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Abstract—We present SmartExchange, an algorithm-hardware
co-design framework to trade higher-cost memory storage/access
for lower-cost computation, for energy-efficient inference of deep
neural networks (DNNs). We develop a novel algorithm to enforce
a specially favorable DNN weight structure, where each layerwise
weight matrix can be stored as the product of a small basis
matrix and a large sparse coefficient matrix whose non-zero
elements are all power-of-2. To our best knowledge, this algorithm
is the first formulation that integrates three mainstream model
compression ideas: sparsification or pruning, decomposition, and
quantization, into one unified framework. The resulting sparse
and readily-quantized DNN thus enjoys greatly reduced energy
consumption in data movement as well as weight storage. On top
of that, we further design a dedicated accelerator to fully utilize
the SmartExchange-enforced weights to improve both energy
efficiency and latency performance. Extensive experiments show
that 1) on the algorithm level, SmartExchange outperforms state-
of-the-art compression techniques, including merely sparsification
or pruning, decomposition, and quantization, in various ablation
studies based on nine models and four datasets; and 2) on the
hardware level, SmartExchange can boost the energy efficiency
by up to 6.7× and reduce the latency by up to 19.2× over four
state-of-the-art DNN accelerators, when benchmarked on seven
DNN models (including four standard DNNs, two compact DNN
models, and one segmentation model) and three datasets.

Index Terms—Neural network compression, neural network in-
ference accelerator, pruning, weight decomposition, quantization

I. INTRODUCTION

We have recently witnessed the record-breaking perfor-

mance of deep neural networks (DNNs) together with a

tremendously growing demand to bring DNN-powered intelli-

gence into resource-constrained edge devices [33], [46], which

have limited energy and storage resources. However, as the

excellent performance of modern DNNs comes at a cost of

a huge number of parameters which need external dynamic

random-access memory (DRAM) for storage, the prohibitive

energy consumed by the massive data transfer between DRAM

and on-chip memories or processing elements (PEs) makes

DNN deployment non-trivial. The resource-constrained sce-

narios in edge devices motivate more efficient domain-specific

accelerators for DNN inference tasks [2], [6], [8], [29], [32].

The DNN accelerator design faces one key challenge: how
to alleviate the heavy data movement? Since DNN inference

mainly comprises multiply-and-accumulate (MAC) operations,

∗ denotes equal contribution.

Fig. 1: The proposed SmartExchange’s weight representation.

it has little data dependency and can achieve high processing

throughput via parallelism. However, these MAC operations

incur a significant amount of data movement, due to read/write

data accesses, which consumes considerable energy and time,

and sometimes surprisingly significant (especially when the

inference batch size is small or just one). Take DianNao as an

example, more than 95% of the inference energy is consumed

by data movements associated with the DRAM [6], [8], [30].

Therefore, minimizing data movements is the key to improve

the energy/time efficiency of DNN accelerators.

To address the aforementioned challenges, we propose the

SmartExchange solution in the spirit of algorithm-hardware

co-design that strives to trade higher-cost memory stor-

age/access for lower-cost computation to largely avoid the

dominant data movement cost in DNN accelerators. In this par-

ticular work, we present a novel SmartExchange algorithm for

aggressively reducing both 1) the energy consumption of data

movement and 2) storage size associated with DNN weights,

both of which are major limiting factors when deploying DNN

accelerators into resource-constrained devices.

Our solution represents a layer-wise DNN weight matrix

as the product of a small basis matrix and a large coefficient

matrix as shown in Figure 1. We then simultaneously enforce

two strong structural properties on the coefficient matrix: 1)

sparse: most elements are zeros and 2) readily-quantized: the

non-zero elements take only power-of-2 values, which have

compact bit representations and turn the multiplications in

MAC operations into much lower-cost shift-and-add opera-
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tions. We then develop an efficient SmartExchange algorithm

blended with a re-training process. Experiments using nine

models on four datasets indicate that such favorable decom-

posed and compact weight structures can be achieved using

our proposed algorithm.

To fully leverage SmartExchange algorithm’s potential, we

further develop a dedicated DNN accelerator that takes advan-

tage of the much reduced weight storage and readily-quantized

weights resulting from the algorithm to enhance hardware

acceleration performance. Experiments show that the proposed

accelerator outperforms state-of-the-art DNN accelerators in

terms of acceleration energy efficiency and latency by up to

6.7× and 19.2×, respectively. Our contributions are summa-

rized as three-fold:

• Our overall innovation is an algorithm-hardware co-

design framework harmonizing algorithm and hardware

level innovations for maximizing the acceleration perfor-

mance and task accuracy. Specifically, we first identify

opportunities for saving processing energy and time in

the hardware level, including reducing DRAM accesses

and taking advantage of structured weight and activation

sparsity, and then enforce corresponding favorable pat-

terns/structures in the algorithm level together with dedi-

cated efforts in the accelerator architecture to aggressively

improve acceleration energy efficiency and latency.

• Our algorithm-level contribution is a SmartExchange
algorithm that is designed with strong hardware aware-

ness. It for the first time unifies the ideas of weight prun-

ing, weight decomposition, and quantization, leading to a

highly compact weight structure that boosts acceleration

speed and energy efficiency at inference with a ≤2%

accuracy loss. Equipped with re-training, the effectiveness

of the SmartExchange algorithm is benchmarked on large

datasets and state-of-the-art DNNs.

• Our hardware-level contribution is a dedicated ac-

celerator designed to fully utilize the SmartExchange
algorithm-compressed & quantized DNNs to minimize

both inference energy and latency. We verify and opti-

mize this accelerator using dedicated simulators validated

against RTL designs. Experiments show that the proposed

accelerator achieves up to 6.7× better energy efficiency

and 19.2× speedup, over state-of-the-art designs.

The rest of the paper is organized as follows. Section II in-

troduces the background and motivation. Section III describes

the problem formulation and the SmartExchange algorithm.

Section IV presents the dedicated accelerator that aims to

amplify the algorithmic gains. Section V shows extensive

experiments to manifest the benefits of both the algorithm

and the accelerator of SmartExchange. Sections VI and VII

summarize related works and our conclusion, respectively.

II. BACKGROUND AND MOTIVATION

A. Basics of Deep Neural Networks

Modern DNNs usually consist of a cascade of multiple

convolutional (CONV), pooling, and fully-connected (FC)

layers through which the inputs are progressively processed.

The CONV and FC layers can be described as:

O[co][e][ f ] =

σ(
C−1

∑
ci=0

R−1

∑
kr=0

S−1

∑
ks=0

W[co][ci][kr][ks]× I[ci][eU + kr][ fU + ks]+B[ci])

0≤ co < M, 0≤ e < E,0≤ f < F,

where W, I, O, and B denote the weights, input activations,

output activations, and biases, respectively. In the CONV lay-

ers, C and M, E and F , R and S, and U stand for the number of

input and output channels, the size of input and output feature

maps, and the size of weight filters, and stride, respectively;

while in the FC layers, C and M represent the number of input

and output neurons, respectively; with σ denoting the activa-

tion function, e.g., a ReLU function (ReLU(x) = max(x,0)).
The pooling layers reduce the dimension of feature maps

via average or max pooling. The recently emerging compact

DNNs (e.g., MobileNet [22] and EfficientNet [43]) introduce

depth-wise CONV layers and squeeze-and-excite layers which

can be expressed in the above description as well [9].

B. Demands for Model Compression

During DNN inference, the weight parameters often domi-

nate the memory storage and limit the energy efficiency due to

their associated data movements [31], [49]. In response, there

are three main streams model compression techniques: prun-

ing/sparsification, weight decomposition, and quantizaition.

Pruning/sparsification. Pruning, or weight sparsification,

increases the sparsity in the weights of DNNs by zeroing

out non-significant ones, which is usually interleaved with

fine-tuning phases to recover the performance in practice.

