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Abstract—Inspired by the great success of neural networks,
graph convolutional neural networks (GCNs) are proposed to
analyze graph data. GCNs mainly include two phases with
distinct execution patterns. The Aggregation phase, behaves as
graph processing, showing a dynamic and irregular execution
pattern. The Combination phase, acts more like the neural
networks, presenting a static and regular execution pattern.
The hybrid execution patterns of GCNs require a design
that alleviates irregularity and exploits regularity. Moreover,
to achieve higher performance and energy efficiency, the
design needs to leverage the high intra-vertex parallelism in
Aggregation phase, the highly reusable inter-vertex data in
Combination phase, and the opportunity to fuse phase-by-phase
execution introduced by the new features of GCNs. However,
existing architectures fail to address these demands.

In this work, we first characterize the hybrid execution
patterns of GCNs on Intel Xeon CPU. Guided by the char-
acterization, we design a GCN accelerator, HyGCN, using a
hybrid architecture to efficiently perform GCNs. Specifically,
first, we build a new programming model to exploit the
fine-grained parallelism for our hardware design. Second,
we propose a hardware design with two efficient processing
engines to alleviate the irregularity of Aggregation phase
and leverage the regularity of Combination phase. Besides,
these engines can exploit various parallelism and reuse highly
reusable data efficiently. Third, we optimize the overall system
via inter-engine pipeline for inter-phase fusion and priority-
based off-chip memory access coordination to improve off-
chip bandwidth utilization. Compared to the state-of-the-art
software framework running on Intel Xeon CPU and NVIDIA
V100 GPU, our work achieves on average 1509 x speedup with
2500 energy reduction and average 6.5x speedup with 10x
energy reduction, respectively.

Keywords-Hardware Accelerator; Graph Convolution Neural
Network; Graph Processing; Hybrid Execution Pattern

I. INTRODUCTION

Inspired by the powerful learning capability of neural
networks, graph convolutional neural networks (GCNs) are
proposed as an effective category of models to represent and
process graph data [1-4]. GCNs convert the graph data into
a low dimensional space while keeping both the structure
and property information to the maximum extent, and then
construct a neural network for the consequent training and
inference. Recently, GCNs attract substantial efforts from
both the industrial and academic communities [5-11] to
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solve problems including node classification [12], link pre-
diction [9, 13], graph clustering [10], and recommendation
[14]. As a result, GCNs gradually become a new workload
family member in data-centers, such as in Google [15],
Facebook [7], and Alibaba [1, 8].

The convolutional layers occupy the major execution time
of GCNs through two primary execution phases: Aggrega-
tion and Combination [1, 16, 17]. The Aggregation phase
maintains most graph processing behaviors. It heavily relies
on the graph structure that is inherently random and sparse.
Processing of each vertex requires aggregating features from
all its source neighbours. Unfortunately, the amount and
location of these source neighbors vary significantly among
vertices. As a result, the computational graph [18] and
memory access pattern in the Aggregation phase of each
vertex are dynamic and irregular. The Combination phase
acts more like the neural networks. It transforms the feature
vector of each vertex to a new one using a multi layer
perceptron (MLP), which is usually expressed by a matrix-
vector multiplication (MVM). Due to the identical connec-
tion pattern of each neuron within a neural network layer,
the computational graph [18] and memory access pattern in
the Combination phase of each vertex are static and regular.
Besides, there are additional characteristics in these two
phases that distinguish GCNs from conventional workloads.
First, the length of vertex property is short and fixed in
conventional graph analytics. However, in GCNs, the feature
vector of each vertex is quite long and variable across layers,
which introduces high-degree intra-vertex parallelism in
Aggregation phase. Second, the parameters in conventional
MLP-based neural networks are never shared, while they
can be fully shared among vertices in GCNs, which induces
abundant highly reusable inter-vertex data in Combination
phase. Third, the two phases are executed alternatively.
An inherent dataflow exists between phases, providing an
opportunity to fuse the phase-by-phase execution.

To achieve high-performance and energy-efficient accel-
eration of GCNs, aforementioned characteristics have im-
posed new requirements on architecture design. First, not
only can the GCN architecture alleviate the irregularity in
Aggregation phase, but it can also exploit the regularity in
Combination phase. Second, it needs to exploit the high-
degree intra-vertex parallelism and highly reusable inter-
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vertex data. Third, it is able to efficiently fuse the execution
of these two phases.

Unfortunately, existing architectures fail to implement
GCN-specific characteristics. For CPUs, although they can
employ complex caching and prefetching techniques to off-
set the processor-memory disparity by exploiting the regular
access pattern [19], they fail to address the abundant dy-
namic and irregular data accesses in the Aggregation phase
since the irregularity harms the predictability of memory
accesses [20]. Besides, it is difficult to efficiently implement
the reuse of the highly reusable parameter data between
computing units in CPUs as like TPU [21] and Eyeriss [22].
Thus, the energy-hungry data accesses to cache introduce
high energy consumption [22]. For GPUs, although they are
well optimized for neural networks, they lack the ability
to alleviate irregularity in Aggregation phase, which sig-
nificantly hinders the performance improvement [23, 24].
Furthermore, although they leverage the regularity in Com-
bination phase, the data copy and synchronization between
threads for the parameter reuse are expensive. For graph
analytics and neural network accelerators, they are only
optimized to alleviate irregularity or exploit regularity, rather
than both simultaneously. At last, all of them are short of
the ability to efficiently fuse the execution of these two
phases. In conclusion, existing architectures are not the ideal
platforms to execute GCNs.

In this work, we first characterize the hybrid execution
patterns of GCN workloads on Intel Xeon CPU. Next,
guided by the characterization, we propose a GCN accel-
erator, HyGCN, using a hybrid architecture to efficiently
perform GCNs. Specially, we first propose a programming
model to achieve the hardware transparency for program-
mers and exploit fine-grained parallelism. It abstracts GCNs
as edge-centric aggregation for the Aggregation phase and
MVMs for the Combination phase. Second, we design
HyGCN with two efficient processing engines, Aggregation
Engine and Combination Engine, to accelerate the Aggre-
gation and Combination phases, respectively. In Aggrega-
tion Engine, interval-shard graph partitioning and window
sliding-shrinking methods are introduced to alleviate irreg-
ularity by increasing data reuse and decreasing unnecessary
accesses for sparsity, respectively. Additionally, we imple-
ment a vertex-disperse processing method to exploit the edge
parallelism and intra-vertex parallelism. In Combination
Engine, to leverage the regularity, we build multi-granular
systolic arrays to perform MVMs in parallel and reuse the
shared parameters. Besides, they can be flexibly used either
independently for lower latency or in combination for lower
energy. Third, to improve the overall execution, on the basis
of individual optimizations of these two phases, we build
a fine-grained inter-engine pipeline to fuse the phase-by-
phase execution and propose a priority-based memory access
coordination for the off-chip data accesses between the two
engines. To summarize, we list our contributions as follows:

e We study an emerging domain, GCNs, from a computer
architecture perspective and show that hybrid execution
patterns exist in GCNs. Specially, the Aggregation phase
in GCNs presents a dynamic and irregular execution
pattern, while Combination phase is static and regular.

e We propose a GCN accelerator, HyGCN, using a hybrid
architecture to efficiently perform GCNs. First, we build
a programming model to enable our hardware design
to exploit various parallelisms inherent in this domain.
Next, we propose a hardware design to tackle irregularity
and leverage regularity with Aggregation Engine and
Combination Engine, respectively.

e We propose a flexible inter-engine pipeline and a priority-
based memory access coordination to efficiently fuse the
execution of Aggregation phase and Combination phase.

e We implement our architecture design in RTL and eval-
uate it using a detailed microarchitectural simulation.
We use four well-known GCN models on six popular
graph datasets. Compared to the state-of-the-art software
framework PyTorch Geometric [17] running on Intel Xeon
CPU and NVIDIA V100 GPU, our work achieves on
average 1509 x speedup with 2500 x energy reduction and
6.5x speedup with 10x energy reduction, respectively.

