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Abstract—Inspired by the great success of neural networks,
graph convolutional neural networks (GCNs) are proposed to
analyze graph data. GCNs mainly include two phases with
distinct execution patterns. The Aggregation phase, behaves as
graph processing, showing a dynamic and irregular execution
pattern. The Combination phase, acts more like the neural
networks, presenting a static and regular execution pattern.
The hybrid execution patterns of GCNs require a design
that alleviates irregularity and exploits regularity. Moreover,
to achieve higher performance and energy efficiency, the
design needs to leverage the high intra-vertex parallelism in
Aggregation phase, the highly reusable inter-vertex data in
Combination phase, and the opportunity to fuse phase-by-phase
execution introduced by the new features of GCNs. However,
existing architectures fail to address these demands.

In this work, we first characterize the hybrid execution
patterns of GCNs on Intel Xeon CPU. Guided by the char-
acterization, we design a GCN accelerator, HyGCN, using a
hybrid architecture to efficiently perform GCNs. Specifically,
first, we build a new programming model to exploit the
fine-grained parallelism for our hardware design. Second,
we propose a hardware design with two efficient processing
engines to alleviate the irregularity of Aggregation phase
and leverage the regularity of Combination phase. Besides,
these engines can exploit various parallelism and reuse highly
reusable data efficiently. Third, we optimize the overall system
via inter-engine pipeline for inter-phase fusion and priority-
based off-chip memory access coordination to improve off-
chip bandwidth utilization. Compared to the state-of-the-art
software framework running on Intel Xeon CPU and NVIDIA
V100 GPU, our work achieves on average 1509× speedup with
2500× energy reduction and average 6.5× speedup with 10×
energy reduction, respectively.

Keywords-Hardware Accelerator; Graph Convolution Neural
Network; Graph Processing; Hybrid Execution Pattern

I. INTRODUCTION

Inspired by the powerful learning capability of neural

networks, graph convolutional neural networks (GCNs) are

proposed as an effective category of models to represent and

process graph data [1–4]. GCNs convert the graph data into

a low dimensional space while keeping both the structure

and property information to the maximum extent, and then

construct a neural network for the consequent training and

inference. Recently, GCNs attract substantial efforts from

both the industrial and academic communities [5–11] to

∗Corresponding author is Xiaochun Ye (yexiaochun@ict.ac.cn).

solve problems including node classification [12], link pre-

diction [9, 13], graph clustering [10], and recommendation

[14]. As a result, GCNs gradually become a new workload

family member in data-centers, such as in Google [15],

Facebook [7], and Alibaba [1, 8].

The convolutional layers occupy the major execution time

of GCNs through two primary execution phases: Aggrega-
tion and Combination [1, 16, 17]. The Aggregation phase

maintains most graph processing behaviors. It heavily relies

on the graph structure that is inherently random and sparse.

Processing of each vertex requires aggregating features from

all its source neighbours. Unfortunately, the amount and

location of these source neighbors vary significantly among

vertices. As a result, the computational graph [18] and

memory access pattern in the Aggregation phase of each

vertex are dynamic and irregular. The Combination phase

acts more like the neural networks. It transforms the feature

vector of each vertex to a new one using a multi layer

perceptron (MLP), which is usually expressed by a matrix-

vector multiplication (MVM). Due to the identical connec-

tion pattern of each neuron within a neural network layer,

the computational graph [18] and memory access pattern in

the Combination phase of each vertex are static and regular.

Besides, there are additional characteristics in these two

phases that distinguish GCNs from conventional workloads.

First, the length of vertex property is short and fixed in

conventional graph analytics. However, in GCNs, the feature

vector of each vertex is quite long and variable across layers,

which introduces high-degree intra-vertex parallelism in

Aggregation phase. Second, the parameters in conventional

MLP-based neural networks are never shared, while they

can be fully shared among vertices in GCNs, which induces

abundant highly reusable inter-vertex data in Combination
phase. Third, the two phases are executed alternatively.

An inherent dataflow exists between phases, providing an

opportunity to fuse the phase-by-phase execution.

To achieve high-performance and energy-efficient accel-

eration of GCNs, aforementioned characteristics have im-

posed new requirements on architecture design. First, not

only can the GCN architecture alleviate the irregularity in

Aggregation phase, but it can also exploit the regularity in

Combination phase. Second, it needs to exploit the high-

degree intra-vertex parallelism and highly reusable inter-
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vertex data. Third, it is able to efficiently fuse the execution

of these two phases.