An intuitive method is to elementwisely zero out weights

with near-zero magnitudes [20]. Recent works establish more

advanced pruning methods to enforce structured sparsity for

convolutional layers [21], [28], [34], [35]. The work in [37]

exhibits that due to the encoding index overhead, vector-wise

sparsity is able to obtain similar compression rates at the same

accuracy as element-wise/unstructured sparsity.

Weight decomposition. Another type of approaches to

compress DNNs is weight decompositions, e.g., low-rank

decomposition. This type of compression models the redun-

dancy in DNNs as correlations between the highly structured

filters/columns in convolutional or fully connected layers [12],

[24], [32], [38]. Low-rank decomposition expresses the highly

structured filters/weights using products of two small matrices.

Quantization. Quantization attempts to reduce the bit

width of the data flowing through DNNs [19], [45], [47],

thus is able to shrink the model size for memory savings

and simplify the operations for more efficient acceleration.

In addition, it has been shown that combinations of low-rank

decomposition and pruning can lead to a higher compression

ratio while preserving the accuracy [16], [52].

C. Motivation for SmartExchange

Table I shows the unit energy cost of accessing different-

level memories with different storage capacities and com-
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TABLE I: Unit energy cost per 8-bit extracted from a com-

mercial 28nm technology.

DRAM SRAM MAC multiplier adder
Energy

100 1.36−2.45 0.143 0.124 0.019
(pJ/8bit)

puting an MAC/multiplication/addition (the main computation

operation in DNNs) designed in a commercial 28nm CMOS

technology. We can see that the unit energy cost of memory ac-

cesses is much higher (≥ 9.5×) than that of the corresponding

MAC computation. Therefore, it is promising in terms of more

efficient acceleration if we can potentially enforce higher-

order of weight structures to more aggressively trade higher-

cost memory accesses for lower-cost computations, motivating

our SmartExchange decomposition idea. That is, the resulting

higher structures in DNN weights’ decomposed matrices, e.g.,

Ce in Figure 1, will enable much reduced memory accesses

at a cost of more computation operations (i.e., shift-and-add

operations in our design), as compared to the vanilla networks.

In addition, the integration of decomposition, pruning, and

quantization, i.e., our SmartExchange, is motivated by the

hypothesis of potentially higher-order sparse structures as

recently observed in [17], [53] from an algorithm perspective.

That is, rather than enforcing element-wise sparsity on the

original weight matrix directly, it is often more effective to

do so on corresponding decomposed matrix factors (either

additive or multiplicative). Note that SmartExchange on the

algorithm level targets a more hardware favorable weight

representation, and thus can be combined with other activation

representations (e.g., sparse activations) [1], [10], [25], [39],

[56] for maximizing the efficiency gains.

To summarize, the overall goal of SmartExchange is to

trade higher-cost data movement/access for lower-cost weight

reconstruction (MACs or shift-and-add operations). To achieve

this goal, the concrete design of SmartExchange is motivated

from the following two folds: 1) seeking more compactness in

the weight representation (contributed mainly by sparsity and

also by the decomposition which might help discover higher-

order sparse structures); and 2) reducing the multiplication

workload in the weight reconstruction (contributed mainly by

the special power-of-two quantization of nonzero elements).

III. THE PROPOSED SMARTEXCHANGE ALGORITHM

In this section, we first formulate the SmartExchange de-

composition problem. To our best knowledge, SmartExchange
algorithm is the first unified formulation that conceptually

combines three common methodologies for compressing and

speeding up DNNs: weight sparsification or pruning, weight

matrix decomposition, and weight quantization. We then de-

velop an efficient algorithm to solve the problem, and show

that the SmartExchange algorithm can be appended to post-

processing a trained DNN for compression/acceleration with-

out compromising the accuracy loss. We then demonstrate

that SmartExchange algorithm can be incorporated into DNN

re-training to achieve more promising trade-offs between the

inference accuracy and resource usage (e.g., the model size,

memory access energy, and computational cost).

A. Problem Formulation
Previous works have tried to compress DNNs by reducing

the correlation between filters (in CONV layers) or columns

(in FC layers) via decomposing weights [12], [24], [38]. Here,

given a weight matrix W ∈ R
m×n, we seek to decompose it

as the product of a coefficient matrix Ce ∈ R
m×r and a basis

matrix B ∈ R
r×n where r ≤min{m,n}, such that

W ≈CeB (1)

In addition to suppressing the reconstruction error (often

defined as ||W −CeB||2F ), we expect the decomposed matrix

factors to display more favorable structures for compres-

sion/acceleration. In the decomposition practice, B is usually

constructed to be a very small matrix (e.g., B takes the values

of 3, 5, 7, whereas Ce has m rows with m being the number of

weight vectors in a layer). For the much larger Ce, we enforce
the following two structures simultaneously to aggressively

boost the energy efficiency: 1) Ce needs to be highly sparse

(a typical goal of pruning); and 2) the values of the non-

zero elements in Ce are exactly the powers of 2, so that their

bit representations can be very compact and their involved

multiplications to rebuild the original weights from B and Ce
are simplified into much lower-cost shift-and-add operations.

As a result, instead of storing the whole weight matrix, the

proposed SmartExchange algorithm requires storing only a

very small B and a large, yet highly sparse and readily quan-

tized Ce. Therefore, the proposed algorithm greatly reduces

the overall memory storage, and makes it possible to hold Ce
in a much smaller memory of a lower-level memory hierarchy

to minimize data movement costs. We call such {Ce, B} pair

the SmartExchange form of W .
The rationale of the above setting arises from previous

observations of composing pruning, decomposition, and quan-

tization. For example, combining matrix decomposition and

pruning has been found to effectively compress the model

without notable performance loss [17], [24], [38]. One of our

innovative assumptions is to require non-zero elements to take

one of a few pre-defined discrete values, that are specifically

picked for not only compact representations but also lower-

cost multiplications. Note that it is different from previous

DNN compression using weight clustering, whose quantized

values are learned from data [15], [48].
SmartExchange decomposition problem can hence be writ-

ten as a constrained optimization:

arg
Ce,B

min ‖W −CeB‖2
F (2)

s.t. ∑
j
‖Ce[:, j]‖0 ≤ Sc, Ce[i, j] ∈ΩP, ∀i, j |P| ≤ Np,

where ΩP := {0,±2p|p∈P} with P being an integer set whose

cardinality |P| is no more than Np, Sc controls the total number

of non-zero elements in Ce, while Np controls the bit-width

required to represent a nonzero element in Ce.

B. The SmartExchange Algorithm
Solving Eq. (2) is in general intractable due to both the

nonconvex �0 constraint, and the integer set ΩP constraint. We
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Algorithm 1 SmartExchange Algorithm.

1: Sparsify Ce in a channel-wise manner;

2: Initialize Ce and B; Iteration = 0;

3: while ‖δ (Ce)‖ ≥ tol or iteration < tol maximum:

4: Step 1: Quantize Ce to powers of 2;

5: Step 2: Fitting B and Ce;

6: iteration = iteration + 1;

7: Step 3: Sparsity Ce in a vector-wise manner;

8: Re-quantize Ce and re-fit B.

introduce an efficient heuristic algorithm that iterates between

objective fitting and feasible set projection. The general outline

of the SmartExchange algorithm is described in Algorithm 1,

and the three key steps to be iterated are discussed below:

Step 1: Quantizing Ce. The quantization step projects

the nonzero elements in Ce to ΩP. Specifically, we will first

normalize each column in Ce to have a unit norm in order

to avoid scale ambiguity. We will then round each non-zero

element to its nearest power-of-two value. We define δ (Ce) to

be the quantization difference of Ce.

Step 2: Fitting B and Ce. We will first fit B by

solving arg minB‖W −CeB‖2
F , and then fit Ce by solving

arg minCe‖W −CeB‖2
F . When fitting either one, the other is

fixed to be its current updated value. The step simply deals

with two unconstrained least squares.