II. BACKGROUND

GCNs follow a neighborhood aggregation scheme, where
the feature vector of each vertex is computed by recursively
aggregating and transforming the representation vectors of
its neighbor vertices [1, 5, 25]. Fig. 1 illustrates the execution
phases of GCN models. After k iterations of aggregation via
the Aggregate function and transformation via the Combine
function, a vertex is represented by its final feature vector,
which captures the structural information within the vertex’s
k-hop neighborhood. Table I lists the notations used in
GCNs. In this work, we mainly focus on undirected graphs
and the inference stage rather than training.

Table I
GCN NOTATIONS.

Notation Meaning Notation Meaning

G graph G = (V, E) v vertices of G

E edges of G Dy degree of vertex v

€(i.j) edge between vertex ¢ and j | N(v) (S(v)) (sampling subset of) v* neighbor set

A (Aij) (element of) adjacent matrix ay aggregation feature vector of v

ha feature vector of G w combination weight matrices

hy feature vector of vertex v b combination bias vectors

X initialized feature matrix Z embedding matrix

c assignment matrix € learnable parameter

Typically, the k-th iteration of GCNs is formulated as
ak = Aggregate(h,ff_l) tu € {N(v)}U{v}),
hk = Combine(aﬁ).
where h” is the representation feature vector of vertex v at
the k-th iteration. Simply, the Aggregate function aggregates
multiple feature vectors from source neighbors to one single

feature vector, and the Combine function transforms the
feature vector of each vertex to another feature vector using

()]
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Figure 1. Illustration of the GCN model.

an MLP neural network. Note that the MLP parameters,
including weights and biases, are shared between vertices.

In order to decrease the computational complexity, the
Sample function is usually applied before the Aggregate
function to sample a subset from the neighbor vertices of
each vertex [5, 26] as the new neighbors, specifically,

S(v) = Sample® (N (v)). )
Sometimes, the Pool function [10] follows the Combine
function to transform the original graph into a smaller graph.

After several iterations, the features will be used for
final prediction or classification. For the node classification,
vertex feature vectors h¥ at the last iteration are used for
prediction. For the graph classification, a Readout function
further aggregates the h¥ at the last iteration to obtain the
entire graph’s representation vector, i.e.

hg = Readout(hﬁ | ve G). 3)
Next, we provide several typical GCN models as examples
to explain the above operations in detail.

GCN is one of the most successful convolutional networks
for graph learning [2, 12], which bridges the gap between
spectral-based convolutions and spatial-based convolutions.
Its inference model ian be described as

ay = (Z \/ﬁhgkl) | Yu € {N(v)} U {v}), @

hE = ReLUW*a% + b").
GraphSage further adopts uniform neighbor sampling to
alleviate receptive field expansion that effectively trades off
accuracy and execution time [5]. It is formulated as
ak = Mean({hikil)} u {hikil),Vu € S(v)})7
hE = ReLU(W"ak + b*).
GINConv is a simple neural architecture, and its discrimi-
native power is equal to the power of the Weisfeiler-Lehman
graph isomorphism test [25]. Vertex features learned by
GINConv can be directly used for tasks like node classi-
fication and link prediction. We can perform this model as
ab=(+e) D+ 3 wEY,

wEN (v)

hE = MLP*(ak, w*, v%).
For graph classification tasks, the following Readout func-
tion is further used to produce the representation of the
entire graph, given the representations of individual vertices.
It concatenates across all iterations of GINConv to acquire

®

6

the final graph representation as
ha :Concat((z hy) | k=1,..,K). )
veG
DiffPool provides a general tool to realize hierarchical
graph-level transformation for a broad set of input graphs
[10]. Tt can be inserted after the Combine function of any
GCNs to transform the original graph to a smaller one (like
the pooling layer in convolutional neural networks (CNNs)).
In fact, Diffpool uses two extra GCNs to implement the
graph transformation, which follows
C* Y = softmaz (GONpu(A* ™D, Xx*Dy),
2% = GONlppea(A*™D, XE71),
Xk — C(k—l)TZ(k—1)7 AF — C(kfl)TA(kfl)C(kfl).
After the DiffPool transformation, a new feature matrix
X* and adjacent matrix A* are produced, which can be
combined to construct a new and smaller graph. In the new
graph, GCN;lfooz determines the number of vertices, and
GCNE . . determines the length of vertex feature vector.
Summary. As explained above, we introduce several
typical operations in GCNs: Sampling, Aggregation, Combi-
nation, Pooling, and Readout. Except for Combination, all
the operations are graph structure-dependent, which involve
graph processing. Combination usually is a typical MLP
neural network (single layer or multiple layers). Sampling
is used to sample a subset from neighbors, which can be
done during preprocessing [11] or with random selection
during runtime [5]. Aggregation aggregates the features from
its 1-hop neighbors. Pooling acts like the pooling layer
in CNNs to realize graph transformation by reducing the
number of vertices and the length of feature vectors. Readout
can be a simple summation [17] across vertices or further
concatenation across iterations [25]. Therefore, Readout can
be viewed as an extreme Aggregation. This work focuses on
Aggregation and Combination, two major phases in GCNs.

®)

III. MOTIVATION

In this section, we quantitatively characterize and identify
the hybrid execution patterns in processing GCNs. Next, we
explain our motivation behind designing a GCN accelerator.

A. Characterization on CPU

We conduct quantitative characterizations using a state-
of-the-art GCN software framework PyTorch Geometric [17]
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on Intel Xeon CPU. The execution time breakdown of GCN
(GCN) [12], GraphSage (GSC) [5], and GINConv (GIN)
[25] on several datasets [27] is illustrated in Fig. 2. The
profiling results of GCN [12] on the COLLAB dataset [27]
are presented in Table II. The details of system configuration
and datasets are shown in Section V-A.
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Figure 2. Execution time breakdown of the two phases.

Execution Time Breakdown. Both of Aggregation and
Combination phases can occupy a significant amount of
execution time, which implies that both need acceleration.
Fig. 2 illustrates their execution time ratio on different
models and datasets. Their execution times differ due to the
variable length of feature vectors and the execution flow of
GCNs. For example, the long feature length of CR and CS
datasets causes more time on Combination phase for GCN
and GraphSage. Since GINCov executes Aggregation phase
first, it spends more time on Aggregation phase without the
reduction of feature length through Combination phase like
the other two models do.
Hybrid Execution Pattern. The Aggregation phase heavily
relies on the graph structure that is inherently random and
sparse, which results in numerous dynamic computations
and irregular accesses. From Table II, it is observed that
each operation in the Aggregation phase requires much
more data to be accessed from DRAM than Combination
phase, resulting in higher DRAM access energy. Besides,
the extremely high numbers of misses per kilo-instruction
(MPKI) of L2 and L3 caches in the Aggregation phase are
caused by the high randomness of neighbor indices of each
vertex. In addition, the indirect and irregular accesses render
the data prefetching in the Aggregation phase ineffective,
since it is difficult to predict the data addresses without
knowing the indices of neighbors in advance. This causes
abundant ineffectual memory accesses to prefetch data.
The Combination phase executes a MVM for each vertex
with a shared MLP-based neural network, which performs
static and regular computations and accesses. Table II illus-
trates that each operation in the Combination phase requires
only small amount of data to be accessed from DRAM. This
is because the MVMs are very compute-intensive and the
weight matrix of MLP is widely shared between vertices.
Nevertheless, up to 36% of execution time for shared data
copy and synchronization between threads is observed.
According to above analysis, hybrid execution patterns

Table II
QUANTITATIVE CHARACTERIZATION ON CPU.
Aggregatil Combi
DRAM Byte per Ops 11.6 0.06
DRAM Access Energy per Ops 170nJ 0.5nJ
L2 Cache MPKI 11 1.5
L3 Cache MPKI 10 0.9
Ratio of Synchronization Time — 36%
Table III

DIFFERENT EXECUTION PATTERNS OF Aggregation PHASE AND
Combination PHASE.

