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Abstract—Resistive-random-access-memory (ReRAM) based
processing-in-memory (R>PIM) accelerators show promise in
bridging the gap between Internet of Thing devices’ con-
strained resources and Convolutional/Deep Neural Networks’
(CNNs/DNNs’) prohibitive energy cost. Specifically, RZPIM ac-
celerators enhance energy efficiency by eliminating the cost of
weight movements and improving the computational density
through ReRAM'’s high density. However, the energy efficiency is
still limited by the dominant energy cost of input and partial sum
(Psum) movements and the cost of digital-to-analog (D/A) and
analog-to-digital (A/D) interfaces. In this work, we identify three
energy-saving opportunities in R2PIM accelerators: analog data
locality, time-domain interfacing, and input access reduction, and
propose an innovative RZPIM accelerator called TIMELY, with
three key contributions: (1) TIMELY adopts analog local buffers
(ALBs) within ReRAM crossbars to greatly enhance the data
locality, minimizing the energy overheads of both input and Psum
movements; (2) TIMELY largely reduces the energy of each single
D/A (and A/D) conversion and the total number of conversions
by using time-domain interfaces (TDIs) and the employed ALBs,
respectively; (3) we develop an only-once input read (O?IR)
mapping method to further decrease the energy of input accesses
and the number of D/A conversions. The evaluation with more
than 10 CNN/DNN models and various chip configurations shows
that, TIMELY outperforms the baseline RZPIM accelerator,
PRIME, by one order of magnitude in energy efficiency while
maintaining better computational density (up to 31.2x) and
throughput (up to 736.6x). Furthermore, comprehensive studies
are performed to evaluate the effectiveness of the proposed ALB,
TDI, and O?IR in terms of energy savings and area reduction.

Index Terms—processing in memory, analog processing,
resistive-random-access-memory (ReRAM), neural networks

I. INTRODUCTION

While deep learning-powered Internet of Things (IoT) de-
vices promise to revolutionize the way we live and work by
enhancing our ability to recognize, analyze, and classify the
world around us, this revolution has yet to be unleashed. IoT
devices — such as smart phones, smart sensors, and drones —
have limited energy and computation resources since they are
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battery-powered and have a small form factor. On the other
hand, high-performance Convolutional/Deep Neural Networks
(CNNs/DNNs) come at a cost of prohibitive energy consump-
tion [68] and can have hundreds of layers [67] and tens of
millions of parameters [50], [72]. Therefore, CNN/DNN-based
applications can drain the battery of an IoT device very quickly
if executed frequently [76], and requires an increase in form
factor for storing and executing CNNs/DNNs [11], [58]. The
situation continues to worsen due to the fact that CNNs/DNNs
are becoming increasingly complex as they are designed to
solve more diverse and bigger tasks [32].

To close the gap between the constrained resources of IoT
devices and the growing complexity of CNNs/DNNs, many
energy-efficient accelerators have been proposed [1], [7], [10],
[13], [44]-[46], [73]. As the energy cost of CNN/DNN accel-
erators is dominated by memory accesses of inputs, weights
and partial sums (Psums) (see Fig. 1 (a)) (e.g., up to 95% in
DianNao [13]), processing-in-memory (PIM) accelerators have
emerged as a promising solution in which the computation
is moved into the memory arrays and weight movements
are eliminated (see Fig. 1 (b)). Among PIM accelerators on
various memory technologies [14], [42], [43], [56], [58], [62],
[66], [78], resistive-random-access-memory-(ReRAM)-based-
PIM (R*PIM) accelerators have gained extensive research
interest due to ReRAM’s high density (e.g. 25x-50x higher
over SRAM [71], [79]). However, the energy efficiency of
R2PIM accelerators (such as PRIME [14], ISAAC [58], and
PipeLayer [62]) is still limited due to two bottlenecks (see
Fig. 1 (b)): (1) although the weights are kept stationary in
memory, the energy cost of data movements due to inputs and
Psums is still large (as high as 83% in PRIME [14]); (2) the
energy of the interfacing circuits (such as analog-to-digital
converters (ADCs)/digital-to-analog converters (DACs)) is an-
other limiting factor (as high as 61% in ISAAC [58]).

To address the aforementioned energy bottlenecks, we an-
alyze and identify opportunities for greatly enhancing the
energy efficiency of R>PIM accelerators (see Section III-A),
and develop three novel techniques that strive to push data
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Fig. 1.

An illustration of (a) the “memory wall” in CNN/DNN accelerators due to data movements of inputs, weights, and Psums, and an example of their

energy breakdown [10], (b) the energy efficiency bottlenecks of PIM accelerators: (1) input and Psum movements (i.e. Bottleneck @) and (2) the DAC/ADC
interfacing (i.e. Bottleneck @), and (c) bench-marking the energy efficiency and computational density of the proposed TIMELY over state-of-the-art CNN/DNN
accelerators, including a non-PIM accelerator (Eyeriss [10]) and R2PIM accelerators (PRIME [14], ISAAC [58], and PipeLayer [62]).

movements and interfaces in PIM accelerators towards local
and in time domain (see Section III-B). While these three
techniques are in general effective for enhancing the energy
efficiency of PIM accelerators, we evaluate them in a RZPIM
accelerator, and demonstrate an improvement of energy effi-
ciency by one order of magnitude over state-of-the-art R2PIM
accelerators. The contribution of this paper is as follows:

« We propose three new ideas for aggressively improving
energy efficiency of RZPIM accelerators: (1) adopting
analog local buffers (ALBs) within memory crossbars
for enhancing (analog) data locality, (2) time-domain
interfaces (TDIs) to reduce energy cost of single digital-
to-analog (D/A) (and analog-to-digital (A/D)) conversion,
and (3) a new mapping method called only-once input
read (O%IR) to further save the number of input/Psum
accesses and D/A conversions.

We develop an innovative R?PIM architecture (see
Section 1V), TIMELY (Time-domain, In-Memory
Execution, LocalitY), that integrates the three aforemen-
tioned ideas to (1) maximize (analog) data locality via
ALBs and O%IR and (2) minimize the D/A (and A/D)
interfaces’ energy cost by making use of the more energy-
efficient TDIs, the ALBs and the O?IR method. TIMELY
outperforms the most competitive RZPIM accelerators in
both energy efficiency (over PRIME) and computational
density (over PipeLayer) (see Fig. 1 (c)).

We perform a thorough evaluation of TIMELY against
4 state-of-the-art RZPIM accelerators on >10 CNN and
DNN models under various chip configurations, and
show that TIMELY achieves up to 18.2x improvement
(over ISAAC) in energy efficiency, 31.2x improvement
(over PRIME) in computational density, and 736.6x in
throughput (over PRIME), demonstrating a promising
architecture for accelerating CNNs and DNNs. Further-
more, we perform ablation studies to evaluate the effec-
tiveness of each TIMELY’s feature (i.e., ALB, TDI, and
O?IR) in reducing energy and area costs, and demonstrate
that TIMELY’s innovative ideas can be generalized to
other R*PIM accelerators.