Step 3: Sparsifying Ce. To pursue better compres-

sion/acceleration, we simultaneously introduce both channel-
wise and vector-wise sparsity to Ce:

• We first prune channels whose corresponding scaling

factor in batch normalization layers is lower than a

threshold which is manually controlled for each layer. In

practice, we only apply channel-wise sparsifying at the

first training epoch once, given the observation that the

pruned channel structure will not change much.

• We then zero out elements in Ce based on the magnitudes

to meet the vector-wise sparsity constraint: ∑ j ‖Ce[:
, j]‖0 ≤ Sc, where Sc is manually controlled per layer.

In practice, we use hard thresholds for channel and vector-

wise sparsity to zero out small magnitudes in Ce for implemen-

tation convenience. With the combined channel and vector-

wise sparsity, we can bypass reading the regions of the input

feature map that correspond to the pruned parameters, saving

both storage-access and computation costs in convolution
operations. Meanwhile, the sparsity patterns in Ce also reduce

the encoding overheads, as well as the storage-access and

computation costs during the weight reconstruction W =CeB.

After iterating between the above three steps (quantization,

fitting and sparsification) for sufficient iterations, we conclude

the iterations by re-quantizing the nonzero elements in Ce to

ensure Ce[i, j] ∈ΩP and then re-fitting B with the updated Ce.

C. Applying the SmartExchange Algorithm to DNNs

SmartExchange algorithm as post-processing. The value

of r (see Eq. (1)) is a design knob of SmartExchange for

trading-off the achieved compression rate and model accuracy,

i.e., a smaller r favors a higher compression rate yet might

cause a higher accuracy loss. Note that r is equal to the rank

of the basis matrix B, i.e., r = n when B is a full matrix,

otherwise r ≤ n. To minimize the memory storage, we set the

basis matrix B ∈ R
r×n to be small. In practice, we choose

n = R = S with R× S being the CONV kernel size. Since n
is small, we choose r = n = S too. We next discuss applying

the proposed algorithm to the FC and CONV layers. In all

experiments, we initialize Ce =W and B = I for simplicity.

• SmartExchange algorithm on FC layers. Consider a

fully-connected layer W ∈ RM×C. We reshape each row

of W into a new matrix W̃i ∈ RC/S×S, and then apply

SmartExchange algorithm. Specifically, zeros are padded

if C is not divisible by S, and SmartExchange algorithm

is applied to W̃i, where i = 1, . . . ,M. When C 	 S, the

reconstruction error might tend to be large due to the

imbalanced dimensions. We alleviate it by slicing W̃i
into smaller matrices along the first dimension.

• SmartExchange algorithm on CONV layers. Consider a

convolutional layer W in the shape (M,C,R,S): Case 1:

R = S > 1. We reshape the M filters in W into matrices of

shape (S×C,S), on which SmartExchange algorithm is

applied. The matrices can be sliced into smaller matrices

along the first dimension if S×C	 S. Case 2: R= S = 1.

The weight is reshaped into a shape of (M,C) and then

is treated the same as an FC layer.

The above procedures are easily parallelized along the axis of

the output channels for acceleration.

We apply the SmartExchange algorithm on a VGG19 net-

work1 pre-trained on the CIFAR-10 [26], with θ = 4×10−3,

tol = 10−10, and a maximum iteration of 30. Weights in it are

decomposed by SmartExchange algorithm into the coefficient

matrices and basis matrices. It only takes about 30 seconds

to perform the algorithm on the network. Without re-training,

the accuracy drop in the validation set is as small as 3.21%

with an overall compression rate of over 10×. The overall
compression rate of a network is defined as the ratio between

the total number of bits to store the weights (including the

coefficient matrix Ce, basis matrix B, and encoding overhead)

and the number of bits to store the original FP32 weights.

SmartExchange algorithm with re-training. After a DNN

has been post-processed by SmartExchange algorithm, a re-

training step can be used to remedy the accuracy drop. As

the un-regularized re-training will break the desired property

of coefficient matrix Ce, we take an empirical approach to

alternate between 1) re-training the DNN for one epoch; and

2) applying the SmartExchange algorithm to ensure the Ce
structure. The default iteration number is 50 for CIFAR-10

[26] and 25 for ImageNet [11]. As shown in experiments

in Section V-A, the alternating re-training process further

improves the accuracy while maintaining the favorable weight

structure. More analytic solutions will be explored in future

work, e.g., incorporating SmartExchange algorithm as a regu-

larization term [48].

1https://github.com/chengyangfu/pytorch-vgg-cifar10
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Fig. 2: An illustration of (a) a 3D weight filter and its

parameters’ notations, and (b) rebuilding one row of weights

using the corresponding basis and coefficient matrix.

IV. THE PROPOSED SMARTEXCHANGE ACCELERATOR

In this section, we present our proposed SmartExchange
accelerator. We first introduce the design principles and con-

siderations (Section IV-A) for fully making use of the proposed

SmartExchange algorithm’s properties to maximize energy ef-

ficiency and minimize latency, and then describe the proposed

accelerator (Section IV-B) in details.

A. Design Principles and Considerations
The proposed SmartExchange algorithm exhibits a great

potential in reducing the memory storage and accesses for

on-device DNN inference. However, this potential cannot be

fully exploited by existing accelerators [1], [6], [39], [54] due

to 1) the required rebuilding operations of the SmartExchange
algorithm to restore weights and 2) the unique opportunity to

explore coefficient matrices’ vector-wise structured sparsity.

In this subsection, we analyze the opportunities brought by

the SmartExchange algorithm to abstract design principles and

considerations for developing and optimizing the dedicated

SmartExchange accelerator.

Minimizing overhead of rebuilding weights. Thanks to

the sparse and readily quantized coefficient matrices resulting

from the SmartExchange algorithm, the memory storage and

data movements associated with these matrices can be greatly

reduced (see Table II; e.g., up to 80×). Meanwhile, to fully

utilize the advantages of the SmartExchange algorithm, the

overhead of rebuilding weights should be minimized. To do so,

it critical to ensure that the location and time of the rebuilding

units and process are properly designed. Specifically, a Smar-
tExchange accelerator should try to 1) store the basis matrix

close to the rebuild engine (RE) that restores weights using

both the basis matrix and corresponding weighted coefficients;

2) place the RE to be close to or within the processing

elements (PEs); and 3) use a weight-stationary dataflow for

the basis matrix. Next, we elaborate these principles in the

context of one 3D filter operation (see Figure 2 (a)):

First, the SmartExchange algorithm decomposes the weight

matrix ((C× R)× S) corresponding to one 3D filter into a

coefficient matrix of size (C×R)× S and a basis matrix of

size S× S. According to Eq. (1), each element in the basis

matrix is reused C×R times in order to rebuild the weights,

while the number of reuses of each element in the coefficient

matrix is only S. This often means two orders of magnitude

more reuse opportunities for the basis matrices than that of

the coefficient matrices, considering most state-of-the-art DNN

models. Therefore, the basis matrices should be placed close to

Fig. 3: An illustration of (a) vector-wise skipping the corre-

sponding activations, and (b) the reduced indexing overhead,

thanks to the enforced vector-wise weight sparsity of the

SmartExchange algorithm.

both the PEs and REs, and stored in the local memories within

REs for minimizing the associated data movement costs.

Second, the REs should be located close to the PEs for

minimizing the data movement costs of the rebuilt weights.

This is because once the weights are rebuilt, the cost of their

data movements are the same as the original weights.

Third, as the basis matrices are reused most frequently, the

dataflow for these matrices should be weight stationary, i.e.,

once being fetched from the memories, they should stay in the

PEs until all the corresponding weights are rebuilt.

Taking advantage of the (structured) sparsity. The

enforced vector-wise sparsity in the SmartExchange algo-

rithm’s coefficient matrices offers benefits of 1) vector-wise

skipping both the memory accesses and computations of the

corresponding activations (see Figure 3 (a)) and 2) reduced

coefficient matrix encoding overhead (see Figure 3 (b)). Mean-

while, there is an opportunity to make use of the vector-

wise/bit-level sparsity of activations for improving efficiency.