Aggregation Combination

Access Pattern Indirect & Irregular Direct & Regular

Data Reusability Low High
Computation Pattern Dynamic & Irregular Static & Regular
Computation Intensity Low High

Execution Bound Memory Compute

exist in GCNs, which are summarized in Table III. The
Aggregation phase performs dynamic and irregular execution
pattern, bounded by memory, while the Combination phase
is static and regular, bounded by computation.

Differences from Conventional Workloads. Beside hybrid
execution patterns in GCNs, there are additional characteris-
tics that distinguishes GCNs from conventional workloads.
Specifically, in the Aggregation phase, the length of feature
vectors is variable rather than fixed as in traditional graph
analytics, which is determined by the input dataset and MLP
structure. Moreover, the length of the feature vectors in each
vertex is usually orders of magnitude longer than that of
traditional graph analytics. This introduces high intra-vertex
parallelism. In the Combination phase, the MLP parameters
are fully shared by all vertices while non-reusable in tradi-
tional MLP models if not using the batching technique. This
induces numerous highly reusable inter-vertex data. Besides,
these two phases are executed alternatively to produce the
final result, while conventional workloads iteratively perform
only the graph traversal or the neural network propagation.

B. The Need for a GCN Accelerator

GCNs are showing great potential in various tasks [2, 4—
6, 13, 28]. Many companies, such as Google [15], Face-
book [7], and Alibaba [1] have deployed GCNs in data cen-
ters, which reflects the increasing importance and scope of
upcoming applications. An efficient architecture is timely to
achieve high performance and stimulate GCN development.
Therefore, given the above characterizations, we explain our
motivation of designing a GCN accelerator.
Design Requirements. Given the characteristics of GCNs,
we present the design requirements to perform GCNs with
high performance and energy efficiency. First, Aggregation
phase demands efforts to alleviate the irregularity that de-
grades performance. On the other hand, Combination phase
needs more attention to leverage the regularity to improve
the intensive computations with better parallelism and faster
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synchronization. Second, the high-degree intra-vertex paral-
lelism and the highly reusable inter-vertex data need to be
exploited. Third, to achieve higher performance and energy
efficiency, the execution of Aggregation phase and Combi-
nation phase need to be efficiently fused. Unfortunately,
existing architectures fail to address these requirements,
resulting in the following inefficiencies.

Inefficiencies of General-Purpose Processors. On CPUs,
the irregularity in Aggregation phase makes GCNs ill-suited
to current cache hierarchy design and data prefetching
techniques. Besides, it is hard to efficiently reuse the highly
reusable parameter data between compute units [22].

GPUs are inherently optimized for compute-intensive
workloads with regular execution pattern [29] such as neural
networks, but handling the Aggregation phase with irregular
memory accesses suffers from low efficiency. Besides, the
processing of Combination with strong parameter sharing
needs costly data copy and thread synchronization.

Both CPUs and GPUs lack inter-phase optimization for
GCN execution. To leverage the advantages of hardware-
optimized functions [30], current programming framework
for GCNs usually adopts coarse-grained execution, which
results in phase-by-phase execution. This compromises the
design space with phase interaction, hindering the improve-
ment beyond the individual optimization for each phase.
Inefficiencies of Conventional Accelerators. Specialized
accelerators tailored to graph analytics or neural networks
gain significant speedup and energy savings compared to
general-purpose processors. Whereas, they are inefficient in
processing GCNs due to following reasons: i) they are usu-
ally only designed to either alleviate irregularity or exploit
regularity, while GCNs need both; ii) they fail to leverage the
new kinds of parallelism and data reuse to further improve
performance; iii) single-paradigm design make them hard to
fuse the execution of the two phases.

Opportunities for Customization. Designing a special-
ized accelerator for a specific domain is an efficient and
prevalent solution to address the inefficiencies of existing
architectures, since it can tailor the memory hierarchy and
computation unit to the specific workload. For GCNs, we
can build an accelerator with a hybrid architecture using
different optimizations for the two phases. For the Ag-
gregation phase, it is possible to obtain the knowledge
of graph data in advance and schedule the accesses to
alleviate the irregularity. Moreover, the computation for each
vertex can also be scheduled to exploit edge parallelism
and intra-vertex parallelism. For the Combination phase, we
draw inspirations from current neural network accelerators
to efficiently perform MVMs in parallel with parameter
sharing. Beyond the individual optimizations of the two
phases, the serial inter-phase dataflow can be pipelined in
finer grain. Moreover, all off-chip memory accesses can be
controlled to improve the overall memory access efficiency.
Putting all these together, there are huge opportunities to

design an efficient GCN accelerator with high performance.

IV. ARCHITECTURE DESIGN

In this section, we design HyGCN to support the efficient
execution of GCNs. We first introduce the programming
model and then present details of the architecture design.

A. Edge- and MVM-Centric PM

The goal of building a programming model (PM) is to
exploit available parallelisms and achieve hardware trans-
parency for programmers [1]. For Aggregation, there are
gather- and scatter-based processing methods. Since the
scatter-based method usually produces large amount of
atomic operations and requires a synchronization after the
processing of all vertices, the degree of parallelism will be
degraded [31]. On the contrary, the gather-based method
can control the program behavior easily and preserve the
execution parallelism. Therefore, we select the gather-based
processing in our design. Nevertheless, this processing mode
leads to intensive memory access and vertex computation.
To address this problem, we employ an edge-centric PM
to exploit the edge-level parallelism. Each vertex possesses
many incoming edges (neighbors), which can be aggregated
in an edge-by-edge pipeline. In this way, workload for
each vertex can be divided into subworkloads and assigned
to each computation unit for processing in parallel. For
Combination, the situation is relatively easier. Since the
computation of each vertex acts like the MLP, we directly
focus on the MVM operations.

Our edge- and MVM-centric PM for GCNs is shown in
Algorithm 1. At each vertex v € V, the sampled neighbor
indices are read first, which is a subset of all neighbors.
Each index corresponds to an edge connecting v and a
neighbor vertex u, i.e. e(u, v). By traversing all sampled
edges connected v, all the feature vectors of corresponding
neighbors can be aggregated onto the feature vector of v via
an Aggregate function. Then, a Combine function can start
performing the Combination phase that is comprised of a
series of MVMs.

Note that in Algorithm 1 we do not express the Pool
and Readout operations explicitly since they are not always
needed. In fact, the Pool operation can be represented by
two GCNs and additional matrix operations. The GCNs
can be performed entirely by the two engines, the matrix
transposes can be executed by the flexible Aggregation
engine, and the matrix multiplications can be executed by
the Combination engine. The Readout operation can be
expressed by an additional single vertex that connects all
vertices in the graph, which can be accomplished by the
Aggregation engine.

