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Abstract—We present SmartExchange, an algorithm-hardware
co-design framework to trade higher-cost memory storage/access
for lower-cost computation, for energy-efficient inference of deep
neural networks (DNNs). We develop a novel algorithm to enforce
a specially favorable DNN weight structure, where each layerwise
weight matrix can be stored as the product of a small basis
matrix and a large sparse coefficient matrix whose non-zero
elements are all power-of-2. To our best knowledge, this algorithm
is the first formulation that integrates three mainstream model
compression ideas: sparsification or pruning, decomposition, and
quantization, into one unified framework. The resulting sparse
and readily-quantized DNN thus enjoys greatly reduced energy
consumption in data movement as well as weight storage. On top
of that, we further design a dedicated accelerator to fully utilize
the SmartExchange-enforced weights to improve both energy
efficiency and latency performance. Extensive experiments show
that 1) on the algorithm level, SmartExchange outperforms state-
of-the-art compression techniques, including merely sparsification
or pruning, decomposition, and quantization, in various ablation
studies based on nine models and four datasets; and 2) on the
hardware level, SmartExchange can boost the energy efficiency
by up to 6.7x and reduce the latency by up to 19.2x over four
state-of-the-art DNN accelerators, when benchmarked on seven
DNN models (including four standard DNNs, two compact DNN
models, and one segmentation model) and three datasets.

Index Terms—Neural network compression, neural network in-
ference accelerator, pruning, weight decomposition, quantization

I. INTRODUCTION

We have recently witnessed the record-breaking perfor-
mance of deep neural networks (DNNs) together with a
tremendously growing demand to bring DNN-powered intelli-
gence into resource-constrained edge devices [33], [46], which
have limited energy and storage resources. However, as the
excellent performance of modern DNNs comes at a cost of
a huge number of parameters which need external dynamic
random-access memory (DRAM) for storage, the prohibitive
energy consumed by the massive data transfer between DRAM
and on-chip memories or processing elements (PEs) makes
DNN deployment non-trivial. The resource-constrained sce-
narios in edge devices motivate more efficient domain-specific
accelerators for DNN inference tasks [2], [6], [8], [29], [32].

The DNN accelerator design faces one key challenge: how
to alleviate the heavy data movement? Since DNN inference
mainly comprises multiply-and-accumulate (MAC) operations,
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Fig. 1: The proposed SmartExchange’s weight representation.

it has little data dependency and can achieve high processing
throughput via parallelism. However, these MAC operations
incur a significant amount of data movement, due to read/write
data accesses, which consumes considerable energy and time,
and sometimes surprisingly significant (especially when the
inference batch size is small or just one). Take DianNao as an
example, more than 95% of the inference energy is consumed
by data movements associated with the DRAM [6], [8], [30].
Therefore, minimizing data movements is the key to improve
the energy/time efficiency of DNN accelerators.

To address the aforementioned challenges, we propose the
SmartExchange solution in the spirit of algorithm-hardware
co-design that strives to trade higher-cost memory stor-
age/access for lower-cost computation to largely avoid the
dominant data movement cost in DNN accelerators. In this par-
ticular work, we present a novel SmartExchange algorithm for
aggressively reducing both 1) the energy consumption of data
movement and 2) storage size associated with DNN weights,
both of which are major limiting factors when deploying DNN
accelerators into resource-constrained devices.

Our solution represents a layer-wise DNN weight matrix
as the product of a small basis matrix and a large coefficient
matrix as shown in Figure 1. We then simultaneously enforce
two strong structural properties on the coefficient matrix: 1)
sparse: most elements are zeros and 2) readily-quantized: the
non-zero elements take only power-of-2 values, which have
compact bit representations and turn the multiplications in
MAC operations into much lower-cost shift-and-add opera-



tions. We then develop an efficient SmartExchange algorithm
blended with a re-training process. Experiments using nine
models on four datasets indicate that such favorable decom-
posed and compact weight structures can be achieved using
our proposed algorithm.

To fully leverage SmartExchange algorithm’s potential, we
further develop a dedicated DNN accelerator that takes advan-
tage of the much reduced weight storage and readily-quantized
weights resulting from the algorithm to enhance hardware
acceleration performance. Experiments show that the proposed
accelerator outperforms state-of-the-art DNN accelerators in
terms of acceleration energy efficiency and latency by up to
6.7x and 19.2x, respectively. Our contributions are summa-
rized as three-fold:

e Our overall innovation is an algorithm-hardware co-
design framework harmonizing algorithm and hardware
level innovations for maximizing the acceleration perfor-
mance and task accuracy. Specifically, we first identify
opportunities for saving processing energy and time in
the hardware level, including reducing DRAM accesses
and taking advantage of structured weight and activation
sparsity, and then enforce corresponding favorable pat-
terns/structures in the algorithm level together with dedi-
cated efforts in the accelerator architecture to aggressively
improve acceleration energy efficiency and latency.

Our algorithm-level contribution is a SmartExchange
algorithm that is designed with strong hardware aware-
ness. It for the first time unifies the ideas of weight prun-
ing, weight decomposition, and quantization, leading to a
highly compact weight structure that boosts acceleration
speed and energy efficiency at inference with a <2%
accuracy loss. Equipped with re-training, the effectiveness
of the SmartExchange algorithm is benchmarked on large
datasets and state-of-the-art DNNS.

Our hardware-level contribution is a dedicated ac-
celerator designed to fully utilize the SmartExchange
algorithm-compressed & quantized DNNs to minimize
both inference energy and latency. We verify and opti-
mize this accelerator using dedicated simulators validated
against RTL designs. Experiments show that the proposed
accelerator achieves up to 6.7x better energy efficiency
and 19.2x speedup, over state-of-the-art designs.

The rest of the paper is organized as follows. Section II in-
troduces the background and motivation. Section III describes
the problem formulation and the SmartExchange algorithm.
Section IV presents the dedicated accelerator that aims to
amplify the algorithmic gains. Section V shows extensive
experiments to manifest the benefits of both the algorithm
and the accelerator of SmartExchange. Sections VI and VII
summarize related works and our conclusion, respectively.

II. BACKGROUND AND MOTIVATION
A. Basics of Deep Neural Networks

Modern DNNs usually consist of a cascade of multiple
convolutional (CONV), pooling, and fully-connected (FC)
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layers through which the inputs are progressively processed.
The CONV and FC layers can be described as:

Olc,]le][f] =
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where W, I, O, and B denote the weights, input activations,
output activations, and biases, respectively. In the CONV lay-
ers,Cand M, E and F, R and S, and U stand for the number of
input and output channels, the size of input and output feature
maps, and the size of weight filters, and stride, respectively;
while in the FC layers, C and M represent the number of input
and output neurons, respectively; with ¢ denoting the activa-
tion function, e.g., a ReLU function (ReLU (x) = max(x,0)).
The pooling layers reduce the dimension of feature maps
via average or max pooling. The recently emerging compact
DNNs (e.g., MobileNet [22] and EfficientNet [43]) introduce
depth-wise CONV layers and squeeze-and-excite layers which
can be expressed in the above description as well [9].

B. Demands for Model Compression

During DNN inference, the weight parameters often domi-
nate the memory storage and limit the energy efficiency due to
their associated data movements [31], [49]. In response, there
are three main streams model compression techniques: prun-
ing/sparsification, weight decomposition, and quantizaition.

