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Abstract

In this work, we introduce convolutional neural networks designed to predict and analyze damage patterns on a disk
resulting from molecular dynamic (MD) collision simulations. The simulations under consideration are specifically designed
to produce cracks on the disk and, accordingly, numerical methods which require partial derivative information, such as
finite element analysis, are not applicable. These simulations can, however, be carried out using peridynamics, a nonlocal
extension of classical continuum mechanics based on integral equations which overcome the difficulties in modeling
deformation discontinuities. Although this nonlocal extension provides a highly accurate model for the MD simulations, the
computational complexity and corresponding run times increase greatly as the simulations grow larger. We propose the use
of neural network approximations to complement peridynamic simulations by providing quick estimates which maintain
much of the accuracy of the full simulations while reducing simulation times by a factor of 1500. We propose two distinct
convolutional neural networks: one trained to perform the forward problem of predicting the damage pattern on a disk
provided the location of a colliding object’s impact, and another trained to solve the inverse problem of identifying the
collision location, angle, velocity, and size given the resulting damage pattern.

Keywords Peridynamics - Crack patterns - Molecular dynamic simulation - Machine learning -
Convolutional neural networks
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The finite element method (FEM) is founded on the basis of

partial differential equations; since partial derivatives may
not always be defined on surfaces with cracks, however, the
Nick Winovich FEM model cannot be used to obtain accurate results for
nwinovic@purdue.edu crack pattern analysis.

In order to compensate for these drawbacks, we conducted
a crack pattern study using peridynamics. The peridynamics
theory of solid mechanics was first introduced by S. Silling
[1-4]. This theory is a nonlocal extension of classical conti-
nuum mechanics and provides an alternative to continuum
mechanics for more accurate crack studies. This model is
based on integral equations, which can be applied directly
to cracks with the advantage of not requiring to compute
partial derivatives. Therefore, peridynamics is very suitable
for the study of surface discontinuities such as cracks. Peri-
dynamics can be of particular use in understanding the dam-
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such as prediction of viscoelastic materials [10], piezo-
resistive response of carbon nanotube nanocomposites [11],
phase transformation in zirconium dioxide [12], shock and
vibration [13], and indentation of thin copper film [14].
Although the peridynamics framework has proven to be
a powerful and widely applicable tool, the computational
demand can become burdensome very quickly as the scales
of the simulations are increased. In order to decrease the
computation time required to run these simulations while
maintaining a high level of accuracy, we propose a machine
learning approach which utilizes recent design and hard-
ware advances that have greatly improved the performance
of artificial neural networks (ANNSs). Recently, convolu-
tional neural networks (CNNs) have been shown to provide
an excellent light-weight alternative to traditional fully con-
nected networks, and are particularly well-suited for appli-
cations on highly structured data, which is characteristic
of the systems considered in peridynamics. These networks
have the advantage of being trainable in advance, learning
from a dataset generated by a highly accurate model such as
peridynamics and encoding an approximation of the model
into a concise, neural network representation; this approxi-
mate model can then be used after the training procedure to
produce near instantaneous results. By combining the accu-
racy of the peridynamics model with the computational speed
of modern neural networks, we show that complex MD sim-
ulations can be accurately performed using just a fraction of
the computation time required by traditional approaches.

2 The Peridynamics Model

Peridynamics is the non-local extension of classical contin-
uum mechanics [15]. The model structure of peridynamics
is essentially the same as an MD model, and simulations can
be conducted in LAMMPS [16] using the standard SI units.

The finite element method (FEM) approach is based on
partial differential equations, but these partial derivatives do
not exist on the crack surfaces. However, a peridynamics
model can be used to overcome this difficulty. The peridy-
namics model formulation is based on integral equations. In
the analysis of damage and cracks, the integral equations
of the peridynamics theory can be applied directly, since
it does not require partial derivatives. Accordingly, it over-
comes deficiencies in the modeling of deformation discon-
tinuities. Next, let us look at the governing equations of the
peridynamics model [2—4]. Figure 1 gives an overview of
the composition of the peridynamics model. For each point
x in the reference configuration, we define the family F,
to consist of all points x’ in the body which are within the
horizon § boundary of x. In peridynamics theory, all points
in a given family F, are interconnected by bonds; that is,
each point has connectivity to all points in the horizon §
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Fig. 1 The composition of peridynamics model