B. Architecture Overview

Based on the proposed PM, Fig. 3 depicts the architecture
of HyGCN. We construct the system using a hybrid archi-
tecture, which includes two engines (Aggregation Engine
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Algorithm 1: Edge- and MVM-Centric PM

1 initial SampleNum;
2 initial SamplelndexArray;
3 for each node v € V do
4 agg_res + init();
< Edge-centric Parallelism
sample_idxs < SampleIndexArray[v.nid);
for each sample_idx in sample_idxs do
e(u,v) + EdgeArray[sample_idzx];
agg_res < Aggregate(agg_res, u.feature);
end

-

d  MVM-centric Parallelism
v.feature < Combine(agg_res, weights, biases);

10
11 end

Combination Engine
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Figure 3.  Architecture overview of HyGCN.

and Combination Engine) and one memory access handler.
A communication interface (Coordinator) is introduced to
bridge these two engines. Thus, the interference between
them is mitigated and their execution pipeline is established.
The Aggregation Engine aims to realize the efficient
execution of irregular accesses and computations. To exploit
the edge-level parallelism, a task scheduler (eSched) is de-
signed to assign the edge processing workloads onto SIMD
cores. To support the Sampling operation, we introduce a
Sampler into the Aggregation Engine. The Sampler selects
edges from the edge list of each vertex using a uniform or
predefined distribution in terms of index interval. The former
indices for edge sampling are based on dynamic generation
while the latter ones are predefined and can be read from off-
chip memory like in [11, 26]. To reduce the latency of data
access, we employ embedded DRAM (eDRAM) to cache
various data to improve data reuse. An Edge Buffer is used
to cache edges to exploit spatial locality in the edge array.
An Input Buffer is used to cache the vertex features in X*~1
and an Aggregation Buffer is used to cache the intermediate
aggregation results, to exploit temporal locality. To hide the
DRAM access latency, both the Edge Buffer and Input Buffer
adopt the double buffer technique. Specifically, we design a
Sparsity Eliminator to avoid redundant feature loads of the
vertices that share no edges with the aggregating vertex.
The Combination Engine is designed to maximize the
efficiency of regular accesses and computations. In order to
improve the processing parallelism and data reuse, we adopt

20

the well-known systolic array design [21] and modify it to
be compatible with GCNs. A Weight Buffer is used to cache
the weight matrix to exploit their temporal locality, and an
Output Buffer is used to coalesce the write accesses of the
final features. Similarly, they also leverage the double buffer
technique to hide off-chip access latency. The Combination
engine takes the aggregation result of each vertex v from
the Aggregation engine and the weight matrix from the
Weight Buffer as inputs to execute the MVM operation. The
vSched is responsible for the workload assignment. After
the MVM operations, an activation operation is performed
by Activate Unit to produce the new feature vector of vertex
v. Different from normal systolic array, our systolic array is
multi-granular that can be used as multiple smaller arrays or
a whole large array under different optimization scenarios.

To improve the bandwidth utilization, a prefetcher is
designed to explicitly prefetch graph data and parameter
data. For example, the prefetching of the feature vectors is as
follows. The prefetcher first prefetches the edges of current
processing vertices. After receiving these edges, Sparsity
Eliminator obtains the indices of neighbors from these edges
and sends them to the prefetcher. The prefetcher uses them
to prefetch the feature vectors immediately.

C. Aggregation Engine

To optimize the computation of Aggregation, we introduce
a vertex-disperse processing mode. To optimize memory
accesses, we employ a static graph partition method to
enhance data reuse and a dynamic sparsity elimination
technique to reduce unnecessary data accesses.

1) Execution Mode: There are two processing modes for
SIMD cores to process edges in parallel. The first one is
vertex-concentrated, where the workloads of each vertex are
assigned to a single SIMD core. This mode can produce the
aggregated features of vertices in burst mode, i.e. periodi-
cally processing a group of vertices. However, the processing
latency of a single vertex (termed as vertex latency) is long,
and the fast vertices have to wait for the slow vertices
leading to workload imbalance. Furthermore, it also loses the
parallelism that the aggregation of each element can be per-
formed in parallel (i.e., intra-vertex parallelism). Therefore,
we use the second processing mode, which is shown in Fig.
4. Tt assigns the aggregation of elements inside the vertex
feature vector of each vertex to all cores, termed as vertex-
disperse mode. If a vertex cannot occupy all cores, free
cores can be assigned to other vertices. Thus, all cores are
always busy without workload imbalance. Moreover, since
the intra-vertex parallelism has been exploited, the vertex
latency for a single vertex is smaller than processing multiple
vertices together. Furthermore, it also enables the immediate
processing of each vertex in the following Combination
Engine.

2) Graph Partitioning (Static): We borrow the abstraction
of vertex interval and edge shard from [32, 33] to partition
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vertex are assigned to all SIMD cores.

graph data, which is the basis of our data-aware sparsity
elimination in the next subsection. We do not need explicit
preprocessing to generate the intervals and shards since we
directly take the data format of compressed sparse column
(CSC) as input. As exampled in Fig. 5(a), the 16 vertices are
organized as several intervals (i.e. from I; to I, each with
four vertices), and the edges are organized as 4x4 shards
(i.e. from S(1,1) to S(4,1), each with 16 edges at most).
The intervals and shards are disjoint.

The feature vector length of each vertex is usually large,
so exploiting the locality of features is critical. We group the
vertices within the same interval together (e.g. I;) and then
process the aggregation of their source neighbors also inter-
val by interval (i.e. traverse I;), as expressed in Algorithm
2. Based on this flow, the feature accesses of all vertices in
an interval are merged (see Fig. 5(b)). The resulting benefits
are twofold. First, the vertices in I; usually have overlapped
neighbors in I;, therefore, the loaded feature data of I;
can be reused when performing feature aggregation. Second,
when traversing all [;, the intermediate aggregated results
of I; are remained in buffer which can also be reused when
performing feature update. In practice, the shard height is
determined by the capacity of Input Buffer, while the shard
width is determined by the capacity of Aggregation Buffer.
The Edge Buffer size affects both height and width since it
accommodates all edges of each shard.

3) Data-Aware Sparsity Elimination (Dynamic): With the
data reuse optimization, we further attempt to reduce the
redundant accesses since the graph connections are sparsely
distributed. To eliminate the sparsity, we propose a window-
based sliding and shrinking approach. The key idea is that
we first slide the window (with the same size of an edge
shard) downward until an edge appears in the top row, and
then we shrink the window size by moving the bottom row
upward until an edge is met.

Window Sliding. Fig. 5(c) illustrates the window sliding
process. For each vertex interval, the top shard window
gradually slides downward. It will not stop until an edge
appears on its top row. Then a new window with the same
size is created, whose top row follows the bottom row of
its previous window. The stop criterion is the same for
every window. In this way, windows continuously arise, slide
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downward, and stop. All the positions where windows stop
are recorded as effectual shards.

Window Shrinking. Although the window sliding can cap-
ture most effectual edges, sparsity still exists on the bottom
side (within the purple dashed boxes). This is because the
above sliding direction is downward. To reduce this part of
sparsity, we propose window shrinking here. Specifically, the
bottom row of each recorded window moves upward until
it meets an edge, and then the window shrinks. Fig. 5(d)
illustrates the sliding and shrinking process of one window in
detail and gives the final recorded effectual shards. Different
from previous partition, the sizes of final shards are usually
different due to the window shrinking.