First, one promising benefit of the SmartExchange algo-

rithm’s enforced vector-wise sparsity in the coefficient ma-

trices is the possibility to vector-wise skip both the memory

accesses and computations of the corresponding activations

(see Figure 3 (a)). This is because those vector-wise sparse

coefficient matrices’ corresponding weight vectors naturally

carry their vector-wise sparsity pattern/location, offering the

opportunity to directly use the sparse coefficient matrices’

encoding index to identify the weight sparsity and skip the cor-

responding activations’ memory accesses and computations.

Such a skipping can lead to large energy and latency savings

because weight vectors are shared by all activations of the

same fracture maps in CONV operations, see Figure 3 (b).

Second, commonly used methods for encoding weight spar-

sity, such as run-length coding (RLC) [7], [54], the 1-bit

direct weight indexing [56], and Compressed Row Storage

86.5 85.2 79.8 86.8 84.1 86.7
76.6 73.9
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ta
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Fig. 4: The bit-level sparsity in activations for six models on

three datasets.
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Fig. 5: An illustration of the proposed SmartExchange accelerator: (a) architecture, and (b) the block diagram of the processing

element (PE) line, each of which includes two rebuilding engines (REs) and eight multiply-and-accumulate (MAC) units.

(CRS) [18], store both the values and sparsity encoding in-

dexes of weights. Our SmartExchange algorithm’s vector-wise

weight sparsity reduce both the sparsity encoding overhead

(see Figure 3 (b)) and skipping control overhead. The resulting

energy and latency benefits depend on the sparsity ratio and

pattern, and hardware constraints (e.g., memory bandwidths).

Third, the accelerator can further make use of bit-level and

vector-wise sparsity of activations to improve energy efficiency

and reduce latency, where the bit-/vector-wise sparsity means

the percentage of the zero activation bits/rows over the total

activation bits/rows. Figure 4 shows the bit-level sparsity of

activations w/ and w/o 4-bit Booth encoding [10] in popu-

lar DNNs, including VGG11, ResNet50, and MobileNetV2

on ImageNet, VGG19 and ResNet164 on CIFAR-10, and

DeepLabV3+ on CamVid. We can see that the bit-level sparsity

is 79.8% under an 8-bit precision and 66.0% using the

corresponding 4-bit Booth encoding even for a compact model

like MobileNetV2; for vector-wise sparsity, it can be widely

observed among the CONV layers with 3×3 kernel size, e.g.,

up to 27.1% in the last several CONV layers of MobileNetV2

and up to 32.4% in ResNet164. If the memory accesses

and computations of zero activation bits can be skipped, the

resulting performance improvement will be proportional to the

bit-level activation sparsity, as elaborated in [10] which shows

that combining with zero weights, higher efficiency can be

achieved when targeting zero activation bits (instead of merely

considering zero activations). As for the vector-wise sparsity

of activations, only when activations at one row are all zeros,

we could skip fetching the corresponding weight vectors due

to the window sliding processing of CONV layers.

Support for compact models. The recently emerged

compact models, such as MobileNet [22] and EfficentNet [43],

often adopt depth-wise CONV and squeeze-and-excite layers

other than the traditional 2D CONV layers to restrict the

model size, which reduces the data resuse opportunities. Take

a depth-wise CONV layer as an example, it has an “extreme”

small number of CONV channels (i.e., 1), reducing the input

reuse over the standard CONV layers; similar to that of FC

layers, there are no weight reuse opportunities in squeeze-and-

excite layers. On-device efficient accelerators should consider

these features of compact models for their wide adoption and

leveraging compact models for more efficient processing.

B. Architecture of the SmartExchange Accelerator
Architecture overview. Figure 5 (a) shows the architecture

of the proposed SmartExchange accelerator which consists of a

3D PE array with a total of dimM PE slices, input/index/output

global buffers (see the blocks named Input GB, Weight Index

GB, and Output GB, where GB denotes global buffer) associ-

ated with an index selector for sparsity (see the blocks named

Index sel.), and an controller. The accelerator communicates

with an off-chip DRAM through DMA (direct memory access)

[54]. Following the aforementioned design principles and

considerations (see Section IV-A), the proposed accelerator

features the following properties: 1) an RE design which is

inserted within PE lines to reduce the rebuilding overhead

(see the top part of Figure 5 (b)); 2) a hybrid dataflow: an

1D row stationary dataflow is adopted within each PE line for

maximizing weight and input reuses, while each PE slice uses

an output stationary dataflow for maximizing output partial

sum reuses; 3) an index selector (named Index Sel. in Figure 5

(a)) to select the none-zero coefficient and activation vector

pairs as inspired by [56]. This is to skip not only computations

but also data movements associated with the sparse rows of

the coefficients and activations. The index selector design in

SmartExchange is the same as that of [56] except that here

index values of 0/1 stand for vector (instead of scalar) sparsity;

4) a data-type driven memory partition in order to use matched

bandwidths (e.g., a bigger bandwidth for the weights/inputs

and a smaller bandwidth for the outputs) for different types of

data to reduce the unit energy cost of accessing the SRAMs

which is used to implement the GB blocks [13]. We adopt

separated centralized GBs to store the inputs, outputs, weights

and indexes, respectively, and distributed SRAMs (see the

Weight Buffer unit in Figure 5 (a)) among PE slices to store

weights (including the coefficients and basis matrices); and 5)

a bit-serial multiplier based MAC array in each PE line to

make use of the activations’ bit-level sparsity together with a

Booth Encoder as inspired by [10].

PE slices and dataflow. We here describe the design of the

PE Slice unit in the 3D PE slice array of Figure 5 (a):

First, the 3D PE Slide array: our SmartExchange acceler-

ator enables paralleled processing of computations associated
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Fig. 6: An illustration of the proposed 1D row stationary along

each PE slice (in this particular example, FIFO size is 5, and

in general it should be dimF +S−1): (a) 1D CONV and (b)

processing flow of 1D row stationary.

with the same weight filter using the PE slice array of size

dimM (with each PE slice having dimC PE lines) and dimC
number of input channels, where the resulting partial sums

are accumulated using the adder trees at the bottom of the PE

lines (see the bottom right side of Figure 5 (a)). In this way, a

total of dimM consecutive output channels (i.e., dimM weight

filters) are processed in parallel to maximize the reuse of input

activations. Note that this dataflow is employed to match the

way we reshape the weights as described in Section III.C.

Second, the PE line design: each PE line in Figure 5

includes an array of dimF MACs, one FIFO (using double

buffers), and two RE units, where the REs at the left restore

the original weights in a row-wise manner. During operations,

each PE line processes one or multiple 1D CONV operations,

similar to the 1D row stationary in [7] except that we stream

each rebuild weight of one row temporally along the MACs for

processing one row of input activations. In particular, the 1D

CONV operation is performed by shifting the input activations

along the array of MACs within the PE line (see Figure 6)

via an FIFO; this 1D CONV computation is repeated for the

remaining 1D CONV operations to complete one 2D CONV

computation in ≤ (S×R) cycles (under the assumption of w/

sparsity and w/o bit-serial multiplication) with 1) each weight

element being shared among all the MACs in each cycle, and

2) the intermediate partial sums of the 2D CONV operations

are accumulated locally in each MAC unit (see the bottom

right part of Figure 5 (b)).

Third, the RE design: as shown in the bottom left corner

of Figure 5 (b), an RE unit includes an RF (register file) of

size S× S to store one basis matrix and a shift-and-add unit

to rebuild weights. The time division multiplexing unit at the

left, i.e., MUX1, is to fetch the � coefficient matrices, �
basis matrices, or � original weights. This design enables

the accesses of these three types of data to be performed

in a time division manner in order to reduce the weight

bandwidth requirement by taking advantage of the fact that it

is not necessary to fetch these three types of data simultane-

ously. Specifically, the basis matrix is fetched first and stored

stationary within the RE until the associated computations

are completed; the weights are then rebuilt in an RE where

each row of a coefficient matrix stays stationary until all its

associated computations are finished (see Figure 2). The third

path of MUX1 � for the original weights is to handle DNNs’

layers where SmartExchange is not applied on.

