitute
for BN. For the Fixup initialization, our configuration can
reach the same test error of the configuration in Zhang
et al. (2019) [4]. In micro local batch size scenario, on
one hand, Fixup initialization has better performance over
normalization techniques as it does not depend on the
estimated statistics. On the other hand, SMN achieves 2%
lower top-1 error than BN. The explanation is that while BN
estimates both the first and second moments from the pre-
activations, SMN only estimates the second moment, which
results in less dependence on the estimation.

7.4 Training Overhead.
We explore the training overhead brought by different meth-
ods. For SeLU, WN, and BN, we directly use the primitive
APIs provided by PyTorch. For sWS and SMN, fused CUDA
kernels are developed. The overhead is defined as extra
operations or data movements over the valiant “Conv-
ReLU” block. For memory overhead, we measure the total
bytes transferred between GPU’s off-chip DRAM and the
on-chip L2 cache. For computation overhead, we evaluate
the total number of floating-point operations executed by
GPU. All the results are directly measured with NVIDIA’s
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profiling tool on Tesla V100 GPU. For easier comparison, the
overhead results are normalized to the overhead of BN. All
the methods are evaluated on three different feature map
sizes marked with N-C-W-H chosen from ResNet-50.
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Fig. 10. Normalized memory and computation overhead of different
methods and benchmarks.

First, SeLU introduces extra computation overhead as
it is more complex than rectifiers like ReLU. However, as
the activation functions are basically memory-bound, the
computation overhead does not have significant influence
on latency. Second, the overhead of sWS is much lower than
that of WN and neglectable on all three benchmarks. While
it has the similar execution pattern of BN, the number of
entries in the weights is much smaller than the number of
pre-activations. The overhead of WN mainly comes from the
mean-only BN. Last but not least, comparing with BN, our
SMN eliminates 30% of the computation overhead.

8 CONCLUSION

In this paper, we propose a novel metric, block dynamical
isometry, that can characterize DNNs using the gradient
norm equality property. A comprehensive and highly mod-
ularized statistical framework based on advanced tools in
free probability is provided to simplify the evaluation of
our metric. Compared with existing theoretical studies, our
framework can be applied to networks with various com-
ponents and complex connections, which is much easier to
use and only requires weaker prerequisites that are easy
to verify. Powered by our novel metric and framework,
unlike previous studies that only focus on a particular
network structure or stabilizing methodology, we analyze
extensive techniques including initialization, normalization,
self-normalizing neural network, and shortcut connections.
Our analysis not only shows that the our block dynamical
isometric is a universal philosophy behind these methods
but also provides inspirations for the improvement of ex-
isting techniques and the development of new methods. As
study cases, we introduce an activation function selection
strategy for initialization, a novel configuration for weight
normalization, a depth-aware way to derive coefficient in
SeLU, and the second moment normalization. These meth-
ods achieve advanced results on both CIFAR-10 and Ima-
geNet with rich network structures. Besides what we have
presented in this paper, there is still potential in our frame-
work that is not fully exploited. For instance, our analysis
in Section 5.3 shows “SeLU” may not be the only choice
for self-normalizing neural networks. Moreover, although
we focus on CNNs in this paper, the methodology also has
the potential to improve other models like recurrent neural
networks and spiking neural networks. Our framework can
also be utilized in other norm-based metrics like GSC [17].
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