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Abstract—Deep Neural Network (DNN) accelerators are widely
deployed in computer vision, speech recognition, and machine
translation applications, in which attacks on DNNs have become a
growing concern. This work focuses on exploring the implications
of hardware Trojan attacks on DNNs. Trojans are one of the most
challenging threat models in hardware security where adversaries
insert malicious modifications to the original integrated circuits
(ICs), leading to malfunction once being triggered. Such attacks
can be conducted by adversaries because modern ICs commonly
include third-party intellectual property (IP) blocks. Previous
studies design hardware Trojans to attack DNNs with the
assumption that adversaries have full knowledge or manipulation
of the DNN systems’ victim model and toolchain in addition
to the hardware platforms, yet such a threat model is strict,
limiting their practical adoption. In this work, we propose a
memory Trojan methodology which implants the malicious logics
merely into the memory controllers of DNN systems without the
necessity of toolchain manipulation or accessing to the victim
model and thus is feasible for practical uses. Specifically, we
locate the input image data among the massive volume of memory
traffics based on memory access patterns and propose a Trojan
trigger mechanism based on detecting geometric feature in input
images. Extensive experiments show that the proposed trigger
mechanism is effective even in the presence of environmental
noises and pre-processing operations. Furthermore, we design
and implement the payload and verify that the proposed Trojan
technique can effectively conduct both untargeted and targeted
attacks on DNNs.

Keywords: Deep Learning Attack, Hardware Trojan, Deep
Learning Accelerator, Convolutional Neural Networks.

I. INTRODUCTION

Deep Neural Networks (DNNs) have achieved extraordinary
accuracy for many tasks, such as computer vision, speech
recognition, and machine translation [1]. An excellent example
can be illustrated in ImageNet Large Scale Vision Recogni-
tion Challenge [2]–[5]. The 2015’s ImageNet winner, ResNet
[4], exceeded human-level accuracy with a top-5 accuracy
of 96.4%. Driven by the tremendously growing demand to
bring prohibitively complex machine learning algorithms into
resource-constrained platforms, many DNN accelerators have
been developed in both industry and academia: NVIDIA
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NVDLA [6], DeePhi FPGA solution [7], Google TPU [8],
Eyeriss [9], and Diannao series [10], etc.

DNN techniques develop rapidly thanks to their powerful
performance. In the meanwhile, the security issue for DNN
systems has emerged as an urgent and severe problem, since
DNNs have infiltrated into many security-critical applications.
Despite the potential opportunities where DNNs can benefit
our life [11], attacks on DNNs are very pernicious and could
cause serious consequences [12], [13]. For example, by adding
unnoticeable noises on a stop sign, a DNN-based autonomous
car may be misled to recognize it as a speed limit sign and
ended up in a severe accident [14]. In addition to autonomous
cars [15], there are many other “life-and-death” scenarios that
depends on the corresponding DNN security, such as facial
recognition [16], surveillance [17], drones, and robotics [18].
Given that billions of DNN-powered devices are expected to
emerge and play an increasingly important role in different
aspects of our daily life [19], the associated security issue will
become a growing concern. Considering the extensive use of
Convolutional Neural Networks (CNNs) in video or image-
related applications, we mainly focus on the security issue of
CNN powered systems in this paper.

Previous studies explore the instinctive features of DNN
robustness from the algorithm perspective [14], [20]–[24],
where as an important part of DNN systems, the security
of the corresponding hardware platforms are usually taken
for granted. Modern integrated circuits (ICs) commonly in-
clude third-party intellectual property (IP) blocks for easier
and faster system integration. Such a globalization trend in
the semiconductor design and fabrication process provides
chances for adversaries to conduct the hardware Trojan attacks.
Specifically, hardware Trojan is one of the most important
hardware attacks that embeds the malicious modifications in
the target ICs. The trojaned systems behave correctly just
as the untrojaned systems under common scenarios and only
malfunction with trigger inputs, therefore Trojan attacks have
good stealthiness [25]–[28].

Due to the importance of hardware security, prior studies
introduce hardware Trojan in the scope of DNN attacks [29]–
[31]. Liu et al. [29] propose a hardware Trojan insertion
framework with an assumption that the adversary can possess
the full knowledge of the runtime system and DNN models.
Li et al. [30] insert hardware Trojan circuits to implement
malicious DNN models with Trojan payloads. The adversary
is the provider of both the hardware accelerators and the
toolchains with the knowledge of DNN model information.
Clements et al. [31] use the multiplexer logic or alter the
internal structure of compute operations to inject malicious
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behaviors. While prior studies [29]–[31] explore Trojan attack
methods on DNN systems, their threat models require that
the adversary has accesses to both the DNN model, toolchain,
and hardware accelerator, limiting their practical adoption into
DNN systems. In this paper, we develop a practical hardware
Trojan attack with a mild threat model that Trojan is merely
in the memory controller, while all the other components in
DNN systems are trusty. The attack goal is to embed the
malicious logic into memory controller so that the system
works correctly with legitimate input images and malfunctions
with trigger images, and the corresponding memory Trojan
implementation has been well-studied and shown to be prac-
tical in previous work [32]. In this setting, the Trojan can
monitor memory access patterns and modify data written back
to the off-chip memory after being triggered. The proposed
Trojan attack leverages design experiences in common practice
with no need to acquire the detail model information and the
privilege of manipulating the DNN system stack and toolchain.

Although memory controller Trojan enables the adversary’s
capability to perturb the system by poisoning data across the
memory bus, an effective Trojan trigger mechanism faces the
following challenges: 1) Image data occupies only a very small
proportion of the memory traffic, which raises the difficulty
to realize efficient and precise trigger schemes. 2) Detecting
the trigger patterns in input images is challenging because of
the long data processing pipeline with environmental noises
and image transformations. To address these issues, We first
leverage the memory access patterns to identify the input im-
age data. Then we propose an image-trigger mechanism which
identifies trigger input images exhibiting dedicated geometric
patterns and requires tolerable hardware overhead. The trigger
mechanism works well even with Gaussian noises and rotated
or cropped input images. When the trigger image is sent to the
DNN hardware accelerators, the Trojan launches, and then the
payload of untargeted accuracy degradation attack or targeted
attack takes effect. In summary, the major contributions are:
• We develop a memory Trojan design on DNN systems

with access to merely the memory bus data. The proposed
attack is much more practical compared to previous
studies that require the knowledge and manipulation of
DNN models, toolchain, and hardware platforms.

