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Abstract—Resistive-random-access-memory (ReRAM) based
processing-in-memory (R2PIM) accelerators show promise in
bridging the gap between Internet of Thing devices’ con-
strained resources and Convolutional/Deep Neural Networks’
(CNNs/DNNs’) prohibitive energy cost. Specifically, R2PIM ac-
celerators enhance energy efficiency by eliminating the cost of
weight movements and improving the computational density
through ReRAM’s high density. However, the energy efficiency is
still limited by the dominant energy cost of input and partial sum
(Psum) movements and the cost of digital-to-analog (D/A) and
analog-to-digital (A/D) interfaces. In this work, we identify three
energy-saving opportunities in R2PIM accelerators: analog data
locality, time-domain interfacing, and input access reduction, and
propose an innovative R2PIM accelerator called TIMELY, with
three key contributions: (1) TIMELY adopts analog local buffers
(ALBs) within ReRAM crossbars to greatly enhance the data
locality, minimizing the energy overheads of both input and Psum
movements; (2) TIMELY largely reduces the energy of each single
D/A (and A/D) conversion and the total number of conversions
by using time-domain interfaces (TDIs) and the employed ALBs,
respectively; (3) we develop an only-once input read (O2IR)
mapping method to further decrease the energy of input accesses
and the number of D/A conversions. The evaluation with more
than 10 CNN/DNN models and various chip configurations shows
that, TIMELY outperforms the baseline R2PIM accelerator,
PRIME, by one order of magnitude in energy efficiency while
maintaining better computational density (up to 31.2×) and
throughput (up to 736.6×). Furthermore, comprehensive studies
are performed to evaluate the effectiveness of the proposed ALB,
TDI, and O2IR in terms of energy savings and area reduction.

Index Terms—processing in memory, analog processing,
resistive-random-access-memory (ReRAM), neural networks

I. INTRODUCTION

While deep learning-powered Internet of Things (IoT) de-

vices promise to revolutionize the way we live and work by

enhancing our ability to recognize, analyze, and classify the

world around us, this revolution has yet to be unleashed. IoT

devices – such as smart phones, smart sensors, and drones –

have limited energy and computation resources since they are

This work was supported in part by NIH R01HL144683 and NSF 1838873,
1816833, 1719160, 1725447, 1730309.

battery-powered and have a small form factor. On the other

hand, high-performance Convolutional/Deep Neural Networks

(CNNs/DNNs) come at a cost of prohibitive energy consump-

tion [68] and can have hundreds of layers [67] and tens of

millions of parameters [50], [72]. Therefore, CNN/DNN-based

applications can drain the battery of an IoT device very quickly

if executed frequently [76], and requires an increase in form

factor for storing and executing CNNs/DNNs [11], [58]. The

situation continues to worsen due to the fact that CNNs/DNNs

are becoming increasingly complex as they are designed to

solve more diverse and bigger tasks [32].

To close the gap between the constrained resources of IoT

devices and the growing complexity of CNNs/DNNs, many

energy-efficient accelerators have been proposed [1], [7], [10],

[13], [44]–[46], [73]. As the energy cost of CNN/DNN accel-

erators is dominated by memory accesses of inputs, weights

and partial sums (Psums) (see Fig. 1 (a)) (e.g., up to 95% in

DianNao [13]), processing-in-memory (PIM) accelerators have

emerged as a promising solution in which the computation

is moved into the memory arrays and weight movements

are eliminated (see Fig. 1 (b)). Among PIM accelerators on

various memory technologies [14], [42], [43], [56], [58], [62],

[66], [78], resistive-random-access-memory-(ReRAM)-based-

PIM (R2PIM) accelerators have gained extensive research

interest due to ReRAM’s high density (e.g. 25×–50× higher

over SRAM [71], [79]). However, the energy efficiency of

R2PIM accelerators (such as PRIME [14], ISAAC [58], and

PipeLayer [62]) is still limited due to two bottlenecks (see

Fig. 1 (b)): (1) although the weights are kept stationary in
memory, the energy cost of data movements due to inputs and
Psums is still large (as high as 83% in PRIME [14]); (2) the
energy of the interfacing circuits (such as analog-to-digital
converters (ADCs)/digital-to-analog converters (DACs)) is an-
other limiting factor (as high as 61% in ISAAC [58]).

To address the aforementioned energy bottlenecks, we an-

alyze and identify opportunities for greatly enhancing the

energy efficiency of R2PIM accelerators (see Section III-A),

and develop three novel techniques that strive to push data
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Fig. 1. An illustration of (a) the “memory wall” in CNN/DNN accelerators due to data movements of inputs, weights, and Psums, and an example of their
energy breakdown [10], (b) the energy efficiency bottlenecks of PIM accelerators: (1) input and Psum movements (i.e. Bottleneck �) and (2) the DAC/ADC
interfacing (i.e. Bottleneck �), and (c) bench-marking the energy efficiency and computational density of the proposed TIMELY over state-of-the-art CNN/DNN
accelerators, including a non-PIM accelerator (Eyeriss [10]) and R2PIM accelerators (PRIME [14], ISAAC [58], and PipeLayer [62]).

movements and interfaces in PIM accelerators towards local

and in time domain (see Section III-B). While these three

techniques are in general effective for enhancing the energy

efficiency of PIM accelerators, we evaluate them in a R2PIM

accelerator, and demonstrate an improvement of energy effi-

ciency by one order of magnitude over state-of-the-art R2PIM

accelerators. The contribution of this paper is as follows:

• We propose three new ideas for aggressively improving

energy efficiency of R2PIM accelerators: (1) adopting

analog local buffers (ALBs) within memory crossbars

for enhancing (analog) data locality, (2) time-domain

interfaces (TDIs) to reduce energy cost of single digital-

to-analog (D/A) (and analog-to-digital (A/D)) conversion,

and (3) a new mapping method called only-once input

read (O2IR) to further save the number of input/Psum

accesses and D/A conversions.

• We develop an innovative R2PIM architecture (see

Section IV), TIMELY (Time-domain, In-Memory

Execution, LocalitY), that integrates the three aforemen-

tioned ideas to (1) maximize (analog) data locality via

ALBs and O2IR and (2) minimize the D/A (and A/D)

interfaces’ energy cost by making use of the more energy-

efficient TDIs, the ALBs and the O2IR method. TIMELY

outperforms the most competitive R2PIM accelerators in

both energy efficiency (over PRIME) and computational

density (over PipeLayer) (see Fig. 1 (c)).

• We perform a thorough evaluation of TIMELY against

4 state-of-the-art R2PIM accelerators on >10 CNN and

DNN models under various chip configurations, and

show that TIMELY achieves up to 18.2× improvement

(over ISAAC) in energy efficiency, 31.2× improvement

(over PRIME) in computational density, and 736.6× in

throughput (over PRIME), demonstrating a promising

architecture for accelerating CNNs and DNNs. Further-

more, we perform ablation studies to evaluate the effec-

tiveness of each TIMELY’s feature (i.e., ALB, TDI, and

O2IR) in reducing energy and area costs, and demonstrate

that TIMELY’s innovative ideas can be generalized to

other R2PIM accelerators.