Pruning/sparsification. Pruning, or weight sparsification,
increases the sparsity in the weights of DNNs by zeroing
out non-significant ones, which is usually interleaved with
fine-tuning phases to recover the performance in practice.
An intuitive method is to elementwisely zero out weights
with near-zero magnitudes [20]. Recent works establish more
advanced pruning methods to enforce structured sparsity for
convolutional layers [21], [28], [34], [35]. The work in [37]
exhibits that due to the encoding index overhead, vector-wise
sparsity is able to obtain similar compression rates at the same
accuracy as element-wise/unstructured sparsity.

Weight decomposition. Another type of approaches to
compress DNNs is weight decompositions, e.g., low-rank
decomposition. This type of compression models the redun-
dancy in DNNs as correlations between the highly structured
filters/columns in convolutional or fully connected layers [12],
[24], [32], [38]. Low-rank decomposition expresses the highly
structured filters/weights using products of two small matrices.

Quantization. Quantization attempts to reduce the bit
width of the data flowing through DNNs [19], [45], [47],
thus is able to shrink the model size for memory savings
and simplify the operations for more efficient acceleration.
In addition, it has been shown that combinations of low-rank
decomposition and pruning can lead to a higher compression
ratio while preserving the accuracy [16], [52].

C. Motivation for SmartExchange

Table I shows the unit energy cost of accessing different-
level memories with different storage capacities and com-



TABLE I: Unit energy cost per 8-bit extracted from a com-
mercial 28nm technology.
DRAM | SRAM

100 1.36—2.45

MAC
0.143

adder
0.019

multiplier

0.124

Energy
(pJ/8bit)

puting an MAC/multiplication/addition (the main computation
operation in DNNs) designed in a commercial 28nm CMOS
technology. We can see that the unit energy cost of memory ac-
cesses is much higher (> 9.5x) than that of the corresponding
MAC computation. Therefore, it is promising in terms of more
efficient acceleration if we can potentially enforce higher-
order of weight structures to more aggressively trade higher-
cost memory accesses for lower-cost computations, motivating
our SmartExchange decomposition idea. That is, the resulting
higher structures in DNN weights’ decomposed matrices, e.g.,
C, in Figure 1, will enable much reduced memory accesses
at a cost of more computation operations (i.e., shift-and-add
operations in our design), as compared to the vanilla networks.

In addition, the integration of decomposition, pruning, and
quantization, i.e., our SmartExchange, is motivated by the
hypothesis of potentially higher-order sparse structures as
recently observed in [17], [53] from an algorithm perspective.
That is, rather than enforcing element-wise sparsity on the
original weight matrix directly, it is often more effective to
do so on corresponding decomposed matrix factors (either
additive or multiplicative). Note that SmartExchange on the
algorithm level targets a more hardware favorable weight
representation, and thus can be combined with other activation
representations (e.g., sparse activations) [1], [10], [25], [39],
[56] for maximizing the efficiency gains.

To summarize, the overall goal of SmartExchange is to
trade higher-cost data movement/access for lower-cost weight
reconstruction (MACs or shift-and-add operations). To achieve
this goal, the concrete design of SmartExchange is motivated
from the following two folds: 1) seeking more compactness in
the weight representation (contributed mainly by sparsity and
also by the decomposition which might help discover higher-
order sparse structures); and 2) reducing the multiplication
workload in the weight reconstruction (contributed mainly by
the special power-of-two quantization of nonzero elements).

III. THE PROPOSED SMARTEXCHANGE ALGORITHM

In this section, we first formulate the SmartExchange de-
composition problem. To our best knowledge, SmartExchange
algorithm is the first unified formulation that conceptually
combines three common methodologies for compressing and
speeding up DNNs: weight sparsification or pruning, weight
matrix decomposition, and weight quantization. We then de-
velop an efficient algorithm to solve the problem, and show
that the SmartExchange algorithm can be appended to post-
processing a trained DNN for compression/acceleration with-
out compromising the accuracy loss. We then demonstrate
that SmartExchange algorithm can be incorporated into DNN
re-training to achieve more promising trade-offs between the
inference accuracy and resource usage (e.g., the model size,
memory access energy, and computational cost).
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A. Problem Formulation

Previous works have tried to compress DNNs by reducing
the correlation between filters (in CONV layers) or columns
(in FC layers) via decomposing weights [12], [24], [38]. Here,
given a weight matrix W € R™*", we seek to decompose it
as the product of a coefficient matrix C, € R™*" and a basis
matrix B € R"™" where r < min{m,n}, such that

W ~C.B ey

In addition to suppressing the reconstruction error (often
defined as ||W —C,B||%), we expect the decomposed matrix
factors to display more favorable structures for compres-
sion/acceleration. In the decomposition practice, B is usually
constructed to be a very small matrix (e.g., B takes the values
of 3, 5, 7, whereas C, has m rows with m being the number of
weight vectors in a layer). For the much larger C,, we enforce
the following two structures simultaneously to aggressively
boost the energy efficiency: 1) C, needs to be highly sparse
(a typical goal of pruning); and 2) the values of the non-
zero elements in C, are exactly the powers of 2, so that their
bit representations can be very compact and their involved
multiplications to rebuild the original weights from B and C,
are simplified into much lower-cost shift-and-add operations.
As a result, instead of storing the whole weight matrix, the
proposed SmartExchange algorithm requires storing only a
very small B and a large, yet highly sparse and readily quan-
tized C,. Therefore, the proposed algorithm greatly reduces
the overall memory storage, and makes it possible to hold C,
in a much smaller memory of a lower-level memory hierarchy
to minimize data movement costs. We call such {C,, B} pair
the SmartExchange form of W.

The rationale of the above setting arises from previous
observations of composing pruning, decomposition, and quan-
tization. For example, combining matrix decomposition and
pruning has been found to effectively compress the model
without notable performance loss [17], [24], [38]. One of our
innovative assumptions is to require non-zero elements to take
one of a few pre-defined discrete values, that are specifically
picked for not only compact representations but also lower-
cost multiplications. Note that it is different from previous
DNN compression using weight clustering, whose quantized
values are learned from data [15], [48].

SmartExchange decomposition problem can hence be writ-
ten as a constrained optimization:
argmin  |W —C,B||%

Ce,B

ey

(@)

st. Y Gl lllo < S, Celisjl € Qp, Vi, j [P <Ny,
J

where Qp = {0, £2”|p € P} with P being an integer set whose
cardinality |P| is no more than N, S, controls the total number
of non-zero elements in C,, while N, controls the bit-width
required to represent a nonzero element in C,.

B. The SmartExchange Algorithm

Solving Eq. (2) is in general intractable due to both the
nonconvex £ constraint, and the integer set Qp constraint. We



Algorithm 1 SmartExchange Algorithm.

. Sparsify C, in a channel-wise manner;

: Initialize C, and B; Iteration = 0;

: while ||6(C,)|| > tol or iteration < tol_maximum:
Step 1: Quantize C, to powers of 2;

Step 2: Fitting B and C,;

iteration = iteration + 1;

Step 3: Sparsity C, in a vector-wise manner;

1
2
3
4
5:
6
7
8: Re-quantize C, and re-fit B.

introduce an efficient heuristic algorithm that iterates between
objective fitting and feasible set projection. The general outline
of the SmartExchange algorithm is described in Algorithm 1,
and the three key steps to be iterated are discussed below:

Step 1: Quantizing C,. The quantization step projects
the nonzero elements in C, to Qp. Specifically, we will first
normalize each column in C, to have a unit norm in order
to avoid scale ambiguity. We will then round each non-zero
element to its nearest power-of-two value. We define 8(C,) to
be the quantization difference of C,.

Step 2: Fitting B and C,. We will first fit B by
solving arg ming||W — C.B||%, and then fit C, by solving
arg minc,||W — C.B||%. When fitting either one, the other is
fixed to be its current updated value. The step simply deals
with two unconstrained least squares.