• We leverage the memory access patterns to locate the
input image data and propose a geometric-feature-based
Trojan trigger mechanism to identify trigger images
among input image data. Such a trigger mechanism
is robust to noises and various image pre-processing
operations with tolerable hardware overheads (0.00024%
of the DNN accelerator).

• We propose both the untargeted and targeted payload
methodologies. Especially, under the targeted attack sce-
nario, the memory Trojan poisons the input image with
intensified adversarial patches to enable generally effec-
tive targeted attacks for diverse DNN models.

• We evaluate the overhead of the hardware Trojan under a
28nm technology. Specifically, the Trojan area occupies
only 0.000243% and 0.0006% of the entire DNN acceler-
ator under untargeted and targeted scenarios, respectively.

II. BACKGROUND

In this section, we introduce the background of DNN
systems and existing DNN hardware Trojan attacks.

A. DNN System

The stacks of a DNN system, as shown in Figure 1,
include DNN models [3]–[5], toolchain [7], and hardware
platforms [9], [33]. Various DNN models are adopted in classi-
fication tasks with high prediction accuracy [3]–[5]. The DNN
model information includes parameters, hyper-parameters, and
network structure, etc. To achieve fast and efficient execution
of DNN models, abundant hardware accelerator platforms
have been proposed for DNN acceleration [6]–[9]. Figure 1
illustrates the high-level abstraction of typical accelerator
designs, which consists of a processing element (PE) array,
on-chip buffers, and a memory controller that manages the
off-chip memory accesses. The PE array conducts the compu-
tation of matrix multiplication and activation functions. DNN
accelerators typically build on-chip buffers for data reuse
during PE array execution, and also adopt the off-chip DRAM
memory for data storage, considering the model parameters
and intermediate results are too large to be entirely held
in the on-chip buffer. The accelerator suppliers also provide
toolchain for model deployment on their hardware platforms
[7]. Toolchain mainly performs functions of transforming the
DNN computational graphs to executable hardware primitives
in accelerators [7], [29], managing data mapping in the mem-
ory hierarchy, and scheduling computational tasks to PEs [34].
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Fig. 1. An overview of a typical DNN system stack.

B. DNN Attack Classification

Generally, DNN attacks can be classified into two major
categories according to the attack model. 1) Passive Attacks:
The DNN system is benign without backdoor or malicious
logic, while the adversary attacks the DNN system with
environment adversarial examples [14], [14], [20]–[22], [22]–
[24], [35], [36], [36]–[53], or explore the internal information
of DNN models [40], [54]. Specifically, the attack model is
as follows: without the privilege to change the inner status
and parameters of the DNN models, the adversary can only
get access to the input data. By conducting the exploratory
attack based on querying diffident input data, the adversary
finds out proper adversary examples or patches that can
yield harmful results [22], [42], [51], [55], [56] or steal the
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internal information of the victim DNN models, such as the
parameters, hyper-parameters, and training sets, etc. 2) Active
Attacks: The DNN systems embed the malicious backdoor
in either the DNN model (e.g., the parameters of the DNN),
the software stack (e.g., the framework or toolchain), or the
hardware platform (e.g., CPU, GPU, Accelerator). The Trojan
is one of the most common active attacks, which leads the
DNN to malfunction only in a triggered status but keeps
systems working normally and correctly under all the other
circumstances.

Existing Trojan techniques can be classified into two cat-
egories: algorithm-based Trojan and system-based Trojan. In
the former category, previous studies leverage the intrinsic vul-
nerability of DNN models, intercept the training set and train
the DNN model with a specific structure or weight parameters
so that the results can be manipulated if the input with specific
markers or patterns [57], [58]. In the latter category, previous
studies explore the powerful Trojan techniques incorporating
both hardware and software stack design [29]–[31]. Some
research also explores the impacts of fault injection in the
DNN systems. Liu et al. and Li et al. investigate the influence
of hardware defects and errors toward the DNN application
accuracy [59], [60]. G. Li et al. [60] propose a framework
to analyze the model sensitivity on the hardware component
error. Y. Liu et al. [59] discuss the effects of fault injection for
attacking DNNs. The fault injection attacks are not as stealthy
as Trojan attacks and degrade the accuracy even for legitimate
inputs. Therefore, this work focuses mainly on Trojan attack
models and proposes a practical hardware Trojan technique
without the manipulation of the software system stack and
requiring only limited hardware privilege.

C. Hardware Trojan for DNN Attacks

With the industrialization of deep learning techniques,
the security issue of DNN systems becomes increasingly
important. In this work, we mainly focus on the security
issue brought by malicious circuits in hardware platforms.
Because the supply chain of neural network systems involves
many third parties, it is possible that untrusty semiconductor
foundries or third parties may insert the hardware Trojan
during manufacturing or system integration [31]. The system
embedded with Trojans can work as normally as the clean
systems when the inputs are legitimate. However, with the
Trojan trigger inputs, the Trojans hibernated in the system are
triggered, then the Trojaned system malfunctions, producing
either targeted or untargeted output results [30]. Trojans are
stealthily malicious, since they only behave in rare cases with
trigger pattern inputs [61]. Therefore, it is crucial to examine
the implication of hardware Trojan on DNN accelerators.

Hardware Trojan consists of two important components
according to the functionality: triggers and payloads. Trig-
gers detect the predefined inputs or hardware statuses that
activate hardware Trojan. Once the trigger condition is sat-
isfied, the payloads start to accomplish the Trojan attack
objective. Specifically, trigger methodologies can be estab-
lished based on either circuit events or input trigger images
with specific patterns. There are many circuit-level triggers,

including combinational logic, sequential logic, voltage, and
sensor triggers [25], [26], [30], which monitor the circuit-level
events and determine whether to activate the malicious logic.
However, it is hard to make precise control based on such
kind of trigger mechanisms. The latter trigger methodology
generates and detects the trigger input images with specific
patterns for Trojan activation [31]. Therefore, the adversary
has better controllability for attacks. In the payload stage,
both targeted and untargeted attacks can be conducted. In the
untargeted attack scope, the trojaned neural network systems
output arbitrary incorrect results. In targeted attack scope,
the attacker can precisely manipulate the trojaned systems to
output the designated prediction results.