of itself as well as nearby neighbors. Thus peridynamics is
a non-local extension of the classical continuum mechan-
ics, with the horizon parameter § determining the extent of
the non-local interactions modeled. Since spatial differenti-
ation is not used in peridynamics, it is useful for analyzing
discontinuous media and discrete particles such as cracks
or damage. Denoting the displacement and position of the
point x at time ¢ by u(x,t) and y(x,t), respectively, the
peridynamic equation of motion is given by:

p(x)ii(x, 1) = / oG, ) —ux,0),x' —x) dVy + bx,1), t>0

(e))
where p(x) is the density in the reference configuration, F
is the family of x in the horizon §, b indicates the external
force per unit volume, and u represent the displacement
of the point x at time 7. w is the pairwise bond force
density that includes all of the information related to x and
x’. Next, the time-independent relative position vector and
time-dependent displacement vector of two bonded points
x and x’ are defined by ¢ = x’ - x and n = u(x’,1) -
u(x, t), respectively. ¢ + n represents the current relative
position vector between the particles. The pairwise bond
force density w has the following properties:

a)(—n, _;‘) = —w(fb 4)7 ({ +7l) Xw(’?’f) =0 V’%;
(2)

where w(—n, —¢) = —w(n, ¢) represents the conservation
of linear momentum, and (£ +7) xw(n, ¢) = O indicates the
conservation of angular momentum. This implies that the
force vector between x and x’ is parallel to their current rela-
tive position vector. In this study, the crack pattern generated
by impact of an indenter on a disk is used as input data of a
machine learning algorithm. More specifically, a prototype
microelastic brittle (PMB) model [4] was used for the con-
stitutive model to obtain a more precise and complex crack
pattern. The governing equations are given as:

y=1¢+nl (3)
S=|§+n|—|§|=y—|§| @
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The PMB model have been developed from the model of
isotropic and microelastic materials, and the bond strength
relies on the bond stretch s. The best way to apply failure
to the constitutive model is to allow the bonds to break
when they exceed a predefined limit. If the bond is broken,
the tensile strength cannot be restored. The PMB model is
defined as follows:

F(y@),¢) = g(s@, &), ¢) )

g(s) =cs Vs 6)
1, if s, o) <sp forall 0<t <t

u(t,¢) = {0, otherwise @

where F is composed of the products of the g and p
functions. g is the linear scalar—valued function which is
composed of the spring constant ¢ and bond stretch s. u is a
history-dependent scalar-valued function and has a value of
1 and O depending on the following condition: if the bond
stretch is less than the critical bond stretch sg, it has a value
of 1, otherwise it has a value of 0. The spring constant ¢ and
the critical bond stretch sy mentioned above are described
in detail below.

. 18k @)
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B ncsé&s ©)
"= 0

o — [10Go _ [5Go (10)
0=V 7ess ~ V 9%ks

Here, k is the bulk modulus of the material and Gy is the
shear modulus. As seen from the equations above, the spring
constant and the critical bond stretch are composed of the
bulk modulus of the material £ and the chosen horizon
boundary §. However, in the case of brittle materials such as
glass, the assumption that the critical bond stretch sg is con-
stant is an oversimplification. These materials can be better
modeled by defining sp in terms of the minimum stretch
Smin between all bonds connected to a given point xq via:

sin (1) = min 220D =1Ly
3 [Z]

where sgp and « are material-dependent constants with «
generally set to about 1/4 [4].