Unfortunately, existing architectures fail to implement

GCN-specific characteristics. For CPUs, although they can

employ complex caching and prefetching techniques to off-

set the processor-memory disparity by exploiting the regular

access pattern [19], they fail to address the abundant dy-

namic and irregular data accesses in the Aggregation phase

since the irregularity harms the predictability of memory

accesses [20]. Besides, it is difficult to efficiently implement

the reuse of the highly reusable parameter data between

computing units in CPUs as like TPU [21] and Eyeriss [22].

Thus, the energy-hungry data accesses to cache introduce

high energy consumption [22]. For GPUs, although they are

well optimized for neural networks, they lack the ability

to alleviate irregularity in Aggregation phase, which sig-

nificantly hinders the performance improvement [23, 24].

Furthermore, although they leverage the regularity in Com-
bination phase, the data copy and synchronization between

threads for the parameter reuse are expensive. For graph

analytics and neural network accelerators, they are only

optimized to alleviate irregularity or exploit regularity, rather

than both simultaneously. At last, all of them are short of

the ability to efficiently fuse the execution of these two

phases. In conclusion, existing architectures are not the ideal

platforms to execute GCNs.

In this work, we first characterize the hybrid execution

patterns of GCN workloads on Intel Xeon CPU. Next,

guided by the characterization, we propose a GCN accel-

erator, HyGCN, using a hybrid architecture to efficiently

perform GCNs. Specially, we first propose a programming

model to achieve the hardware transparency for program-

mers and exploit fine-grained parallelism. It abstracts GCNs

as edge-centric aggregation for the Aggregation phase and

MVMs for the Combination phase. Second, we design

HyGCN with two efficient processing engines, Aggregation
Engine and Combination Engine, to accelerate the Aggre-
gation and Combination phases, respectively. In Aggrega-
tion Engine, interval-shard graph partitioning and window

sliding-shrinking methods are introduced to alleviate irreg-

ularity by increasing data reuse and decreasing unnecessary

accesses for sparsity, respectively. Additionally, we imple-

ment a vertex-disperse processing method to exploit the edge

parallelism and intra-vertex parallelism. In Combination
Engine, to leverage the regularity, we build multi-granular

systolic arrays to perform MVMs in parallel and reuse the

shared parameters. Besides, they can be flexibly used either

independently for lower latency or in combination for lower

energy. Third, to improve the overall execution, on the basis

of individual optimizations of these two phases, we build

a fine-grained inter-engine pipeline to fuse the phase-by-

phase execution and propose a priority-based memory access

coordination for the off-chip data accesses between the two

engines. To summarize, we list our contributions as follows:

• We study an emerging domain, GCNs, from a computer

architecture perspective and show that hybrid execution

patterns exist in GCNs. Specially, the Aggregation phase

in GCNs presents a dynamic and irregular execution

pattern, while Combination phase is static and regular.

• We propose a GCN accelerator, HyGCN, using a hybrid

architecture to efficiently perform GCNs. First, we build

a programming model to enable our hardware design

to exploit various parallelisms inherent in this domain.

Next, we propose a hardware design to tackle irregularity

and leverage regularity with Aggregation Engine and

Combination Engine, respectively.

• We propose a flexible inter-engine pipeline and a priority-

based memory access coordination to efficiently fuse the

execution of Aggregation phase and Combination phase.

• We implement our architecture design in RTL and eval-

uate it using a detailed microarchitectural simulation.

We use four well-known GCN models on six popular

graph datasets. Compared to the state-of-the-art software

framework PyTorch Geometric [17] running on Intel Xeon

CPU and NVIDIA V100 GPU, our work achieves on

average 1509× speedup with 2500× energy reduction and

6.5× speedup with 10× energy reduction, respectively.

II. BACKGROUND

GCNs follow a neighborhood aggregation scheme, where

the feature vector of each vertex is computed by recursively

aggregating and transforming the representation vectors of

its neighbor vertices [1, 5, 25]. Fig. 1 illustrates the execution

phases of GCN models. After k iterations of aggregation via

the Aggregate function and transformation via the Combine
function, a vertex is represented by its final feature vector,

which captures the structural information within the vertex’s

k-hop neighborhood. Table I lists the notations used in

GCNs. In this work, we mainly focus on undirected graphs

and the inference stage rather than training.