II. BACKGROUND

This section provides the background of R?PIM CNN/DNN
accelerators. First, we introduce CNNs and the input reuse
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opportunities in CNNs’ convolutional (CONV) operations in
Section II-A, and ReRAM basics in Section II-B. Second, we
compare digital-to-time converter (DTC)/time-to-digital con-
verter (TDC) and DAC/ADC, which are two types of digital-
to-analog (D/A) and analog-to-digital (A/D) conversion, in
terms of energy costs and accuracy in Section II-C.

A. CNN and Input Reuse

CNNs are composed of multiple CONV layers. Given the
CNN parameters in Table I, the computation in a CONV layer
can be described as:

C-1G=-1Z-1

O[] [u][x] Z ZO Y Ik [Sx+d][Sy+ j] x W [ (K] [{][] W
=0 i Jj=
+ Blu], 0<v<M0<u<DO0<x<F0<y<E

where O, I, W, and B denote matrices of the output feature

maps, input feature maps, filters, and biases, respectively.
Fully-connected (FC) layers are typically behind CONV lay-
ers. Different from CONV layers, the filters of FC layers are
of the same size as the input feature maps [10]. Equation (1)
can describe FC layers with additional constraints, i.e., Z=H,
G=W,S=1,and E=F =1.

Three types of input reuses exist in CNN CONV operations
yielding 3-D Psums. Consider the example in Fig. 2 where C
and M are set to 1 for simplicity because input reuses are
independent on them. First (see Fig. 2 (a)), one input feature
map is shared by multiple (e.g. two in Fig. 2) output channels’
filters. Second (see Fig. 2 (b)), as filters slide horizontally,
input pixels are reused to generate outputs in the same row —
e.g. b and f are used twice to generate w and x, respectively.
Third (see Fig. 2 (c)), as filters slide vertically, input pixels are
reused to generate outputs in the same column — e.g. e and f
are used twice to generate w and y, respectively. Given a layer
with D output channels, a filter size of Z x G, and a stride of S,
each input pixel is reused DZG/S? times [74]. For example, f
is reused 8 times in Fig. 2 where D=2, Z=G=2, and S=1. Note
that weights are private in DNN CONV operations, which is
the main difference between CNNs and DNNs [82].

Tw&fi;t)ers Inputs (4x4) _____---> (b) Shared by wand x
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Fig. 2. Illustrating the three types of input reuses.



Logical  Fjter Input

Psum
(weights)

Physical

ReRAM |
crosshar

Ny
7 /

array
2x2 (B=2)

1:=V1/Ry1+V5/Ry

(a) (b)
Fig. 3. (a) ReRAM operation basics and (b) two types of interfacing circuits.

B. ReRAM Basics

ReRAM is a type of nonvolatile memory storing data
through resistance modulation [30], [39], [65], [69], [71]. An
ReRAM cell with a metal-insulator-metal (MIM) structure
consists of top/bottom electrodes and a metal-oxide layer [71].
Analog multiplication can be performed in ReRAM cells
(see Fig. 3 (a)), with the biased voltages serving as inputs,
ReRAM cells’ conductance as weights, and resulting currents
as outputs. Addition operations are realized through current
summing among ReRAM cells of the same columns [28], [77]
—e.g. Iy =Vi/Ri1+V2/Ry> in Fig. 3 (a). At the circuit level,
digital inputs are read from an input memory, converted to
analog voltages by DACs, and then applied on ReRAM cells.
The resulting analog Psums are converted to digital values by
ADCs, and then stored back into an output memory.

C. DTCs/TDCs vs. DACs/ADCs

As shown in Fig. 3 (b), DTCs/TDCs can perform the con-

TABLE 1
A SUMMARY OF PARAMETERS USED IN TIMELY
[ CNN Params | Description
M batch size of 3-D feature maps
C/D input / output channel
H/W input feature map height / width
Z/G filter height / width
S stride
E/F output feature map height / width
[ Arch. Params | Description
B # of ReRAM bit cells in one crossbar array is B>
Ncp # of ReRAM crossbar arrays in one sub-Chip is Ny
R the resistance of the ReRAM bit cell at the /" row
Y and j column of a crossbar array
T; the time input for the /" row of an ReRAM crossbar array
T,.8p/4p the time Psum for 8-bit inputs and 4-bit weights
VDD the logic high voltage of the time-domain signals
Vin the threshold voltage of a comparator
C, the charging capacitance
Ter the unit delay of a DTC/TDC
one DTC/TDC is shared by y rows/columns
v in one ReRAM crossbar array
¢ the reset phase of a sub-Chip (reset: ¢=1)
X the number of sub-Chips in one TIMELY chip
€ the potential error of one X-subBuf
Energy Params Description
eprc the energy of one conversion in DTC
erpc the energy of one conversion in TDC
epac the energy of one conversion in DAC
eapc the energy of one conversion in ADC
ep the unit energy of accessing P-subBuf
ex the unit energy of accessing X-subBuf
e the unit energy of accessing ReRAM input/output buffers
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version between an analog time signal and the corresponding
digital signal; DACs/ADCs can do so between an analog
voltage signal and the digital signal. One digital signal (e.g. Dy
in Fig. 3 (b)) can be represented as a time delay with a fixed
high/low voltage (corresponding to 1/0) in the time domain
(e.g. T, in Fig. 3 (b)) [3], [5], [8], [12], or as a voltage in
the voltage domain (e.g. Vy in Fig. 3 (b)). Compared with a
DTC/TDC which can be implemented using digital circuits [4],
[16], [40], [51], [52], [80], a DAC/ADC typically relies on
analog circuits that (1) are more power consuming and (2)
vulnerable to noises and process, voltage and temperature
(PVT) variations, and (3) benefit much less from process
scaling in energy efficiency [49].

III. OPPORTUNITIES AND INNOVATIONS

This section aims to answer the question of ‘“how can
TIMELY outperform state-of-the-art R*PIM accelera-
tors?” Note that all parameters used in this section are
summarized in Table I

A. Opportunities

We first identify three opportunities for greatly reducing
energy costs of RZPIM accelerators by analyzing performance
limitations in state-of-the-art designs. Specifically, Opportunity
#1 is motivated by the energy bottleneck of (1) input and Psum
movements (i.e., Bottleneck @ in Fig. 1 (b)) and (2) interfacing
circuits (i.e., Bottleneck @ in Fig. 1 (b)); Opportunity #2
is inspired by the bottleneck of interfacing circuits; and
Opportunity #3 is motivated by both types of bottlenecks.