50 = 500 — Smin (1),

3 Preparation of MD Data Using
the Peridynamics Model

In this study, crack pattern data was generated using the
peridynamics model implemented in LAMMPS [16], an
MD simulation tool. This work does not directly involve the
implementation details of the MD simulations, but instead
focuses on the application of deep learning techniques for

modeling the data generated by the peridynamics code.
In particular, we consider a spherical indenter which is
designed to impact a thin cylindrical disk in the direction
perpendicular to the face of the disk. For both the forward
and inverse problems, the impact location of the indenter has
varied across the face of the disk. For the forward problem,
the radius and velocity of the indenter were fixed at 0.002 m
and 100 m/s, respectively. For the inverse problem, the
indenter varied between two radius sizes, 0.007 m and
0.008 m, and two velocities, 100 m/s and 100.1 m/s.
In addition, the impact angle of the indenter has been
simulated at both 0° and 45°. The cylindrical disk impacted
by the indenter has been assigned a radius of 0.037 m,
thickness of 0.0025 m, and consists of 103,110 particles.
Each particle i has volume fraction V; = 1.25 x 1071953,
and the density of the disk material is p=2200kg/m>. The
“peri/pmb” peridynamic pair style was selected for the
simulations conducted using LAMMPS. The pair constants
for the simulations have been specified as follows: ¢ =
1.6863 x 10?2, horizon & equal to 0.0015001, soo = 0.0005,
and ¢ = 0.25. c is the spring constant for peridynamic
bonds, the horizon § is a cutoff distance for non-local
interactions, and the constants so9 and « correspond to
material-dependent parameters for the critical bond stretch.
The LAMMPS MD simulation tool, (PDLAMMPS) [17,
18] is used to obtain the crack pattern data generated
by the indenter using peridynamics simulations, with the
hitting location, velocity, radius, and impact angle of the
indenter varied as described above. SI units are used and
the boundary conditions are “shrink-wrapped” to ensure
all atoms! are retained in the computation. The particle
volume used has been set to a simple cubic lattice with
lattice constant 0.001 m. A cylinder disk (target) with radius
0.037 m and thickness 0.0025 m is initialized. The initial
velocity of all particles is set to zero, and the hitting location,
velocity, impact angle, and radius of the indenter are then
specified. For the inverse problem, the indenter hit locations
are varied throughout the whole of the target disk; in the
forward problem, however, only the inner third of the disk
has been targeted in order to avoid inaccuracies in the
peridynamics simulation caused by the disk’s boundary.
Once the parameters have been specified, the simulation
is carried out for 2000 time steps, and the resulting crack
pattern image along with the indenter parameters is saved
for use in the neural network training procedure.

A collection of LAMMPS simulation results using the
setup described above are illustrated in Fig. 2. The dump
file after running the MD simulation is changed to the
EnSight data format with the pizza.py toolkit [19] and

n this paper, the term “atom” is used following the LAMMPS
terminology and is intended to refer to the concept of a “node” or
“particle” used in the peridynamics literature.
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Fig.2 The initial appearance of
the disk (left) and the data
results after hitting the indenter
onto the disk (right)

Paraview is used for data visualization as shown in Fig. 2
[20]. The figure to the left shows the initial model of the
target disk, and the figure to the right shows the same disk
at the end of the simulation. The high level of symmetry
in the peridynamics solutions is a consequence of using
a perfect lattice and perfectly spherical indenter. The use
of asymmetric crack patterns could provide better data for
real world applications, but in this work, we have focused
primarily on the symmetric case in order to simplify the
peridynamics modeling setup.

4 Method and Results

In this study, data obtained from peridynamics simulations is
used to predict solutions for forward and inverse problems
using a machine learning algorithm as illustrated in the dia-
gram presented in Fig. 3. For the forward problem, the crack
patterns of the target disk are predicted based on the known
hitting location of the indenter. Conversely, for the inverse

Fig.3 Diagram of forward
problem and inverse problem
using machine learning
algorithm

Indenter
(Velocity,
Radius, Angle,
Hitting location)

@ Springer

problem, crack patterns are used to predict the velocity,
radius, hitting angle, and hitting location of the indenter.

4.1 Dataset Creation for the Forward Problem

The dataset for the forward problem has been created
using the LAMMPS peridynamics package. Simulations
corresponding to 25,250 indenter hit locations were carried
out to construct the final dataset. To avoid the introduction
of potentially unrealistic artifacts in the dataset due to
inaccuracies of the peridynamics model near the boundary,
the selected hitting locations have been restricted to the
inner 1/3 of the target disk.