II. BACKGROUND

This section provides the background of R2PIM CNN/DNN

accelerators. First, we introduce CNNs and the input reuse

opportunities in CNNs’ convolutional (CONV) operations in

Section II-A, and ReRAM basics in Section II-B. Second, we

compare digital-to-time converter (DTC)/time-to-digital con-

verter (TDC) and DAC/ADC, which are two types of digital-

to-analog (D/A) and analog-to-digital (A/D) conversion, in

terms of energy costs and accuracy in Section II-C.

A. CNN and Input Reuse

CNNs are composed of multiple CONV layers. Given the
CNN parameters in Table I, the computation in a CONV layer
can be described as:

O[v][u][x][y] =
C−1

∑
k=0

G−1

∑
i=0

Z−1

∑
j=0

I[v][k][Sx+ i][Sy+ j]×W [u][k][i][ j]

+B[u], 0 ≤ v < M,0 ≤ u < D,0 ≤ x < F,0 ≤ y < E

(1)

where O, I, W , and B denote matrices of the output feature

maps, input feature maps, filters, and biases, respectively.

Fully-connected (FC) layers are typically behind CONV lay-

ers. Different from CONV layers, the filters of FC layers are

of the same size as the input feature maps [10]. Equation (1)

can describe FC layers with additional constraints, i.e., Z = H,

G =W , S = 1, and E = F = 1.

Three types of input reuses exist in CNN CONV operations

yielding 3-D Psums. Consider the example in Fig. 2 where C
and M are set to 1 for simplicity because input reuses are

independent on them. First (see Fig. 2 (a)), one input feature

map is shared by multiple (e.g. two in Fig. 2) output channels’

filters. Second (see Fig. 2 (b)), as filters slide horizontally,

input pixels are reused to generate outputs in the same row –

e.g. b and f are used twice to generate w and x, respectively.

Third (see Fig. 2 (c)), as filters slide vertically, input pixels are

reused to generate outputs in the same column – e.g. e and f
are used twice to generate w and y, respectively. Given a layer

with D output channels, a filter size of Z×G, and a stride of S,

each input pixel is reused DZG/S2 times [74]. For example, f
is reused 8 times in Fig. 2 where D=2, Z=G=2, and S=1. Note

that weights are private in DNN CONV operations, which is

the main difference between CNNs and DNNs [82].
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Fig. 2. Illustrating the three types of input reuses.
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Fig. 3. (a) ReRAM operation basics and (b) two types of interfacing circuits.

B. ReRAM Basics

ReRAM is a type of nonvolatile memory storing data

through resistance modulation [30], [39], [65], [69], [71]. An

ReRAM cell with a metal-insulator-metal (MIM) structure

consists of top/bottom electrodes and a metal-oxide layer [71].

Analog multiplication can be performed in ReRAM cells

(see Fig. 3 (a)), with the biased voltages serving as inputs,

ReRAM cells’ conductance as weights, and resulting currents

as outputs. Addition operations are realized through current

summing among ReRAM cells of the same columns [28], [77]

– e.g. I1 =V1/R11 +V2/R12 in Fig. 3 (a). At the circuit level,

digital inputs are read from an input memory, converted to

analog voltages by DACs, and then applied on ReRAM cells.

The resulting analog Psums are converted to digital values by

ADCs, and then stored back into an output memory.

C. DTCs/TDCs vs. DACs/ADCs
As shown in Fig. 3 (b), DTCs/TDCs can perform the con-

TABLE I
A SUMMARY OF PARAMETERS USED IN TIMELY

CNN Params Description
M batch size of 3-D feature maps

C/D input / output channel

H/W input feature map height / width

Z/G filter height / width

S stride

E/F output feature map height / width

Arch. Params Description
B # of ReRAM bit cells in one crossbar array is B2

NCB # of ReRAM crossbar arrays in one sub-Chip is N2
CB

Ri j
the resistance of the ReRAM bit cell at the ith row

and jth column of a crossbar array

Ti the time input for the ith row of an ReRAM crossbar array

To,8b/4b the time Psum for 8-bit inputs and 4-bit weights

V DD the logic high voltage of the time-domain signals

Vth the threshold voltage of a comparator

Cc the charging capacitance

Tdel the unit delay of a DTC/TDC

γ one DTC/TDC is shared by γ rows/columns
in one ReRAM crossbar array

φ the reset phase of a sub-Chip (reset: φ=1)

χ the number of sub-Chips in one TIMELY chip

ε the potential error of one X-subBuf

Energy Params Description
eDTC the energy of one conversion in DTC

eT DC the energy of one conversion in TDC

eDAC the energy of one conversion in DAC

eADC the energy of one conversion in ADC

eP the unit energy of accessing P-subBuf

eX the unit energy of accessing X-subBuf

eR2 the unit energy of accessing ReRAM input/output buffers

version between an analog time signal and the corresponding

digital signal; DACs/ADCs can do so between an analog

voltage signal and the digital signal. One digital signal (e.g. Dx
in Fig. 3 (b)) can be represented as a time delay with a fixed

high/low voltage (corresponding to 1/0) in the time domain

(e.g. Tx in Fig. 3 (b)) [3], [5], [8], [12], or as a voltage in

the voltage domain (e.g. Vx in Fig. 3 (b)). Compared with a

DTC/TDC which can be implemented using digital circuits [4],

[16], [40], [51], [52], [80], a DAC/ADC typically relies on

analog circuits that (1) are more power consuming and (2)

vulnerable to noises and process, voltage and temperature

(PVT) variations, and (3) benefit much less from process

scaling in energy efficiency [49].

III. OPPORTUNITIES AND INNOVATIONS

This section aims to answer the question of “how can
TIMELY outperform state-of-the-art R2PIM accelera-
tors?” Note that all parameters used in this section are

summarized in Table I.

A. Opportunities

We first identify three opportunities for greatly reducing

energy costs of R2PIM accelerators by analyzing performance

limitations in state-of-the-art designs. Specifically, Opportunity

#1 is motivated by the energy bottleneck of (1) input and Psum

movements (i.e., Bottleneck � in Fig. 1 (b)) and (2) interfacing

circuits (i.e., Bottleneck � in Fig. 1 (b)); Opportunity #2

is inspired by the bottleneck of interfacing circuits; and

Opportunity #3 is motivated by both types of bottlenecks.