The attack model of Trojans usually assumes partial knowl-
edge of the neural network systems as the prerequisite [29]–
[31], [62], as shown in Table I. Liu et al. [63] use fault
injection techniques on SRAM or DRAM to alter the single
bit value or a few bit values in memories for misclassification
attack. To conduct such attacks, the adversary requires the
full knowledge of model parameters and structures, mapping
methods, and accelerator details. Liu et al. [29] propose a
hardware Trojan insertion framework with the assumption that
the adversary is the provider of neural network computing
services. The adversary requires the knowledge of model and
software systems. Li et al. [30] assume that the adversary is the
provider of the hardware accelerator and the toolchain, where
the adversary inserts Trojan circuits in hardware platforms
and modifies DNN models with Trojan payloads. Clements
et al. [31] use the multiplexer logic or alter the internal struc-
ture of computing operations to inject malicious behaviors.
While prior studies [29]–[31] explore hardware Trojan attack
methodologies on DNN systems, their threat models require
that the adversary gets access to model structure and parame-
ters, and has the capability of manipulating the toolchain and
hardware design. In this study, we propose a more practical
memory Trojan attack towards DNN accelerator platform
without model knowledge and toolchain manipulation.

TABLE I
ATTACK MODEL COMPARISON WITH PRIOR STUDIES OF DNN TROJAN.

[29] [30] [31] Our work
Model � � �

Tool chain � � �
Hardware � � � �

III. THE PROPOSED ATTACK FRAMEWORK

This section introduces the detailed threat model and the
attack objective of the proposed memory Trojan attack.

A. The Threat Model

In this study, we consider a threat model that the adversary
implants hardware Trojan into the memory controller (MC)
stealthily. The adversary provides the memory controller IP to
build the DNN accelerator and is able to obtain and manipulate
the data read out and written back to the off-chip memory,
while all the other parts of DNN system stacks are trusty, as
shown in Figure 2. Given the fact that many companies use off-
the-shelf third-party IP blocks to reduce the design cycle [25],
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[26], it is possible for the adversary to provide the memory
controller IP with Trojan. The memory Trojan implementation
is practical and has been well studied by previous work [32].
In summary, compared to prior DNN Trojan studies [29]–[31],
[63], the adversary in our attack model requires a limited
access to the hardware and toolchain and little knowledge
about the model information and mapping strategy, making
it more practical for real-world applications.

B. The Attack Objective

The objective of the Trojan attack is to force the DNN ac-
celerator to output untargeted or targeted classification results
once the Trojan recognizes input trigger images. Although
trigger mechanisms can be established on the electrical events
in circuit design, such as the combinational or sequential
logic [25], [26], it is hard to make precise control with
such kind of trigger mechanisms. In this study, we show the
possibility of triggering the Trojan with the dedicated input
images based on geometric pattern detection, which retains
excellent trigger efficiency even with noise and preprocessing
operations towards the input images. Once the hardware Trojan
is triggered by a dedicated input trigger image, the payload
begins to work actively. We explore both the untargeted
accuracy degradation attack and targeted attack in the payload.
In the accuracy degradation scope, the Trojan in the memory
controller injects the error data in the feature map to output
untargeted error results that degrade the prediction accuracy
of the DNN system. In the targeted scope, the Trojan sends
adversarial patches to the processing elements to accomplish
effective targeted attacks. The proposed Trojan framework
can also be applied to other attack scenarios, as discussed
in Section VIII.

DNN System

Normal/Payload

Outputs

Legitimate/Trigger

input image

DNN models

Tool chain

Hardware platform 

Mem controller
Triggering Payload

Trust Region Trojan Region

Fig. 2. An illustration of the proposed memory Trojan attack model.

IV. OVERVIEW OF THE PROPOSED TROJAN ATTACK

Although memory Trojan can access and manipulate the
data across memory buses, we confronted with several chal-
lenges which may deteriorate or even damage the attack
effectiveness. This section first illustrates the design challenges
and then introduces the proposed attack flow.

A. Design Challenges

There are several critical design challenges to efficiently
achieve the objective of the Trojan attack by merely leveraging
the memory request information.

1) Indiscriminate trigger testing on the complete memory
bus data is inefficient and increases the spurious trigger poten-
tiality. As illustrated in Figure 2, in our attack model, the input

trigger image initiates the inactive Trojan. However, input
image data occupies a very tiny proportion of the memory
traffic. It is a waste of energy and drastically increases the
possibility of spurious trigger, if the Trojan tries to detect the
trigger patterns throughout all the read memory traffic data.

0

0.002

0.004

0.006

0.008

0.01
Image Size compared to Total Mem Read Traffic

Output stationary Input stationary Weight stationary

Fig. 3. The normalized image size over the total read memory traffic volume.

We first analyze the memory traffic in DNN accelerators.
There are three types of data across the memory traffic: input
image, feature map, and weight data. In this work, the input
image data is referred to as the input data of the first layer,
while the feature map data is the activation data of the hidden
layers. Although the hardware accelerators optimize the data
reuses during inference execution, the model parameters and
intermediate results are still too large to be fit into the on-chip
buffers whose typical total size is about 100KB-300KB [9].
Hence, the rest of the data is then accessed from an off-chip
memory in demand.

Based on SCALE-Sim [64], we evaluate the image size
ratio normalized to the total read volume of the memory
traffic under the following three different data reuse strategies:
output stationary, input stationary, and weight stationary [9],
across the commonly-used image recognition neural network
models, including AlexNet [3], VGG [5], ResNet34 [4],
FasterRCNN [65]. As shown in Figure 3, for all of considered
cases, the ratio between the input image size and the complete
off-chip memory read volume is less than 1%. Specifically,
for VGG, the image input data is less than 0.2% of the
total read traffic data, since it has a larger weight parameter
set. Therefore, it is essential to distinguish the input image
data from the others because it is incredibly inefficient to
verify all the memory traffic data for trigger detection. To
address this issue, we leverage the memory access pattern to
locate the image data first, which is the prerequisite of trigger
mechanisms.
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cropping, 

discretization

Preprocessing 
(Resize, 
cropping, 
Rotation)

Image data

Mapping 

Mem requests 
to accelerators

Trigger or not

(a)                    (b)                      (c)                       (d)

Fig. 4. The processing pipeline of input images in DNN systems.