Opportunity #1. Enhancing (analog) data locality to greatly
reduce the energy/time costs of both data movements and
D/A and A/D interfaces. We identify this opportunity based
on the following considerations. Since in-ReRAM processing
computes in the analog domain, the operands, including inputs,
weights, and Psums, are all analog. If we can mostly access
analog operands locally, we can expect large energy savings
associated with input and Psum movements and largely re-
move the need to activate D/A and A/D interfaces. In the prior
works, the input/Psum movements and interfaces dominate the
energy cost of R?PIM accelerators. First, input and Psum ac-
cesses involve energy-hungry data movements. While weights
stay stationary in R*PIM accelerators, input and Psum accesses
are still needed. Although one input/Psum access can be shared
by B ReRAM cells in the same row/column, for dot-product
operations in a B x B ReRAM crossbar array, a large number
of input and Psum accesses are still required. For example,
more than 55 million inputs and 15 million Psums need to
be accessed during the VGG-D [61] and ResNet-50 [26]
inferences, respectively (see Fig. 4 (a)). While inputs require

# of " "
accessing| Input Psum
VGG-D 59.9M 59.8 M
ResNet-50 55.6 M 15.1 M
* AllCONV layers
(a)

Fig. 4. (a) The number of input/Psum accesses, (b) energy breakdown of
PRIME [14], and (c) energy breakdown of ISAAC [58].



only memory read, Psums involve both memory write and
read, resulting in a large energy cost. As an example, 36% and
47% of the total energy in PRIME [14] are spent on input and
Psum accesses, respectively (see Fig. 4 (b)). Second, voltage-
domain D/A and A/D conversions involve a large energy cost.
For example, in PRIME, except the data movement energy,
most of the remaining energy cost is consumed by D/A and
A/D conversions (see Fig. 4 (b)).

Opportunity #2. Time-domain interfacing can reduce the
energy cost of a single D/A (and A/D) conversion. Since time-
domain D/A and A/D conversion is more energy efficient
than voltage-domain conversion (see Section II-C), we have
an opportunity to use DTCs and TDCs for interfacing be-
tween the digital signals stored in memory and analog signals
computated in ReRAM crossbar arrays. In prior works, DACs
and ADCs limit the energy efficiency of R*PIM accelerators.
Although ISAAC optimizes the energy cost of its DAC/ADC
interface, the interface energy is still as large as 61% in ISAAC
(see Fig. 4 (c)). Specifically, ISAAC [58] decreases the number
of ADCs by sharing one ADC among 128 ReRAM bitlines,
and thus the ADC sampling rate increases by 128, increasing
the energy cost of each A/D conversion.

Opportunity #3. Reducing the number of input accesses
can save the energy cost of both input accesses and D/A
conversions. We find that the input reuse of CNNs can still
be improved over the prior works for reducing the energy
overhead of input accesses and corresponding interfaces.
Though each input connected to one row of an ReRAM
array is naturally shared by B ReRAM cells along the row,
each input on average has to be accessed DZG/S*/B times.
Taking ISAAC [58] as an example, one 16-bit input involves
DZG/S?/B times unit eDRAM read energy (i.e. 4416x the
energy of a 16-bit ReRAM MAC), input register file read
energy (i.e. 264.5x the energy of a 16-bit ReRAM MAC)
and D/A conversion energy (i.e. 109.7x the energy of 16-bit
ReRAM MAC). For MSRA-3 [31] adopted by ISAAC, each
input of CONV layers is read and activated the interfaces 47
times on average.

B. TIMELY Innovations

The three aforementioned opportunities inspire us to de-
velop the three innovations in TIMELY for greatly improving
the acceleration energy efficiency. Fig. 5 (a) and (b) show a
conceptual view of the difference between existing R*PIM ac-
celerators and TIMELY. Specifically, TIMELY mostly moves
data in the analog domain as compared to the fully digital
data movements in the existing designs and adopts DTCs and
TDCs instead of DACs and ADCs for interfacing.

Innovation #1. TIMELY adopts ALBs to aggressively
enhance (analog) data locality, leading to about NcpXx re-
duction in data movement energy costs per input and per
Psum compared with existing designs, assuming a total of
Ncp X Ncp crossbars in each sub-Chip. Multiple sub-Chips
compose one chip. One key difference between TIMELY and
existing R?PIM resides in their sub-Chip design (see Fig. 5
(a) vs. (b)). Specifically, each crossbar (i.e. CB in Fig. 5) in
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Fig. 5. A high-level view of (a) a sub-Chip within a chip of state-of-the-art
RZPIMs and (b) TIMELY’s sub-Chip, (c) the energy cost per input and per
Psum in state-of-the-art R2PIMs and TIMELY, and (d) the normalized energy
of different data accesses and interfaces, where ep, ex, and ep are the unit
energy of accessing ReRAM input/output buffers, X-subBuf, and P-subBuf,
respectively, while epac, eapc, eprc, and erpc denote the energy of one
DAC, ADC, DTC, and TDC [14], [38], [41], [52], [58], [63], respectively.

existing designs fetches inputs from a high-cost memory (e.g.
input buffers in Fig. 5 (a)). Therefore, for each sub-Chip, there
is an energy cost of BNéBeRz for accessing BN%B inputs. In
TIMELY (see Fig. 5 (b)), an input fetched from the high-
cost memory is shared by one row of the sub-Chip thanks to
the adopted local ALB buffers (e.g. X-subBufs in Fig. 5 (b))
that are sandwiched between the crossbar arrays, resulting in
an energy cost of BNcpep +BN(2;BeX for handling the same
number of inputs, leading to an energy reduction of Nc¢p X
per input (see Fig. 5 (c). Similarly, each crossbar in existing
R2PIM accelerators directly writes and reads Psums to and
from the high-cost output buffers, whereas in TIMELY the
Psums in each column of the sub-Chip are accumulated before
being written back to the output buffers, leading to an energy
cost reduction of Ncpx per Psum (see Fig. 5 (c). Furthermore,
accessing the high-cost memory requires about one order of
magnitude higher energy cost than that of a local buffer.
Specifically, the average energy of one high-cost memory
access in PRIME is about 9x and 33x higher than that of
P-subBufs and X-subBufs [79] in TIMELY, respectively. Ncg
is typically >10 (e.g. Ncgp = 12 in PRIME). Therefore, about
Ncpx energy reduction for handling input/Psum accesses can
be achieved in TIMELY. Additionally, the much reduced
requirements of input/output buffer size in TIMELY make it
possible to eliminate inter sub-Chip memory (see Fig. 6 (a)
and Fig. 9 (c), leading to additional energy savings.
Innovation #2. TIMELY adopts TDIs and ALBs to min-
imize the energy cost of a single conversion and the total
number of conversions, respectively. As a result, TIMELY
reduces the interfacing energy cost per input and per Psum
by ¢qiNcp and ¢>Ncp, respectively, compared with current
practices, where g1 = epac/eprc and g» = eapc/erpc- It is




well recognized that the energy cost of ADC/DAC interfaces is
another bottleneck in existing RZPIM accelerators , in addition
to that of data movements. For example, the energy cost of
ADCs and DACs in ISAAC accounts for >61% of its total
energy cost. In contrast, TIMELY adopts (1) TDCs/DTCs
instead of ADCs/DACs to implement the interfacing circuits
of crossbars and (2) only one TDC/DTC conversion for each
row/column of one sub-Chip, whereas each row/column of
crossbar needs one ADC/DAC conversion in existing designs,
leading to a total of g;Ncgx and g»Ncpx reduction per
input and Psum, respectively, as compared to existing designs.
Specifically, g1 and ¢, are about 50 and 20 [38], [41], [52],
[58], [63], respectively.