Fourth, the handling of compact models: when handling

compact models, we consider an adjusted dataflow and PE line

configuration for improving the utilization of both the PE slice

array and the MAC array within each PE line. Specifically, for

depth-wise CONV layers, since the number of CONV channels

is only 1, the dimC PE lines will no longer correspond to

input channels. Instead, we map the R number of 1D CONV

operations along the dimension of the weight height to these

PE lines. For squeeze-and-excite/FC layers, each PE line’s

MAC array of dimF MACs can be divided into multiple

clusters (e.g., two clusters for illustration in the top part of

Figure 5 (b)) with the help of the two REs in one PE line

(denoted as � and �) and multiplexing units at the bottom

of the MAC array, where each cluster handles computations

corresponding to a different output pixel in order to improve

the MAC array’s utilization and thus latency performance. In

this way, the proposed SmartExchange accelerator’s advantage

is maintained even for compact models, thanks to this adjust-

ment together with 1) our adopted 1D row stationary dataflow

within PE lines, 2) the employed bit-serial multipliers, and 3)

the possibility to heavily quantized coefficients (e.g., 4-bit).

Coefficient matrix indexing. For encoding the sparse co-

efficients, there are two commonly used methods: 1) a 1-bit

direct indexing where the indexes are coded with 1-bit (0 or

1 for zero or non-zero coefficients, respectively) [56]; and

2) an RLC indexing for the number of zero coefficient rows

[7]. Since SmartExchange algorithm (see Section III) enforces

channel-wise sparsity first and then vector-wise sparsity on

top of channel-wise sparsity, the resulting zero coefficients

are mostly clustered within some regions. As a result, a 1-bit

direct indexing can be more efficient with those clustered zero

coefficients removed.

Buffer design. For making use of DNNs’ (filter-

/vector-wise or bit-level) sparsity for skipping corresponding

computations/memory-accesses, it in general requires a larger

buffer (than that of corresponding dense models) due to the

unknown dynamic sparsity patterns. We here discuss how we

balance between the skipping convenience and the increased

buffer size. Specifically, to enable the processing with sparsity,

the row pairs of non-zero input activations and coefficients

are selected from the Input GB and the Index GB (using the

corresponding coefficient indexes), respectively, as inspired

by [56], which are then sent to the corresponding PE lines

for processing with the resulting outputs being collected to

the output GB.

First, input GB: to ensure a high utilization of the PE array,

a vanilla design requires (dimC × dimF × bitsinput)× input

activation rows (than that of the dense model counterpart)

to be fetched for dealing with the dynamic sparsity patterns,

resulting in (dimC × dimF × bitsinput)× increased input GB

bandwidth requirement. In contrast, our design leads to a

≥ 1/S reduction of this required input GB bandwidth, with

dimC×dimF ×bitsinput inputs for every (S + “Booth encoded

non-zero activation bits”) cycles. This is because all the FIFOs
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Fig. 7: The software-hardware interface pipeline for the pro-

posed SmartExchange accelerator.

in the PE lines are implemented in a ping-pong manner using

double buffers, thanks to the fact that 1) the adopted 1-D

row stationary dataflow at each PE line helps to relief this

bandwidth requirement, because each input activation row can

be reused for S cycles; and 2) the bit-serial multipliers takes

≥ 1 cycles to finish an element-wise multiplication.

Second, weight/index/output buffer: Similar to that of the

input GB, weight/index buffer bandwidth needs to be expanded

for handling activation sparsity, of which the expansion is

often small thanks to the common observation that the vector-

wise activation sparsity ratio is often relatively low. Note that

because basis matrices need to be fetched and stored into

the RE before the fetching of coefficient matrices and the

weight reconstruction computation, computation stalls occur if

the next basis matrix is fetched after finishing the coefficient

fetching and the computation corresponding to the current

basis matrix. Therefore, we leverage the two REs (� and �
paths) in each PE line to operate in a “ping-pong” manner to

avoid the aforementioned computation stalls. For handling the

output data, we adopt an FIFO to buffer the outputs from each

PE slice before writing them back into the GB, i.e., a cache

between the PE array and the output GB. This is to reduce

the required output GB bandwidth by making use of the fact

that each output is calculated over several clock cycles.

Software-hardware interface. Here we briefly describe

how the software-hardware interface works for deploying a

SmartExchange algorithm-based DNN model from deep learn-

ing frameworks (e.g., PyTorch) into the SmartExchange accel-

erator hardware. As shown in Figure 7, a pre-trained Smar-
tExchange algorithm-based DNN model will pass through the

blocks of DNN Parser and Compiler before being loaded into

the accelerator. Specifically, the DNN Parser firstly helps to

extracts DNN model parameters including layer type (e.g.,

2D CONV, depth-wise CONV, or FC layer) and activation

and weight dimensions, which will then used by the DNN

Compiler to 1) determine the dataflow and 2) generate the

sparse index and instructions for configuring the PE array,

memory data arrangements, and runtime scheduling. Finally,

the resulting instructions from the Compiler are loaded into

the accelerator’s controller for controlling processing.

V. EXPERIMENT RESULTS

In this section, we present a thorough evaluation of Smar-
tExchange, a new algorithm (see Section III) and hardware

(see Section IV) co-design framework.

On the algorithm level, as SmartExchange unifies three

mainstream model compression ideas: sparsification/pruning,
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Fig. 8: Accuracy vs. model size comparison of the SmartEx-
change algorithm (SE) and state-of-the-art compression tech-

niques on the (a) ImageNet and (b) CIFAR-10 datasets, where

different colors differentiate the SE and baseline techniques.

decomposition, and quantization into one framework, we

perform extensive ablation studies (benchmark over two

structured pruning and four quantization, i.e., state-of-the-

art compression techniques on four standard DNN models

with two datasets) to validate its superiority. In addition,

we evaluate SmartExchange on two compact DNN models

(MobileNetV2 [41] and EfficientNet-B0 [43]) on the ImageNet

[11] dataset, one segmentation model (DeepLabv3+ [5]) on the

CamVid [4] dataset, and two MLP models on MNIST.

On the hardware level, as the goal of the proposed SmartEx-
change is to boost hardware acceleration energy efficiency and

speed, we evaluate SmartExchange’s algorithm-hardware co-

design results with state-of-the-art DNN accelerators in terms

of energy consumption and latency when processing represen-

tative DNN models and benchmark datasets. Furthermore, to

provide more insights about the proposed SmartExchange, we

perform various ablation studies to visualize and validate the

effectiveness of SmartExchange’s component techniques.

A. Evaluation of the SmartExchange Algorithm
Experiment settings. To evaluate the algorithm perfor-

mance of SmartExchange, we conduct experiments on 1) a

total of six DNN models using both the CIFAR-10 [26]

and ImageNet [11] datasets, 2) one segmentation model on

the CamVid [4] dataset, and 3) two MLP models on the

MNIST dataset and compare the performance with state-of-

the-art compression techniques in terms of accuracy and model

size, including two structured pruning techniques (Network

Slimming [34] and ThiNet [36]), four quantization techniques

(Scalable 8-bit (S8) [3], FP8 [44], WAGEUBN [51], and

DoReFa [55]), one power-of-two quantization technique [40],

and one pruning and quantization technique [56].