In order to successfully train the network for the forward
problem, it was necessary to design a loss function which
converted the raw LAMMPS damage data into a format
which is compatible with the deep learning framework
and array/tensor-based format of the TensorFlow network
implementation. This conversion was performed most
naturally by bucketizing the atoms into a uniform grid

Forward problem

Data set of
crack pattern

ML

Inverse problem
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of resolution 64 x 64. The average damage of the atoms
contained in each bucket/bin of the grid was calculated and
used to create the target outputs for the network. It was also
necessary to account for atoms which had been substantially
dislocated by a direct impact with the indenter and had left
some bins at the disk’s interior empty. These interior bins
were assigned a full damage value of 1.0 to indicate that the
atom which had originally occupied the space was displaced
by the indenter. This was achieved by storing a copy of
the LAMMPS data before the indenter strikes to serve as a
template which indicates where the atom damages should
be calculated.

4.1.1 Network Structure for the Forward Problem

To accomplish the task of predicting damage patterns
from known hitting location coordinates, we propose the
use of a deep neural network which consists of several
fully connected network layers followed by a sequence of
transpose convolutional layers. In this framework, the input
coordinates are first processed by the initial dense layers
to construct features which are reshaped into a collection
of coarse 8 x 8 resolution features. These coarse features
are then passed to the transpose convolutional layers to be
upsampled into a single, higher resolution 64 x 64 damage
pattern prediction. The precise network structure used is
shown in Fig. 4. This network was implemented using the
TensorFlow software library and written in Python.

Of equal importance to the network structure is the
choice of a suitable loss function. In order to successfully
train the network for the forward problem, it was necessary
to design a loss function which converted the raw LAMMPS
damage data into a format which is compatible with the

Fig.4 Network structure for the
forward problem. Features have
been labeled by colors
corresponding to the type of
network layer used to produce
them
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deep learning framework and array/tensor-based format of
the TensorFlow network implementation. This conversion
was performed most naturally by bucketizing the atoms into
a uniform grid of resolution 64 x 64. The average damage
of the atoms contained in each bucket/bin of the grid was
calculated and used to create the target outputs for the
network. It was also necessary to account for atoms which
had been substantially dislocated by a direct impact with
the indenter and had left some bins at the disk’s interior
empty. These interior bins were assigned a full damage
value of 1.0 to indicate that the atom which had originally
occupied the space was displaced by the indenter. This was
achieved by storing a copy of the LAMMPS data before the
indenter strikes to serve as a template which indicates where
the atom damages should be calculated. This loss function
was defined using the neural network prediction y*, true
discretized damage pattern y obtained from the LAMMPS
simulation, and template 7" described in Section 4.1. The
mean square error (MSE) was then calculated on the interior
of the disk using the template file as an indicator of where
the interior error should be calculated:

N
1
Lossy".y) = 23 2 D Lrlioj1-|y*li 1= yli 1

i=1 j=1

Here, N denotes the selected output resolution, and 17
denotes the indicator for the Boolean template file T (i.e.,
17[i, j1 = 1 when the (i, /)" bin was originally occupied
by an atom, and 17[i, j] = O otherwise).

All network layers used ReLU activation functions
except for the final layer; as the damage pattern values are
scaled to be within the range between 0 and 1, the final

3 x 3 Conv
without ReLU

64 x 64
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Table 1 Average computation times, MSE, and L' errors for the
forward problem model

Dataset Avg. computation time Avg. MSE Avg. L' error
Training 0.003973 s 0.010214 0.054590
Testing 0.003970 s 0.010298 0.054779

network layer was equipped with a sigmoidal activation
function:

sigmoid(x) = ;
I + exp(—x)

The model was trained using the standard ADAM opti-
mization algorithm and backpropagation as implemented
in TensorFlow. The learning rate for the ADAM optimizer
was initialized to 0.0001 with a geometric decay rate of
0.9 applied every 3 epochs. The model was trained for 100
epochs using 20,200 training data points, with the remaining
5050 data points reserved for testing/validation.