Algorithm 2: Interval-wise Aggregation

1 for each interval I; in X* do

2 agg_res <+ init();

3 for each interval I; in X*=1 go

4 | agg_res < Aggregation(I;,agg_res);
5 end

6 I; < Combination(agg_res);

7 end

Algorithm 3: Interval-wise Aggregation with Spar-
sity Elimination

1 for each interval I; in X* do
row_pos < 1;
agg_res < init();
do

(I3, row_pos) <«

GetOneEffectInterval( X®=D A T, row_pos);

6 agg_res < Aggregation(1;,agg_res);
7 while (I; != @);
3 I; + Combination(agg_res);
9

L e

Algorithm 4: GetOneEffectInterval

< Window Sliding
1 while (edge(row_pos,v) == & for Vv € I;) do
2 ‘ row_pos < row_pos + 1;
3 end
4 WiNgstart < TOW_POS;
5
6

WiNend — Trow_pos + Windowneight — 1;
TOW_pPOS — WiNend + 1;
< Window Shrinking
7 while (edge(winena,v) == @ for Yv € I;) do
8 | WiNend <+ Winena — 13
9 end
X (k=1), 7 . i .

10 Ieffectual — X [wznstm“t . wznend]’
11 return lecffectual;

Given the effectual shards after sparsity elimination, the
execution flow of Aggregation follows Algorithm 3. The
only difference from Algorithm 2 is that the each neighbor
interval I; is dynamically determined by window sliding
and shrinking (see Algorithm 4). The starting row of each
neighbor interval varies due to sliding and the interval length
in the row dimension also varies due to shrinking. In this
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way, only the feature data of remaining neighbor vertices
when performing the aggregation operation for each interval
I; are loaded, which eliminates plenty of redundant accesses.
Compared to traditional graph analytics, the feature data
reuse from graph partitioning and redundant access reduction
from sparsity elimination in GCNs are considerable efforts.
This is because the feature of each vertex in GCNs is a
vector with thousands of elements, while the feature data in
graph analytics are small, usually with one element for each
vertex. Besides, our optimization achieves more when the
Sampling operation is used, which increases sparsity since
only sampled neighbors are required during Aggregation.

D. Combination Engine

The Combination operation at each vertex acts like a
neural network, the execution of which is regular but
compute-intensive. Our design is based on the well-known
systolic array. To adapt it for the two processing modes of
Aggregation Engine (see Fig. 4), we integrate multiple arrays
rather than a single one, as shown in Fig. 6(a). A group
of systolic arrays is assembled to form a systolic module.
We allow a multigranular use of these systolic modules,
including the independent working mode and cooperative
working mode.

Aggregation Buffer

(a) (b)

Figure 6. Combination Engine design: (a) multiple systolic modules; (b)
different dataflow patterns.

1) Independent Working Mode: In this mode, the systolic
modules work independently from each other. Each of them
processes the MVM operations of a small group of vertices,
as illustrated in Fig. 7(a). The weight parameters for each
module in this case are directly accessed from the Weight
Buffer and just reused within module, as depicted in Fig.
6(b). The advantage of this mode is the lower vertex latency
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because we can process the Combination operations of this
small group of vertices immediately once their aggregated
features are ready, without waiting for more vertices. This
mode matches well with the vertex-disperse processing
mode of Aggregation Engine in Fig. 4, where the aggregated
features are produced quickly but sequentially.

Aggregating Feature Aggregating Feature

V; -+ Systolic V; > ]
V, » | Module 1 | Vo [T T T[]~
i v; [T .
> H Systolic |
2 ﬂ Array !
Aggregating Feature
Vector
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L)
5 -+
(a) (b)
Figure 7. Different use of the systolic arrays: (a) independent working

mode; (b) cooperative working mode.

2) Cooperative Working Mode: Besides working sep-
arately, these systolic modules can be further assembled
together to simultaneously process more vertices, as shown
in Fig. 7(b). Different from the immediate processing of
vertices, this mode requires to assemble the aggregated
features of a large group of vertices together before per-
forming their Combination operations. The advantage is that,
the weight parameters can flow from the Weight Buffer to
the downstream systolic modules and then gradually to the
upstream ones (see Fig. 6(b)), which are greatly reused by all
systolic arrays. This helps reduce the energy consumption.

No matter which working mode is selected in the Com-
bination Engine, the weights can be reused inherently in
Weight Buffer when processing different vertices. However,
in traditional neural networks, especially MLPs, the weights
cannot be shared without batching technique. The multi-
granular systolic array design is also specific to our archi-
tecture in order to accommodate different application needs.

E. Inter-Engine Optimization

To efficiently fuse the phase-by-phase execution, we or-
chestrate the execution pipeline and DRAM access of Aggre-
gation engine and Combination engine by the Coordinator.
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1) Latency- or Energy-Aware Pipeline: To reuse the
aggregation results produced by the Aggregation engine,
we add an Aggregation Buffer between the two engines.
This buffer can be written by the Aggregation Engine and
can be read by the Combination Engine. Before the final
aggregated results are generated, the Aggregation Buffer
stores the partial results that will be read by the Aggregation
Engine for feature accumulation. In order to increase the
parallelism of these two engines, we implement a ping-pong
buffering mechanism where the Aggregation Buffer is split
into two chunks. In this way, the executions of aggregation
and combination are decoupled, which enables an inter-
engine pipeline.

To accommodate the needs of different applications, we

provide two pipeline modes as follows.
Latency-Aware Pipeline. In this pipeline mode, the Com-
bination Engine works in the systolic module independent
mode. The aggregated features are produced vertex by vertex
in the Aggregation Engine, and the following combination
will be processed immediately once the aggregated features
of a small group of vertices are ready. Thus, the average
processing latency for each vertex can be lower. The overall
timing is illustrated in Fig. 8(a), where V' denotes the ver-
tices for aggregation, and I represents the neighbor intervals.
Energy-Aware Pipeline. The energy-aware pipeline uses
the systolic module cooperative mode in the Combination
Engine. The vertex-by-vertex processing changes to a burst
mode, where a large group of vertices will be processed
together every time. Although the vertex latency is longer,
the energy consumption can be reduced due to the weight
propagation in the merged systolic arrays without redundant
accesses. Fig. 8(b) presents its timing sequence.
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Figure 8. Timing illustration of different pipeline modes: (a) latency-aware
pipeline; (b) energy-aware pipeline.

2) Coordination of Off-chip Memory Access: It is hard
to determine the memory bandwidth ratio between the two
engines since the practical workloads usually vary between
Aggregation and Combination. Moreover, the separation of
memory systems will increase the configuration overheads
and cause bandwidth waste. This is the reason why we use
only one off-chip memory.
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Figure 9.

Request Issue

e

‘ Weights ‘ ‘ Output Features ‘

Coordination of off-chip memory access.

Both the two engines access this memory at runtime,
which causes a frequent switching of access locations,
leading to inefficiencies. In total, there are four buffers (Edge
Buffer & Input Buffer in Aggregation Engine, and Weight
Buffer & Output Buffer in Combination Engine) that will be
used for accessing the off-chip memory. Due to the interval
processing and pipeline mechanism, these accesses usually
come concurrently as shown in Fig. 9(a). If we sequentially
handle these access requests, the discontinuous addresses
greatly degrade the utilization of row buffer within DRAM.

To solve this problem, we predefine an access priority
(edges > input features > weights > output features)
to assemble the discontinuous requests shown in Fig. 9(b).
The motivation in using this priority is based on the access
sequence when processing a vertex. The access requests are
executed batch-by-batch. Therefore, low-priority accesses in
the current batch are handled before high-priority accesses
coming at the next batch, rather than always high-priority
accesses first. With the improved continuity, the utilization
of row buffer can be significantly enhanced. Next, we remap
these reordered addresses to index the channel and bank
using low bits. In this way, the memory channel- and bank-
level parallelism can be further exploited.