Innovation #3. TIMELY employs O’IR to further reduce
the number and thus energy cost of input accesses and D/A
conversions. As accessing the input and output buffers in sub-
Chips costs about one order of magnitude higher energy than
that of accessing local buffers between the crossbar arrays (see
the left part of Fig. 5 (d)), we propose an O?IR strategy to
increase the input reuse opportunities for minimizing the cost
of input accesses and associated D/A conversion.

IV. TIMELY ARCHITECTURE

In this section, we first show an architecture overview (see
Section IV-A), and then describe how the TIMELY architec-
ture integrates the three innovations for aggressively improving
the acceleration energy efficiency in Sections IV-B, IV-C,
and IV-D, respectively. In addition, we introduce our pipeline
design for enhancing throughput in Section IV-E and the
software-hardware interface design for offering programma-
bility in Section IV-F. Parameters are summarized in Table I.

A. Overview

Fig. 6 (a) shows the TIMELY architecture, which consists
of a number of sub-Chips connected via bus [14], [58]. Specif-
ically, each sub-Chip includes DTCs/TDCs (on the left/at
the bottom), ReRAM input/output buffers (on the left/at the
bottom), ReRAM crossbars (see @ in Fig. 6 (a)) with each
having B x B bit cells, a mesh grid of local ALB buffers —
i.e., X-subBufs (see @ in Fig. 6 (a)) and P-subBufs (sece @
in Fig. 6 (a)) — between the ReRAM crossbar arrays, current
adders (i.e. I-adders, ® in Fig. 6 (a)), and a block of shift-
and-add, ReLU, max-pooling units.

The TIMELY architecture processes CNNs/DNNs’ infer-
ence as follows. The pre-trained weights are pre-loaded into
TIMELY’s ReRAM arrays. Inputs of the CNN/DNN layers
are fetched into the input buffers of one sub-Chip or several
sub-Chips that handle the corresponding layers, starting from
the first CNN/DNN layer. Within each sub-Chip, the inputs
are applied to the DTCs for converting the digital inputs into
analog time signals, which are then shared by ReRAM bit cells
in the same row of all crossbar arrays along the horizontal
direction to perform dot products with the corresponding
resistive weights. The calculated Psums at the same column of
all crossbars in the vertical direction are aggregated in the I-
adders, and converted into a voltage signal and then an analog
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Fig. 6. An illustration of the (a) TIMELY architecture: (b) @ X-subBuf, (c) @&
P-subBuf, (d) & I-adder, (¢) ® ReRAM crossbar located in the first crossbar
column and last row of a sub-Chip, ® charging units, and comparators, (f)
the input/output characteristics of an 8-bit DTC, and (g) the input/output
characteristic of dot-product operations in the leftmost ReRAM column of
a sub-Chip.

time signal by a charging unit and comparator block (see @
in Fig. 6 (a)) before being converted into a digital signal via
a TDC. Note that the output of each P-subBuf is connected
to the I-adder separately. Finally, the resulting digital signals
are applied to the block of shift-and-add, ReLU, max-pooling
units, and then written to the output buffers.

B. Enhancing (Analog) Data Locality

Within each sub-chip of TIMELY, the converted inputs and
calculated Psums are moved in the analog domain with the aid
of the adopted ALBs (see Fig. 6 (a)) after the digital inputs are
converted into time signals by DTCs and before the Psums are
converted into digital signals by TDCs. In this subsection, we
first introduce the data movement mechanism and then present
the operation of the local analog buffers.

Data Movement Mechanism. In the TIMELY architecture,
time inputs from the DTCs move horizontally across the
ReRAM crossbar arrays in the same row via X-subBufs (see
@ in Fig. 6 (a))) for maximizing input reuses and minimizing
high-cost memory accesses. Meanwhile, the resulting current
Psums move vertically via P-subBufs (see @ in Fig. 6 (a)).



Note that only the crossbars in the leftmost column fetch
inputs from DTCs while those in all the remaining columns
fetch inputs from their analog local time buffers (i.e., the X-
subBufs to their left). Similarly, only the outputs of the I-
adders are converted into the digital signals via TDCs before
they are stored back into the output buffers, while the current
outputs of the crossbars are passed into the I-adders via analog
current buffers (i.e., the P-subBufs right below them). In this
way, TIMELY processes most data movements in the analog
domain within each sub-chip, greatly enhancing data locality
for improving the energy efficiency and throughput.

Local Analog Buffers. The local analog buffers make it
possible to handle most (analog) data movements locally in
TIMELY. Specifically, X-subBuf buffers the time signals (i.e.,
outputs of the DTCs) by latching it, i.e., copying the input
delay time to the latch outputs (see Fig. 6 (b)); while P-subBuf
buffers the current signal outputted from the ReRAM crossbar
array, i.e. copying the input current to their outputs (see Fig. 6
(c)). The key is that X-subBuf and P-subBuf are more energy
and area efficient than input/output buffers (see Fig. 5 (d)).
Specifically, an X-subBuf buffer consists of two cross-coupled
inverters that form a positive feedback to speed up the response
at its output and thus reduces the delay between its inputs and
outputs [70]. Since cross-coupled inverters invert the input, a
third inverter is used to invert the signal back. X-subBufs are
reset in each pipeline-cycle by setting ¢ to be high (see Fig. 6
(b)). The P-subBuf buffer is implemented using an NMOS-pair
current mirror (see Fig. 6 (c)) [37].

C. Time-Domain Dot Products and DTC/TDC Interfacing

TIMELY performs dot products with time-domain inputs
from the DTCs and converts time-domain dot product results
into digital signals via TDCs. In this subsection, we first
present dot product operations in TIMELY and then introduce
their associated DTCs/TDCs.

Dot Products. First, let us consider Psums in one ReRAM
crossbar array. Take the first column of the ReRAM crossbar
array in Fig. 6 (e) as an example. A total of B time-domain
inputs 7; (i = 1,2,...,B) are applied to their corresponding
ReRAM bit cells with resistance values of Ry; (i.e. correspond-
ing to weights) to generate a Psum current (i.e. 7;-controlled
current) based on the Kirchoff’s Law. Then, let us focus on
Psums in one sub-Chip. The Psum currents at the same column
of all Ncp crossbars in the vertical direction are aggregated in
the I-adder [2] (see ® in Fig. 6 (a)), and then are converted
into a voltage V,; by charging a capacitor (e.g. C. in Fig. 6
(e)). Fig. 6 (g) shows the input/output characteristic of the dot
product. We adopt a 2-phase charging scheme [5]. In phase I,
the charging time is the input 7; and the charging current is
VDD/R;;, which corresponds to the weight. In phase II, the
charging time is 7, and the charging current is a constant I,
which is equal to C.BN¢gVpp/Ruin- The charging in phase 11
ensures the voltage on C, is larger than V};,, and the time output
is defined by T-— T:. Ryin is the minimum mapped resistance
of one layer. V;;, is the threshold voltage of the comparator,
which is equal to BNCBTVDD/R,,,,-,Z, where Vpp is the logic
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high voltage of the time signal, and T is the time period of
one phase. Based on Charge Conservation, we can derive the
output 7;, g/45 (see Ty in Fig. 6 (e)), where 8b/4b represents
8-bit inputs and 4-bit weights, to be:

R BNcp
min Z T:/Ryi

i=1

T, 80/40 = CBNGg

@)

To realize dot products with 8-bit weights and inputs, we
employ a sub-ranging design [22], [47], [84] in which 8-
bit weights are mapped into two adjacent bit-cell columns
with the top-4 most significant bit (MSB) weights and the
remaining 4 least significant bit (LSB) weights, respectively.
The charging capacitors associated with MSB-weight column
and LSB-weight column are C,. and C, /2, respectively. T, g, Jdb
of the MSB-weight column and the LSB-weight column are
added to get the dot-product result for 8-bit weights.