4.1.2 Forward Problem Results and Discussion

After training, the neural network’s damage predictions are
seen to closely approximate the true damage patterns from
the LAMMPS simulations. The offline training procedure
required just under 7 h to complete using 4 CPUs; once
completed, network predictions for damage patterns can
be computed in less than 0.0025 s with average MSE
and L' errors in the range of 0.01 and 0.05, respectively
(see Table 1). Of note is the fact that a single LAMMPS
simulation for the specified problem setup required an
average of 6 s to complete on the same machine; the trained
network is thus seen to provide approximations to the true
simulation results while reducing the computation time by a
factor of over 1500.

As depicted in Fig. 5, we see that the overall pattern of the
damage on the disk is predicted quite well; however, many

Fig.5 Example of a true

damage pattern computed using
LAMMPS (left) along with the
corresponding neural network HHTH

of the finer details have been deemphasized or smoothed out
by the network. Figure 6 presents the mean squared error of
the networks predictions for training (blue) and validation
(orange) examples throughout the training process for the
forward problem. The network predictions also tend to be
more symmetric than the simulated patterns, and tend to
produce more linear cracking branches in contrast to the
more jagged cracks from the simulations. The reason why
the predictions are overly symmetric is most likely due
to the relatively low forward stability of the LAMMPS
peridynamics simulations. That is to say that the damage
patterns are observed to change significantly even when
the hit location of the indenter is changed by a very
small amount. For example, the patterns shown in Fig. 7
correspond to hit locations which are very close to one
another near the center of the disk along with a cluster of hit
locations further from the center.

Each of these clusters has a maximum distance of less
than 0.00031 mm on a disk of radius 0.037 mm (i.e.,
less than 0.85% of the radius), yet the simulated damage
patterns are seen to be quite disparate. It is suspected that
the smoother, more symmetric neural network predictions
illustrated in Fig. 5 may be reflective of the average damage
incurred when the indenter’s hit location is varied over a
small neighborhood of the precise location provided to the
network as input.

4.2 Datasets of the Inverse Problem

The inverse problem follows a supervised machine learning
setup which uses labeled input and output data for training.
The input data for the inverse problem consists of damage
pattern arrays obtained from LAMMPS simulations, which
we will denote by X={X], &>, .., Xy} with N € N.
Each damage pattern, X; is classified by a label w; €
{w1, w2, ..., wp} which corresponds to the indenter mode
(i.e., parameter setup) used to create that damage pattern.
The complete labeled data set then consists of the collection
of all training pairs (X;, w;).
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100K 200K
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Fig. 6 Plot of the mean squared error of the network’s predictions for training (blue) and validation (orange) examples throughout the training

process for the forward problem

In this work, 60% of the data set examples have been used
for training, 25% of the data is used for validation, and 15%
is used for testing the model. There are a few supervised
learning algorithms which are used such as decision trees,
Naive Bayes, and artificial neural networks (ANNs) [21]. In
this paper, convolutional neural networks (CNNs) are used
as the supervised learning algorithm. The labeled training
and validation sets are used to train the neural network

Fig. 7 Demonstration of low
forward stability of true damage
patterns for LAMMPS
simulations. A cluster of
neighboring hit locations near
the center of the disk (top row)
as well as a cluster further from
the center (bottom row) both
produce a widely varied
collection of simulated damage
patterns (coordinates of each hit
location are shown below the
figures)

Top-Left:
Top-Center:
Top-Right:

(0.001471, 0.002675)
(0.001603, 0.002598)
(0.001732, 0.002514)

which is designed to approximate the function F: &; — w;,
which maps the input damage patterns to the indenter mode
which has been used to produce them. The validation set is
used to identify and eliminate overfitting in the model and
is also used to tune model hyperparameters.