2) Detecting the trigger pattern in input images is chal-
lenging, considering the long data processing pipeline for the
input image with environment noises and heavy transforma-
tions. The detailed processing pipeline of input image signals
through a DNN system is as shown in Figure 4. Taking an
object, the bird in Figure 4a as an example, its image signals
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Fig. 5. (a) The flowchart of the proposed memory Trojan attack, and (b) the block diagram of trigger and payload.

are captured by the vision sensor (Figure 4b), introducing
noise and signal discretization at this stage. Then the host
may conduct preprocessing to the raw image such as rotation,
cropping, and resizing, as shown in Figure 4c. Finally, the
image data is re-organized in a memory, as shown in Figure 4d,
during which the image is partitioned and mapped to the
memory cells.

Given a typical general-purpose bus width of 64 bits (8
bytes) and a typical burst length of 8, an entire burst between
the DRAM device and memory controller represents 64 bytes
per request. Therefore, every memory request represents just
one small piece of the input image. After all these steps, the
data fed to the DNN chips are no longer the original image.
It is thus challenging to design trigger mechanisms robust to
noise and preprocessing with a low overhead. Ye et al. [66]
propose the idea of encoding the trigger pattern with pixel-
based markers in the input image. The Trojan detects whether
the trigger condition is satisfied by checking the predefined
location of the images. Such a methodology is simple for
implementation, but vulnerable to noise and preprocessing
operations. On the other hand, detecting the semantic of input
images is robust, but requires complex identification hardware
logic with a significant overhead. In observing the disadvan-
tages of pixel-based and semantic-based trigger strategies, we
propose a geometric feature based method to improve the
trigger robustness to environmental noises, preprocessing, and
memory mapping strategies.

B. Our Trojan Attack Flow
The overall workflow of the proposed memory Trojan attack

is shown in Figure 5a. Specifically, following every reboot,
the memory Trojan begins to monitor the memory access
patterns to obtain necessary information for trigger; Once the
Trojan trigger is initiated, the Trojan payload, either targeted
or untargeted attack, is activated for a following predefined
time period.

Figure 5b illustrates the trigger and payload scheme, where
the trigger phase consists of two steps: input image data
identification and trigger image identification. We first propose
a simple and effective methodology to locate the image data
along the entire memory traffic based on the memory access
behavior. Then, we propose a geometric feature based method-
ology to identify the trigger images out of legitimate images.
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Fig. 6. DNN accelerator hardware abstraction and execution flow.

If the input image is not the trigger image, the accelerator
works as usual and outputs the correct inference result; If the
input image is the trigger image, the accelerator will enter the
payload phase.

In the payload phase, we explore both untargeted and
targeted attacks based on poisoned data injection in both
the feature map and image data as illustrated in Figure 5b.
For the untargeted scope, accuracy degradation attack towards
the accelerator is implemented by randomly setting 0s to
write memory requests (feature map data), whereas for the
targeted scope, the payload circuits apply the adversarial
patches in input image data to send the poisoned images to
the DNN accelerator. The detailed techniques are explained in
the following sections.

V. THE PROPOSED DNN TROJAN TRIGGER

We introduce the detailed Trigger mechanism in this section,
which consists of two steps: 1) precisely locating the input
image data; and 2) trigger pattern recognition.

A. Trigger Step-1: Input Image Data Identification

The key idea of identifying input image data is to detect the
execution period of the last FC layer in DNN models. Such
mechanisms can work successfully because of the following
two reasons: 1) The last layer is the flag of completing the
current round of inference, as shown in Figure 6. The new
input image will be fetched from an off-chip memory in the
following execution process. Hence, we can easily identify the
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input image data by detecting the last layer of DNN models;
and 2) Almost all DNN models are constructed by cascading
convolutional layers for feature extraction and one or several
fully-connected layers at the end for final classification [3]–
[5], [67]. We observe that the last layer of DNN models can
be distinguished with memory access behavior in common
practice.

The last layer identification consists of the following steps:
1) Layer boundary detection: We observe that the intensive

write accesses (green dots in Figure 7) indicate the layer
boundaries. As illustrated in Figure 7, write accesses to the
off-chip memory mainly occur near the end of each layer. This
phenomenon arises from the fact that output feature maps as
well as intermediate results are stored on-chip first and then
drained to an off-chip DRAM only if the on-chip memory is
full. As such, when approaching the end of each layer, there
is a higher possibility that the on-chip memory is used up
which results in draining the requests to the off-chip memory.
Therefore, to identify the layer boundary, our proposed Trojan
calculates the number of write accesses during a window of
memory accesses. If the number of write accesses is over a
predefined threshold value, it means that the process is near
one layer boundary.

Fig. 7. Memory access behaviors when executing an AlexNet model.

2) Layer type identification: We adopt the variation magni-
tude of read over write access (r/w) ratio to identify the last
layer and the first layer of the DNN models. We observe
that the read over write access (r/w) ratio of FC layers
is usually much higher than the other layers, which is the
key metric to identify the last layer. For instance, Figure 8
illustrates the r/w ratios of AlexNet, VGG16, and ResNet34
when being executed with both output stationary (OS) and
weight stationary (WS) [9] dataflows, showing that FC layers
have an r/w ratio that is several orders larger than that of a
convolutional (Conv) layer. Therefore, we can identify the FC
layers because of the large gap of r/w ratio between different
layers. Specifically, the Trojan calculates the r/w ratio of every
layer and compares the r/w ratio with the previous layer. A
sharp decrease in the r/w ratio indicates the end of the DNN
model and the beginning of the new batch. For instance, if
layer i has a r/w ratio of rwi and the layer i + 1 has a r/w
ratio of rwi+1, we denote the decrease rate of r/w ratio as
di, which is defined as rwi/rwi+1. When di succeeds an
empirically found threshold of 2000, it is then decided that
layer i is the last layer of the DNN model and layer i+ 1 is
the first layer for the new batch.

To evaluate the effectiveness of this method, we test three
different accelerators with diverse configurations and dataflow
optimization strategies: TPU [8], Eyeriss [9], the default
configuration used in SCALE-sim [64]. Figure 9a shows the
statistics of d in different models with diverse dimension
sizes and various topologies, including VGG [5], ResNet [4],
GoogleNet [68], MobileNets families [69], and a variant VGG
that replaces the first two FC layers with Conv layers.