Step 3: Sparsifying C.. To pursue better compres-
sion/acceleration, we simultaneously introduce both channel-
wise and vector-wise sparsity to C,:

e We first prune channels whose corresponding scaling
factor in batch normalization layers is lower than a
threshold which is manually controlled for each layer. In
practice, we only apply channel-wise sparsifying at the
first training epoch once, given the observation that the
pruned channel structure will not change much.

We then zero out elements in C, based on the magnitudes
to meet the vector-wise sparsity constraint: Y; [|C[:
,Jllo <S¢, where S, is manually controlled per layer.

In practice, we use hard thresholds for channel and vector-
wise sparsity to zero out small magnitudes in C, for implemen-
tation convenience. With the combined channel and vector-
wise sparsity, we can bypass reading the regions of the input
feature map that correspond to the pruned parameters, saving
both storage-access and computation costs in convolution
operations. Meanwhile, the sparsity patterns in C, also reduce
the encoding overheads, as well as the storage-access and
computation costs during the weight reconstruction W = C,B.

After iterating between the above three steps (quantization,
fitting and sparsification) for sufficient iterations, we conclude
the iterations by re-quantizing the nonzero elements in C, to
ensure C,[i, j] € Qp and then re-fitting B with the updated C,.

C. Applying the SmartExchange Algorithm to DNNs

SmartExchange algorithm as post-processing. The value
of r (see Eq. (1)) is a design knob of SmartExchange for
trading-off the achieved compression rate and model accuracy,
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i.e., a smaller r favors a higher compression rate yet might
cause a higher accuracy loss. Note that r is equal to the rank
of the basis matrix B, i.e., r = n when B is a full matrix,
otherwise r < n. To minimize the memory storage, we set the
basis matrix B € R"™" to be small. In practice, we choose
n=R=S§ with R x S being the CONV kernel size. Since n
is small, we choose r =n =S too. We next discuss applying
the proposed algorithm to the FC and CONV layers. In all
experiments, we initialize C, =W and B = I for simplicity.

o SmartExchange algorithm on FC layers. Consider a
fully-connected layer W € RM*C. We reshape each row
of W into a new matrix W; € RS/S*5, and then apply
SmartExchange algorithm. Specifically, zeros are padded
if C is not divisible by S, and SmartExchange algorithm
is applied to W;, where i =1,...,M. When C >> S, the
reconstruction error might tend to be large due to the
imbalanced dimensions. We alleviate it by slicing W;
into smaller matrices along the first dimension.
SmartExchange algorithm on CONV layers. Consider a
convolutional layer W in the shape (M,C,R,S): Case 1:
R=S> 1. We reshape the M filters in W into matrices of
shape (S x C,S), on which SmartExchange algorithm is
applied. The matrices can be sliced into smaller matrices
along the first dimension if S X C > §. Case 2: R=S5=1.
The weight is reshaped into a shape of (M,C) and then
is treated the same as an FC layer.

The above procedures are easily parallelized along the axis of
the output channels for acceleration.

We apply the SmartExchange algorithm on a VGG19 net-
work! pre-trained on the CIFAR-10 [26], with 6 = 4x1073,
tol = 10710 and a maximum iteration of 30. Weights in it are
decomposed by SmartExchange algorithm into the coefficient
matrices and basis matrices. It only takes about 30 seconds
to perform the algorithm on the network. Without re-training,
the accuracy drop in the validation set is as small as 3.21%
with an overall compression rate of over 10x. The overall
compression rate of a network is defined as the ratio between
the total number of bits to store the weights (including the
coefficient matrix C,, basis matrix B, and encoding overhead)
and the number of bits to store the original FP32 weights.

SmartExchange algorithm with re-training. After a DNN
has been post-processed by SmartExchange algorithm, a re-
training step can be used to remedy the accuracy drop. As
the un-regularized re-training will break the desired property
of coefficient matrix C,, we take an empirical approach to
alternate between 1) re-training the DNN for one epoch; and
2) applying the SmartExchange algorithm to ensure the C,
structure. The default iteration number is 50 for CIFAR-10
[26] and 25 for ImageNet [11]. As shown in experiments
in Section V-A, the alternating re-training process further
improves the accuracy while maintaining the favorable weight
structure. More analytic solutions will be explored in future
work, e.g., incorporating SmartExchange algorithm as a regu-
larization term [48].

Thttps://github.com/chengyangfu/pytorch-vgg-cifar10
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Fig. 2: An illustration of (a) a 3D weight filter and its
parameters’ notations, and (b) rebuilding one row of weights
using the corresponding basis and coefficient matrix.
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IV. THE PROPOSED SMARTEXCHANGE ACCELERATOR

In this section, we present our proposed SmartExchange
accelerator. We first introduce the design principles and con-
siderations (Section IV-A) for fully making use of the proposed
SmartExchange algorithm’s properties to maximize energy ef-
ficiency and minimize latency, and then describe the proposed
accelerator (Section IV-B) in details.

A. Design Principles and Considerations

The proposed SmartExchange algorithm exhibits a great
potential in reducing the memory storage and accesses for
on-device DNN inference. However, this potential cannot be
fully exploited by existing accelerators [1], [6], [39], [54] due
to 1) the required rebuilding operations of the SmartExchange
algorithm to restore weights and 2) the unique opportunity to
explore coefficient matrices’ vector-wise structured sparsity.
In this subsection, we analyze the opportunities brought by
the SmartExchange algorithm to abstract design principles and
considerations for developing and optimizing the dedicated
SmartExchange accelerator.

Minimizing overhead of rebuilding weights. Thanks to
the sparse and readily quantized coefficient matrices resulting
from the SmartExchange algorithm, the memory storage and
data movements associated with these matrices can be greatly
reduced (see Table II; e.g., up to 80x). Meanwhile, to fully
utilize the advantages of the SmartExchange algorithm, the
overhead of rebuilding weights should be minimized. To do so,
it critical to ensure that the location and time of the rebuilding
units and process are properly designed. Specifically, a Smar-
tExchange accelerator should try to 1) store the basis matrix
close to the rebuild engine (RE) that restores weights using
both the basis matrix and corresponding weighted coefficients;
2) place the RE to be close to or within the processing
elements (PEs); and 3) use a weight-stationary dataflow for
the basis matrix. Next, we elaborate these principles in the
context of one 3D filter operation (see Figure 2 (a)):

First, the SmartExchange algorithm decomposes the weight
matrix ((C x R) x S) corresponding to one 3D filter into a
coefficient matrix of size (C X R) x S and a basis matrix of
size S x S. According to Eq. (1), each element in the basis
matrix is reused C X R times in order to rebuild the weights,
while the number of reuses of each element in the coefficient
matrix is only S. This often means two orders of magnitude
more reuse opportunities for the basis matrices than that of
the coefficient matrices, considering most state-of-the-art DNN
models. Therefore, the basis matrices should be placed close to
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both the PEs and REs, and stored in the local memories within
REs for minimizing the associated data movement costs.

Second, the REs should be located close to the PEs for
minimizing the data movement costs of the rebuilt weights.
This is because once the weights are rebuilt, the cost of their
data movements are the same as the original weights.

Third, as the basis matrices are reused most frequently, the
dataflow for these matrices should be weight stationary, i.e.,
once being fetched from the memories, they should stay in the
PEs until all the corresponding weights are rebuilt.

Taking advantage of the (structured) sparsity. The
enforced vector-wise sparsity in the SmartExchange algo-
rithm’s coefficient matrices offers benefits of 1) vector-wise
skipping both the memory accesses and computations of the
corresponding activations (see Figure 3 (a)) and 2) reduced
coefficient matrix encoding overhead (see Figure 3 (b)). Mean-
while, there is an opportunity to make use of the vector-
wise/bit-level sparsity of activations for improving efficiency.