V. EVALUATION RESULTS

We first describe our experimental setup in Section V-A.
Next, to demonstrate the advantages of our design, we
compare HyGCN to the state-of-the-art software framework
in Section V-B. Next, we give the detailed analysis of our
optimization techniques in Section V-C. Finally, we present
a scalability exploration of our architecture in Section V-D.

A. Experimental Setup

Methodology. The performance and energy of HyGCN are
measured by using the following tools.

Architecture Simulator. We design and implement a cycle-
accurate and execution-driven simulator to measure exe-
cution time in number of cycles. This simulator models
the microarchitectural behaviors of each module, which is
integrated with Ramulator [34] to simulate the behaviors of
memory accesses to High Bandwidth Memory (HBM).

CAD Tools. For the measurements of area, power, and
critical path delay (in cycles) for each module, we implement
and synthesize each module in Verilog. We use the Synopsys
Design Compiler with the TSMC 12 nm standard VT library
for the synthesis, and estimate the power using Synopsys
PrimeTime PX. The slowest module has a critical path delay
of 0.9 ns including the setup and hold time, putting the
HyGCN comfortably at 1 GHz clock frequency.

Memory Measurements. The area, power, and access
latency of the on-chip scratchpad memory are estimated
using Cacti 6.5 [35]. Since Cacti only supports down to 32
nm technologies, we apply four different scaling factors to
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Table IV
DATASET INFORMATION [27, 39].

Dataset #Vertex  Feature Length #Edge Storage
IMDB-BIN (IB) 2,647 136 28,624 1.5MB
Cora (CR) 2,708 1,433 10,556 15MB
Citeseer (CS) 3,327 3,703 9,104 47MB
COLLAB (CL) 12,087 492 1,446,010 28MB
Pubmed (PB) 19,717 500 88,648 38MB
Reddit (RD) 232,965 602 114,615,892  972MB
Table V

CONFIGURATION OF CONVOLUTION LAYERS. HERE |a§\ DENOTES THE
LENGTH OF FEATURE VECTOR aﬁ.

#Sampling Neighbors  Aggregation & Combination (MLP)

GCN (GCN)
GraphSage (GSC)
GINConv (GIN)

Add & |ak|-128
Max & |ak|-128
Add & |ak|-128-128
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GCNyo01 GCNembedding

DiffPool (DFP)

Min & |ak|-128 Min & |ak|-128

convert them to 12 nm technology as shown in [36, 37]. The
energy of HBM 1.0 is estimated with 7 pJ/bit as in [38].
Benchmark Graph Datasets and GCN Models. Table
IV and Table V provide the information of the benchmark
graph datasets and GCN models used in our evaluation. The
datasets in Table IV are standard ones in the GCN domain.
They are actually not small although the number of vertices
is smaller than that used in conventional graph analytics,
due to the long length of feature vectors. On CPU, the
datasets with more than one graphs are tested by assembling
randomly selected 128 graphs into a large graph before
processing for GCN, GSC, and GIN or batching the same
number of graphs for DFP. On HyGCN, the testing methods
remain the same with CPU except that the selected graphs
for DFP are processed one by one rather than in batch.
Baseline Platform. To compare the performance and en-
ergy consumption of HyGCN with state-of-the-art works,
we evaluate PyTorch Geometric (PyG) [17] on a Linux
workstation equipped with two Intel Xeon E5-2680 v3 CPUs
and 378 GB DDR4 memory and on an NVIDIA V100 GPU,
denoted as PyG-CPU and PyG-GPU, respectively. Table VI
lists the system configurations for above implementations.

Table VI
SYSTEM CONFIGURATIONS.
PyG-CPU PyG-GPU HyGCN
Compute 25GHz @ 1.25Ghz @ 1 GHz @ 32 SIMDI6 cores and
Unit 24 cores 5120 cores 8 systolic modules (each with 4x128 arrays)
On-chip 128 KB (Input), 2 MB (Edge), 2 MB (Weight),
Memory 60MB 34MB 4 MB (Output) and 16 MB (Aggregation)
Off-chip 136.5GB/s ~900GB/s 256GB/s
Memory DDR4 HBM~2.0 HBM~1.0

Note: GPU’s on-chip memory includes the register files, and L1 and L2 caches.

B. Overall Results

We first apply our algorithm optimization on PyTorch
Geometric. And then, we compare our work with PyG-CPU
and PyG-GPU in terms of speedup, energy consumption,
utilization of DRAM bandwidth, and DRAM access. Finally,
the area and power of our design is presented.
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o Algorithm Optimization on PyG Framework. To show
the effect of our algorithm optimization on CPU and
GPU platforms, we implement our algorithm optimization
proposed in Section IV-C on PyG framework. The graph
is partitioned into multiple shards and they are executed
shard by shard (see Fig. 5(a)). The number of partitions
is determined by the capacity of L2 Cache and the length of
feature vectors. Note that, PyG leverages the Pytorch Scatter
library [40] for the acceleration of Aggregation on both
CPU and GPU. It helps eliminate the sparsity and exploit
the edge parallelism by executing each vertex’s Aggregation
in a hardware thread. Furthermore, the hardware-optimized
libraries such as Intel MKL [41] and NVIDIA cuBLAS
library [30] are used to accelerate Combination on CPU and
GPU, respectively.

Fig. 10(a) shows the speedup of PyG-CPU with our

algorithm optimization (PyG-CPU-OP) over the naive one
without optimization. Thanks to the algorithm improvement,
PyG-CPU-OP achieves 2.3 x speedup on average. The per-
formance benefits come from the reduction of frequent re-
placement of feature vectors since the reusable features after
graph partition and the intermediate results of Aggregation
are buffered in L2 Cache. Fig. 10(b) presents the same
testing on GPU. The performance of PyG-GPU-OP degrades
since only a small amount of vertices are processed for
each graph partition, which cannot fully utilize thousands
of hardware threads on GPU and miss the core advantage
of GPU to hide the access latency through many parallel
threads. As a result, it is inefficient for GPU to exploit our
optimization to improve performance. The optimized PyG-
CPU and the naive PyG-GPU are used as baselines in the
following evaluation.
e Speedup. Fig. 10(c) depicts that HyGCN achieves aver-
age 1509x and 6.5x speedup compared with PyG-CPU
and PyG-GPU, respectively. The performance improvement
comes from the individual optimizations in Aggregation
Engine & Combination Engine, and the inter-engine pipeline
& coordination. First, the parallel processing in SIMD cores
and systolic arrays speed up the computations. Second,
the graph partition and sparsity elimination increase the
feature reuse and decrease redundant accesses in Aggre-
gation Engine, which saves DRAM bandwidth. Third, the
weight parameters are reused efficiently in Combination En-
gine, which also helps better utilize the bandwidth. Finally,
the inter-engine pipeline further optimizes the parallelism
and the off-chip memory access coordination improves the
DRAM access efficiency.

For PyG-CPU and PyG-GPU, abundant DRAM accesses
and synchronization overheads lead to performance degra-
dation. Specifically, the high randomness of neighbor in-
dices results in poor locality of neighbors’ feature vectors,
causing many unnecessary DRAM accesses. From the per-
spective of computation, PyG-CPU and PyG-GPU leverage
the hardware-optimized functions (such as scatter [40] and
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Figure 10. Comparistion to PyG-CPU and PyG-GPU: Speedup of our algorithm optimization on (a) CPU and (b) GPU; (c) Speedup over the optimized
PyG-CPU. OoM means the evaluation fails in running on GPU due to out of memory.

matrix multiplication [30]) to perform GCNs in a coarse-
grained fashion. Although it is the best way to utilize
CPU and GPU, it loses the inter-phase parallelism and
produces redundant operations. The delay for data copy
and synchronization between threads further degrades the
performance.