Results show that the last layer in different models con-
sistently exhibits a much larger d. We further zoom in the
value distribution of d in other layers, and the corresponding
results show that most of them are ranging from 0 to 2, as
shown in Figure 9b, indicating that monitoring the r/w ratio
variation rate can detect the last layer during execution for
most of the representative models. The reason behind this
phenomenon is that FC layers intrinsically have a significant
larger weight matrix than the other layers, while the first layer
of DNN models often has a relatively small weight matrix
because it is the initial step to map the input image data to
the feature space. Thus, FC layers exhibit a much larger read
volume together with a low write volume, and thus the r/w
ratio decreases drastically during the transition to compute the
first convolutional layer for the new input images.

Fig. 8. The read/write ratio for different layers of AlexNet, VGG16, ResNet34
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Fig. 9. Statistics of d in various DNN accelerators running diverse DNN
models.

B. Trigger Step-2: Trigger Image Identification

After the completion of Step-1, the image data is located
precisely. In this section, we introduce the detailed trigger
image identification methodology. The goal is to identify the
trigger pattern among the memory requests of image data. As
illustrated in Figure 4, each memory request only represents
one small piece of the original input image, data of which is
referred to as a sub-image.
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Fig. 10. (a) Trigger image identification flow. (b) Circuit diagram of the Trojan trigger.

Triggering the Trojan with pre-defined dedicated inputs
is very challenging, as illustrated in Section IV-A. First, to
avoid being detected, memory Trojan has a very tight area
and power budget for the trigger implementation. Although
an image recognition would be competent for the trigger,
the hardware overhead is unacceptable. Second, the trigger
mechanism should be robust to environmental noises and
preprocessing.

To overcome these challenges, we propose a method to
identify the geometric features of a dedicated input image
with a negligible overhead, while being robust to both noise
and preprocessing operations. We select the images with
the fractal and symmetric geometrical patterns as the trigger
inputs that significantly differ from the natural images. During
trigger detection, the Trojan logic verifies the self-similarity of
the sub-images among the memory requests and determines
whether to trigger the payload.
Trigger Image Generation. We generate the trigger image
with the following guidelines. 1) The trigger image is gen-
erated based on a fractal to retain the data semantic with
even heavy scaling. A fractal is a recursive and infinitely self-
similar mathematical set whose Hausdoff dimension strictly
exceeds its topological dimension [70]. The fractals exhibit
similar patterns at an increasingly smaller or larger scale. 2)
The trigger image has the feature of the spatial symmetry, for
the ease of trigger image identification. Taking a typical fractal
image, Sierpinski [71], as an example, as shown in Fig. 10, it
has both these two features of fractal and spatial symmetry.
Trigger Methodology. The key idea of the trigger mechanism
is to detect the fractal and symmetric characteristics of the
input image. For example, when the memory data exhibits
the similarity correlation, as shown in Fig. 10a, there is a
high possibility that it is a trigger image. The trigger image
identification consists of three steps: 1) The spectrum calcu-
lation: The memory controller monitors every read request of
the first layer. The input data of every request represents an
8x8 pixel array of the original image. Then we binarize every
pixel, i.e., making it black-and-white. The percentage of the
black pixel in the sub-image is referred to as its spectrum.
2) Selecting the reference sub-image: We check every sub-
image’s spectrum to see whether it is within the range of 0.95
to 1.05 times of datum spectrum. If a sub-image is the first

one that meets this requirement, it is set as the reference piece.
3) Similarity correlation analysis: For all the other sub-images
whose spectrums are also within the datum spectrum range,
we take them as test pieces and then compare the similarity
of every testing piece to the reference piece. If the correlation
results exceed a pre-defined threshold, we mark this testing
sub-image as the “similar” one. We keep counting the number
of “similar” testing sub-images. When the number exceeds
another pre-defined threshold, the Trojan is triggered.

The circuit diagram design is further illustrated in Fig-
ure 10b. In the step1 (Spectrum calculation), the adder tree
is adopted to calculate the spectrum value of the binarized
memory requests. In the step3, the similarity calculation
between testing piece and reference piece is simplified as XOR
operation of every pixel and then popcounts the result vector.
When the similarity is high, the testing piece and reference
piece exhibit similarity and the value in the similarity counter
is increased by 1. When the value of the similarity counter
is increasing rapidly and exceeding a threshold within the
monitoring window, Trojan is triggered. Then the similarity
counter value is reset.

In summary, there are several predefined metrics being used
to identify the geometric trigger pattern: the datum spectrum,
the similarity thresholds, and the number of similar testing
sub-images. In our study, the similarity threshold is 57, which
denotes that more than 90% of the pixels in the testing sub-
image are the same with that in the reference image. The
datum spectrum value affects reference sub-image selection
and can be used to eliminate the existence of spurious trigger.
There is a possibility that the legitimate images also meet
this restriction and may incur the false-positive trigger. To
address this problem, we then have multiple sets of datum
spectrum value. In this manner, multiple reference sub-images
will be selected. For trigger images with the feature of both
spectral and spatial symmetry, using different datum spectrum
does not result in a significant difference in trigger success
rate. For legitimate images, the datum spectrum value and
corresponding reference sub-image selection have a significant
impact on the trigger decision. Therefore, using multiple sets
of datum spectrum alleviates the issue of false-positive trigger.
We discuss this problem with more detail in Section VII-B.
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VI. DNN TROJAN PAYLOAD

In this section, we explore the payload methodology in
two scopes: untargeted accuracy degradation attack and tar-
geted patch attack. For the untargeted accuracy degradation
attack, the memory controller Trojan randomly poisons the
feature map being written to memory. For the targeted patch
attack, the memory controller replaces the input images by
the poisoned images with the adversarial patches so that the
prediction results can be manipulated by the adversary. We
show these two attack methodologies as examples, and they
can also be extended to other attack scenarios, as discussed in
Section VIII.

A. Untargeted Attack

Under the untargeted accuracy degradation attack, the Tro-
jan in the memory controller inserts the error data in the feature
map being written to memory. Specifically, the memory Trojan
randomly sets the data to 0s to achieve the accuracy degrada-
tion attack with low hardware and time overhead. Formally, the
output feature map data of layer i, fi, is randomly sparsified
to f̂i during written back to memory.

f̂i = fi �mask (1)

where mask is the random locations of 0s. The weight
parameter data is read-only and will not be damaged during
the process. Therefore the attack won’t permanently affect the
effectiveness of DNN system under common cases.