First, one promising benefit of the SmartExchange algo-
rithm’s enforced vector-wise sparsity in the coefficient ma-
trices is the possibility to vector-wise skip both the memory
accesses and computations of the corresponding activations
(see Figure 3 (a)). This is because those vector-wise sparse
coefficient matrices’ corresponding weight vectors naturally
carry their vector-wise sparsity pattern/location, offering the
opportunity to directly use the sparse coefficient matrices’
encoding index to identify the weight sparsity and skip the cor-
responding activations’ memory accesses and computations.
Such a skipping can lead to large energy and latency savings
because weight vectors are shared by all activations of the
same fracture maps in CONV operations, see Figure 3 (b).

Second, commonly used methods for encoding weight spar-
sity, such as run-length coding (RLC) [7], [54], the 1-bit
direct weight indexing [56], and Compressed Row Storage
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(CRS) [18], store both the values and sparsity encoding in-
dexes of weights. Our SmartExchange algorithm’s vector-wise
weight sparsity reduce both the sparsity encoding overhead
(see Figure 3 (b)) and skipping control overhead. The resulting
energy and latency benefits depend on the sparsity ratio and
pattern, and hardware constraints (e.g., memory bandwidths).

Third, the accelerator can further make use of bit-level and
vector-wise sparsity of activations to improve energy efficiency
and reduce latency, where the bit-/vector-wise sparsity means
the percentage of the zero activation bits/rows over the total
activation bits/rows. Figure 4 shows the bit-level sparsity of
activations w/ and w/o 4-bit Booth encoding [10] in popu-
lar DNNs, including VGG11, ResNet50, and MobileNetV2
on ImageNet, VGG19 and ResNetl64 on CIFAR-10, and
DeepLabV3+ on CamVid. We can see that the bit-level sparsity
is 79.8% under an 8-bit precision and 66.0% using the
corresponding 4-bit Booth encoding even for a compact model
like MobileNetV2; for vector-wise sparsity, it can be widely
observed among the CONV layers with 3 x 3 kernel size, e.g.,
up to 27.1% in the last several CONV layers of MobileNetV2
and up to 32.4% in ResNetl64. If the memory accesses
and computations of zero activation bits can be skipped, the
resulting performance improvement will be proportional to the
bit-level activation sparsity, as elaborated in [10] which shows
that combining with zero weights, higher efficiency can be
achieved when targeting zero activation bits (instead of merely
considering zero activations). As for the vector-wise sparsity
of activations, only when activations at one row are all zeros,
we could skip fetching the corresponding weight vectors due
to the window sliding processing of CONV layers.

Support for compact models. The recently emerged
compact models, such as MobileNet [22] and EfficentNet [43],
often adopt depth-wise CONV and squeeze-and-excite layers
other than the traditional 2D CONYV layers to restrict the
model size, which reduces the data resuse opportunities. Take
a depth-wise CONV layer as an example, it has an “extreme”
small number of CONV channels (i.e., 1), reducing the input
reuse over the standard CONV layers; similar to that of FC
layers, there are no weight reuse opportunities in squeeze-and-
excite layers. On-device efficient accelerators should consider
these features of compact models for their wide adoption and
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leveraging compact models for more efficient processing.

B. Architecture of the SmartExchange Accelerator

Architecture overview. Figure 5 (a) shows the architecture
of the proposed SmartExchange accelerator which consists of a
3D PE array with a total of dimy, PE slices, input/index/output
global buffers (see the blocks named Input GB, Weight Index
GB, and Output GB, where GB denotes global buffer) associ-
ated with an index selector for sparsity (see the blocks named
Index sel.), and an controller. The accelerator communicates
with an off-chip DRAM through DMA (direct memory access)
[54]. Following the aforementioned design principles and
considerations (see Section IV-A), the proposed accelerator
features the following properties: 1) an RE design which is
inserted within PE lines to reduce the rebuilding overhead
(see the top part of Figure 5 (b)); 2) a hybrid dataflow: an
1D row stationary dataflow is adopted within each PE line for
maximizing weight and input reuses, while each PE slice uses
an output stationary dataflow for maximizing output partial
sum reuses; 3) an index selector (named Index Sel. in Figure 5
(a)) to select the none-zero coefficient and activation vector
pairs as inspired by [56]. This is to skip not only computations
but also data movements associated with the sparse rows of
the coefficients and activations. The index selector design in
SmartExchange is the same as that of [56] except that here
index values of 0/1 stand for vector (instead of scalar) sparsity;
4) a data-type driven memory partition in order to use matched
bandwidths (e.g., a bigger bandwidth for the weights/inputs
and a smaller bandwidth for the outputs) for different types of
data to reduce the unit energy cost of accessing the SRAMs
which is used to implement the GB blocks [13]. We adopt
separated centralized GBs to store the inputs, outputs, weights
and indexes, respectively, and distributed SRAMs (see the
Weight Buffer unit in Figure 5 (a)) among PE slices to store
weights (including the coefficients and basis matrices); and 5)
a bit-serial multiplier based MAC array in each PE line to
make use of the activations’ bit-level sparsity together with a
Booth Encoder as inspired by [10].

PE slices and dataflow. We here describe the design of the
PE Slice unit in the 3D PE slice array of Figure 5 (a):

First, the 3D PE Slide array: our SmartExchange acceler-
ator enables paralleled processing of computations associated
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Fig. 6: An illustration of the proposed 1D row stationary along
each PE slice (in this particular example, FIFO size is 5, and

in general it should be dimg +S—1): (a) 1D CONV and (b)
processing flow of 1D row stationary.

with the same weight filter using the PE slice array of size
dimyy (with each PE slice having dim¢ PE lines) and dimc
number of input channels, where the resulting partial sums
are accumulated using the adder trees at the bottom of the PE
lines (see the bottom right side of Figure 5 (a)). In this way, a
total of dimy, consecutive output channels (i.e., dimy, weight
filters) are processed in parallel to maximize the reuse of input
activations. Note that this dataflow is employed to match the
way we reshape the weights as described in Section III.C.

Second, the PE line design: each PE line in Figure 5
includes an array of dimr MACs, one FIFO (using double
buffers), and two RE units, where the REs at the left restore
the original weights in a row-wise manner. During operations,
each PE line processes one or multiple 1D CONV operations,
similar to the 1D row stationary in [7] except that we stream
each rebuild weight of one row temporally along the MACs for
processing one row of input activations. In particular, the 1D
CONYV operation is performed by shifting the input activations
along the array of MACs within the PE line (see Figure 6)
via an FIFO; this 1D CONV computation is repeated for the
remaining 1D CONV operations to complete one 2D CONV
computation in < (S x R) cycles (under the assumption of w/
sparsity and w/o bit-serial multiplication) with 1) each weight
element being shared among all the MACs in each cycle, and
2) the intermediate partial sums of the 2D CONV operations
are accumulated locally in each MAC unit (see the bottom
right part of Figure 5 (b)).

Third, the RE design: as shown in the bottom left corner
of Figure 5 (b), an RE unit includes an RF (register file) of
size S x S to store one basis matrix and a shift-and-add unit
to rebuild weights. The time division multiplexing unit at the
left, i.e., MUXI, is to fetch the @ coefficient matrices, &
basis matrices, or ® original weights. This design enables
the accesses of these three types of data to be performed
in a time division manner in order to reduce the weight
bandwidth requirement by taking advantage of the fact that it
is not necessary to fetch these three types of data simultane-
ously. Specifically, the basis matrix is fetched first and stored
stationary within the RE until the associated computations
are completed; the weights are then rebuilt in an RE where
each row of a coefficient matrix stays stationary until all its
associated computations are finished (see Figure 2). The third

960

path of MUX1 @ for the original weights is to handle DNNs’
layers where SmartExchange is not applied on.