Opportunity #1. Enhancing (analog) data locality to greatly

reduce the energy/time costs of both data movements and

D/A and A/D interfaces. We identify this opportunity based

on the following considerations. Since in-ReRAM processing

computes in the analog domain, the operands, including inputs,

weights, and Psums, are all analog. If we can mostly access

analog operands locally, we can expect large energy savings

associated with input and Psum movements and largely re-

move the need to activate D/A and A/D interfaces. In the prior

works, the input/Psum movements and interfaces dominate the

energy cost of R2PIM accelerators. First, input and Psum ac-

cesses involve energy-hungry data movements. While weights

stay stationary in R2PIM accelerators, input and Psum accesses

are still needed. Although one input/Psum access can be shared

by B ReRAM cells in the same row/column, for dot-product

operations in a B×B ReRAM crossbar array, a large number

of input and Psum accesses are still required. For example,

more than 55 million inputs and 15 million Psums need to

be accessed during the VGG-D [61] and ResNet-50 [26]

inferences, respectively (see Fig. 4 (a)). While inputs require

Comm. 19%

Memory 12%

Digital comp. 8%

Analog 
comp. 
(DAC/   
ADC)
61%

(a)

VGG-D

Input* Psum*

ResNet-50
59.8 M
15.1 M

(b)
* All CONV layers

59.9 M
55.6 M

# of 
accessing Inputs

36%
Psums & 
Outputs

47%

ADC 17%

DAC 0%

(c)
Fig. 4. (a) The number of input/Psum accesses, (b) energy breakdown of
PRIME [14], and (c) energy breakdown of ISAAC [58].
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only memory read, Psums involve both memory write and

read, resulting in a large energy cost. As an example, 36% and

47% of the total energy in PRIME [14] are spent on input and

Psum accesses, respectively (see Fig. 4 (b)). Second, voltage-

domain D/A and A/D conversions involve a large energy cost.

For example, in PRIME, except the data movement energy,

most of the remaining energy cost is consumed by D/A and

A/D conversions (see Fig. 4 (b)).

Opportunity #2. Time-domain interfacing can reduce the

energy cost of a single D/A (and A/D) conversion. Since time-

domain D/A and A/D conversion is more energy efficient

than voltage-domain conversion (see Section II-C), we have

an opportunity to use DTCs and TDCs for interfacing be-

tween the digital signals stored in memory and analog signals

computated in ReRAM crossbar arrays. In prior works, DACs

and ADCs limit the energy efficiency of R2PIM accelerators.

Although ISAAC optimizes the energy cost of its DAC/ADC

interface, the interface energy is still as large as 61% in ISAAC

(see Fig. 4 (c)). Specifically, ISAAC [58] decreases the number

of ADCs by sharing one ADC among 128 ReRAM bitlines,

and thus the ADC sampling rate increases by 128×, increasing

the energy cost of each A/D conversion.

Opportunity #3. Reducing the number of input accesses

can save the energy cost of both input accesses and D/A

conversions. We find that the input reuse of CNNs can still

be improved over the prior works for reducing the energy

overhead of input accesses and corresponding interfaces.

Though each input connected to one row of an ReRAM

array is naturally shared by B ReRAM cells along the row,

each input on average has to be accessed DZG/S2/B times.

Taking ISAAC [58] as an example, one 16-bit input involves

DZG/S2/B times unit eDRAM read energy (i.e. 4416× the

energy of a 16-bit ReRAM MAC), input register file read

energy (i.e. 264.5× the energy of a 16-bit ReRAM MAC)

and D/A conversion energy (i.e. 109.7× the energy of 16-bit

ReRAM MAC). For MSRA-3 [31] adopted by ISAAC, each

input of CONV layers is read and activated the interfaces 47

times on average.

B. TIMELY Innovations

The three aforementioned opportunities inspire us to de-

velop the three innovations in TIMELY for greatly improving

the acceleration energy efficiency. Fig. 5 (a) and (b) show a

conceptual view of the difference between existing R2PIM ac-

celerators and TIMELY. Specifically, TIMELY mostly moves

data in the analog domain as compared to the fully digital

data movements in the existing designs and adopts DTCs and

TDCs instead of DACs and ADCs for interfacing.

Innovation #1. TIMELY adopts ALBs to aggressively

enhance (analog) data locality, leading to about NCB× re-

duction in data movement energy costs per input and per

Psum compared with existing designs, assuming a total of

NCB × NCB crossbars in each sub-Chip. Multiple sub-Chips

compose one chip. One key difference between TIMELY and

existing R2PIM resides in their sub-Chip design (see Fig. 5

(a) vs. (b)). Specifically, each crossbar (i.e. CB in Fig. 5) in
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Fig. 5. A high-level view of (a) a sub-Chip within a chip of state-of-the-art
R2PIMs and (b) TIMELY’s sub-Chip, (c) the energy cost per input and per
Psum in state-of-the-art R2PIMs and TIMELY, and (d) the normalized energy
of different data accesses and interfaces, where eR2 , eX , and eP are the unit
energy of accessing ReRAM input/output buffers, X-subBuf, and P-subBuf,
respectively, while eDAC , eADC , eDTC , and eT DC denote the energy of one
DAC, ADC, DTC, and TDC [14], [38], [41], [52], [58], [63], respectively.

existing designs fetches inputs from a high-cost memory (e.g.

input buffers in Fig. 5 (a)). Therefore, for each sub-Chip, there

is an energy cost of BN2
CBeR2 for accessing BN2

CB inputs. In

TIMELY (see Fig. 5 (b)), an input fetched from the high-

cost memory is shared by one row of the sub-Chip thanks to

the adopted local ALB buffers (e.g. X-subBufs in Fig. 5 (b))

that are sandwiched between the crossbar arrays, resulting in

an energy cost of BNCBeR2 +BN2
CBeX for handling the same

number of inputs, leading to an energy reduction of NCB×
per input (see Fig. 5 (c). Similarly, each crossbar in existing

R2PIM accelerators directly writes and reads Psums to and

from the high-cost output buffers, whereas in TIMELY the

Psums in each column of the sub-Chip are accumulated before

being written back to the output buffers, leading to an energy

cost reduction of NCB× per Psum (see Fig. 5 (c). Furthermore,

accessing the high-cost memory requires about one order of

magnitude higher energy cost than that of a local buffer.

Specifically, the average energy of one high-cost memory

access in PRIME is about 9× and 33× higher than that of

P-subBufs and X-subBufs [79] in TIMELY, respectively. NCB
is typically >10 (e.g. NCB = 12 in PRIME). Therefore, about

NCB× energy reduction for handling input/Psum accesses can

be achieved in TIMELY. Additionally, the much reduced

requirements of input/output buffer size in TIMELY make it

possible to eliminate inter sub-Chip memory (see Fig. 6 (a)

and Fig. 9 (c), leading to additional energy savings.

Innovation #2. TIMELY adopts TDIs and ALBs to min-

imize the energy cost of a single conversion and the total

number of conversions, respectively. As a result, TIMELY

reduces the interfacing energy cost per input and per Psum

by q1NCB and q2NCB, respectively, compared with current

practices, where q1 = eDAC/eDTC and q2 = eADC/eT DC. It is
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well recognized that the energy cost of ADC/DAC interfaces is

another bottleneck in existing R2PIM accelerators , in addition

to that of data movements. For example, the energy cost of

ADCs and DACs in ISAAC accounts for >61% of its total

energy cost. In contrast, TIMELY adopts (1) TDCs/DTCs

instead of ADCs/DACs to implement the interfacing circuits

of crossbars and (2) only one TDC/DTC conversion for each

row/column of one sub-Chip, whereas each row/column of

crossbar needs one ADC/DAC conversion in existing designs,

leading to a total of q1NCB× and q2NCB× reduction per

input and Psum, respectively, as compared to existing designs.