In term of models, GIN achieves better performance
than others. The underlying reason is that GIN executes
Aggregation first on PyG-CPU and PyG-GPU, which in-
troduces abundant computations and accesses since the
feature vector size is an order of magnitude larger than
that after Combination. By contrast, other models execute
Combination first, which greatly reduces the feature length
before performing Aggregation. This difference causes the
inefficient execution of GIN on CPU and GPU, while our
HyGCN can maintain the performance to a great extent
due to the parallel processing and data reuse. For DFP, it
includes three matrix multiplications (see Equation (8)) that
can be efficiently executed on CPU and GPU. Therefore, our
speedup when performing DFP is relatively lower. The GSC
model consumes significant time on the Sampling operation
in a preprocessing step, which is not included in the result of
PyG-CPU and PyG-GPU. For example on the RD dataset,
the preprocessing can cost up to 15 seconds while the
execution time is only 0.65 second on PyG-CPU and 0.0025
second on PyG-GPU. In our work, the Sampling operation
is executed together with Aggregation and considered in the
reported result. Thus, the performance of our work is lower
than PyG-GPU in Fig. 10(c) but the overall execution time
ratio is 0.136 second v.s. 15.7 seconds.

o Energy Consumption. As Fig. 11 shows, HyGCN con-
sumes only 0.04% and 10% energy on average compared
to PyG-CPU and PyG-GPU, respectively. The energy con-
sumption of all platforms includes the off-chip memory.
Note that, although the results of PyG-CPU and PyG-GPU
do not include the overhead of the Sampling operation, they
are still costly. For example, the Sampling energy of GSC
is 2715J on the RD dataset. In contrast, our work consumes
only 1.79J compared to the total 2716J in PyG-GPU.

As aforementioned, GIN causes additional computations
and data accesses when performing Aggregation, which in-
troduces extra energy consumption on PyG-CPU. Although
HyGCN cannot reduce these computations, the optimizations
of data reuse, sparsity elimination, and inter-engine pipeline
can reduce redundant accesses to these additional data.
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Figure 12. Energy breakdown of HyGCN.

Among the architectural components, Combination Engine
consumes most of the energy due to the intensive compu-
tation of MVMs as depicted in Fig. 12, while Aggregation
Engine consumes more energy on high-degree graph datasets
(i.e., CL and RD).

e DRAM Bandwidth Utilization. As seen in Fig. 13,
HyGCN demonstrates 16x and 1.5x improvement on aver-
age on the utilization of DRAM bandwidth compared with
PyG-CPU and PyG-GPU, respectively. The high bandwidth
utilization of HyGCN and PyG-GPU derive from the high-
degree parallelism. By contrast, PyG-CPU cannot suffi-
ciently exploit the bandwidth, since there is only one thread
most of time to reduce the heavy overheads of frequent
thread creation. Our consistent lower bandwidth on the CL
dataset is due to the higher data reuse, which benefits from
denser connections.

o DRAM Access. Although the 16MB on-chip memory
is much smaller than the 60MB L3 cache on CPU and
34MB on GPU, HyGCN accesses only 21% and 33% of
off-chip data compared with PyG-CPU and PyG-GPU on
average, respectively, as given in Fig. 14. This benefits
from our data reuse optimizations, sparsity elimination, and
the immediate processing between two engines. On the
CL dataset for GCN, GSC, and GIN, multiple graphs are
assembled to form a larger one before being processed,
which results in intensive sparsity. HyGCN can efficiently
eliminate the sparsity via window sliding and shrinking, thus
avoiding unnecessary data accesses. Whereas, PyG-CPU and
PyG-GPU produce many unnecessary accesses due to the
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(a) execution time, (b) DRAM access, and (¢)
sparsity reduction.

irregularity in Aggregation phase and
phase-by-phase execution. As aforementioned, the results of

DRAM access, and the comparison of (c) vertex latency and (d) energy
of Combination Engine under different pipeline modes.

without the fusion of
1) Sparsity Elimination Opt

time and (b) bandwidth utiliza-
tion.

The benchmark model is GCN mentioned in Table V.

imization: We evaluate

PyG-CPU and PyG-GPU do not include the data access of
the Sampling operation. For example, the Sampling access
volume of GSC is 56.5GB on the RD dataset. In contrast,
our work only accesses 28GB data, compared with the total
58GB in PyG-GPU.

1) Power and Area: The total power and area of HyGCN
are only 6.7 W and 7.8 mm?, respectively. For the on-chip
buffer, we use eDRAM to reduce both the area and energy
consumption. For the computation precision, we use 32-bit
fixed point that is enough to maintain the accuracy of GCN
inference. Table VII provides area and power breakdown in
terms of buffer, computation, and control. The computation
resources of two engines consume most of power (>64%)
and area (>44%) to perform the edge-centric aggregation
and MVMs-based combination. The Coordinator occupies
~35% of the total area since it has a large Aggregation
Buffer. The control overhead is small (only 1.2% power
and <0.45% area) owing to the simple implementations of
eSched, Sampler, Sparsity Eliminator, vSched, Coordinator,
and Memory Handler.

Table VII
LAYOUT CHARACTERISTICS OF HyGCN
Module Component  Power (%) Area (%)

Buffer 2.37 5.41
Aggregation Engine  Computation 3.85 1.43
Control 0.48 0.18
Buffer 14.4 15.13
Combination Engine  Computation 60.52 42.96
Control 0.31 0.07
. Buffer 17.66 34.64
Coordinator Control 0.41 0.19

C. Optimization Analysis

In this subsection, we analyze the effect of our opti-
mization techniques including sparsity elimination, inter-
engine pipeline, and off-chip memory access coordination.
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HyGCN with and without sparsity elimination. This experi-
ment runs only Aggregation Engine to avoid the interference
of other blocks. Fig. 15(a) shows that HyGCN achieves
1.1~3x speedup with the optimization of sparsity elim-
ination. The performance gain is due to fewer redundant
DRAM accesses as reflected in Fig. 15(b), which benefits
from eliminated sparsity as given in Fig. 15(c).

2) Inter-Engine Pipeline Optimization: First, we mea-
sure the overall performance with and without inter-engine
pipeline optimization (PP v.s. N-PP). With the pipeline
optimization, the execution time of GCN is reduced by 27%-
53%, as shown in Fig. 16(a). On one hand, the Aggregation
Engine and Combination Engine work in parallel with inter-
engine pipeline. On the other hand, the DRAM accesses
occupy most of the execution time (see Fig. 16(b)), therefore
the inter-engine pipeline helps improve the performance by
decreasing DRAM accesses of the intermediate aggregation
results between two engines. It is observed from Fig. 16(b)
that total DRAM accesses are significantly reduced to only
50%-73% with this pipeline optimization.

Second, we compare the vertex latency and energy
of Combination Engine with energy-aware pipeline and
latency-aware pipeline (Epipe v.s. Lpipe). From Fig. 16(c),
the Lpipe reduces the average latency for each vertex by 7%-
29% via the immediate processing without waiting for the
aggregation results of many vertices. By contrast, as shown
in Fig. 16(d), the Epipe saves energy consumption by 35%
via assembling a large group of vertices to process together
for reusing weight parameters aggressively. In practice, the
application requirement determines the pipeline mode.