Fourth, the handling of compact models: when handling
compact models, we consider an adjusted dataflow and PE line
configuration for improving the utilization of both the PE slice
array and the MAC array within each PE line. Specifically, for
depth-wise CONV layers, since the number of CONV channels
is only 1, the dimc PE lines will no longer correspond to
input channels. Instead, we map the R number of 1D CONV
operations along the dimension of the weight height to these
PE lines. For squeeze-and-excite/FC layers, each PE line’s
MAC array of dimrp MACs can be divided into multiple
clusters (e.g., two clusters for illustration in the top part of
Figure 5 (b)) with the help of the two REs in one PE line
(denoted as @ and @) and multiplexing units at the bottom
of the MAC array, where each cluster handles computations
corresponding to a different output pixel in order to improve
the MAC array’s utilization and thus latency performance. In
this way, the proposed SmartExchange accelerator’s advantage
is maintained even for compact models, thanks to this adjust-
ment together with 1) our adopted 1D row stationary dataflow
within PE lines, 2) the employed bit-serial multipliers, and 3)
the possibility to heavily quantized coefficients (e.g., 4-bit).

Coefficient matrix indexing. For encoding the sparse co-
efficients, there are two commonly used methods: 1) a 1-bit
direct indexing where the indexes are coded with 1-bit (0 or
1 for zero or non-zero coefficients, respectively) [56]; and
2) an RLC indexing for the number of zero coefficient rows
[7]. Since SmartExchange algorithm (see Section III) enforces
channel-wise sparsity first and then vector-wise sparsity on
top of channel-wise sparsity, the resulting zero coefficients
are mostly clustered within some regions. As a result, a 1-bit
direct indexing can be more efficient with those clustered zero
coefficients removed.

Buffer design. For making use of DNNs’ (filter-
/vector-wise or bit-level) sparsity for skipping corresponding
computations/memory-accesses, it in general requires a larger
buffer (than that of corresponding dense models) due to the
unknown dynamic sparsity patterns. We here discuss how we
balance between the skipping convenience and the increased
buffer size. Specifically, to enable the processing with sparsity,
the row pairs of non-zero input activations and coefficients
are selected from the Input GB and the Index GB (using the
corresponding coefficient indexes), respectively, as inspired
by [56], which are then sent to the corresponding PE lines
for processing with the resulting outputs being collected to
the output GB.

First, input GB: to ensure a high utilization of the PE array,
a vanilla design requires (dimc X dimg X bitSipp,; )X input
activation rows (than that of the dense model counterpart)
to be fetched for dealing with the dynamic sparsity patterns,
resulting in (dimc X dimg X bitsinpy )X increased input GB
bandwidth requirement. In contrast, our design leads to a
> 1/8§ reduction of this required input GB bandwidth, with
dimc X dimp X bitsi,p, inputs for every (S + “Booth encoded
non-zero activation bits”) cycles. This is because all the FIFOs
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Fig. 7: The software-hardware interface pipeline for the pro-
posed SmartExchange accelerator.

in the PE lines are implemented in a ping-pong manner using
double buffers, thanks to the fact that 1) the adopted 1-D
row stationary dataflow at each PE line helps to relief this
bandwidth requirement, because each input activation row can
be reused for S cycles; and 2) the bit-serial multipliers takes
> 1 cycles to finish an element-wise multiplication.

Second, weight/index/output buffer: Similar to that of the
input GB, weight/index buffer bandwidth needs to be expanded
for handling activation sparsity, of which the expansion is
often small thanks to the common observation that the vector-
wise activation sparsity ratio is often relatively low. Note that
because basis matrices need to be fetched and stored into
the RE before the fetching of coefficient matrices and the
weight reconstruction computation, computation stalls occur if
the next basis matrix is fetched after finishing the coefficient
fetching and the computation corresponding to the current
basis matrix. Therefore, we leverage the two REs (® and ®
paths) in each PE line to operate in a “ping-pong” manner to
avoid the aforementioned computation stalls. For handling the
output data, we adopt an FIFO to buffer the outputs from each
PE slice before writing them back into the GB, i.e., a cache
between the PE array and the output GB. This is to reduce
the required output GB bandwidth by making use of the fact
that each output is calculated over several clock cycles.

Software-hardware interface. Here we briefly describe
how the software-hardware interface works for deploying a
SmartExchange algorithm-based DNN model from deep learn-
ing frameworks (e.g., PyTorch) into the SmartExchange accel-
erator hardware. As shown in Figure 7, a pre-trained Smar-
tExchange algorithm-based DNN model will pass through the
blocks of DNN Parser and Compiler before being loaded into
the accelerator. Specifically, the DNN Parser firstly helps to
extracts DNN model parameters including layer type (e.g.,
2D CONYV, depth-wise CONV, or FC layer) and activation
and weight dimensions, which will then used by the DNN
Compiler to 1) determine the dataflow and 2) generate the
sparse index and instructions for configuring the PE array,
memory data arrangements, and runtime scheduling. Finally,
the resulting instructions from the Compiler are loaded into
the accelerator’s controller for controlling processing.

V. EXPERIMENT RESULTS

In this section, we present a thorough evaluation of Smar-
tExchange, a new algorithm (see Section III) and hardware
(see Section IV) co-design framework.

On the algorithm level, as SmartExchange unifies three
mainstream model compression ideas: sparsification/pruning,
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Fig. 8: Accuracy vs. model size comparison of the SmartEx-
change algorithm (SE) and state-of-the-art compression tech-
niques on the (a) ImageNet and (b) CIFAR-10 datasets, where
different colors differentiate the SE and baseline techniques.

decomposition, and quantization into one framework, we
perform extensive ablation studies (benchmark over two
structured pruning and four quantization, i.e., state-of-the-
art compression techniques on four standard DNN models
with two datasets) to validate its superiority. In addition,
we evaluate SmartExchange on two compact DNN models
(MobileNetV2 [41] and EfficientNet-B0 [43]) on the ImageNet
[11] dataset, one segmentation model (DeepLabv3+ [5]) on the
CamVid [4] dataset, and two MLP models on MNIST.

On the hardware level, as the goal of the proposed SmartEx-
change is to boost hardware acceleration energy efficiency and
speed, we evaluate SmartExchange’s algorithm-hardware co-
design results with state-of-the-art DNN accelerators in terms
of energy consumption and latency when processing represen-
tative DNN models and benchmark datasets. Furthermore, to
provide more insights about the proposed SmartExchange, we
perform various ablation studies to visualize and validate the
effectiveness of SmartExchange’s component techniques.

A. Evaluation of the SmartExchange Algorithm

Experiment settings. To evaluate the algorithm perfor-
mance of SmartExchange, we conduct experiments on 1) a
total of six DNN models using both the CIFAR-10 [26]
and ImageNet [11] datasets, 2) one segmentation model on
the CamVid [4] dataset, and 3) two MLP models on the
MNIST dataset and compare the performance with state-of-
the-art compression techniques in terms of accuracy and model
size, including two structured pruning techniques (Network
Slimming [34] and ThiNet [36]), four quantization techniques
(Scalable 8-bit (S8) [3], FP8 [44], WAGEUBN [51], and
DoReFa [55]), one power-of-two quantization technique [40],
and one pruning and quantization technique [56].