SmartExchange vs. existing compression techniques. As

SmartExchange unifies the three mainstream ideas of pruning,

decomposition and quantization, we evaluate the SmartEx-
change algorithm performance by comparing it with state-

of-the-art pruning-alone and quantization-alone algorithms2,

under four DNN models and two datasets. The experiment

results are shown in Figure 8. SmartExchange in general

2we did not include decomposition-alone algorithms since their results are
not as competitive and also less popular.
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TABLE II: The result summary of the proposed SmartEx-
change with re-training on: 1) VGG11 and ResNet50 using

the ImageNet dataset [11]; 2) VGG19 and ResNet164 using

the CIFAR-10 dataset [26]; and 3) MLP-1 [40] and MLP-2

[56] using the MNIST dataset.

Model
Top-1 Top-5 CR Param. B Ce Spar.
(%) (%) (×) (MB) (MB) (MB) (%)

VGG11 71.18% 90.08% - 845.75 - - -
VGG11SE 70.97% 89.88% 47.04 17.98 1.67 14.77 86.00

ResNet50 76.13% 92.86% - 102.40 - - -
ResNet50SE 75.31% 92.33% 11.53 8.88 1.40 6.77 45.00
ResNet50SE 74.06% 91.53% 14.24 7.19 1.40 5.08 58.60

VGG19 93.66% - - 80.13 - - -
VGG19SE 92.96% - 74.19 1.08 0.27 0.74 92.80
VGG19SE 92.87% - 80.94 0.99 0.27 0.65 93.70

ResNet164 94.58% - - 6.75 - - -
ResNet164SE 95.04% - 8.04 0.84 0.25 0.53 37.60
ResNet164SE 94.54% - 10.55 0.64 0.25 0.33 61.00

MLP-1 98.47% - - 14.125 - - -
MLP-1SE 97.32% - 130 0.11 0.01 0.10 82.34

MLP-2 98.50% - - 1.07 - - -
MLP-2SE 98.11% - 45.03 0.024 0.00 0.024 93.33

1. The baseline models use 32-bit floating-point representations for
the weights and input/output activations, so as to benchmark with the
best achievable accuracy results in the literature.
2. The proposed SmartExchange models use 8-bit fixed-point repre-
sentations for the input/output activations; and 4-bit/8-bit representa-
tions for the coefficient/basis matrices, respectively.

outperforms all other pruning-alone or quantization-alone

competitors, in terms of the achievable trade-off between the

accuracy and the model size. Taking ResNet50 on ImageNet

as an example, the quantization algorithm DoReFa [55] seems

to aggressively shrink the model size yet unfortunately cause a

larger accuracy drop; while the pruning algorithm ThiNet [36]

maintains competitive accuracy at the cost of larger models. In

comparison, SmartExchange combines the best of both worlds:

it obtains almost as high accuracy as the pruning-only ThiNet

[36], which is 2.66% higher than the quantized-only DoReFa

[55]; and on the other hand, it keeps the model as compact

as DoReFa [55]. Apart from the aforementioned quantization

works, we also evaluate the SmartExchange algorithm with

a state-of-the-art power-of-two quantization algorithm [40]

based on the same MLP model with a precision of 8 bits: when

having a higher compression rate of 130× (vs. 128× in [40]),

SmartExchange achieves a comparable accuracy (97.32% vs.

97.35%), even if SmartExchange is not specifically dedicated

for FC layers while the power-of-two quantization [40] does.

In addition, compared with the pruned and quantized MLP

model in [56], SmartExchange achieves a higher compression

rate of 45.03× (vs. 40× in [56]) with a comparable accuracy

(98.11% vs. 98.42%).

A more extensive set of evaluation results are summarized in

Table II, in order to show the maximally achievable gains (and

the incurring accuracy losses) by applying SmartExchange
over the original uncompressed models. In Table II, “CR”

means the compression rate in terms of the overall parameter

TABLE III: Evaluation of SmartExchange with re-training on

two compact models with the ImageNet dataset [11].

Model
Top-1 Top-5 CR Param. B Ce Spar.
(%) (%) (×) (MB) (MB) (MB) (%)

MBV2 72.19% 90.53% - 13.92 - - -
MBV2SE 70.16% 89.54% 6.57 2.12 0.37 1.74 0.00

Eff-B0 76.30% 93.50% - 20.40 - - -
Eff-B0SE 73.80% 91.79% 6.67 3.06 0.51 2.55 0.00

size; “Param.”, “B”, and “Ce” denote the total size of the model

parameters, the basis matrices, and the coefficient matrices,

respectively; “Spar.” denotes the ratio of the pruned and total

parameters (the higher the better). Without too much surprise,

SmartExchange compresses the VGG networks by 40× to

80×, all with negligible (less than 1%) top-1 accuracy losses.

For ResNets, SmartExchange is still able to achieve a solid

>10× compression ratio. For example, when compressing

ResNet50, we find SmartExchange to incur almost no accuracy

drop, when compressing the model size by 11× to 14×.

SmartExchange applied on compact models. Table II

seems to suggest that (naturally) applying SmartExchange to

more redundant models will have more gains. We thus validate

whether the proposed SmartExchange algorithm remains to be

beneficial, when adopted for well-known compact models, i.e.,

MobileNetV2 (MBV2) [41] and EfficientNet-B0 (Eff-B0) [43].

As Table III indicates, despite the original light-weight de-

sign, SmartExchange still yields promising gains. For example,

when compressing MBV2 for 6.57× CR, SmartExchange only

incurs ∼2% top-1 accuracy and 1% top-5 accuracy losses.

This result is impressive and highly competitive when placed

in the context: for example, the latest work [14] reports 8×
compression (4-bit quantization) of MobileNetV2, yet with a

7.07% top-1 accuracy loss.

Extending SmartExchange beyond classification models.
While model compression methods (and hence co-design

works) are dominantly evaluated on classification benchmarks,

we demonstrate that the effectiveness of SmartExchange is

beyond one specific task setting. We choose semantic seg-

mentation, a heavily-pursued computer vision task that is well

known to be memory/latency/energy-demanding, to apply the

proposed algorithm. Specifically, we choose the state-of-the-art

DeepLabv3+ [5] with a ResNet50 backbone (output stride: 16),

and the CamVid [4] dataset using its standard split. Compared

to the original DeepLabv3+, applying SmartExchange can lead

to 10.86× CR, with a marginal mean Intersection over Union

(mIoU) drop from 74.20% to 71.20% (on the validation split).

SmartExchange decomposition evolution. To give an

example of the decomposition evolution of the SmartExchange
algorithm, we take one weight matrix W ∈ R192×3 from the

second CONV layer of the second block in a ResNet164 net-

work pre-trained on CIFAR-10. The SmartExchange algorithm

decomposes W =CeB, where Ce ∈R192×3 and B∈R3×3. Figure

9 shows the evolution of the reconstruction error, sparsity

ratio in Ce, and the distance between B and its initialization

(identity). We can see that the sparsity ratio in Ce will increase

at the beginning at the cost of an increased reconstruction
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Fig. 9: Illustrating an example of the solution evolution during

the SmartExchange algorithm training.

error. But the SmartExchange algorithm remedies the error

over iterations while maintaining the sparsity. Also, B will

gradually become more different from the initialization.

B. Evaluation of the SmartExchange Accelerator.
In this subsection, we present experiments to evaluate the

performance of the SmartExchange accelerator. Specifically,

we first introduce the experiment setup and methodology, and

then compare SmartExchange accelerator with four state-
of-the-art DNN accelerators (covering a diverse range of

design considerations) on seven DNN models (including four

standard DNNs, two compact models, and one segmentation

model) in terms of energy consumption and latency when

running on three benchmark datasets. Finally, we perform

ablation studies for the SmartExchange accelerator to quantify

and discuss the contribution of its component techniques, its

energy breakdown, and its effectiveness in 1) making use of

sparsity and 2) dedicated design for handling compact models,

aiming to provide more insights.