Specifically, q1 and q2 are about 50 and 20 [38], [41], [52],

[58], [63], respectively.

Innovation #3. TIMELY employs O2IR to further reduce

the number and thus energy cost of input accesses and D/A

conversions. As accessing the input and output buffers in sub-

Chips costs about one order of magnitude higher energy than

that of accessing local buffers between the crossbar arrays (see

the left part of Fig. 5 (d)), we propose an O2IR strategy to

increase the input reuse opportunities for minimizing the cost

of input accesses and associated D/A conversion.

IV. TIMELY ARCHITECTURE

In this section, we first show an architecture overview (see

Section IV-A), and then describe how the TIMELY architec-

ture integrates the three innovations for aggressively improving

the acceleration energy efficiency in Sections IV-B, IV-C,

and IV-D, respectively. In addition, we introduce our pipeline

design for enhancing throughput in Section IV-E and the

software-hardware interface design for offering programma-

bility in Section IV-F. Parameters are summarized in Table I.

A. Overview

Fig. 6 (a) shows the TIMELY architecture, which consists

of a number of sub-Chips connected via bus [14], [58]. Specif-

ically, each sub-Chip includes DTCs/TDCs (on the left/at

the bottom), ReRAM input/output buffers (on the left/at the

bottom), ReRAM crossbars (see � in Fig. 6 (a)) with each

having B×B bit cells, a mesh grid of local ALB buffers –

i.e., X-subBufs (see � in Fig. 6 (a)) and P-subBufs (see �
in Fig. 6 (a)) – between the ReRAM crossbar arrays, current

adders (i.e. I-adders, � in Fig. 6 (a)), and a block of shift-

and-add, ReLU, max-pooling units.

The TIMELY architecture processes CNNs/DNNs’ infer-

ence as follows. The pre-trained weights are pre-loaded into

TIMELY’s ReRAM arrays. Inputs of the CNN/DNN layers

are fetched into the input buffers of one sub-Chip or several

sub-Chips that handle the corresponding layers, starting from

the first CNN/DNN layer. Within each sub-Chip, the inputs

are applied to the DTCs for converting the digital inputs into

analog time signals, which are then shared by ReRAM bit cells

in the same row of all crossbar arrays along the horizontal

direction to perform dot products with the corresponding

resistive weights. The calculated Psums at the same column of

all crossbars in the vertical direction are aggregated in the I-

adders, and converted into a voltage signal and then an analog
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Fig. 6. An illustration of the (a) TIMELY architecture: (b) � X-subBuf, (c) �
P-subBuf, (d) � I-adder, (e) � ReRAM crossbar located in the first crossbar
column and last row of a sub-Chip, � charging units, and comparators, (f)
the input/output characteristics of an 8-bit DTC, and (g) the input/output
characteristic of dot-product operations in the leftmost ReRAM column of
a sub-Chip.

time signal by a charging unit and comparator block (see �
in Fig. 6 (a)) before being converted into a digital signal via

a TDC. Note that the output of each P-subBuf is connected

to the I-adder separately. Finally, the resulting digital signals

are applied to the block of shift-and-add, ReLU, max-pooling

units, and then written to the output buffers.

B. Enhancing (Analog) Data Locality

Within each sub-chip of TIMELY, the converted inputs and

calculated Psums are moved in the analog domain with the aid

of the adopted ALBs (see Fig. 6 (a)) after the digital inputs are

converted into time signals by DTCs and before the Psums are

converted into digital signals by TDCs. In this subsection, we

first introduce the data movement mechanism and then present

the operation of the local analog buffers.

Data Movement Mechanism. In the TIMELY architecture,

time inputs from the DTCs move horizontally across the

ReRAM crossbar arrays in the same row via X-subBufs (see

� in Fig. 6 (a))) for maximizing input reuses and minimizing

high-cost memory accesses. Meanwhile, the resulting current

Psums move vertically via P-subBufs (see � in Fig. 6 (a)).
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Note that only the crossbars in the leftmost column fetch

inputs from DTCs while those in all the remaining columns

fetch inputs from their analog local time buffers (i.e., the X-

subBufs to their left). Similarly, only the outputs of the I-

adders are converted into the digital signals via TDCs before

they are stored back into the output buffers, while the current

outputs of the crossbars are passed into the I-adders via analog

current buffers (i.e., the P-subBufs right below them). In this

way, TIMELY processes most data movements in the analog

domain within each sub-chip, greatly enhancing data locality

for improving the energy efficiency and throughput.

Local Analog Buffers. The local analog buffers make it

possible to handle most (analog) data movements locally in

TIMELY. Specifically, X-subBuf buffers the time signals (i.e.,

outputs of the DTCs) by latching it, i.e., copying the input

delay time to the latch outputs (see Fig. 6 (b)); while P-subBuf

buffers the current signal outputted from the ReRAM crossbar

array, i.e. copying the input current to their outputs (see Fig. 6

(c)). The key is that X-subBuf and P-subBuf are more energy

and area efficient than input/output buffers (see Fig. 5 (d)).

Specifically, an X-subBuf buffer consists of two cross-coupled

inverters that form a positive feedback to speed up the response

at its output and thus reduces the delay between its inputs and

outputs [70]. Since cross-coupled inverters invert the input, a

third inverter is used to invert the signal back. X-subBufs are

reset in each pipeline-cycle by setting φ to be high (see Fig. 6

(b)). The P-subBuf buffer is implemented using an NMOS-pair

current mirror (see Fig. 6 (c)) [37].

C. Time-Domain Dot Products and DTC/TDC Interfacing

TIMELY performs dot products with time-domain inputs

from the DTCs and converts time-domain dot product results

into digital signals via TDCs. In this subsection, we first

present dot product operations in TIMELY and then introduce

their associated DTCs/TDCs.

Dot Products. First, let us consider Psums in one ReRAM

crossbar array. Take the first column of the ReRAM crossbar

array in Fig. 6 (e) as an example. A total of B time-domain

inputs Ti (i = 1,2, ...,B) are applied to their corresponding

ReRAM bit cells with resistance values of R1i (i.e. correspond-

ing to weights) to generate a Psum current (i.e. Ti-controlled

current) based on the Kirchoff’s Law. Then, let us focus on

Psums in one sub-Chip. The Psum currents at the same column

of all NCB crossbars in the vertical direction are aggregated in

the I-adder [2] (see � in Fig. 6 (a)), and then are converted

into a voltage Vo1 by charging a capacitor (e.g. Cc in Fig. 6

(e)). Fig. 6 (g) shows the input/output characteristic of the dot

product. We adopt a 2-phase charging scheme [5]. In phase I,

the charging time is the input Ti and the charging current is

V DD/R1i, which corresponds to the weight. In phase II, the

charging time is Tx and the charging current is a constant Ic,

which is equal to CcBNCBVDD/Rmin. The charging in phase II

ensures the voltage on Cc is larger than Vth, and the time output

is defined by ˜T −Tx. Rmin is the minimum mapped resistance

of one layer. Vth is the threshold voltage of the comparator,

which is equal to BNCB˜TVDD/Rmin, where VDD is the logic

high voltage of the time signal, and ˜T is the time period of

one phase. Based on Charge Conservation, we can derive the

output To,8b/4b (see To1 in Fig. 6 (e)), where 8b/4b represents

8-bit inputs and 4-bit weights, to be:

To,8b/4b =
Rmin

CcBNCB

BNCB

∑
i=1

Ti/R1i (2)

To realize dot products with 8-bit weights and inputs, we

employ a sub-ranging design [22], [47], [84] in which 8-

bit weights are mapped into two adjacent bit-cell columns

with the top-4 most significant bit (MSB) weights and the

remaining 4 least significant bit (LSB) weights, respectively.