SmartExchange vs. existing compression techniques. As
SmartExchange unifies the three mainstream ideas of pruning,
decomposition and quantization, we evaluate the SmartEx-
change algorithm performance by comparing it with state-
of-the-art pruning-alone and quantization-alone algorithms?,
under four DNN models and two datasets. The experiment
results are shown in Figure 8. SmartExchange in general

2we did not include decomposition-alone algorithms since their results are
not as competitive and also less popular.



TABLE 1II: The result summary of the proposed SmartEx-
change with re-training on: 1) VGG11 and ResNet50 using
the ImageNet dataset [11]; 2) VGG19 and ResNet164 using
the CIFAR-10 dataset [26]; and 3) MLP-1 [40] and MLP-2
[56] using the MNIST dataset.

Model Top-1 Top-5 CR Param. B Ce Spar.
(%) (%) (x) (MB) (MB) (MB) (%)
VGGI11 71.18% 90.08% - 845.75 - - -
VGGllgg  70.97% 89.88% 47.04 17.98 1.67 14.77 86.00
ResNet50  76.13% 92.86% - 102.40 - - -
ResNet5S0sg 75.31% 92.33% 11.53 8.88 1.40 6.77 45.00
ResNet50sg  74.06% 91.53% 14.24 7.19 1.40 5.08 58.60
VGGI19 93.66% - - 80.13 - - -
VGG19sg  92.96% - 74.19 1.08 0.27 0.74 92.80
VGG19sg  92.87% - 80.94 0.99  0.27 0.65 93.70
ResNetl64  94.58% - - 6.75 - - -
ResNetl64sg 95.04% - 8.04 084 025 0.53 37.60
ResNetl64sg 94.54% - 10.55 0.64  0.25 0.33 61.00
MLP-1 98.47% - - 14.125 - - -
MLP-1gg 97.32% - 130 0.11 0.01 0.10 82.34
MLP-2 98.50% - - 1.07 - - -
MLP-2gg 98.11% - 45.03 0.024 0.00 0.024 93.33

1. The baseline models use 32-bit floating-point representations for
the weights and input/output activations, so as to benchmark with the
best achievable accuracy results in the literature.

2. The proposed SmartExchange models use 8-bit fixed-point repre-
sentations for the input/output activations; and 4-bit/8-bit representa-
tions for the coefficient/basis matrices, respectively.

outperforms all other pruning-alone or quantization-alone
competitors, in terms of the achievable trade-off between the
accuracy and the model size. Taking ResNet50 on ImageNet
as an example, the quantization algorithm DoReFa [55] seems
to aggressively shrink the model size yet unfortunately cause a
larger accuracy drop; while the pruning algorithm ThiNet [36]
maintains competitive accuracy at the cost of larger models. In
comparison, SmartExchange combines the best of both worlds:
it obtains almost as high accuracy as the pruning-only ThiNet
[36], which is 2.66% higher than the quantized-only DoReFa
[55]; and on the other hand, it keeps the model as compact
as DoReFa [55]. Apart from the aforementioned quantization
works, we also evaluate the SmartExchange algorithm with
a state-of-the-art power-of-two quantization algorithm [40]
based on the same MLP model with a precision of 8 bits: when
having a higher compression rate of 130x (vs. 128 x in [40]),
SmartExchange achieves a comparable accuracy (97.32% vs.
97.35%), even if SmartExchange is not specifically dedicated
for FC layers while the power-of-two quantization [40] does.
In addition, compared with the pruned and quantized MLP
model in [56], SmartExchange achieves a higher compression
rate of 45.03x (vs. 40x in [56]) with a comparable accuracy
(98.11% vs. 98.42%).

A more extensive set of evaluation results are summarized in
Table II, in order to show the maximally achievable gains (and
the incurring accuracy losses) by applying SmartExchange
over the original uncompressed models. In Table II, “CR”
means the compression rate in terms of the overall parameter
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TABLE III: Evaluation of SmartExchange with re-training on
two compact models with the ImageNet dataset [11].

Model Top-1 Top-5 CR Param. B C,  Spar.
(%) (%) (x) (MB) (MB) (MB) (%)
MBV2 72.19% 90.53% - 1392 - - -
MBV2sg 70.16% 89.54% 6.57 2.12  0.37 1.74 0.00
Eff-BO 76.30% 93.50% - 20.40 - - -
Eff-BOsg 73.80% 91.79% 6.67 3.06 051 2.55 0.00

size; “Param.”, “B”, and “C,” denote the total size of the model
parameters, the basis matrices, and the coefficient matrices,
respectively; “Spar.” denotes the ratio of the pruned and total
parameters (the higher the better). Without too much surprise,
SmartExchange compresses the VGG networks by 40x to
80x, all with negligible (less than 1%) top-1 accuracy losses.
For ResNets, SmartExchange is still able to achieve a solid
>10x compression ratio. For example, when compressing
ResNet50, we find SmartExchange to incur almost no accuracy
drop, when compressing the model size by 11x to 14x.

SmartExchange applied on compact models. Table II
seems to suggest that (naturally) applying SmartExchange to
more redundant models will have more gains. We thus validate
whether the proposed SmartExchange algorithm remains to be
beneficial, when adopted for well-known compact models, i.e.,
MobileNetV2 (MBV?2) [41] and EfficientNet-BO (Eff-B0) [43].

As Table III indicates, despite the original light-weight de-
sign, SmartExchange still yields promising gains. For example,
when compressing MBV?2 for 6.57x CR, SmartExchange only
incurs ~2% top-1 accuracy and 1% top-5 accuracy losses.
This result is impressive and highly competitive when placed
in the context: for example, the latest work [14] reports 8 X
compression (4-bit quantization) of MobileNetV2, yet with a
7.07% top-1 accuracy loss.

Extending SmartExchange beyond classification models.
While model compression methods (and hence co-design
works) are dominantly evaluated on classification benchmarks,
we demonstrate that the effectiveness of SmartExchange is
beyond one specific task setting. We choose semantic seg-
mentation, a heavily-pursued computer vision task that is well
known to be memory/latency/energy-demanding, to apply the
proposed algorithm. Specifically, we choose the state-of-the-art
DeepLabv3+ [5] with a ResNet50 backbone (output stride: 16),
and the CamVid [4] dataset using its standard split. Compared
to the original DeepLabv3+, applying SmartExchange can lead
to 10.86x CR, with a marginal mean Intersection over Union
(mloU) drop from 74.20% to 71.20% (on the validation split).

SmartExchange decomposition evolution. To give an
example of the decomposition evolution of the SmartExchange
algorithm, we take one weight matrix W € R'9>*3 from the
second CONV layer of the second block in a ResNet164 net-
work pre-trained on CIFAR-10. The SmartExchange algorithm
decomposes W = C,B, where C, € R'92*3 and B € R**3. Figure
9 shows the evolution of the reconstruction error, sparsity
ratio in C,, and the distance between B and its initialization
(identity). We can see that the sparsity ratio in C, will increase
at the beginning at the cost of an increased reconstruction
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Fig. 9: Illustrating an example of the solution evolution during
the SmartExchange algorithm training.

error. But the SmartExchange algorithm remedies the error
over iterations while maintaining the sparsity. Also, B will
gradually become more different from the initialization.

B. Evaluation of the SmartExchange Accelerator.

In this subsection, we present experiments to evaluate the
performance of the SmartExchange accelerator. Specifically,
we first introduce the experiment setup and methodology, and
then compare SmartExchange accelerator with four state-
of-the-art DNN accelerators (covering a diverse range of
design considerations) on seven DNN models (including four
standard DNNs, two compact models, and one segmentation
model) in terms of energy consumption and latency when
running on three benchmark datasets. Finally, we perform
ablation studies for the SmartExchange accelerator to quantify
and discuss the contribution of its component techniques, its
energy breakdown, and its effectiveness in 1) making use of
sparsity and 2) dedicated design for handling compact models,
aiming to provide more insights.