Experiment setup and methodology. Baselines and config-

urations: we benchmark the SmartExchange accelerator with

four state-of-the-art accelerators: DianNao [6], SCNN [39],

Cambricon-X [54], and Bit-pragmatic [1]. These representative

accelerators have demonstrated promising acceleration perfor-

mance, and are designed with a diverse design considerations

as summarized in Table IV. Specifically, DianNao [6] is a

classical architecture for DNN inference which is reported

to be over 100× faster and over 20× more energy efficient

than those of CPUs. While DianNao considers dense models,

the other three accelerators take advantage of certain kinds

of sparsity in DNNs. To ensure fair comparisons, we assign

the SmartExchange accelerator and baselines with the same

computation resources and on-chip SRAM storage in all exper-

iments, as listed in Table V. For example, the DianNao, SCNN

and Cambricon-X accelerators use 1K 8-bit non-bit-serial

TABLE IV: The design considerations of the baseline and our

accelerators.

Accelerator Design Considerations

DianNao [6] Dense models
Cambricon-X [54] Unstructure weight sparsity

SCNN [39] Unstructure weight sparsity
+ Activation sparsity

Bit-pragmatic [1] Bit-level activation sparsity

Ours Vector-wise weight sparsity
+ Bit-level and vector-wise activation sparsity

TABLE V: A summary of the computation and storage re-

sources in the SmartExchange and baseline accelerators.

SmartExchange and Bit-pragmatic [1]

dimM 64 Input GB 16KB×32Banks
dimC 16 Output GB 2KB×2Banks
dimF 8 Weight Buff./slice 2KB×2Banks

# of bit-serial mul. 8K Precision 8 bits

DianNao [6], SCNN [39], and Cambricon-X [54]

The same total on-chip SRAM storage as SmartExchange
# of 8-bit mul. 1K Precision 8 bits

multipliers and SmartExchange and Bit-pragmatic employ an

equivalent 8K bit-serial multipliers.

For handling the dynamic sparsity in the SmartExchange
accelerator, the on-chip input GB bandwidth and weight GB

bandwidth with each PE slice are set to be four and two

times of those in the corresponding dense models, respectively,

which are empirically found to be sufficient for handling all

the considered models and datasets. Meanwhile, because the

computation resources for the baseline accelerators may be

different from their original papers, the bandwidth settings

are configured accordingly based on their papers’ reported

design principles. Note that 1) we do not consider FC layers

when benchmarking the SmartExchange accelerator with the

baseline accelerators (see Figures 10 to 12) for a fair com-

parison as the SCNN [39] baseline is designed for CONV

layers, and similarly, we do not consider EfficientNet-B0 for

the SCNN accelerator as SCNN is not designed for handling

the squeeze-and-excite layers adopted in EfficientNet-B0; 2)

our ablation studies consider all layers in the models (see

Figures 13 and 14).

Benchmark models, datasets, and precision: We use

seven representative DNNs (ResNet50, ResNet164, VGG11,

VGG19, MobileNetV2, EfficientNet-B0, and DeepLabV3+)

and three benchmark datasets (CIFAR-10 [26], ImageNet [11],

and CamVid [4]). Regarding the precision, we adopt 1) 8-

bit activations for both the baseline-used and SmartExchange-

based DNNs; and 2) 8-bit weights in the baseline-used DNNs,

and 8-bit/4-bit precision for the basis and coefficient matrices

in the SmartExchange-based DNNs.

Technology-dependent parameters: For evaluating the per-

formance of the SmartExchange accelerator, we implemented a

custom cycle-accurate simulator, aiming to model the Register-

Transfer-Level (RTL) behavior of synthesized circuits, and

verified the simulator against the corresponding RTL imple-

mentation to ensure its correctness. Specifically, the gate-level

netlist and SRAM are generated based on a commercial 28nm

technology using the Synopsys Design Compiler and Arm

Artisan Memory Compilers, proper activity factors are set

at the input ports of the memory/computation units, and the

energy is calculated using a state-of-the-art tool PrimeTime

PX [42]. Meanwhile, thanks to the clear description of the

baseline accelerators’ papers and easy representation of their

works, we followed their designs and implemented custom

cycle-accurate simulators for all the baselines. In this way,

we can evaluate the performance of both the baseline and our
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Fig. 10: The normalized energy efficiency (over DianNao)

achieved by the SmartExchange accelerator over the four state-

of-the-art baseline accelerators on seven DNN models and

three datasets.

accelerators based on the same commercial 28nm technology.

The resulting designs operate at a frequency of 1GHz and the

performance results are normalized over that of the DianNao

accelerator, where the DianNao design is modified to ensure

that all accelerators have the same hardware resources (see

Table V). We refer to [50] for the unit energy of DRAM

accesses, which is 100pJ per 8 bit, and the unit energy costs

for computation and SRAM accesses are listed in Table I.

SmartExchange vs. state-of-the-art accelerators. Energy

efficiency over that of the baseline accelerators: Figure 10

shows the normalized energy efficiency of the SmartEx-
change and the baseline accelerators. It is shown that the

SmartExchange accelerator consumes the least energy under

all the considered DNN models and datasets, achieving an

energy efficiency improvement ranging from 2.0× to 6.7×.

The SmartExchange accelerator’s outstanding energy effi-

ciency performance is a result of SmartExchange’s algorithm-

hardware co-design effort to effectively trade the much higher-

cost memory storage/accesses for the lower-cost computations

(i.e., rebuilding the weights using the basis and coefficient

matrices at the least costly RF and PE levels vs. fetching

them from the DRAM). Note that SmartExchange non-trivially

outperforms all baseline accelerators even on the compact

models (i.e., MobileNetV2 and EfficientNet-B0) thanks to

both the SmartExchange algorithm’s higher compression ratio

and the SmartExchange accelerator’s dedicated and effective

design (see Section IV-B) of handling depth-wise CONV

and squeeze-and-excite layers that are commonly adopted in

compact models.

Figure 11 shows the normalized number of DRAM accesses

for the weights and input/output activations. We can see that:

1) the baselines always require more (1.1× to 3.5×) DRAM

accesses than the SmartExchange accelerator, e.g., see the

ResNet and VGG models on the ImageNet and CIFAR-10

datasets as well as the segmentation model DeepLabV3+

on the CamVid dataset; 2) SmartExchange’s DRAM-access

reduction is smaller when the models’ activations dominate the

cost (e.g., compact DNN models); and 3) the SmartExchange
accelerator can reduce the number of DRAM accesses over

the baselines by up to 1.3× for EfficientNet-B0, indicating the

effectiveness of our dedicated design for handling the squeeze-

and-excite layers (see Section IV-B).

Speedup over that of the baseline accelerators: Similar to

benchmarking the SmartExchange accelerator’s energy effi-

Fig. 11: The normalized number of DRAM accesses (over the

SmartExchange accelerator) of the SmartExchange and four

state-of-the-art baseline accelerators on seven DNN models

and three datasets.

ciency, we compare its latency of processing one image (i.e.,

batch size is 1) over that of the baseline accelerators on

various DNN models and datasets, as shown in Figure 12.

We can see that the SmartExchange accelerator achieves the

best performance under all the considered DNN models and

datasets, achieving a latency improvement ranging from 8.8×
to 19.2×. Again, this experiment validates the effectiveness

of SmartExchange’s algorithm-hardware co-design effort to

reduce the latency on fetching both the weights and the

activations from the memories to the computation resources.

Since the SmartExchange accelerator takes advantage of both

the weights’ vector-wise sparsity and the activations’ bit-level

and vector-wise sparsity, it has a higher speedup over all

the baselines that make use of only one kind of sparsity.

Specifically, the SmartExchange accelerator has an average

latency improvement of 3.8×, 2.5×, and 2.0× over SCNN [39]

and Cambricon-X [54] which consider unstructured sparsity,

and Bit-pragmatic [1] which considers the bit-level sparsity in

activations, respectively.