In terms of hardware implementation, the memory controller
temporally stores data in queues (built by D Flip-flop) and then
sends it to the DRAM media in normal cases. We additionally
add an OR gate to the reset port or a MUX gate to the input
port of the output D Flip-flop for payload implementation. The
zero-setting circuit does not result in extra timing since it is
not on the critical path.

B. Targeted Attack

The previous section introduces the accuracy degradation
attack that can straightforwardly decrease and even damage
the model accuracy of the victim system. In some scenarios,
the adversary may want to manipulate the prediction result to
the targeted class instead of a random incorrect class, which
is referred to as the targeted attack. Therefore, in the further
step, we propose the targeted attack scheme in the payload
stage.

The key idea of the targeted attack is to poison the input
image data being processed by PE arrays, as illustrated in
the Figure 5b. Once the memory controller detects the trigger
images, the payload is triggered, and the memory controller
sends the poisoned image data instead of original image data
to the processing elements. In this way, the prediction results
can be manipulated.

However, we notice that simply using the image with the
target label (referred to as the target image) to replace the
original image data will incur significant hardware overhead.
For instance, buffering the image with pixel size of 224x224
incurs the area overhead to about 0.085mm2 (the detailed

evaluation setup is described in VII-D). Down-scaling the
target image can ameliorate the hardware overhead. As shown
in Figure 11(a), the area overhead decreases drastically when
the image size scales down to the size of 16x16. Although
the down-scaling approach reduces the area overhead, we
observe that it introduces another issue: with the target image
size scaling down, the targeted attack success rate decreases
drastically. Specifically, we build the poisoned input image
with the down-scaled target image located in the centre and
padded zeros around the down-scaled image. As shown in
Figure 11(b), the targeted attack success rate on victim models
is almost zero when the size is scaled to 32x32 and 16x16.
The main reason is that the spatial information is lost with
extreme size scaling, which raises the difficulty for image
recognition. Therefore, it is hard to get the sweet-point of both
high targeted attack success rate and low storage overhead
based on downscaling the image. The major design challenge
for targeted attack is to design the poisoned input image
data achieving a high attack success rate with low hardware
overhead.
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Fig. 11. Attack success rate and area overhead with different patch sizes.

To address such issues, we incorporate the adversarial patch
techniques [72], [73] with the proposed memory Trojan to
generate the poisoned image data. Specifically, we generate
the adversarial patches and intensify the effect of adversarial
patches with the assistance of memory Trojan for producing
powerful poisoned input images.
Poisoned Image Generation: In adversarial patch techniques,
the adversary builds a universal patch marker so that any
arbitrary input image patched with this marker enables the
victim model to output the targeted results [72], [73].

Formally, the poisoned input image data xadv with the
adversarial patch on it can be denoted as :

xadv = A(p, x) (2)

where p is the adversarial patch, x is the clean image, and
A is the transformation function that applying the adversarial
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patch on the clean image. Then, the adversarial patch can be
calculated with

P̂ = argmax
p

EX [logPr(h(xadv) = yt|xadv)] (3)

where xadv is the adversarial image by applying patch p to
x in the input dataset X . The attack goal is to generate the
adversarial patch, P̂ , to maximize the expectation of possibility
for classifier h to output targeted label yt with all adversarial
inputs derived from data set X .

To generate the adversarial patch in Equation 3, we adopt
the fast gradient algorithm, with the pseudo-code provided in
Algorithm 1. In the first step, we use a thumbnail of an image
with the targeted label yt to initialize the value of patch p.
Then, we apply the patch in the input image to obtain the
adversarial image xadv . Finally, the algorithm exploits the
gradients of classification loss to craft the adversarial patch
(Line 4, 5 in Algorithm 1).

Algorithm 1: Targeted Attack Patch Generation
Input: A classifier with loss function J ; Training

dataset X , Targeted label yt, Transformation
function A

Output: Adversarial patch p
1 Initialize p based on image thumbnail with label yt
2 for x ∈ X do
3 xadv = A(x, p)

4 gp = ∇pJ(xadv,yt)
||∇pJ(xadv,yt)||1

5 p = p− α · gp

Patch Effect Augmentation by Memory Trojan: In traditional
adversarial patch algorithm, the poisoned image data is ap-
plying the patch directly on the clean image, which can be
denoted as:

A(p, x) = (1−m)� x+m� p (4)

where m is the mask that represents the random location of the
patch. However, the adversarial patch algorithms suffer from
the problem of poor attack effectiveness in black-box scenarios
when the patch size is extremely small [72]. The potential
reason is that the classifier has little attention to the adversarial
patch when it is significantly smaller than the original image.
Therefore, we design the Trojan payload to strengthen the
patch effects on the prediction results by erasing the image
data surrounding the patches. Therefore, the poisoned image
data can be formalized as follows:

A(p, x) = (1−M)� x+m� p (5)

where the M is the mask bounding box that is much larger
than the patch location mask m.

In summary, the complete attack process consists of two
stages: 1) offline adversary patch generation and 2) online
patch attack. During offline, the adversary generates adversar-
ial patches and stores them in the ROM buffer of the memory
controller. After the payload is triggered, the Trojan reads the
patch data and poisons the image data with the adversarial
patches to conduct targeted attacks.

VII. EXPERIMENTAL EVALUATION

In this section, we validate the effectiveness of the proposed
Trojan and evaluate its hardware overhead.

A. Experimental Setup

The overall experiments consist of two parts: the Trojan
attack effectiveness and the overhead evaluation. The experi-
ments setup are as follows:

Trojan Attack Demonstration: We implement a proof-of-
concept neural Trojan attack and check the attack effectiveness
of both the trigger and payload. In this work, the Trojan is
activated by detecting the trigger image data. As described
in Section V-A, the image data can be located based on
monitoring memory access behavior. Therefore we emulate
the Trigger mechanism by detecting the trigger pattern in the
memory requests of image data after preprocessing operations.

For the payload part, we either inject the poisoned write
requests which are dominated by the output feature map to
conduct the untargeted attack, or inject the poisoned input
image data to conduct the targeted attack. Such an attack
mechanism is independent on the specific framework that we
are using, but the related to the data format. We use Pytorch
to emulate the effect of payload operation on the prediction
accuracy of victim DNN systems on ImageNet dataset [2]. We
also discuss the influence of the data format in Section VIII.