Experiment setup and methodology. Baselines and config-
urations: we benchmark the SmartExchange accelerator with
four state-of-the-art accelerators: DianNao [6], SCNN [39],
Cambricon-X [54], and Bit-pragmatic [1]. These representative
accelerators have demonstrated promising acceleration perfor-
mance, and are designed with a diverse design considerations
as summarized in Table IV. Specifically, DianNao [6] is a
classical architecture for DNN inference which is reported
to be over 100x faster and over 20x more energy efficient
than those of CPUs. While DianNao considers dense models,
the other three accelerators take advantage of certain kinds
of sparsity in DNNs. To ensure fair comparisons, we assign
the SmartExchange accelerator and baselines with the same
computation resources and on-chip SRAM storage in all exper-
iments, as listed in Table V. For example, the DianNao, SCNN
and Cambricon-X accelerators use 1K 8-bit non-bit-serial

TABLE IV: The design considerations of the baseline and our
accelerators.

Accelerator

DianNao [6]
Cambricon-X [54]

SCNN [39]
Bit-pragmatic [1]

Design Considerations

Dense models
Unstructure weight sparsity
Unstructure weight sparsity

+ Activation sparsity
Bit-level activation sparsity

Vector-wise weight sparsity

Ours . . Lo .
+ Bit-level and vector-wise activation sparsity
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TABLE V: A summary of the computation and storage re-
sources in the SmartExchange and baseline accelerators.

SmartExchange and Bit-pragmatic [1]

dimy 64 Input GB 16KB x 32Banks
dimec 16 Output GB  2KB x2Banks
dimp 8 Weight Buff./slice  2KBx2Banks

# of bit-serial mul. 8K Precision 8 bits

DianNao [6], SCNN [39], and Cambricon-X [54]

The same total on-chip SRAM storage as SmartExchange
# of 8-bit mul. 1K Precision 8 bits

multipliers and SmartExchange and Bit-pragmatic employ an
equivalent 8K bit-serial multipliers.

For handling the dynamic sparsity in the SmartExchange
accelerator, the on-chip input GB bandwidth and weight GB
bandwidth with each PE slice are set to be four and two
times of those in the corresponding dense models, respectively,
which are empirically found to be sufficient for handling all
the considered models and datasets. Meanwhile, because the
computation resources for the baseline accelerators may be
different from their original papers, the bandwidth settings
are configured accordingly based on their papers’ reported
design principles. Note that 1) we do not consider FC layers
when benchmarking the SmartExchange accelerator with the
baseline accelerators (see Figures 10 to 12) for a fair com-
parison as the SCNN [39] baseline is designed for CONV
layers, and similarly, we do not consider EfficientNet-BO for
the SCNN accelerator as SCNN is not designed for handling
the squeeze-and-excite layers adopted in EfficientNet-BO; 2)
our ablation studies consider all layers in the models (see
Figures 13 and 14).

Benchmark models, datasets, and precision: We use
seven representative DNNs (ResNet50, ResNet164, VGG11,
VGG19, MobileNetV2, EfficientNet-BO, and DeepLabV3+)
and three benchmark datasets (CIFAR-10 [26], ImageNet [11],
and CamVid [4]). Regarding the precision, we adopt 1) 8-
bit activations for both the baseline-used and SmartExchange-
based DNN5; and 2) 8-bit weights in the baseline-used DNNSs,
and 8-bit/4-bit precision for the basis and coefficient matrices
in the SmartExchange-based DNNGs.

Technology-dependent parameters: For evaluating the per-
formance of the SmartExchange accelerator, we implemented a
custom cycle-accurate simulator, aiming to model the Register-
Transfer-Level (RTL) behavior of synthesized circuits, and
verified the simulator against the corresponding RTL imple-
mentation to ensure its correctness. Specifically, the gate-level
netlist and SRAM are generated based on a commercial 28nm
technology using the Synopsys Design Compiler and Arm
Artisan Memory Compilers, proper activity factors are set
at the input ports of the memory/computation units, and the
energy is calculated using a state-of-the-art tool PrimeTime
PX [42]. Meanwhile, thanks to the clear description of the
baseline accelerators’ papers and easy representation of their
works, we followed their designs and implemented custom
cycle-accurate simulators for all the baselines. In this way,
we can evaluate the performance of both the baseline and our
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accelerators based on the same commercial 28nm technology.
The resulting designs operate at a frequency of 1GHz and the
performance results are normalized over that of the DianNao
accelerator, where the DianNao design is modified to ensure
that all accelerators have the same hardware resources (see
Table V). We refer to [50] for the unit energy of DRAM
accesses, which is 100pJ per 8 bit, and the unit energy costs
for computation and SRAM accesses are listed in Table 1.

SmartExchange vs. state-of-the-art accelerators. Energy
efficiency over that of the baseline accelerators: Figure 10
shows the normalized energy efficiency of the SmartEx-
change and the baseline accelerators. It is shown that the
SmartExchange accelerator consumes the least energy under
all the considered DNN models and datasets, achieving an
energy efficiency improvement ranging from 2.0x to 6.7x.
The SmartExchange accelerator’s outstanding energy effi-
ciency performance is a result of SmartExchange’s algorithm-
hardware co-design effort to effectively trade the much higher-
cost memory storage/accesses for the lower-cost computations
(i.e., rebuilding the weights using the basis and coefficient
matrices at the least costly RF and PE levels vs. fetching
them from the DRAM). Note that SmartExchange non-trivially
outperforms all baseline accelerators even on the compact
models (i.e., MobileNetV2 and EfficientNet-B0O) thanks to
both the SmartExchange algorithm’s higher compression ratio
and the SmartExchange accelerator’s dedicated and effective
design (see Section IV-B) of handling depth-wise CONV
and squeeze-and-excite layers that are commonly adopted in
compact models.

Figure 11 shows the normalized number of DRAM accesses
for the weights and input/output activations. We can see that:
1) the baselines always require more (1.1x to 3.5x) DRAM
accesses than the SmartExchange accelerator, e.g., see the
ResNet and VGG models on the ImageNet and CIFAR-10
datasets as well as the segmentation model DeepLabV3+
on the CamVid dataset; 2) SmartExchange’s DRAM-access
reduction is smaller when the models’ activations dominate the
cost (e.g., compact DNN models); and 3) the SmartExchange
accelerator can reduce the number of DRAM accesses over
the baselines by up to 1.3x for EfficientNet-BO0, indicating the
effectiveness of our dedicated design for handling the squeeze-
and-excite layers (see Section IV-B).

Speedup over that of the baseline accelerators: Similar to
benchmarking the SmartExchange accelerator’s energy effi-
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Fig. 11: The normalized number of DRAM accesses (over the
SmartExchange accelerator) of the SmartExchange and four
state-of-the-art baseline accelerators on seven DNN models

and three datasets.

ciency, we compare its latency of processing one image (i.e.,
batch size is 1) over that of the baseline accelerators on
various DNN models and datasets, as shown in Figure 12.
We can see that the SmartExchange accelerator achieves the
best performance under all the considered DNN models and
datasets, achieving a latency improvement ranging from 8.8 x
to 19.2x. Again, this experiment validates the effectiveness
of SmartExchange’s algorithm-hardware co-design effort to
reduce the latency on fetching both the weights and the
activations from the memories to the computation resources.
Since the SmartExchange accelerator takes advantage of both
the weights’ vector-wise sparsity and the activations’ bit-level
and vector-wise sparsity, it has a higher speedup over all
the baselines that make use of only one kind of sparsity.
Specifically, the SmartExchange accelerator has an average
latency improvement of 3.8 x, 2.5x, and 2.0x over SCNN [39]
and Cambricon-X [54] which consider unstructured sparsity,
and Bit-pragmatic [1] which considers the bit-level sparsity in
activations, respectively.