DTCs/TDCs. We adopt 8-bit DTCs/TDCs for TIMELY
based on the measurement-validated designs in [41], [52]. The
input/output characteristics of a 8-bit DTC is shown in Fig.
6 (f), where digital signals of “1111111” and “00000000”
correspond to the time-domain analog signals with the max-
imum and minimum delays, respectively, and the dynamic
range of the time-domain analog signals are 256 x Ty, with
Tyer being the unit delay. Meanwhile, a TDC’s input/output
characteristics can also be viewed in Fig. 6 (f) by switching the
V and t axes. In TIMELY, Ty, is designed to be 50 ps, leading
to a conversion time of 25 ns (including a design margin) for
the 8-bit DTC/TDC. In addition, to trade off energy efficiency
and computational density, one DTC/TDC is shared by y (y
>1) ReRAM crossbar rows/columns.

D. TIMELY’s Only-Once Input Read Mapping Method

O?IR follows three principles: (1) for reusing the inputs
by different filters, we map these filters in parallel within the
crossbar arrays (see Fig. 7 (a)); (2) for reusing the inputs when
sliding the filter vertically within an input feature map, we
duplicate the filters with a shifted offset equal to Z x S (see
Fig. 7 (b)), where Z and S are the filter height and the stride,
respectively; and (3) for reusing the inputs when sliding the
filter horizontally within an input feature map, we transfer
inputs to the adjacent X-subBufs with an step equal to S (see
Fig. 7 (c)). Single-direction input transfer between adjacent X-
subBufs can be implemented by introducing only one switch
and one control signal to one X-subBuf.

E. Pipeline Design

To enhance throughput, we adopt pipeline designs between
and within sub-Chips, i.e., inter-sub-Chip and intra-sub-Chip
pipeline. Different sub-Chips work in a pipeline way. Note
that a layer by layer weight mapping strategy is adopted in
TIMELY, where one CNN/DNN layer is mapped into one sub-
Chip if the ReRAM crossbars’ size is larger than the required
size; otherwise, a layer is mapped into multiple sub-Chips. In
one sub-Chip, the following operations — reading inputs from
input buffers, DTCs, analog-domain computation (including
dot-product, charging-and-comparison operations), TDCs, and
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writing back to output buffers — are pipelined. The pipeline-
cycle time is determined by the slowest stage. Let us take the
operations within one sub-Chip as an example to illustrate the
pipeline in TIMELY. Assuming the first data is read from an
input buffer at the first cycle, it spends three cycles to complete
the digital-to-time conversion, analog-domain computation,
and time-to-digital conversion, and is written back to an output
buffer at the fifth cycle. Meanwhile, at the fifth cycle, the fifth,
fourth, third, and second data is read, converted by a DTC,
computed in the analog-domain, and converted by a TDC,
respectively.

F. Software-Hardware Interface

A software-hardware interface is adopted to allow devel-
opers to configure TIMELY for different CNNs/DNNs, en-
abling programmability. Similar to the interface in PRIME,
three stages are involved from software programming to
hardware execution. First, the CNN/DNN is loaded into an
NN parser [83] that automatically extracts model parameters.
Second, with the extracted parameters, a compiler optimizes
mapping strategies for increasing the utilization of ReRAM
crossbar arrays and then generates execution commands (in-
cluding commands for weight mapping and input data path
configuration). Third, the controller (see Fig. 6 (a)) loads the
commands from the compiler to (1) write pre-trained weights
to the mapped addresses, and (2) configure peripheral circuits
for setting up input paths of computation.

V. DISCUSSION

Although local buffers have been adopted in digital ac-
celerators [10], [82], it is challenging when using local
buffers in RZPIMs because: (1) improper design can largely
compromise R?PIMs’ high computational density and (2)
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more frequent large-overhead A/D and D/A conversions may
be caused. To the best of our knowledge, TIMELY is the
first to implement and maximize analog data locality via
ALBs, which have at least one order of magnitude lower
access energy cost compared to the two level memories
in PRIME [14])/ISAAC [58]/Pipelayer [62]. Additionally,
TIMELY maximizes data locality without degrading R*PIMs’
computational density. Although a recent R?PIM accelerator,
CASCADE [15], has adopted analog buffers, it only uses
analog ReRAM buffer to reduce the number of A/D con-
versions, thereby minimizing computational energy. TIMELY
uses ALBs to minimize both the computational energy and
data movement energy. Taking PRIME as an example, the
computational energy only accounts for 17% of the chip en-
ergy. In order to minimize the computational energy, TIMELY
not only reduces the number of A/D conversions by ALBs, but
also decreases the energy of each A/D conversion by TDCs.

Analog computations and local buffers are efficient, but they
potentially introduce accuracy loss to TIMELY. The accuracy
loss is mainly attributed to the non-ideal characteristics of
analog circuits. To address this challenge, TIMELY not only
leverages algorithm resilience of CNNs/DNNs to counter hard-
ware vulnerability [9], [48], [81], but also minimize potential
errors introduced by hardware, thereby achieving the optimal
trade-off between energy efficiency and accuracy. First, we
choose time and current signals to minimize potential errors.
Compared with analog voltage signals, analog current signals
and digitally implemented time signals can tolerate larger
errors caused by their loads, and analog time signal is less
sensitive to noise and PVT variations [49]. Second, the adopted
ALBs help improve the accuracy of time inputs and Psums by
increasing the driving ability of loads. However, the larger the
number of ALBs, the smaller the number of ReRAM crossbar
arrays in a sub-Chip, compromising the computational density.
Based on system-level evaluations, we adopt one X-subBuf
between each pair of neighboring ReRAM crossbar arrays and
one P-subBuf between each ReRAM crossbar array and its I-
adder in order to achieve a good trade-off between accuracy
loss and computational density reduction. Third, we limit the
number of cascaded X-subBufs in the horizontal direction
to reduce the accumulated errors (including noise) of time-
domain inputs, which can be tolerated by the given design
margin. We assign a design margin (i.e. more than 40 ps) for
the unit delay (i.e. 50 ps) of the DTC conversion. We do not
cascade P-subBufs to avoid introducing errors in Psum.

TIMELY adopts pipeline designs to address the speed
limit of time signal operations and thus improve throughput.
Adjusting the number of ReRAM rows/columns shared by one
DTC/TDC allows for the trade-off between the throughput and
computational density of TIMELY. TIMELY compensates for
the increased area due to the special shifted weight duplication
of O?IR (see Fig. 7 (b) and (c)) by saving peripheral circuits’
area. Besides, TIMELY also replicates weights to improve
computation parallelism and thus throughput, similar to prior
designs [14], [58], [62].