In order to evaluate the prediction model, a separate set
of data, referred to as the test set, is used to assess the
accuracy of the model. Since the data from the test set

Bottom-Left:
Bottom-Center:
Bottom-Right:

(-0.010236, 0.002842)
(-0.010193, 0.002989)
(-0.010275, 0.002694)
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Table 2 Setup for 8 modes of input image data

Mode 4variables
Radius of indenter (r) = 0.007, 0.008 m
Velocity of indenter (v) = 100, 100.1 m/s
Angle of indenter (a) = 0°, 45°
Hitting location of disk (x, y)

Model r=0.007 m, v=100 m/s, 0°

Mode?2 r=0.007 m, v=100.1 m/s, 0°

Mode3 r=0.008 m, v=100 m/s, 0°

Mode4 r=0.008 m, v=100.1 m/s, 0°

Mode5 r=0.007 m, v=100 m/s, 45°

Mode6 r=0.007 m, v=100.1 m/s, 45°

Mode7 r=0.008 m, v=100 m/s, 45°

Mode8 r=0.008 m, v=100.1 m/s, 45°

is never used during training, the accuracy of the model
predictions on this set provides a measure of how well the
model generalizes beyond the data that it has already seen.
Thus, the prediction model predicts the corresponding labels
of each component of the data set, and the predicted labels
are compared with the desired labels of the test pairs. The
success rate of prediction on the test set is used as the
primary evaluation measure, and it shows the accuracy of
the model achieved by the learning procedure.

In this section, we introduce a neural network model
designed to approach the inverse problem associated with
the peridynamics crack simulations. In general, solving an
inverse problem entails recovering the initial conditions
of a simulation from the final result. More specifically,
the inverse problem considered in this section consists of
recovering the specific mode of indenter parameters which
have been used to produced a specified crack pattern. To
this end, a CNN model is introduced which is designed to
predict the velocity, radius, and impact angle corresponding
to a given input crack pattern.

Fig.8 The structure of data in

4.2.1 Preparation of Data

The MATLAB toolbox Matconvnet [22] has been applied to
the inverse problem using damage pattern arrays of resolu-
tion 128 x 128 as input data. The output data, corresponding
to the classification of indenter parameters, can be classi-
fied into 8 modes; these modes correspond to the values
of the radius, velocity, and impact angle of the indenter as
shown in Table 2. The hitting location on the disk has also
been varied to create a data set with 5040 training examples,
2160 validation examples, and 1200 test examples.

4.2.2 Reference Annotation

The training data set and the test data set are made into a .mat
file that can be applied to Matconvnet and its structure is shown
in Fig. 8. The structure of the data in the .mat file is largely
divided into “Images” and “Meta.” There are “Labels,” “Set,”
and “Data” classes in the “Images’” class. “Labels” displays
labels on images of input data sets. Labels were displayed
randomly from 1 to 8 since data has 8 modes. In the set class,
training data, test data, and validation data are indicated
by 1, 2, and 3, respectively. In the “Data” class, the data
obtained from the LAMMPS is converted to a numpy array
and expresses it as a 4-D single matrix. Finally, there are
“Set” and “Classes” in the “Meta” class. The “Set” contains
the words “train,” “test,” and ““val” which are related to the
“Images” class and indicate that the 1 2 3 in the set of
images class is training data, test data, and validation data
respectively. The “Classes” in the “Meta” specifies a class
from 1 to 8 due to this inverse problem has a mode of 8.

4.2.3 Convolutional Neural Network for Inverse Problem

Deep learning is a subset of Al and machine learning
capabilities of achieving state-of-the-art results on problems
such as object detection, text generation, and image
recognition. Using existing human knowledge in the form
of annotated data, various cognitive and inferential tasks

the .mat file Labels (1283421 - 342671)
— Images Set (1111111111 3333)
Data (Numpy array)
Set (‘train’, ‘test’, ‘val’)
——  Meta

@ Springer
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can be performed [23-25]. Convolutional neural networks
are widely used to solve computer vision problems such
as classification of images and object detection. These
convolutional neural networks consist of several layers
which can be tuned through the connection weights between
input and output layers. In this work for damage analysis
using machine learning, a similar structure of AlexNet
are chosen [26]. The CNN processes the input damage
pattern in two steps: a feature extraction step carried out
by the convolutional layers, followed by a classification
step performed by the fully connected layers. First, feature
extraction uses a 2D damage array of size Nyopw X Neo
for input data and produces a vector of size 8 x 8 x 100.
Second, the feature vector is converted to a classification
vector of size 1 x N., where N, is the number of classifi-
cation categories. This work accounts for eight categories
corresponding to each of the eight distinct indenter modes.