The charging capacitors associated with MSB-weight column

and LSB-weight column are Cc and Cc/2, respectively. To,8b/4b
of the MSB-weight column and the LSB-weight column are

added to get the dot-product result for 8-bit weights.

DTCs/TDCs. We adopt 8-bit DTCs/TDCs for TIMELY

based on the measurement-validated designs in [41], [52]. The

input/output characteristics of a 8-bit DTC is shown in Fig.

6 (f), where digital signals of “1111111” and “00000000”

correspond to the time-domain analog signals with the max-

imum and minimum delays, respectively, and the dynamic

range of the time-domain analog signals are 256×Tdel with

Tdel being the unit delay. Meanwhile, a TDC’s input/output

characteristics can also be viewed in Fig. 6 (f) by switching the

V and t axes. In TIMELY, Tdel is designed to be 50 ps, leading

to a conversion time of 25 ns (including a design margin) for

the 8-bit DTC/TDC. In addition, to trade off energy efficiency

and computational density, one DTC/TDC is shared by γ (γ
≥1) ReRAM crossbar rows/columns.

D. TIMELY’s Only-Once Input Read Mapping Method

O2IR follows three principles: (1) for reusing the inputs

by different filters, we map these filters in parallel within the

crossbar arrays (see Fig. 7 (a)); (2) for reusing the inputs when

sliding the filter vertically within an input feature map, we

duplicate the filters with a shifted offset equal to Z × S (see

Fig. 7 (b)), where Z and S are the filter height and the stride,

respectively; and (3) for reusing the inputs when sliding the

filter horizontally within an input feature map, we transfer

inputs to the adjacent X-subBufs with an step equal to S (see

Fig. 7 (c)). Single-direction input transfer between adjacent X-

subBufs can be implemented by introducing only one switch

and one control signal to one X-subBuf.

E. Pipeline Design

To enhance throughput, we adopt pipeline designs between

and within sub-Chips, i.e., inter-sub-Chip and intra-sub-Chip

pipeline. Different sub-Chips work in a pipeline way. Note

that a layer by layer weight mapping strategy is adopted in

TIMELY, where one CNN/DNN layer is mapped into one sub-

Chip if the ReRAM crossbars’ size is larger than the required

size; otherwise, a layer is mapped into multiple sub-Chips. In

one sub-Chip, the following operations – reading inputs from

input buffers, DTCs, analog-domain computation (including

dot-product, charging-and-comparison operations), TDCs, and
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Fig. 7. The proposed O2IR: (a) mapping filters using the same inputs into the
same rows of crossbars; (b) duplicating filters with a vertical offset of Z ×S
between adjacent ReRAM columns; and (c) temporally shifting inputs by an
amount equal to S.

writing back to output buffers – are pipelined. The pipeline-

cycle time is determined by the slowest stage. Let us take the

operations within one sub-Chip as an example to illustrate the

pipeline in TIMELY. Assuming the first data is read from an

input buffer at the first cycle, it spends three cycles to complete

the digital-to-time conversion, analog-domain computation,

and time-to-digital conversion, and is written back to an output

buffer at the fifth cycle. Meanwhile, at the fifth cycle, the fifth,

fourth, third, and second data is read, converted by a DTC,

computed in the analog-domain, and converted by a TDC,

respectively.

F. Software-Hardware Interface

A software-hardware interface is adopted to allow devel-

opers to configure TIMELY for different CNNs/DNNs, en-

abling programmability. Similar to the interface in PRIME,

three stages are involved from software programming to

hardware execution. First, the CNN/DNN is loaded into an

NN parser [83] that automatically extracts model parameters.

Second, with the extracted parameters, a compiler optimizes

mapping strategies for increasing the utilization of ReRAM

crossbar arrays and then generates execution commands (in-

cluding commands for weight mapping and input data path

configuration). Third, the controller (see Fig. 6 (a)) loads the

commands from the compiler to (1) write pre-trained weights

to the mapped addresses, and (2) configure peripheral circuits

for setting up input paths of computation.

V. DISCUSSION

Although local buffers have been adopted in digital ac-

celerators [10], [82], it is challenging when using local

buffers in R2PIMs because: (1) improper design can largely

compromise R2PIMs’ high computational density and (2)

more frequent large-overhead A/D and D/A conversions may

be caused. To the best of our knowledge, TIMELY is the

first to implement and maximize analog data locality via

ALBs, which have at least one order of magnitude lower

access energy cost compared to the two level memories

in PRIME [14]/ISAAC [58]/Pipelayer [62]. Additionally,

TIMELY maximizes data locality without degrading R2PIMs’

computational density. Although a recent R2PIM accelerator,

CASCADE [15], has adopted analog buffers, it only uses

analog ReRAM buffer to reduce the number of A/D con-

versions, thereby minimizing computational energy. TIMELY

uses ALBs to minimize both the computational energy and

data movement energy. Taking PRIME as an example, the

computational energy only accounts for 17% of the chip en-

ergy. In order to minimize the computational energy, TIMELY

not only reduces the number of A/D conversions by ALBs, but

also decreases the energy of each A/D conversion by TDCs.

Analog computations and local buffers are efficient, but they

potentially introduce accuracy loss to TIMELY. The accuracy

loss is mainly attributed to the non-ideal characteristics of

analog circuits. To address this challenge, TIMELY not only

leverages algorithm resilience of CNNs/DNNs to counter hard-

ware vulnerability [9], [48], [81], but also minimize potential

errors introduced by hardware, thereby achieving the optimal

trade-off between energy efficiency and accuracy. First, we

choose time and current signals to minimize potential errors.

Compared with analog voltage signals, analog current signals

and digitally implemented time signals can tolerate larger

errors caused by their loads, and analog time signal is less

sensitive to noise and PVT variations [49]. Second, the adopted

ALBs help improve the accuracy of time inputs and Psums by

increasing the driving ability of loads. However, the larger the

number of ALBs, the smaller the number of ReRAM crossbar

arrays in a sub-Chip, compromising the computational density.

Based on system-level evaluations, we adopt one X-subBuf

between each pair of neighboring ReRAM crossbar arrays and

one P-subBuf between each ReRAM crossbar array and its I-

adder in order to achieve a good trade-off between accuracy

loss and computational density reduction. Third, we limit the

number of cascaded X-subBufs in the horizontal direction

to reduce the accumulated errors (including noise) of time-

domain inputs, which can be tolerated by the given design

margin. We assign a design margin (i.e. more than 40 ps) for

the unit delay (i.e. 50 ps) of the DTC conversion. We do not

cascade P-subBufs to avoid introducing errors in Psum.