VI. EVALUATION

In this section, we first introduce the experimental setup, and
then compare TIMELY with state-of-the-art designs in terms
of energy efficiency, computational density, and throughput.
After that, we demonstrate the effectiveness of TIMELY’s key
features: ALB, TDI, and O2IR, and show that these features
are generalizable. Finally, we discuss area scaling.

A. Experiment Setup

TIMELY Configuration. For a fair comparison with
PRIME/ISAAC, we adopt PRIME/ISAAC’s parameters, in-
cluding ReRAM and ReLU parameters from PRIME [14], and
maxpool operations (scaled up to 65nm) and HyperTransport
links from ISAAC [58] (see Table II). For TIMELYs specific
components, we use silicon-verified results [41], [52] for
DTCs and TDCs, and adopt Cadence-simulated results for X-
subBuf, P-subBuf, I-adder, charging circuit, and comparator
based on [35], [37], [70] — including their drives and loads
during simulation. Supporting digital units (shifter and adder)
consume negligibly small amounts of area and energy. All
the design parameters of the peripheral circuits are based on
a commercial 65nm CMOS process. The power supply is
1.2 V, and the clock rate is 40 MHz. The reset phase ¢ in
Fig. 6 is 25 ns. The pipeline-cycle time is determined by
the latency of 8 (setting y to 8) DTCs/TDCs, which have
a larger latency than other pipelined operations. The latency
of reading corresponding inputs, analog-domain computations,
and writing outputs back to output buffers are 16 ns [24], 150
ns [24], and 160 ns [24], respectively. In addition, I-adders and
its inputs do not contribute to the total area because we insert
I-adders and the interconnection between each P-subBuf and
I-adder under the charging capacitors and ReRAM crossbars,
leveraging different IC layers. We adopt 106 sub-Chips in the
experiments for a fair comparison with the baselines (e.g.,
TIMELY vs. ISAAC: 91mm? vs. 88 mm?).

Methodology. We first compare TIMELY with 4 state-
of-the-art R*PIM accelerators (PRIME [14], ISAAC [58],
PipeLayer [62], and AtomLayer [56]) in terms of peak en-
ergy efficiency and computational density. For this set of
experiments, the performance data of the baselines are the
ones reported in their corresponding papers. Second, as for
the evaluation regarding various benchmarks, we consider
only PRIME [14] and ISAAC [58] because (1) there is lack
of design detail information to obtain results for PipeLayer
[62] and AtomLayer [56], and (2) more importantly, such
comparison is sufficient given that PRIME [14] is the most
competitive baseline in terms of energy efficiency (see Fig.
1 (c)). For this set of evaluations, we build an in-house
simulator to evaluate the energy and throughput of PRIME,
ISAAC, and TIMELY. Before using our simulator, we validate
it against PRIME’s simulator [14] and ISAAC’s analytical
calculations [58]. We set up our simulator to mimic PRIME
and ISAAC and compare the results of our simulator with
their original results. The resulting errors of energy and
throughput evaluation are 8% and zero, respectively, which are
acceptable by TIMELY’s one order of magnitude improvement
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TABLE II
TIMELY PARAMETERS.

Energy Area
Component Params Spec f) (um?)
/compo. /compo.
TIMELY sub-Chip
DTC resolution 8 bits 375 240
number 16x32 o
ReRAM size 256256
crossbar number 16x12 1792 100
bits/cell 4
Charging+ number 12256 417 40
comparator
resolution 8 bits
TDC number 12x32 145 310
X-subBuf number 12x16x256 0.62 5
P-subBuf number 15x12x256 23 5
I-adder number 12x256 36.8 40
ReLU number 2 205 300
MaxPool number 1 330 240
Input buffer size/number 2KB/1 12736 50
Output buffer size/number 2KB/1 31039 50
Total 0.86 mm
TIMELY chip (40 MHz)
sub-Chip | number | 106° [ [ 0.86 mm”
Total ‘ ‘ 91 mm’
Inter chips
. links/freq 1/1.6GHz 2
Hyper link link bw 6.4 GB/s ‘ 1620 5.7 mm’

“ Scaling TIMELY to an area of 0.86y mm? by adjusting the number of sub-Chips
(i.e., ) based on applications.

TABLE III
ADOPTED BENCHMARKS AND DATASETS.
| Why consider these CNN/DNN models |
For a fair comparison with PRIME
(i.e. benchmarks in [14])

For a fair comparison with ISAAC
(i.e. benchmarks in [58])
ResNet-18/-50/-101/-152¢ To show TIMELY’s performance
SqueezeNet? in diverse and more recent CNNs

¢ ImageNet ILSVRC dataset [17]; P MNIST dataset [18]

‘ Benchmarks

VGG-D%, CNN-17, MLP-L?

VGG-1/-2/-3/-4¢
MSRA-1/-2/3¢

on energy efficiency (see Section VI-B). Due to the lack of
ISAAC’s mapping information, we only validate our simu-
lator against PRIME’s simulator to get the energy error by
adopting PRIME’s component parameters and weight mapping
strategy [14] in our simulator. Since PRIME does not support
inter-layer pipeline, we only validate our simulator against
ISAAC’s analytical calculations to get the throughput error
by using ISAAC’s component parameters and balanced inter-
layer pipeline [14] in our simulator. The inter-layer pipeline
corresponds to TIMELY’s inter-sub-Chip pipeline.

Benchmarks. We evaluate TIMELY using a total of 15
benchmarks. Table III shows these benchmarks and the reasons
for adopting them.

B. Evaluation Results

We evaluate TIMELY’s peak energy efficiency and compu-
tational density against those reported in [14], [58], [62], and
[56]. Next, we perform an evaluation of TIMELY’s energy
efficiency and throughput on various CNN and DNN models.

Overall Peak Performance. Compared with representative
R2PIM accelerators (see Table IV), TIMELY can improve
energy efficiency by over 10x (over PRIME [14]) and the
computational density by over 6.4x (over PipeLayer [62]).
In particular, TIMELY improves energy efficiency by 10x to
49.3x and computational density by 6.4x to 31.2x. These
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Fig. 8. (a) The normalized energy efficiency and (b) throughput of TIMELY over PRIME and ISAAC, respectively, considering various CNNs and DNNs.