3) Memory Coordination Optimization: To show the ef-
fect of the memory access coordination, we present the
execution time and bandwidth utilization with and without
coordination in Fig. 17(a) and Fig. 17(b), respectively. With
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the memory access coordination for address continuity, the
DRAM row buffers are better utilized and the channel-/bank-
level parallelism is better exploited, which saves 73% of time
and improves 4x bandwidth on average.

D. Scalability Exploration

The following evaluations are measured in GSC model.
e Sparsity Elimination with Sampling. The Sampling op-
eration increases the sparsity, thus it has the potential to
enlarge the benefits produced by sparsity elimination. In
Fig. 18(a)-(c), horizontal axis sweeps the sampling factor. It
indicates that only m edges of each vertex are
sampled to perform aggregation. As the increasing sampling
factor, the performance is significantly improved on the PB
dataset by reducing the DRAM accesses owing to the higher
sparsity. For other datasets, since many edges have been
removed, the Combination phase gradually dominates the
execution time. Therefore, there is no significant speedup.
Note that the sampling factor cannot be too high, as it might
harm the accuracy of applications.
e Capacity of Aggregation Buffer. The size of the Aggre-
gation Buffer affects the execution time, amount of data
accesses, and even the effect of sparsity elimination. As the
capacity of Aggregation Buffer increases from 2 MB to 32
MB, the exeuction time is decreased as shown in Fig. 18(d).
This can be explained from two aspects: i) more intermediate
aggregated feature data can be cached in on-chip buffer,
leading to larger shard width when partitioning the graph
and thus less execution loops; ii) larger shard means that the
neighbor features can be reused more often, leading to less
DRAM accesses (see Fig. 18(e)). However, larger shard also
enlarges the window size during the sparsity elimination,
which results in higher sparsity that cannot be eliminated
(see Fig. 18(1)).
o Size of Systolic Module. In this experiment, we fix the
number of total systolic arrays but change the size of each
systolic module, and then to measure the cost of Combina-
tion Engine. Different from the systolic module with 4x128
systolic arrays in Table VI, here we treat 1x128 systolic
arrays as a basic systolic module. Based on the initial
32 systolic modules, we gradually decrease the number of
systolic modules under the restriction of fixed number of
total systolic arrays. It is observed that longer latency for
a vertex is consumed as the partition of systolic modules
becomes more coarse-grained as shown Fig. 18(g)(bar). This
is caused by the longer time to assemble a larger group of
vertices to be processed together. Fortunately, the energy
consumption can be reduced as shown Fig. 18(g)(red line)
because the weight parameters are reused by more vertices
within each larger systolic module. We only present the
average energy result of these datasets for simplicity. In our
architecture design, we set the systolic module with size
of 4x128 arrays to achieve a good trade-off between the
latency and energy costs.
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VI. DISCUSSION

In order to leverage our proposed PM, PyG needs to be
significantly modified for its coarse-grain message-passing
mechanism to stream Aggregation and Combination for
each vertex. Note that although these two phases can be
streamed after modification, it also misses the advantage
of hardware-optimized operations, such as matrix multipli-
cation operation [30, 41]. Furthermore, further challenges
exist with 1) inefficient memory subsystem due to workload-
agnosticism [31], 2) difficulty in data reuse like systolic
arrays [21], and 3) expensive on-line preprocessing for
workload reorganization and streaming.

Following concerns make training unsuitable as a starting
work to explore GCN hardware. First, training involves
three passes with data dependency: forward, backward, and
update, whose compute and memory patterns are more
complex than that of inference with only the forward pass.
Second, the gradient propagation in graphs is far more com-
plicated than layer-by-layer propagation in neural networks.
However, training accelerators can leverage our architecture
to design the forward pass, and would need specialized
blocks for other passes and an efficient memory hierarchy
to connect them.

VII. RELATED WORK

Plenty of software frameworks for graph analytics and
neural networks have been presented to release the program-
ming efforts while achieving high performance on modern
general-purpose architectures [42-45]. However, all of them
only work well for the single-pattern workloads. Therefore,
a large number of software frameworks for hybrid-pattern
GCNs are proposed recently [7, 17, 46]. For instance, Py-
Torch Geometric [17] leverages message-passing framework
to enhance its expression ability and the hardware-optimized
operations (e.g. scatter and matrix multiplication) so that
the GCN workloads can be accelerated. Unfortunately, the
distinct execution pattern regarding computation and access
between the Aggregation phase and the Combination phase
produces processing inefficiencies on traditional platforms.
GCNs demand specialized architecture design.

With the emergence of graph analytics and neural net-
works workloads, a lot of hardware architecture designs are
proposed to accelerate these workloads [21, 31]. For exam-
ple, Graphicionado [31] is tailored for graph analtyics; while
TPU [21] focuses on the acceleration of neural networks.
However, GCNs behave not only like the graph processing
(Aggregation) but also like neural networks (Combination),
leading to intrinsic hybrid design requirement. Therefore,
current specialized architectures cannot efficiently perform
GCNs since they just handle one of the two sides.

VIII. CONCLUSION

GCNs are becoming widely adopted for analyzing graph
data and are comprised of Aggregation and Combination

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 30,2020 at 18:48:59 UTC from IEEE Xplore. Restrictions apply.



X [ CR [ RS [ CR [ PE] §

o 1 100 T 100
£ 2 S

= S T =
Sos < 50 = X 50
= s Z

o < 4

g 0 © 0 @ 0
5 1 2 4 8 16 © 1 2 4 8 16 &

(a) (b)

g [ CR [ PB_| g [ CR cS PB] §

@ 100 « 100 T 100
£ g E

= S 2 <

S 50 < 50 x X 50
= >

=1 > =

3 < 4

Q g 0 @ 0
S 2MB 4MB 8MB 16MB 32MB 2MB 4MB 8MB 16MB 32MB &

(e)

[ R S PB | [ R S B ]
160 120
140
100
F120
= 80
=
100 <
1 2 4 8 16 g IS
(c) 5 80 N 60
R PB ]
=a—c—=m] 5« = ! g
£ ot B 40
S 4 '
20
20
0 0
2VB  4MB 2 16 8 4 2 1

8VIB 16MB 32MB
() (8)

Figure 18. Scalability exploration. i) sparsity elimination with different sampling factor: (a) Execution time, (b) DRAM access, and (c) sparsity reduction;
ii) capacity of Aggregation Buffer: (d) execution time, (¢) DRAM access, and (f) sparsity reduction; iii) size of the systolic module: (g) vertex latency and

energy of Combination Engine.

phases. In this work, we identify that the execution patterns
of these two phases are distinct, even almost opposite, which
requires separate design requirements. Besides, the high
intra-vertex parallelism in Aggregation phase, the highly
reusable inter-vertex data in Combination phase, and the
opportunity to fuse phase-by-phase execution introduced by
the new features of GCNs need to be leveraged for better
performance. To this end, we propose a GCN accelerator,
HyGCN, with hybrid architecture. First, we build edge-
and MVM-centric programming model to exploit various
parallelisms and enable hardware transparency. Next, we
propose the hardware design with two efficient engines
to optimize the two phases correspondingly. The latency-
and energy-aware inter-engine pipelines are orchestrated to
improve the overall latency and energy according to system
needs. The off-chip memory accesses between the two
engines are carefully coordinated to improve the efficiency.
Finally, through comprehensive evaluations, HyGCN demon-
strates significant improvements compared to the software
framework running on CPU and GPU. We believe our work
will stimulate more attention on specialized hardware for
increasingly important GCNs.
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