Table I
GCN NOTATIONS.

Notation Meaning Notation Meaning
G graph G = (V,E) V vertices of G

E edges of G Dv degree of vertex v

e(i,j) edge between vertex i and j N(v) (S(v)) (sampling subset of) v’ neighbor set

A (Aij ) (element of) adjacent matrix av aggregation feature vector of v

hG feature vector of G W combination weight matrices

hv feature vector of vertex v b combination bias vectors

X initialized feature matrix Z embedding matrix

C assignment matrix ε learnable parameter

Typically, the k-th iteration of GCNs is formulated as

ak
v = Aggregate

(
h(k−1)
u : u ∈ {N(v)} ∪ {v}),

hk
v = Combine

(
ak
v

)
.

(1)

where hk
v is the representation feature vector of vertex v at

the k-th iteration. Simply, the Aggregate function aggregates

multiple feature vectors from source neighbors to one single

feature vector, and the Combine function transforms the

feature vector of each vertex to another feature vector using
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Figure 1. Illustration of the GCN model.

an MLP neural network. Note that the MLP parameters,

including weights and biases, are shared between vertices.

In order to decrease the computational complexity, the

Sample function is usually applied before the Aggregate
function to sample a subset from the neighbor vertices of

each vertex [5, 26] as the new neighbors, specifically,

S(v) = Samplek
(
N(v)

)
. (2)

Sometimes, the Pool function [10] follows the Combine
function to transform the original graph into a smaller graph.

After several iterations, the features will be used for

final prediction or classification. For the node classification,

vertex feature vectors hk
v at the last iteration are used for

prediction. For the graph classification, a Readout function

further aggregates the hk
v at the last iteration to obtain the

entire graph’s representation vector, i.e.

hG = Readout
(
hk
v | v ∈ G

)
. (3)

Next, we provide several typical GCN models as examples

to explain the above operations in detail.

GCN is one of the most successful convolutional networks

for graph learning [2, 12], which bridges the gap between

spectral-based convolutions and spatial-based convolutions.

Its inference model can be described as

ak
v =

(∑ 1√
Dv ·Du

h(k−1)
u | ∀u ∈ {N(v)} ∪ {v}),

hk
v = ReLU(W kak

v + bk).

(4)

GraphSage further adopts uniform neighbor sampling to

alleviate receptive field expansion that effectively trades off

accuracy and execution time [5]. It is formulated as

ak
v = Mean

({h(k−1)
v } ∪ {h(k−1)

u , ∀u ∈ S(v)}),
hk
v = ReLU(W kak

v + bk).
(5)

GINConv is a simple neural architecture, and its discrimi-

native power is equal to the power of the Weisfeiler-Lehman

graph isomorphism test [25]. Vertex features learned by

GINConv can be directly used for tasks like node classi-

fication and link prediction. We can perform this model as

ak
v = (1 + εk) · h(k−1)

v +
∑

u∈N(v)

h(k−1)
u ,

hk
v = MLP k(ak

v , W k, bk).

(6)

For graph classification tasks, the following Readout func-

tion is further used to produce the representation of the

entire graph, given the representations of individual vertices.

It concatenates across all iterations of GINConv to acquire

the final graph representation as

hG = Concat
(
(
∑

v∈G
hk
v) | k = 1, ...,K

)
. (7)

DiffPool provides a general tool to realize hierarchical

graph-level transformation for a broad set of input graphs

[10]. It can be inserted after the Combine function of any

GCNs to transform the original graph to a smaller one (like

the pooling layer in convolutional neural networks (CNNs)).

In fact, Diffpool uses two extra GCNs to implement the

graph transformation, which follows

C(k−1) = softmax
(
GCNk

pool(A
(k−1), X(k−1))

)
,

Z(k−1) = GCNk
embed(A

(k−1), X(k−1)),

Xk = C(k−1)T Z(k−1), Ak = C(k−1)T A(k−1)C(k−1).

(8)

After the DiffPool transformation, a new feature matrix

Xk and adjacent matrix Ak are produced, which can be

combined to construct a new and smaller graph. In the new

graph, GCNk
pool determines the number of vertices, and

GCNk
embed determines the length of vertex feature vector.