TIMELY adopts pipeline designs to address the speed

limit of time signal operations and thus improve throughput.

Adjusting the number of ReRAM rows/columns shared by one

DTC/TDC allows for the trade-off between the throughput and

computational density of TIMELY. TIMELY compensates for

the increased area due to the special shifted weight duplication

of O2IR (see Fig. 7 (b) and (c)) by saving peripheral circuits’

area. Besides, TIMELY also replicates weights to improve

computation parallelism and thus throughput, similar to prior

designs [14], [58], [62].
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VI. EVALUATION

In this section, we first introduce the experimental setup, and

then compare TIMELY with state-of-the-art designs in terms

of energy efficiency, computational density, and throughput.

After that, we demonstrate the effectiveness of TIMELY’s key

features: ALB, TDI, and O2IR, and show that these features

are generalizable. Finally, we discuss area scaling.

A. Experiment Setup

TIMELY Configuration. For a fair comparison with

PRIME/ISAAC, we adopt PRIME/ISAAC’s parameters, in-

cluding ReRAM and ReLU parameters from PRIME [14], and

maxpool operations (scaled up to 65nm) and HyperTransport

links from ISAAC [58] (see Table II). For TIMELY’s specific

components, we use silicon-verified results [41], [52] for

DTCs and TDCs, and adopt Cadence-simulated results for X-

subBuf, P-subBuf, I-adder, charging circuit, and comparator

based on [35], [37], [70] – including their drives and loads

during simulation. Supporting digital units (shifter and adder)

consume negligibly small amounts of area and energy. All

the design parameters of the peripheral circuits are based on

a commercial 65nm CMOS process. The power supply is

1.2 V, and the clock rate is 40 MHz. The reset phase φ in

Fig. 6 is 25 ns. The pipeline-cycle time is determined by

the latency of 8 (setting γ to 8) DTCs/TDCs, which have

a larger latency than other pipelined operations. The latency

of reading corresponding inputs, analog-domain computations,

and writing outputs back to output buffers are 16 ns [24], 150

ns [24], and 160 ns [24], respectively. In addition, I-adders and

its inputs do not contribute to the total area because we insert

I-adders and the interconnection between each P-subBuf and

I-adder under the charging capacitors and ReRAM crossbars,

leveraging different IC layers. We adopt 106 sub-Chips in the

experiments for a fair comparison with the baselines (e.g.,

TIMELY vs. ISAAC: 91mm2 vs. 88 mm2).

Methodology. We first compare TIMELY with 4 state-

of-the-art R2PIM accelerators (PRIME [14], ISAAC [58],

PipeLayer [62], and AtomLayer [56]) in terms of peak en-

ergy efficiency and computational density. For this set of

experiments, the performance data of the baselines are the

ones reported in their corresponding papers. Second, as for

the evaluation regarding various benchmarks, we consider

only PRIME [14] and ISAAC [58] because (1) there is lack

of design detail information to obtain results for PipeLayer

[62] and AtomLayer [56], and (2) more importantly, such

comparison is sufficient given that PRIME [14] is the most

competitive baseline in terms of energy efficiency (see Fig.

1 (c)). For this set of evaluations, we build an in-house

simulator to evaluate the energy and throughput of PRIME,

ISAAC, and TIMELY. Before using our simulator, we validate

it against PRIME’s simulator [14] and ISAAC’s analytical

calculations [58]. We set up our simulator to mimic PRIME

and ISAAC and compare the results of our simulator with

their original results. The resulting errors of energy and

throughput evaluation are 8% and zero, respectively, which are

acceptable by TIMELY’s one order of magnitude improvement

TABLE II
TIMELY PARAMETERS.

Component Params Spec
Energy

( f J)
Area
(μm2)

/compo. /compo.

TIMELY sub-Chip

DTC
resolution 8 bits

37.5 240
number 16×32

ReRAM size 256×256
1792 100crossbar number 16×12

bits/cell 4

Charging+
number 12×256 41.7 40

comparator

TDC
resolution 8 bits

145 310
number 12×32

X-subBuf number 12×16×256 0.62 5

P-subBuf number 15×12×256 2.3 5

I-adder number 12×256 36.8 40

ReLU number 2 205 300

MaxPool number 1 330 240

Input buffer size/number 2KB/1 12736 50

Output buffer size/number 2KB/1 31039 50

Total 0.86 mm2

TIMELY chip (40 MHz)
sub-Chip number 106a 0.86 mm2

Total 91a mm2

Inter chips

Hyper link
links/freq 1/1.6GHz

1620 5.7 mm2

link bw 6.4 GB/s
a Scaling TIMELY to an area of 0.86χ mm2 by adjusting the number of sub-Chips

(i.e., χ) based on applications.

TABLE III
ADOPTED BENCHMARKS AND DATASETS.

Benchmarks Why consider these CNN/DNN models

VGG-Da, CNN-1b, MLP-Lb For a fair comparison with PRIME
(i.e. benchmarks in [14])

VGG-1/-2/-3/-4a For a fair comparison with ISAAC
MSRA-1/-2/3a (i.e. benchmarks in [58])

ResNet-18/-50/-101/-152a To show TIMELY’s performance
SqueezeNeta in diverse and more recent CNNs
a ImageNet ILSVRC dataset [17]; b MNIST dataset [18]

on energy efficiency (see Section VI-B). Due to the lack of

ISAAC’s mapping information, we only validate our simu-

lator against PRIME’s simulator to get the energy error by

adopting PRIME’s component parameters and weight mapping

strategy [14] in our simulator. Since PRIME does not support

inter-layer pipeline, we only validate our simulator against

ISAAC’s analytical calculations to get the throughput error

by using ISAAC’s component parameters and balanced inter-

layer pipeline [14] in our simulator. The inter-layer pipeline

corresponds to TIMELY’s inter-sub-Chip pipeline.

Benchmarks. We evaluate TIMELY using a total of 15

benchmarks. Table III shows these benchmarks and the reasons

for adopting them.

B. Evaluation Results

We evaluate TIMELY’s peak energy efficiency and compu-

tational density against those reported in [14], [58], [62], and

[56]. Next, we perform an evaluation of TIMELY’s energy

efficiency and throughput on various CNN and DNN models.

Overall Peak Performance. Compared with representative

R2PIM accelerators (see Table IV), TIMELY can improve

energy efficiency by over 10× (over PRIME [14]) and the

computational density by over 6.4× (over PipeLayer [62]).

In particular, TIMELY improves energy efficiency by 10× to

49.3× and computational density by 6.4× to 31.2×. These
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Fig. 8. (a) The normalized energy efficiency and (b) throughput of TIMELY over PRIME and ISAAC, respectively, considering various CNNs and DNNs.

TABLE IV
PEAK PERFORMANCE COMPARISON.