TABLE IV
PEAK PERFORMANCE COMPARISON.
Energy Improve- Computational Improve-
efficiency ment of density ment of
(TOPs/W) | TIMELY (TOPs/(s x mm?)) TIMELY
PRIME? [14] 2.10 +10.0x 123 +31.2x
ISAAC? [58] 0.38 +18.2% 0.48 +20.0x
PipeLayer” [62] 0.14 +49.3x 1.49 +6.4x
AtomLayeI” [56] 0.68 +10.1x 0.48 +20.0x
TIMELY * 21.00 n/a 38.33 n/a
TIMELY ? 6.90 n/a 9.58 n/a

“ one operation: 8-bit MAC; ? one operation: 16-bit MAC

large improvements result from TIMELY’s innovative features
of ALB, TDI, O’IR and intra-sub-Chip pipelines, which
can aggressively reduce energy cost of the dominant data
movements and increase the number of operations given the
same time and area. In Table IV, we ensure that TIMELY’s
precision is the same as that of the baselines for a fair
comparison. Specifically, we consider a 8-bit TIMELY design
when comparing with PRIME and a 16-bit TIMELY design
when comparing to ISAAC, PipeLayer, and AtomLayer.
Energy Efficiency on Various CNN and DNN models. We
evaluate TIMELY on various models (1 MLP and 13 CNNs)
to validate that its superior performance is generalizable to
different computational and data movement patterns. Fig. 8
(a) shows the normalized energy efficiency of TIMELY over
PRIME and ISAAC. We can see that TIMELY outperforms
both PRIME and ISAAC on all CNN and DNN models.
Specifically, TIMELY is on average 10x and 14.8x more
energy efficient than PRIME and ISAAC, respectively (see the
Geometric Mean in the rightmost part of Fig. 8 (a)). This set
of experimental results demonstrates that TIMELY’s superior
energy efficiency is independent of CNNs and DNNs — i.e.
computational and data movement patterns. In addition, as
shown in Fig. 8 (a), the energy efficiency improvement of
TIMELY decreases in small or compact CNNs, such as CNN-
1 [14] and SqueezeNet [29]. This is because their energy costs
of data movements are relatively small. These models can be
mapped into one ReRAM bank of PRIME or one ReRAM tile
of ISAAC, and thus do not require high cost memory accesses
and limit the energy savings achieved by TIMELY.
Throughput on Various CNNs. Fig. 8 (b) shows
TIMELY’s normalized throughput over PRIME and ISAAC
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on various CNNs (a total of 8 CNNs) considering three chip
configurations (16, 32, and 64 chips). As the throughput is
a function of the weight duplication ratio, we only consider
CNNs for which PRIME or ISAAC provides corresponding
weight duplication ratios. Compared to PRIME, TIMELY en-
hances the throughput by 736.6x for the 16-chip, 32-chip,
and 64-chip configurations on VGG-D. TIMELY’s advan-
tageous throughput results from its intra-sub-Chip pipeline,
which enables to minimize the latency between two pipelined
outputs. In addition, PRIME can work in both the memory
mode and computation mode (i.e. accelerating CNN), limiting
the number of crossbars for CNN computations (and thus its
throughput) on a chip which is over 20x smaller than that
of TIMELY (i.e. 1024/20352, see the right corner of Fig. 8
(b)). Compared to ISAAC on 7 CNNs, TIMELY, on average,
enhances the throughput by 2.1x, 2.4x, and 2.7x for the
16-chip, 32-chip, and 64-chip configurations, respectively. In
Fig. 8 (b), we consider only 64-chip or (32-chip and 64-chip)
for large CNNs, such as MSRA-1/-2/-3, to ensure that all
the models can be mapped into one TIMELY or ISAAC ac-
celerator. TIMELY’s enhanced throughput is because ISAAC
adopts serial operations and requires 22 pipeline-cycles (each
being 100 ns) to finish one 16-bit MAC operation, for which
TIMELY employs intra-sub-Chip pipelines and needs two
pipeline-cycles (each being 200 ns).

Accuracy. We observe < 0.1% inference accuracy loss
under various CNN and DNN models in system-level sim-
ulations including circuit-level errors extracted from Cadence
simulation. The simulation methodology is adapted from prior
work [33], [34]. Specifically, we first obtain noise and PVT
variations (by Monte-Carlo simulations in Cadence) of X-
subBuf, P-subBuf, I-adder, DTC, and TDC. The errors follow
Gaussian noise distribution. We then add equivalent noise
during training and use the trained weights for inference. Note
that prior work has proved that adding Gaussian noise to
training can reach negligible accuracy loss [53], [54], [57]. To
achieve < 0.1% accuracy loss, we set the number of cascaded
X-subBufs to 12. The accumulated error of the cascaded X-
subBufs is v/12e [20], where € is the potential error of one
X-subBuf. v/12¢ is less than 20x 28 ps, which can be tolerated
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The effectiveness of TIMELY’s innovations: (a) a breakdown of energy savings (over PRIME on VGG-D) achieved by different features — i.e. (@ and

0) vs. ® of TIMELY; (b) comparing the energy costs of the interfacing circuits in TIMELY and PRIME; energy breakdown with regard to both (c) memory
types and (d) data types in both TIMELY and PRIME; and (e) the contributing factors for the energy savings per data type in TIMELY (see (d)).

by the design margin of 40x2% ps and thus do not cause a
loss of inference accuracy.

C. Effectiveness of TIMELY’s Innovations

We first validate the effectiveness of TIMELY’s innovations
on energy saving and area reduction, and then demonstrate that
TIMELY’s innovative principles can be generalized to state-
of-the-art R2PIM accelerators to further improve their energy
efficiency.

Effectiveness of TIMELY’s Innovations on Energy Sav-
ings. We here present an energy breakdown analysis to demon-
strate how TIMELY reduces the energy consumption on VGG-
D as compared with PRIME, which is the most competitive
RZPIM accelerator in terms of energy efficiency. In Fig. 8 (a),
we can see that TIMELY improves the energy efficiency by
15.6 x as compared to PRIME.

Overview. We first show the breakdown of energy savings
achieved by different features of TIMELY. TIMELY’s ALB
and O?IR contribute to up to 99% of the energy savings, and
its TDI leads to the remaining 1% (see Fig. 9 (a)).

Effectiveness of TIMELY’s ALB and O%IR. We compare
TIMELY’s energy breakdown with regard to both memory
types and data types with those of PRIME in Fig. 9 (c) and (d),
respectively. In Fig. 9 (c), TIMELY’s ALB and O?IR together
reduce the energy consumption of memory accesses by 93%
when compared with PRIME. Specifically, the ALB and O*IR
features enable TIMELY to fully exploit local buffers within
its sub-Chips for minimizing accesses to the L1 memory and
removing the need to access an L2 memory.

In Fig. 9 (d), TIMELY reduces the energy consumption
associated with the data movement of Psums, inputs and
outputs by 99.9%, 95.8%, and 87.1%, respectively. The con-
tributing factors are summarized in Fig. 9 (e). Specifically,
(1) TIMELY can handle most of the Psums locally via the
P-subBufs within the sub-Chips, aggressively reducing the
energy cost of data movements of Psums; (2) TIMELY’s O?IR
feature ensures all the input data are fetched only once from
the L1 memory while its ALB feature (i.e. X-subBufs here)
allows the fetched inputs to be stored and transferred via X-
subBufs between the crossbars; and (3) thanks to employed
P-subBufs and X-subBufs, TIMELY removes the need for an
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L2 memory, which has 146.7 x /6.9 x higher read/write energy
than that of an L1 memory, respectively, reducing the energy
cost of writing outputs back to the memory (L1 memory in
TIMELY vs. L2 memory in PRIME). Furthermore, as another
way to see the effectiveness of TIMELY’s OZ?IR feature, we
summarize both PRIME’s and TIMELY’s total number of
input accesses to the L1 Memory in Table V (consider the
first six CONV layers as examples). TIMELY requires about
88.9% less L1 memory accesses.