Contributions of SmartExchange’s component tech-
niques. The aforementioned energy efficiency and latency

improvement of the SmartExchange accelerator comes from

the algorithm-hardware co-design efforts including the Smar-
tExchange algorithm’s model compression (see Section III)

and the SmartExchange accelerator’s support for both vector-

wise sparsity (i.e., index selecting) and bit-level sparsity (i.e.,

bit-serial multiplier) (see Section IV-B). To quantify the contri-

bution of SmartExchange’s component techniques, we build a

similar baseline accelerator as the SmartExchange accelerator

and run a dense DNN on the baseline accelerator. Specifi-

cally, the baseline accelerator uses non-bit-serial multipliers,

dimM=16, dimC=8, and dimF =8 to ensure the required hard-

ware resources to be the same as that of the SmartExchange

Fig. 12: The normalized speedup (over DianNao) achieved by

the SmartExchange accelerator over the four state-of-the-art

baseline accelerators on seven DNN models and three datasets.
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Fig. 13: The energy breakdown of the SmartExchange accel-

erator when running the (a) CONV and squeeze-and-excite

layers and (b) CONV, squeeze-and-excite, and FC layers (all

types of layers) of seven DNN models on three datasets.

accelerator. When running ResNet50, the SmartExchange ac-

celerator achieves 3.65× better energy efficiency than the

baseline accelerator, where the reduced DRAM accesses re-

sulted from the SmartExchange’s model compression, vector-

wise sparsity support, and bit-level sparsity support contribute

to 23.99%, 12.48%, and 36.14% of the total energy savings,

respectively. Assuming a sufficient DRAM bandwidth, the

SmartExchange accelerator achieves 7.41× speedup than the

baseline accelerator, thanks to its 1) effort to leverage the spar-

sity to reduce unnecessary data movements and computations

and 2) increased parallel computation resources (note that the

number of bit-serial multipliers is 8× of that of non-bit-serial

multipliers given the same computation resource).

The SmartExchange accelerator’s energy breakdown.
Figure 13 (a) shows the SmartExchange accelerator’s energy

breakdown in terms of computations and accessing various

memory hierarchies, when processing only the CONV and

squeeze-and-excite layers (i.e., excluding the FC layers) of

various DNN models and datasets. We can see that 1) the

energy cost of accessing DRAM is dominated by the in-

put/output activations for most of the models (i.e., see the

VGG11, MobileNetV2, and EfficientNet-B0 models on the

ImageNet dataset, the ResNet164 on the CIFAR-10 dataset,

and the DeepLabV3+ model on the CamVid dataset), because

the SmartExchange algorithm can largely reduce the number

of weight accesses from the DRAM; 2) the energy cost of

accessing DRAM for the weights is still dominant in models

where the model sizes are very large, e.g., see the VGG19

model on the CIFAR10 dataset and the ResNet50 model on

the ImageNet dataset; and 3) the RE and index selector only

account for <0.78% and <0.05% of the total energy cost,

which are negligible.

When considering all layers (see Figure 13 (b)), the trends

of the experiment results are similar to those in Figure 13

(a), except for the VGG11 model. This is because the FC

layers in most of the models consume only <7.77% of the
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Fig. 14: The energy breakdown and latency of the SmartEx-
change accelerator when running ResNet50 with four different

sparsity ratios.

total energy cost, whereas the FC weight DRAM accesses in

VGG11 account for up to 43.08% of the total energy cost and

up to 95.66% of the total parameter size. Note that although

the total size of the SmartExchange-compressed weights is

similar for the VGG19 and ResNet164 models on CIFAR10

(see Table II), their weight DRAM accesses cost percentages

are very different. This is because 1) the original ResNet164

model has much more activations than that of the VGG19

model and 2) the activations in the VGG19 model [35] have

been largely pruned thanks to the models’ high filter-wise

sparsity (e.g., 90.79%) which enables pruning the whole filters

and their corresponding activations (e.g., enabling 81.04% and

26.64% of the input and output activations to be pruned), both

leading to the large gap in the cost percentage of the weight

DRAM accesses in the two models.

SmartExchange’s effectiveness in exploiting sparsity. Fig-

ure 14 shows the normalized energy consumption and latency

(over the total energy cost and latency of the models) when

the SmartExchange accelerator processes ResNet50 with four

vector-wise weight sparsity ratios, where the corresponding

model size and accuracy are summarized in the bottom-left

corner. We can see that: 1) the total energy cost of the

input activations’ DRAM and GB accesses is reduced by

18.33% when the weight sparsity increases by 15% (from

45.0% to 60.0%), showing that our accelerator can effectively

utilize the vector-wise weight sparsity to save the energy cost

of accessing both the sparse weights and the corresponding

inputs; and 2) the latency is reduced by 41.83% when the

weight sparsity increases from 45.0% to 60.0%, indicating the

SmartExchange accelerator can indeed utilize the vector-wise

weight sparsity to skip the corresponding input accesses and

computations to reduce latency.

Effectiveness of SmartExchange’s support for compact
models. We perform an ablation experiment to evaluate

the SmartExchange accelerator’s dedicated design including

optimized dataflow and PE line configuration (see Section

IV-B) for handling compact models. Figure 15 (a) shows

the normalized layer-wise energy cost on selected depth-wise

CONV layers of MobileNetV2 with and without the proposed

dedicated design. We can see that the proposed design can

effectively reduce the energy cost by up to 28.8%. Meanwhile,

Figure 15 (b) further shows that the normalized layer-wise

latency can be reduced by 38.3% to 65.7%.

965



23.6

1.6
4.2

6.2

10.9

1.0 1.5 2.1

0

5

10

15

20

25

5 20 23 38

N
or

m
. L

at
en

cy

Layer No.

w/o the dedicated design

w/ the dedicated design
9.1

1.6 1.1
1.7

8.5

1.1 1.0 1.5

0

2

4

6

8

10

12

5 20 23 38

N
or

m
. E

ne
rg

y 
C

os
t

Layer No.

w/o the dedicated design

w/ the dedicated design

6.4%

28.8% 10.7%
11.2%

53.8%

38.3%

65.2%

65.7%

(a) (b)
Fig. 15: The normalized (a) energy cost and (b) latency of the

depth-wise CONV layers w/ and w/o the proposed dedicated

design for compact models, when processing MobileNetV2 on

the ImageNet dataset.

VI. RELATED WORKS

Compression-aware DNN accelerators. To achieve ag-

gressive performance improvement, researchers have explored

from both the algorithm and architecture sides. In general,

there exist three typical algorithm approaches, weight de-
composition, data quantization, and weight sparsification, that

have been exploited by hardware design. H. Huang et al. [23]

demonstrate DNNs with tensorized decomposition on non-

volatile memory (NVM) devices. For the weight sparsification

accelerators, [18], [39], [54] have been proposed for making

use of unstructured sparsity. Cambricon-S [56] proposes a co-

designed weight sparsity pattern to reduce irregularity. Most

of recent accelerators use equal or less than 16-bit fixed-

point quantized data [39], [54]. The works in [18], [56] uses

clustering to further encode weights; Stripes [25] and UNPU

[27] leverage a bit-serial processing to support flexible bit

widths to better balance the accuracy loss and performance

improvement; Bit-pragmatic [1] utilizes the input bit-level

sparsity to improve throughput and energy efficiency; and

Bit-Tactical [10] combines the weight unstructured sparsity

with input bit-level sparsity. To our best knowledge, Smar-
tExchange is the first formulation that unifies weight decom-
position, quantization, and sparsification (especially vector-

wise structured sparsity) approaches to simultaneously shrink

the memory footprint and simplify the computations when

recovering the weight matrix during runtime.

VII. CONCLUSION

We propose SmartExchange, an algorithm-hardware co-

design framework to trade higher-cost memory storage/access

for lower-cost computation, for boosting the energy efficiency

and speed of DNN inference. Extensive experiments show

that the SmartExchange algorithm outperforms state-of-the-

art compression techniques on seven DNN models and three

datasets under various settings, while the SmartExchange
accelerator outperforms state-of-the-art DNN accelerators in

terms of both energy efficiency and latency (up to 6.7× and

19.2×, respectively).
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