Energy Improve- Computational Improve-
efficiency ment of density ment of
(TOPs/W ) TIMELY (TOPs/(s×mm2)) TIMELY

PRIMEa [14] 2.10 +10.0× 1.23 +31.2×
ISAACb [58] 0.38 +18.2× 0.48 +20.0×

PipeLayerb [62] 0.14 +49.3× 1.49 +6.4×
AtomLayerb [56] 0.68 +10.1× 0.48 +20.0×

TIMELY a 21.00 n/a 38.33 n/a
TIMELY b 6.90 n/a 9.58 n/a

a one operation: 8-bit MAC; b one operation: 16-bit MAC

large improvements result from TIMELY’s innovative features

of ALB, TDI, O2IR and intra-sub-Chip pipelines, which

can aggressively reduce energy cost of the dominant data

movements and increase the number of operations given the

same time and area. In Table IV, we ensure that TIMELY’s

precision is the same as that of the baselines for a fair

comparison. Specifically, we consider a 8-bit TIMELY design

when comparing with PRIME and a 16-bit TIMELY design

when comparing to ISAAC, PipeLayer, and AtomLayer.

Energy Efficiency on Various CNN and DNN models. We

evaluate TIMELY on various models (1 MLP and 13 CNNs)

to validate that its superior performance is generalizable to

different computational and data movement patterns. Fig. 8

(a) shows the normalized energy efficiency of TIMELY over

PRIME and ISAAC. We can see that TIMELY outperforms

both PRIME and ISAAC on all CNN and DNN models.

Specifically, TIMELY is on average 10× and 14.8× more

energy efficient than PRIME and ISAAC, respectively (see the

Geometric Mean in the rightmost part of Fig. 8 (a)). This set

of experimental results demonstrates that TIMELY’s superior

energy efficiency is independent of CNNs and DNNs – i.e.

computational and data movement patterns. In addition, as

shown in Fig. 8 (a), the energy efficiency improvement of

TIMELY decreases in small or compact CNNs, such as CNN-

1 [14] and SqueezeNet [29]. This is because their energy costs

of data movements are relatively small. These models can be

mapped into one ReRAM bank of PRIME or one ReRAM tile

of ISAAC, and thus do not require high cost memory accesses

and limit the energy savings achieved by TIMELY.

Throughput on Various CNNs. Fig. 8 (b) shows

TIMELY’s normalized throughput over PRIME and ISAAC

on various CNNs (a total of 8 CNNs) considering three chip

configurations (16, 32, and 64 chips). As the throughput is

a function of the weight duplication ratio, we only consider

CNNs for which PRIME or ISAAC provides corresponding

weight duplication ratios. Compared to PRIME, TIMELY en-

hances the throughput by 736.6× for the 16-chip, 32-chip,

and 64-chip configurations on VGG-D. TIMELY’s advan-

tageous throughput results from its intra-sub-Chip pipeline,

which enables to minimize the latency between two pipelined

outputs. In addition, PRIME can work in both the memory

mode and computation mode (i.e. accelerating CNN), limiting

the number of crossbars for CNN computations (and thus its

throughput) on a chip which is over 20× smaller than that

of TIMELY (i.e. 1024/20352, see the right corner of Fig. 8

(b)). Compared to ISAAC on 7 CNNs, TIMELY, on average,

enhances the throughput by 2.1×, 2.4×, and 2.7× for the

16-chip, 32-chip, and 64-chip configurations, respectively. In

Fig. 8 (b), we consider only 64-chip or (32-chip and 64-chip)

for large CNNs, such as MSRA-1/-2/-3, to ensure that all

the models can be mapped into one TIMELY or ISAAC ac-

celerator. TIMELY’s enhanced throughput is because ISAAC

adopts serial operations and requires 22 pipeline-cycles (each

being 100 ns) to finish one 16-bit MAC operation, for which

TIMELY employs intra-sub-Chip pipelines and needs two

pipeline-cycles (each being 200 ns).

Accuracy. We observe ≤ 0.1% inference accuracy loss

under various CNN and DNN models in system-level sim-

ulations including circuit-level errors extracted from Cadence

simulation. The simulation methodology is adapted from prior

work [33], [34]. Specifically, we first obtain noise and PVT

variations (by Monte-Carlo simulations in Cadence) of X-

subBuf, P-subBuf, I-adder, DTC, and TDC. The errors follow

Gaussian noise distribution. We then add equivalent noise

during training and use the trained weights for inference. Note

that prior work has proved that adding Gaussian noise to

training can reach negligible accuracy loss [53], [54], [57]. To

achieve ≤ 0.1% accuracy loss, we set the number of cascaded

X-subBufs to 12. The accumulated error of the cascaded X-

subBufs is
√

12ε [20], where ε is the potential error of one

X-subBuf.
√

12ε is less than 20×28 ps, which can be tolerated
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by the design margin of 40×28 ps and thus do not cause a

loss of inference accuracy.

C. Effectiveness of TIMELY’s Innovations

We first validate the effectiveness of TIMELY’s innovations

on energy saving and area reduction, and then demonstrate that

TIMELY’s innovative principles can be generalized to state-

of-the-art R2PIM accelerators to further improve their energy

efficiency.

Effectiveness of TIMELY’s Innovations on Energy Sav-
ings. We here present an energy breakdown analysis to demon-

strate how TIMELY reduces the energy consumption on VGG-

D as compared with PRIME, which is the most competitive

R2PIM accelerator in terms of energy efficiency. In Fig. 8 (a),

we can see that TIMELY improves the energy efficiency by

15.6 × as compared to PRIME.

Overview. We first show the breakdown of energy savings

achieved by different features of TIMELY. TIMELY’s ALB

and O2IR contribute to up to 99% of the energy savings, and

its TDI leads to the remaining 1% (see Fig. 9 (a)).

Effectiveness of TIMELY’s ALB and O2IR. We compare

TIMELY’s energy breakdown with regard to both memory

types and data types with those of PRIME in Fig. 9 (c) and (d),

respectively. In Fig. 9 (c), TIMELY’s ALB and O2IR together

reduce the energy consumption of memory accesses by 93%

when compared with PRIME. Specifically, the ALB and O2IR

features enable TIMELY to fully exploit local buffers within

its sub-Chips for minimizing accesses to the L1 memory and

removing the need to access an L2 memory.

In Fig. 9 (d), TIMELY reduces the energy consumption

associated with the data movement of Psums, inputs and

outputs by 99.9%, 95.8%, and 87.1%, respectively. The con-

tributing factors are summarized in Fig. 9 (e). Specifically,

(1) TIMELY can handle most of the Psums locally via the

P-subBufs within the sub-Chips, aggressively reducing the

energy cost of data movements of Psums; (2) TIMELY’s O2IR

feature ensures all the input data are fetched only once from

the L1 memory while its ALB feature (i.e. X-subBufs here)

allows the fetched inputs to be stored and transferred via X-

subBufs between the crossbars; and (3) thanks to employed

P-subBufs and X-subBufs, TIMELY removes the need for an

L2 memory, which has 146.7×/6.9× higher read/write energy

than that of an L1 memory, respectively, reducing the energy

cost of writing outputs back to the memory (L1 memory in

TIMELY vs. L2 memory in PRIME). Furthermore, as another

way to see the effectiveness of TIMELY’s O2IR feature, we

summarize both PRIME’s and TIMELY’s total number of

input accesses to the L1 Memory in Table V (consider the

first six CONV layers as examples). TIMELY requires about

88.9% less L1 memory accesses.