Summary. As explained above, we introduce several

typical operations in GCNs: Sampling, Aggregation, Combi-
nation, Pooling, and Readout. Except for Combination, all

the operations are graph structure-dependent, which involve

graph processing. Combination usually is a typical MLP

neural network (single layer or multiple layers). Sampling
is used to sample a subset from neighbors, which can be

done during preprocessing [11] or with random selection

during runtime [5]. Aggregation aggregates the features from

its 1-hop neighbors. Pooling acts like the pooling layer

in CNNs to realize graph transformation by reducing the

number of vertices and the length of feature vectors. Readout
can be a simple summation [17] across vertices or further

concatenation across iterations [25]. Therefore, Readout can

be viewed as an extreme Aggregation. This work focuses on

Aggregation and Combination, two major phases in GCNs.

III. MOTIVATION

In this section, we quantitatively characterize and identify

the hybrid execution patterns in processing GCNs. Next, we

explain our motivation behind designing a GCN accelerator.

A. Characterization on CPU

We conduct quantitative characterizations using a state-

of-the-art GCN software framework PyTorch Geometric [17]
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on Intel Xeon CPU. The execution time breakdown of GCN

(GCN) [12], GraphSage (GSC) [5], and GINConv (GIN)

[25] on several datasets [27] is illustrated in Fig. 2. The

profiling results of GCN [12] on the COLLAB dataset [27]

are presented in Table II. The details of system configuration

and datasets are shown in Section V-A.
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Figure 2. Execution time breakdown of the two phases.

Execution Time Breakdown. Both of Aggregation and

Combination phases can occupy a significant amount of

execution time, which implies that both need acceleration.

Fig. 2 illustrates their execution time ratio on different

models and datasets. Their execution times differ due to the

variable length of feature vectors and the execution flow of

GCNs. For example, the long feature length of CR and CS

datasets causes more time on Combination phase for GCN

and GraphSage. Since GINCov executes Aggregation phase

first, it spends more time on Aggregation phase without the

reduction of feature length through Combination phase like

the other two models do.

Hybrid Execution Pattern. The Aggregation phase heavily

relies on the graph structure that is inherently random and

sparse, which results in numerous dynamic computations

and irregular accesses. From Table II, it is observed that

each operation in the Aggregation phase requires much

more data to be accessed from DRAM than Combination
phase, resulting in higher DRAM access energy. Besides,

the extremely high numbers of misses per kilo-instruction

(MPKI) of L2 and L3 caches in the Aggregation phase are

caused by the high randomness of neighbor indices of each

vertex. In addition, the indirect and irregular accesses render

the data prefetching in the Aggregation phase ineffective,

since it is difficult to predict the data addresses without

knowing the indices of neighbors in advance. This causes

abundant ineffectual memory accesses to prefetch data.

The Combination phase executes a MVM for each vertex

with a shared MLP-based neural network, which performs

static and regular computations and accesses. Table II illus-

trates that each operation in the Combination phase requires

only small amount of data to be accessed from DRAM. This

is because the MVMs are very compute-intensive and the

weight matrix of MLP is widely shared between vertices.

Nevertheless, up to 36% of execution time for shared data

copy and synchronization between threads is observed.

According to above analysis, hybrid execution patterns

Table II
QUANTITATIVE CHARACTERIZATION ON CPU.

Aggregation Combination

DRAM Byte per Ops 11.6 0.06

DRAM Access Energy per Ops 170nJ 0.5nJ

L2 Cache MPKI 11 1.5

L3 Cache MPKI 10 0.9

Ratio of Synchronization Time — 36%

Table III
DIFFERENT EXECUTION PATTERNS OF Aggregation PHASE AND

Combination PHASE.

Aggregation Combination

Access Pattern Indirect & Irregular Direct & Regular

Data Reusability Low High

Computation Pattern Dynamic & Irregular Static & Regular

Computation Intensity Low High

Execution Bound Memory Compute

exist in GCNs, which are summarized in Table III. The

Aggregation phase performs dynamic and irregular execution

pattern, bounded by memory, while the Combination phase

is static and regular, bounded by computation.

Differences from Conventional Workloads. Beside hybrid

execution patterns in GCNs, there are additional characteris-

tics that distinguishes GCNs from conventional workloads.