Contributions of SmartExchange’s component tech-
niques. The aforementioned energy efficiency and latency
improvement of the SmartExchange accelerator comes from
the algorithm-hardware co-design efforts including the Smar-
tExchange algorithm’s model compression (see Section III)
and the SmartExchange accelerator’s support for both vector-
wise sparsity (i.e., index selecting) and bit-level sparsity (i.e.,
bit-serial multiplier) (see Section IV-B). To quantify the contri-
bution of SmartExchange’s component techniques, we build a
similar baseline accelerator as the SmartExchange accelerator
and run a dense DNN on the baseline accelerator. Specifi-
cally, the baseline accelerator uses non-bit-serial multipliers,
dimy=16, dimc=8, and dimp=8 to ensure the required hard-
ware resources to be the same as that of the SmartExchange

20 @ DianNao
18 || mscnn
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Fig. 12: The normalized speedup (over DianNao) achieved by
the SmartExchange accelerator over the four state-of-the-art
baseline accelerators on seven DNN models and three datasets.
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erator when running the (a) CONV and squeeze-and-excite
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types of layers) of seven DNN models on three datasets.

T
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accelerator. When running ResNet50, the SmartExchange ac-
celerator achieves 3.65x better energy efficiency than the
baseline accelerator, where the reduced DRAM accesses re-
sulted from the SmartExchange’s model compression, vector-
wise sparsity support, and bit-level sparsity support contribute
to 23.99%, 12.48%, and 36.14% of the total energy savings,
respectively. Assuming a sufficient DRAM bandwidth, the
SmartExchange accelerator achieves 7.41x speedup than the
baseline accelerator, thanks to its 1) effort to leverage the spar-
sity to reduce unnecessary data movements and computations
and 2) increased parallel computation resources (note that the
number of bit-serial multipliers is 8 x of that of non-bit-serial
multipliers given the same computation resource).

The SmartExchange accelerator’s energy breakdown.
Figure 13 (a) shows the SmartExchange accelerator’s energy
breakdown in terms of computations and accessing various
memory hierarchies, when processing only the CONV and
squeeze-and-excite layers (i.e., excluding the FC layers) of
various DNN models and datasets. We can see that 1) the
energy cost of accessing DRAM is dominated by the in-
put/output activations for most of the models (i.e., see the
VGGI11, MobileNetV2, and EfficientNet-BO models on the
ImageNet dataset, the ResNet164 on the CIFAR-10 dataset,
and the DeepLabV3+ model on the CamVid dataset), because
the SmartExchange algorithm can largely reduce the number
of weight accesses from the DRAM; 2) the energy cost of
accessing DRAM for the weights is still dominant in models
where the model sizes are very large, e.g., see the VGG19
model on the CIFAR10 dataset and the ResNet50 model on
the ImageNet dataset; and 3) the RE and index selector only
account for <0.78% and <0.05% of the total energy cost,
which are negligible.

When considering all layers (see Figure 13 (b)), the trends
of the experiment results are similar to those in Figure 13
(a), except for the VGGI11 model. This is because the FC
layers in most of the models consume only <7.77% of the
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Fig. 14: The energy breakdown and latency of the SmartEx-
change accelerator when running ResNet50 with four different
sparsity ratios.

total energy cost, whereas the FC weight DRAM accesses in
VGG11 account for up to 43.08% of the total energy cost and
up to 95.66% of the total parameter size. Note that although
the total size of the SmartExchange-compressed weights is
similar for the VGG19 and ResNet164 models on CIFAR10
(see Table II), their weight DRAM accesses cost percentages
are very different. This is because 1) the original ResNet164
model has much more activations than that of the VGG19
model and 2) the activations in the VGG19 model [35] have
been largely pruned thanks to the models’ high filter-wise
sparsity (e.g., 90.79%) which enables pruning the whole filters
and their corresponding activations (e.g., enabling 81.04% and
26.64% of the input and output activations to be pruned), both
leading to the large gap in the cost percentage of the weight
DRAM accesses in the two models.

SmartExchange’s effectiveness in exploiting sparsity. Fig-
ure 14 shows the normalized energy consumption and latency
(over the total energy cost and latency of the models) when
the SmartExchange accelerator processes ResNet50 with four
vector-wise weight sparsity ratios, where the corresponding
model size and accuracy are summarized in the bottom-left
corner. We can see that: 1) the total energy cost of the
input activations’ DRAM and GB accesses is reduced by
18.33% when the weight sparsity increases by 15% (from
45.0% to 60.0%), showing that our accelerator can effectively
utilize the vector-wise weight sparsity to save the energy cost
of accessing both the sparse weights and the corresponding
inputs; and 2) the latency is reduced by 41.83% when the
weight sparsity increases from 45.0% to 60.0%, indicating the
SmartExchange accelerator can indeed utilize the vector-wise
weight sparsity to skip the corresponding input accesses and
computations to reduce latency.

Effectiveness of SmartExchange’s support for compact
models. We perform an ablation experiment to evaluate
the SmartExchange accelerator’s dedicated design including
optimized dataflow and PE line configuration (see Section
IV-B) for handling compact models. Figure 15 (a) shows
the normalized layer-wise energy cost on selected depth-wise
CONYV layers of MobileNetV2 with and without the proposed
dedicated design. We can see that the proposed design can
effectively reduce the energy cost by up to 28.8%. Meanwhile,
Figure 15 (b) further shows that the normalized layer-wise
latency can be reduced by 38.3% to 65.7%.
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VI. RELATED WORKS

Compression-aware DNN accelerators. To achieve ag-
gressive performance improvement, researchers have explored
from both the algorithm and architecture sides. In general,
there exist three typical algorithm approaches, weight de-
composition, data quantization, and weight sparsification, that
have been exploited by hardware design. H. Huang et al. [23]
demonstrate DNNs with tensorized decomposition on non-
volatile memory (NVM) devices. For the weight sparsification
accelerators, [18], [39], [54] have been proposed for making
use of unstructured sparsity. Cambricon-S [56] proposes a co-
designed weight sparsity pattern to reduce irregularity. Most
of recent accelerators use equal or less than 16-bit fixed-
point quantized data [39], [54]. The works in [18], [56] uses
clustering to further encode weights; Stripes [25] and UNPU
[27] leverage a bit-serial processing to support flexible bit
widths to better balance the accuracy loss and performance
improvement; Bit-pragmatic [1] utilizes the input bit-level
sparsity to improve throughput and energy efficiency; and
Bit-Tactical [10] combines the weight unstructured sparsity
with input bit-level sparsity. To our best knowledge, Smar-
tExchange is the first formulation that unifies weight decom-
position, quantization, and sparsification (especially vector-
wise structured sparsity) approaches to simultaneously shrink
the memory footprint and simplify the computations when
recovering the weight matrix during runtime.

VII. CONCLUSION

We propose SmartExchange, an algorithm-hardware co-
design framework to trade higher-cost memory storage/access
for lower-cost computation, for boosting the energy efficiency
and speed of DNN inference. Extensive experiments show
that the SmartExchange algorithm outperforms state-of-the-
art compression techniques on seven DNN models and three
datasets under various settings, while the SmartExchange
accelerator outperforms state-of-the-art DNN accelerators in
terms of both energy efficiency and latency (up to 6.7x and
19.2x, respectively).
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