Effectiveness of TIMELY’s TDI. Although DTCs and TDCs

only contribute to 1% of TIMELY’s energy savings over

PRIME, the total energy of DTCs and TDCs in TIMELY is

99.6% less than that of ADCs and DACs in PRIME (see Fig. 9

(b)). It is because (1) the unit energy of one DTC/TDC is

about 30%/23% of that of DAC/ADC; (2) the increased analog

data locality due to ALBs largely reduces the need to activate

DTCs and TDCs; and (3) TIMELY’s O2IR feature aggressively

reduces the required DTC conversions thanks to its much

reduced input accesses to the L1 memory (see Table V).

Effectiveness of TIMELY’s Innovations on Area Re-
duction. We analyze an area breakdown to present the ef-

fectiveness of TIMELY’s innovations on the area savings of

peripheral circuits, which helps to improve the computational

TABLE V
THE TOTAL NUMBER OF L1 MEMORY ACCESSES FOR READING INPUTS IN

TIMELY AND PRIME [14] CONSIDERING VGG-D.

CONV1 CONV2 CONV3 CONV4 CONV5 CONV6

PRIME [14] 1.35 M 28.90 M 7.23 M 14.45 M 3.61 M 7.23 M

TIMELY 0.15 M 3.21 M 0.80 M 1.61 M 0.40 M 0.80 M

Save by 88.9% 88.9% 88.9% 88.9% 88.9% 88.9%
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TIMELY
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density (see Table IV). In Fig. 10 (a), the percentage of the

ReRAM array area in TIMELY (i.e. 2.2%) is 5.5× higher than

that in ISAAC (i.e. 0.4%) [58]. The percentage of the ReRAM

array area in PRIME is small enough and thus ignored [14].

The higher percentage of the ReRAM crossbar array area in

TIMELY benefits from area-efficient circuit implementations

of TIMELY’s ALB, TDI and O2IR. Specifically, in TIMELY

shown in Fig. 10 (b), X-subBufs and P-subBufs occupy 55.2%

of the chip area; DTCs and TDCs occupy 28% of the chip area;

the area of CMOS logic introduced by O2IR is neglectable.

Generalization of TIMELY’s Innovations. TIMELY’s

innovative features are generalizable and can be applied to

state-of-the-art R2PIM accelerators for boosting their energy

efficiency. To demonstrate, we apply ALB and O2IR to PRIME

based on the following considerations. ALB feature associated

with O2IR contributes the dominant energy savings (see Fig. 9

(a)). From the perspective of data accesses and interfaces,

PRIME uses the same architecture shown in Fig 5 (a) as

ISAAC [58]/PipeLayer [62]. To evaluate, we modify PRIME

architecture as shown in Fig. 11 (a). We add X-subBufs

and P-subBufs between 128 ReRAM crossbar arrays in FF

subarray of each bank, and modify the weights mapping

and input access dataflow based on O2IR, while employing

PRIME’s original designs outside FF subarray. Thus, ALB

and O2IR only have an impact on the intra-bank energy. In this

experiment, we adopt the same component parameters as those

used in the PRIME’s original design. Fig. 11 (b) shows that

applying ALB and O2IR principle to FF subarrays in PRIME

reduces the intra-bank data movement energy by 68%.

D. Discussion

Area scaling of TIMELY (by adjusting the number of

sub-Chips shown in Table II) does not affect throughput

and slightly affects energy. This is because throughput is

determined only by intra-sub-Chip pipeline (see Section IV-E);

adjusting the number of sub-Chip in one chip will only change

inter-chip energy (i.e., the energy of memory L3 in Fig. 9 (c)),

which accounts for a negligible part of the total energy.

VII. RELATED WORK

Non-PIM CNN/DNN Accelerators. Although memory is

only used for data storage in non-PIM accelerators, computing

units are being pushed closer to compact memories to re-

duce energy and area. For accelerators with off-chip DRAM,

DRAM accesses consume two orders of magnitude more

energy than on-chip memory accesses (e.g. 130× higher than

a 32-KB cache at 45 nm [27]). As a result, DRAM consumes

more than 95% of the total energy in DianNao [13], [19].

To break through the off-chip bottleneck, on-chip SRAM is

widely used as the mainstream on-chip memory solution [25].

However, SRAM’s low density has been limiting its on-die ca-

pacity even with technology scaling. For example, EIE adopts

10-MB SRAM that takes 93.2% of the total area [25]. To

address the area issue, on-chip eDRAM is used in RANA [64]

and DaDianNao [11], as eDRAM can save about 74% area

while providing 32 KB capacity in 65 nm [55], [64]. However,

the refresh energy in eDRAM can be dominant (e.g. about

10× as high as the data access’ energy [64]). In terms of

FPGA-based designs, the performance is also limited by the

memory accesses [21], [23], [55], [59] with limited flexibility

of choosing memory technologies. Different from these non-

PIM accelerators, TIMELY improves energy efficiency by

computing in memory and enhances computational density

through adopting high-density ReRAM.

PIM CNN/DNN Accelerators. While PIM accelerators

integrate computing units in memory to save the energy of ac-

cessing weights, the achievable energy efficiency and compu-

tational density remain limited. The limited energy efficiency

is induced by the energy cost of input and Psum movements

and the overhead of interfacing circuits. PRIME [14] takes

83% of the total energy to access inputs and Psums, and

ISAAC [58] consumes 61% of the total energy to operate

DACs/ADCs. The limited computational density is related

to memory technologies. Processing in SRAM, for example,

faces this limitation. The reasons include not only one SRAM

bit-cell typically stores only 1-bit weight [6], [23], [36],

[60], [75] but also SRAM’s bit-cell structure – e.g. 6T [23],

[36]/8T [60], [75]/10T [6] structure – decreases density. Pro-

posed TIMELY adopts high-density ReRAM, and addresses

two key energy challenges with techniques including ALBs,

TDIs, and O2IR. TIMELY achieves up to 18.2× improvement

(over ISAAC) in energy efficiency, 31.2× improvement (over

PRIME) in computational density, and 736.6× in throughput

(over PRIME). Similar to the effect of ALBs used in TIMELY,

a recent R2PIM accelerator [15] also increases the amount of

data in the analog domain for energy optimization. However, it

only optimizes the computation energy (including the energy

of interfacing circuits).

VIII. CONCLUSIONS

In this paper, we analyze existing designs of R2PIM acceler-

ators and identify three opportunities to greatly enhance their

energy efficiency: analog data locality, time-domain interfac-

ing, and input access reduction. These three opportunities in-

spire three key features of TIMELY: (1) ALBs, (2) interfacing

with TDCs/DTCs, and (3) an O2IR mapping method. TIMELY

outperforms state-of-the-art in both energy efficiency and

computational density while maintaining a better throughput.
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