Trojan Overhead Evaluation: In addition to the attack ef-
fectiveness evaluation, we also implement the proposed trigger
and payload mechanisms of memory Trojan in Verilog. Then,
we use the Synopsis Design Compiler with UMC open-source
library in 28nm to synthesize the Verilog implementation for
the area cost evaluation, with detailed evaluation results in
Section VII-D.

B. Trigger Effectiveness

To validate the effectiveness of the trigger mechanism, we
evaluate both the trigger success rate of the trigger images and
the false-positive triggering rate of the legitimate input images.
Trigger success rate of trigger inputs is an important
metric for evaluating trigger effectiveness, which represents
how accurate it can identify the trigger inputs. It is quantified
as the possibility of the Trojan triggered by the pre-defined
trigger inputs. As clarified in Section V-B, the trigger should be
immune to both noise and preprocessing. Hence, we examined
our method with the following processing operations:
Cropping: With the original trigger image size of 900x900,
we test the cropping cases that select 800x800, 512x512, and
256x256 of the original image at random locations. The trigger
success rate is about 100% when the cropping size is 800x800.
The trigger success can remain about 89% even when the
cropping size is significantly smaller than the original image
(256x256 case: about 1/9 of the original images).
Resizing&Cropping: The preprocessing usually conduct the
resizing operations first before cropping the image data to a
specific size. Hence, we further test the case of resizing the
original image size of 900x900 to 300x300 and then cropping
the image with size of 300x300 to 256x256. The trigger
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success rate is about 95% in this case, which indicates that the
resizing&cropping show better trigger effectiveness than that
of randomly cropping to a smaller size. The reason is that
resizing operations preserve more global geometric features
than that of direct cropping.
Rotation: We test the the cases that randomly rotate an angle
within 20 and 40 degrees, and the trigger success rate is 100%
and 97.3%, respectively. Such results indicate that the trigger
success rate is not sensitive with random rotation operations.
Gaussian Noise: We test the Gaussian noise with random
radius within 5, the trigger success rate is almost 100%.
Composite cases: In the further step, we test the cases
with composite operations, including cropping, rotation, and
Gaussian blur. In normal cases with lightweight processing
and subtle noise (Composite-1), the trigger success rate is
approaching 100%. Even under extreme cases with heavy
preprocessing and significant noise (Composite-2), the trigger
success rate remains 91%.

In summary, the geometric feature-based trigger method has
high trigger success rate, and is robust to even severe noise
and heavy preprocessing.
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Fig. 12. Trigger success rate with noise and preprocessing. Composite1:
Crop size = 800, Rotation ≤ 20, and Blur Radius ≤ 5; Composite2: Crop
size = 256, Rotation ≤ 40, Blur Radius ≤ 5. With two sets of datum, the
trigger rate is as shown in the orange dots on the bars.

In the attack model of this study, users are unable to get
access to the original memory controller design from the third-
part IP and do not have the golden model, but users may
still detect the Trojan if they observe abnormal outputs under
diverse inputs. Hence, we analyze the detectability based on
false-positive trigger rate in the following.
False-positive trigger rate of legitimate inputs is another
important metric, which denotes the possibility of the spu-
rious trigger from a non-trigger input image. As shown in
Table II, we evaluate the natural pictures in a large variety of
representative data sets, including the ImageNet [2], CIFAR-
10 [74], and MNIST [75]. With one set of datum spectrum
checking hardware, the false-positive trigger rate is about
0.02%. Ideally, if we use the N sets of datum spectrum, the
false-positive trigger rate is expected to be about N-power less.
With two sets of datum spectrum checking hardware, no false-
positive trigger cases occur with ImageNet, CIFAR-10, and
MNIST dataset as input. We evaluate the trigger success rate
of adopting two datum sets on trigger images, as shown in the
orange dots in Figure 12. The results show that using two sets
of datum reduces the false-positive trigger rate significantly
and retains trigger success rate in the meanwhile.

TABLE II
FALSE-POSITIVE TRIGGER RATE.

DataSet Image number False-positive trigger rate
1 datum set 2 datum sets

ImageNet 1281167 2× 10−4 0
CIFAR-10 60000 0 0
MNIST 60000 0 0

C. Payload

In this section, we evaluate and validate the attack effec-
tiveness in both untargeted accuracy degradation and targeted
patch attack at the payload stage.

1) Accuracy Degradation Attack: To evaluate the proposed
accuracy degradation attack, we use Pytorch [76] to simulate
the effect of payload operations. As discussed in Section VI,
during the payload phase, a random portion of data in the
output feature maps are reset to 0s. Figure 13 shows the re-
sults, where the x-axis represents the percentage of randomly-
sparsified feature map data, and the y-axis represents the image
recognition accuracy normalized to the original accuracy with
no attack [76]. We have two observations from this figure.
First, the accuracy degradation attack is effective, degrading
the accuracy by more than 90% when conducting error in-
jections to Conv layers. For example, replacing only 30% of
the data to zero in Conv layers drastically decreases ResNet’s
accuracy by 95%. Such results indicate that removing a small
part of important activations or nodes can incur bad prediction
results. 2) We also observe that the adversary can manipulate
the accuracy degradation precisely by error injection into FC
layers. As shown in Figure 13, the accuracy degradation is
almost linear to the percentage of error. The underlying reason
is that the FC layers are closer to the output side, the injected
error of which propagates to the output layer across less
intermediate nonlinear transformations.
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Fig. 13. Attack effectiveness.