4.2.4 Feature Extraction and Classification

The purpose of image extraction and classification is to
create a 1 x f, feature vector in relation to the input data,
which is related to the 8 modes used for classification.
The feature vector is generated from the input training
data by applying successive filters and the filters are (1)
max pooling layer, (2) ReLU layer, and (3) SoftMax layer;
each of the three types of network layers are described
below. (1) Max pooling layer [27] is a sample-based
discretization process. The objective of max pooling layers
is to downsample the input images in order to reduce the
computational load and the memory usage. If the input
image x is a square image of size No; X Nyoy, and a = 2,
then the output image y of the pooling operation is of size
[Neoi/al X [Nyow/al. In our research, the downsampling rate
is set to a = 2, the 64 x64 pixels array becomes 32x32
pixels and 16 x16 pixels image becomes 8 x 8 pixels.

x3

8¢l

(e)]
N

w
N

128 |
Convolution

64 |
Maxpooling

(2) The rectified linear unit (ReLU) layer [28] applies an
activation function which is defined as the positive part of
its argument: where x is the input data to a neuron. A ReLU
performs a threshold operation to each element of the input
where any value less than zero is set to zero. The choice
of the ReLU activation facilitates faster training due to the
simplicity of its function and derivative evaluations.

(3) SoftMax layer [29] is often used in the final layer of a
neural network—based classifier. It takes a vector of arbitrary
real—valued scores (in z) and reduces it to a vector of values
between zero and one that sums to one.

ALY — LI IL=11 4 pIL] (12)
To compute z, SoftMax activation function is needed.
t = expz!H (13)

t and z!H is (8,1) dimensional vector which is related to the
8 modes of output.

L]
eXp 2
gL — P

8
Dzl

output a is going to be the vector t but normalized to sum to 1.

ReLU (x) = x* = max(0, x) (15)

(14

4.2.5 Training and Testing Using CNNs and Prediction
Accuracy

The model for the inverse problem has been trained using
the MATLAB toolbox Matconvnet.

The prediction model has been implemented as a
convolution neural network (CNN) with architecture as
shown in Fig. 9. The proposed convolutional network is
composed of two convolutional layers and a fully connected
layer. Each convolutional layer is followed by a max pooling
layer and rectified linear unit layer (ReLU). After the two
convolution layers, a fully connected layer with SoftMax

x200

x100
x100 x100

g?? ]
[0 0] [00] —‘g
32 | 16 | 8 | 8 |1

Convolution Maxpooling RelU SoftMax

Za
(o)}

> >

Feature extraction

Feature classification

Fig.9 Architecture of convolution neural networks (CNNs) for inverse problem and rectification (ReLU) and downsampling layers (max pooling)
represented in Section 4.2.4. This figure shows the data size, kernel size and the numbers of the output feature and produced by each filter layers
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activation is used in the final layer of convolution neural
network—based classifier. In the first convolutional layer, the
“weights” are the filters being learned and initialized with
random numbers from a Gaussian distribution. The filters
are 2 x 2 spatial resolution with 1 filter depth and the
number of kernels is 200. The next layer is a max pooling
layer which takes 2 x 2 sliding window with a stride of 2.
The spatial resolution will be decreased due to the stride
2 in max pooling layer. The ReLU activation function is
then applied to introduce non-linearities into the modeling
framework. The last layer is a fully connected layer which

Table 3 CNNs predictions results compared to the test image data

Test image number : Label (Mode) CNNs prediction results (Mode)

Test image 1 : 5 (Mode) 5 (Mode)
Test image 2 : 6 (Mode) 6 (Mode)
Test image 3 : 7 (Mode) 7 (Mode)
Test image 4 : 2 (Mode) 2 (Mode)
Test image 5 : 8 (Mode) 8 (Mode)
Test image 6 : 7 (Mode) 7 (Mode)
Test image 7 : 2 (Mode) 1 (Mode)
Test image 8 : 3 (Mode) 3 (Mode)
Test image 9 : 8 (Mode) 8 (Mode)
Test image 10 : 6 (Mode) 6 (Mode)