Effectiveness of TIMELY’s TDI. Although DTCs and TDCs
only contribute to 1% of TIMELY’s energy savings over
PRIME, the total energy of DTCs and TDCs in TIMELY is
99.6% less than that of ADCs and DACs in PRIME (see Fig. 9
(b)). It is because (1) the unit energy of one DTC/TDC is
about 30%/23% of that of DAC/ADC; (2) the increased analog
data locality due to ALBs largely reduces the need to activate
DTCs and TDCs; and (3) TIMELY’s O?IR feature aggressively
reduces the required DTC conversions thanks to its much
reduced input accesses to the L1 memory (see Table V).

Effectiveness of TIMELY’s Innovations on Area Re-
duction. We analyze an area breakdown to present the ef-
fectiveness of TIMELY’s innovations on the area savings of
peripheral circuits, which helps to improve the computational

TABLE V
THE TOTAL NUMBER OF L1 MEMORY ACCESSES FOR READING INPUTS IN
TIMELY AND PRIME [14] CONSIDERING VGG-D.

\ | CONVI | CONV2 | CONV3 | CONV4 [ CONV5 [ CONV6 |

PRIME[14] | 1.35M | 2890M | 723 M | 1445M | 361 M | 723 M
TIMELY 0.15M 321 M 0.80 M 1.61 M 040M | 080 M
Save by 88.9% 88.9% 88.9% 88.9% 88.9% 88.9%
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Fig. 10. (a) The percentage of ReRAM crossbar area in the area of
PRIME [14], ISAAC [58], and TIMELY and (b) the area breakdown of
TIMELY
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Fig. 11. Comparing the total energy cost of intra-bank data movements
between PRIME and PRIME with TIMELY’s ALB and O%IR being applied:
(a) applying ALB and O?IR to PRIME architecture and (b) the resulting
energy reduction.

density (see Table IV). In Fig. 10 (a), the percentage of the
ReRAM array area in TIMELY (i.e. 2.2%) is 5.5 higher than
that in ISAAC (i.e. 0.4%) [58]. The percentage of the ReRAM
array area in PRIME is small enough and thus ignored [14].
The higher percentage of the ReRAM crossbar array area in
TIMELY benefits from area-efficient circuit implementations
of TIMELY’s ALB, TDI and O?IR. Specifically, in TIMELY
shown in Fig. 10 (b), X-subBufs and P-subBufs occupy 55.2%
of the chip area; DTCs and TDCs occupy 28% of the chip area;
the area of CMOS logic introduced by OZIR is neglectable.
Generalization of TIMELY’s Innovations. TIMELY’s
innovative features are generalizable and can be applied to
state-of-the-art RZPIM accelerators for boosting their energy
efficiency. To demonstrate, we apply ALB and O?IR to PRIME
based on the following considerations. ALB feature associated
with O?IR contributes the dominant energy savings (see Fig. 9
(a)). From the perspective of data accesses and interfaces,
PRIME uses the same architecture shown in Fig 5 (a) as
ISAAC [58]/PipeLayer [62]. To evaluate, we modify PRIME
architecture as shown in Fig. 11 (a). We add X-subBufs
and P-subBufs between 128 ReRAM crossbar arrays in FF
subarray of each bank, and modify the weights mapping
and input access dataflow based on O?IR, while employing
PRIME’s original designs outside FF subarray. Thus, ALB
and O%IR only have an impact on the intra-bank energy. In this
experiment, we adopt the same component parameters as those
used in the PRIME’s original design. Fig. 11 (b) shows that
applying ALB and O?IR principle to FF subarrays in PRIME
reduces the intra-bank data movement energy by 68%.

D. Discussion

Area scaling of TIMELY (by adjusting the number of
sub-Chips shown in Table II) does not affect throughput
and slightly affects energy. This is because throughput is
determined only by intra-sub-Chip pipeline (see Section IV-E);
adjusting the number of sub-Chip in one chip will only change
inter-chip energy (i.e., the energy of memory L3 in Fig. 9 (c)),
which accounts for a negligible part of the total energy.

VII. RELATED WORK

Non-PIM CNN/DNN Accelerators. Although memory is
only used for data storage in non-PIM accelerators, computing
units are being pushed closer to compact memories to re-
duce energy and area. For accelerators with off-chip DRAM,
DRAM accesses consume two orders of magnitude more
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energy than on-chip memory accesses (e.g. 130x higher than
a 32-KB cache at 45 nm [27]). As a result, DRAM consumes
more than 95% of the total energy in DianNao [13], [19].
To break through the off-chip bottleneck, on-chip SRAM is
widely used as the mainstream on-chip memory solution [25].
However, SRAM’s low density has been limiting its on-die ca-
pacity even with technology scaling. For example, EIE adopts
10-MB SRAM that takes 93.2% of the total area [25]. To
address the area issue, on-chip eDRAM is used in RANA [64]
and DaDianNao [11], as eDRAM can save about 74% area
while providing 32 KB capacity in 65 nm [55], [64]. However,
the refresh energy in eDRAM can be dominant (e.g. about
10x as high as the data access’ energy [64]). In terms of
FPGA-based designs, the performance is also limited by the
memory accesses [21], [23], [55], [59] with limited flexibility
of choosing memory technologies. Different from these non-
PIM accelerators, TIMELY improves energy efficiency by
computing in memory and enhances computational density
through adopting high-density ReRAM.

PIM CNN/DNN Accelerators. While PIM accelerators
integrate computing units in memory to save the energy of ac-
cessing weights, the achievable energy efficiency and compu-
tational density remain limited. The limited energy efficiency
is induced by the energy cost of input and Psum movements
and the overhead of interfacing circuits. PRIME [14] takes
83% of the total energy to access inputs and Psums, and
ISAAC [58] consumes 61% of the total energy to operate
DACs/ADCs. The limited computational density is related
to memory technologies. Processing in SRAM, for example,
faces this limitation. The reasons include not only one SRAM
bit-cell typically stores only 1-bit weight [6], [23], [36],
[60], [75] but also SRAM’s bit-cell structure — e.g. 6T [23],
[36]/8T [60], [75]/10T [6] structure — decreases density. Pro-
posed TIMELY adopts high-density ReRAM, and addresses
two key energy challenges with techniques including ALBs,
TDIs, and O’IR. TIMELY achieves up to 18.2x improvement
(over ISAAC) in energy efficiency, 31.2x improvement (over
PRIME) in computational density, and 736.6x in throughput
(over PRIME). Similar to the effect of ALBs used in TIMELY,
a recent RZPIM accelerator [15] also increases the amount of
data in the analog domain for energy optimization. However, it
only optimizes the computation energy (including the energy
of interfacing circuits).

VIII. CONCLUSIONS

In this paper, we analyze existing designs of R?PIM acceler-
ators and identify three opportunities to greatly enhance their
energy efficiency: analog data locality, time-domain interfac-
ing, and input access reduction. These three opportunities in-
spire three key features of TIMELY: (1) ALBs, (2) interfacing
with TDCs/DTCs, and (3) an O’IR mapping method. TIMELY
outperforms state-of-the-art in both energy efficiency and
computational density while maintaining a better throughput.
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