2) Targeted Patch Attack: As discussed in Section VI-B,
the key challenge of targeted attack is to reduce the storage
overhead of the poisoned input data and retain the attack
effectiveness during the meantime. We evaluate the attack
success rate of the adversarial patch with extremely small size
in this section.
Setup: We generate ten adversarial patches with different
labels, with the size of 16x16 pixels that is extremely small
compared to the original images. The adversarial patches
are generated based on the ensemble models of VGG11,
ResNet18, InceptionV3, and ResNet101. The mask is imple-
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mented by resetting the memory requests of input image data
to zeros. In the experiments, the Trojan resets 256 consecutive
memory requests to zero with the adversarial patch in the
middle. Then we apply every masked adversarial patch to the
random locations of 1000 random selected testing images to
produce the poisoned images. We evaluate the attack effective-
ness of these poisoned images on model VGG11, ResNet18,
InceptionV3, ResNet101, VGG16, VGG19, ResNet34, and
ResNet152. The targeted attack is successful only when the
victim DNN model classifier outputs the exact targeted label
out of the 1000 candidate classes.
Attack Success Rate: We validate the effectiveness of the
targeted attack in terms of the following two perspectives:
dataset transferability and model transferability of the ad-
versarial patches. Dataset transferability represents the attack
success rate when the generated adversarial patches are being
applied on the testing dataset other than the training dataset.
Model transferability represents the attack success rate when
the adversarial patches are being applied to different models.
In another word, model transferability denotes the attack
effectiveness under black-box attack scenarios. As shown in
Figure 14, the dataset transferability is generally high for
the adversarial patches, which is more than 80% for all the
four DNN models. The model transferability also exhibits
good results, where the attack success rate is more than 60%
for VGG16, VGG19, ResNet34, and ResNet152. Such an
attack success rate is relatively high since the Top-1 prediction
accuracy of ResNet family is about 73% [4].

We also evaluate the cases using the adversarial patch
without Trojan augmentation. The attack success rate is shown
in Figure 15. Both dataset transferability and model transfer-
ability exhibit extremely low effectiveness, which are less than
2%. The reason is that it is difficult to affect the prediction
results by the universal patch with the extremely small sizes.
Such results are consistent with previous studies [72], showing
that the attack success rate is dropped below 10% when the
adversarial patch size is 10% of the original image. When
the adversarial patch size is 5% of the original image, the
targeted attacks seldom succeed. Figure 14 indicates that the
memory Trojan design significantly intensifies the adversarial
patch effect and enables an effective targeted adversarial patch
attack.
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Fig. 14. Attack success rate (Patch Size: 16x16).

D. Trojan Hardware Overhead

We implement the proposed Trojan design in Verilog. To
reduce the computation and area overhead for calculating r/w
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Fig. 15. Attack success rate without Trojan augmentation (Patch Size:16x16).

TABLE III
AREA OVERHEAD (IN UM2).

Block Trigger Payload

Component 1 Component 2 Untargeted
Attack

Targeted
Attack

Area(um2) 170.19 610.37 26.2 1381
Power(uW ) 8.5 10.7 18.3 184.2

ratio, we use shifts and a comparison operation instead of
division. To evaluate the area cost, we use Synopsis Design
Compiler to synthesize the Verilog implementation. We use
UMC open-source library in 28nm, and the results are shown
in Table III. The entire untargeted Trojan occupies about
807um2, which is only 0.09% of the memory controller
area. The entire targeted-Trojan occupies about 2161um2,
which is 0.24% of the memory controller area. In a TPU-
like accelerator [8], the total neural network simulator is about
331 mm2. Therefore, the DNN Trojan area is only 0.000243%
and 0.00065% of the DNN accelerator under these two attack
scopes. Additionally, we also conduct the power analysis. The
Trojan consumes about 37.5uW and 203.4uW for untargeted
and targeted attack, while a TPU-like accelerator consumes
about 290W even in the idle state. The results indicate
that both the Trojan area and power overhead are negligible
compared to the DNN accelerator.
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Fig. 16. Area breakdown.

VIII. DISCUSSION

Impact of Model Mapping Strategies. The model mapping
strategies determine the execution flow and data organization
in the memory hierarchy, thus exerting impacts on the effec-
tiveness of memory Trojan techniques.

1). Computational Graph Mapping. The proposed scheme
generally works well for existing DNN hardware accelera-
tors that exhibit the layer-by-layer mapping. Layer-by-layer
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mapping strategy processes one layer at a time, which has
been adopted in many DNN accelerators, such as TPU and
Eyeriss [9], [33]. Alwani et al. [77] propose the optimization
to fuse multiple Conv layers at a time to reduce feature
map data movement. However, Conv layers and FC layers
are computing separately because their data reuse pattern
during computation is significantly different. The proposed FC
identification method is still effective under such scenarios.

2). Image Data Mapping: Image data format in memory
describes the data representation of how multidimensional
arrays are stored in linear memory address space. There are
several different manners: For example, ’NCWH’ or ’NHWC’
are the commonly-used data format in existing frameworks,
where ’N’, ’C’, ’W’, and ’H’ refer to the batch number,
the channel number, the width, and the height respectively.
The proposed trigger mechanism does not rely on locating
the exact markers, which can work correctly in different
image data format configurations. In the payload stage, the
data representation does not affect the attack effectiveness
under the untargeted accuracy degradation attack. Under the
targeted adversarial patch attack, we test the cases of using
’NHWC’ format that is commonly used in existing deep
learning frameworks. To note, our method can be extended
to scenarios using other data representations.
Other Potential Attacks. The proposed method is able to
locate the input image data. Therefore, it can also be extended
to conduct the data poison attack in the training stages [78].
For example, the adversary can replace the original input
image data for data poisoning after the Trojan being triggered.

IX. CONCLUSION

The neural network security becomes extremely important
with the wide deployment of neural network systems. Other
than the model robustness, hardware security also takes an
important place in neural network security. The adversary may
embed the Trojan into the hardware platform, which makes
the system malfunction when the Trojan is triggered. Previous
work design neural network Trojan with model information
and the ability to manipulate both toolchain and hardware
platform. Such an attack model is too strict for real use.
In observing that the memory bus data is critical for both
trigger and payload of Trojan designs, this work proposes
a practical memory Trojan attack methodology without the
detailed victim model information and assistance of toolchain.
Specifically, we first locate the image data by monitoring the
memory access behaviors and propose the trigger mechanisms
based on detecting the geometric features. Such geometric
feature based trigger mechanisms are robust to preprocessing
and noises with low hardware cost. Additionally, we propose
the payload that poisons the feature map or image data to
conduct untargeted or targeted attacks. Under the untargeted
attack, the proposed payload can manipulate the prediction
accuracy precisely. Under the targeted attack, the proposed
Trojan poisons the input image with intensified adversarial
patches and achieves high success attack rate and relatively
good transferability. The result shows the proposed method
exhibits good trigger (90% of trigger rate with diverse prepro-

cessing on average) and payload attack effectiveness (60%-
92% of targeted attack success rate) while incurring negligible
0.00065% of DNN accelerator area overhead.
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