@ Springer

training epoch

has dense connections with the activation function outputs
from the previous convolution layers. The final layer is
designed to produce 8 output values corresponding to the
model’s predicted likelihood for each of the 8 indenter
modes. Using the CNNs mentioned above with the 7200
training data and the 1200 test data, the learning rate is
0.001, the batch size is 20, and the epoch is 25 for the
training. In this convolutional neural network, MatConvNet
minimizes the objective which represents the loss function
and y-axis of energy represents to measure the magnitude
of loss. During the training, several statistics are measured
after every batch. In the objective and the error plots
(Fig. 10), the training error is depicted by the blue line
and the validation error is represented by an orange dotted
line. The error graph should show similarity to the objective
graph and our network achieved 0.044 validation error.
Lastly, the results are shown in Table 3. The left side
shows the number of the 10 test images and the marked
label among 1200 test images, and the right side shows the
prediction based on the training results. As we can see in
Table 3, labeled test images and CNNs prediction results are
quite match the results each other. To evaluate the accuracy
of training data obtained from CNNs, the success rate is
defined as

number of correct test ima es
f 8¢ 100%

- (16)
total number of test images
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The prediction results of the inverse problem using the
training data showed a success rate of 95.6%.

5 Conclusion

We have used the peridynamic-based MD simulation to
change the hit locations of the disk, impacting the disk
and forming a distinct crack pattern. Based on the crack
pattern data obtained from MD simulation, both the forward
problem and inverse problem were approximated by
convolutional neural networks. The results for the forward
problem were shown to provide accurately predicted
damage patterns both quantitatively and qualitatively.
Although the patterns predicted by the network tend to be
more symmetric and smooth in comparison with the MD
simulation results, it has been seen that this is likely a
reflection of low forward stability in the fine details of
the crack patterns for the forward problem. Although the
predictions omit some small-scale features in the crack
patterns, the overall structure of the cracks is shown to be
predicted accurately and in a fraction of the time required by
direct MD simulations (with network predictions computed
over 1500 times faster).

For the inverse problem, we used the data of the crack
pattern obtained by changing the radius, velocity, angle
of the indenter, and the hitting position of the disk. In
order to predict the mode, we labeled the data and predict
the data by CNNs and accurately predict the most cases
from MODEI to MODES. By implementing CNNs on the
inverse problem, we have shown the ability to identify
the MODE through the process of learning via CNNs that
extracts related functions from the input images by way
of the conv olution layer, max pooling layer, and ReLU
layer in the feature extraction. Using these functions, data
could be divided into MODE1 to MODES through the fully
connected layer. The reliability of the classification can be
ascertained from the class probability vector generated by
the SoftMax layer existing in the feature classification.

With regard to the forward problem, future work will
be directed toward identifying the causes of the noisy
simulation data and apparent low forward stability observed
in the dataset. Experiments simulating differing material
properties, e.g., using other pair-styles in LAMMPS,
will also be of interest to assess the overall generality
of the proposed neural network training procedure. In
addition, we are very interested in extending our work
to simulations of higher complexity (e.g., to a simulation
which requires hours to conduct) to test the limits of
the representational/modeling potential of the convolutional
networks used in this work.

For the inverse problem, we will have to do more
complex crack pattern studies by applying more variables
to the MD simulation data by Peridigm [30]. For instance,
in addition to impacting multiple indenters on a disk, it
is necessary to study the shape of the crack pattern by
varying the thickness or material of the impacted object
or the interaction between the cracks generated by the
multiple indenters. Also, since the accuracy of the CNNs
classification greatly depends on the quality and resolution
of the labeled train data for training the networks, it will
improve the accuracy of CNNs classification by improving
the size change or resolution of the data.

6 Data and Code

The visualization tool can be downloaded from https:/
www.paraview.org. The LAMMPS and Tensorflow code for
the forward problem are available on the GitHub repository
https://github.com/nw2190/LAMMPS. The LAMMPS and
MatConvNet code for the inverse problem are also
available for download at https://github.com/moonseopkim/
inverseproblem.

Funding The authors received financial support from the National
Science foundation (DMS-1144843, DMS-1555072, DMS-1736364,
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