Specifically, in the Aggregation phase, the length of feature

vectors is variable rather than fixed as in traditional graph

analytics, which is determined by the input dataset and MLP

structure. Moreover, the length of the feature vectors in each

vertex is usually orders of magnitude longer than that of

traditional graph analytics. This introduces high intra-vertex

parallelism. In the Combination phase, the MLP parameters

are fully shared by all vertices while non-reusable in tradi-

tional MLP models if not using the batching technique. This

induces numerous highly reusable inter-vertex data. Besides,

these two phases are executed alternatively to produce the

final result, while conventional workloads iteratively perform

only the graph traversal or the neural network propagation.

B. The Need for a GCN Accelerator

GCNs are showing great potential in various tasks [2, 4–

6, 13, 28]. Many companies, such as Google [15], Face-

book [7], and Alibaba [1] have deployed GCNs in data cen-

ters, which reflects the increasing importance and scope of

upcoming applications. An efficient architecture is timely to

achieve high performance and stimulate GCN development.

Therefore, given the above characterizations, we explain our

motivation of designing a GCN accelerator.

Design Requirements. Given the characteristics of GCNs,

we present the design requirements to perform GCNs with

high performance and energy efficiency. First, Aggregation
phase demands efforts to alleviate the irregularity that de-

grades performance. On the other hand, Combination phase

needs more attention to leverage the regularity to improve

the intensive computations with better parallelism and faster
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synchronization. Second, the high-degree intra-vertex paral-

lelism and the highly reusable inter-vertex data need to be

exploited. Third, to achieve higher performance and energy

efficiency, the execution of Aggregation phase and Combi-
nation phase need to be efficiently fused. Unfortunately,

existing architectures fail to address these requirements,

resulting in the following inefficiencies.

Inefficiencies of General-Purpose Processors. On CPUs,

the irregularity in Aggregation phase makes GCNs ill-suited

to current cache hierarchy design and data prefetching

techniques. Besides, it is hard to efficiently reuse the highly

reusable parameter data between compute units [22].

GPUs are inherently optimized for compute-intensive

workloads with regular execution pattern [29] such as neural

networks, but handling the Aggregation phase with irregular

memory accesses suffers from low efficiency. Besides, the

processing of Combination with strong parameter sharing

needs costly data copy and thread synchronization.

Both CPUs and GPUs lack inter-phase optimization for

GCN execution. To leverage the advantages of hardware-

optimized functions [30], current programming framework

for GCNs usually adopts coarse-grained execution, which

results in phase-by-phase execution. This compromises the

design space with phase interaction, hindering the improve-

ment beyond the individual optimization for each phase.

Inefficiencies of Conventional Accelerators. Specialized

accelerators tailored to graph analytics or neural networks

gain significant speedup and energy savings compared to

general-purpose processors. Whereas, they are inefficient in

processing GCNs due to following reasons: i) they are usu-

ally only designed to either alleviate irregularity or exploit

regularity, while GCNs need both; ii) they fail to leverage the

new kinds of parallelism and data reuse to further improve

performance; iii) single-paradigm design make them hard to

fuse the execution of the two phases.

Opportunities for Customization. Designing a special-

ized accelerator for a specific domain is an efficient and

prevalent solution to address the inefficiencies of existing

architectures, since it can tailor the memory hierarchy and

computation unit to the specific workload. For GCNs, we

can build an accelerator with a hybrid architecture using

different optimizations for the two phases. For the Ag-
gregation phase, it is possible to obtain the knowledge

of graph data in advance and schedule the accesses to

alleviate the irregularity. Moreover, the computation for each

vertex can also be scheduled to exploit edge parallelism

and intra-vertex parallelism. For the Combination phase, we

draw inspirations from current neural network accelerators

to efficiently perform MVMs in parallel with parameter

sharing. Beyond the individual optimizations of the two

phases, the serial inter-phase dataflow can be pipelined in

finer grain. Moreover, all off-chip memory accesses can be

controlled to improve the overall memory access efficiency.

Putting all these together, there are huge opportunities to

design an efficient GCN accelerator with high performance.

IV. ARCHITECTURE DESIGN

In this section, we design HyGCN to support the efficient

execution of GCNs. We first introduce the programming

model and then present details of the architecture design.

A. Edge- and MVM-Centric PM
The goal of building a programming model (PM) is to

exploit available parallelisms and achieve hardware trans-

parency for programmers [1]. For Aggregation, there are

gather- and scatter-based processing methods. Since the

scatter-based method usually produces large amount of

atomic operations and requires a synchronization after the

processing of all vertices, the degree of parallelism will be

degraded [31]. On the contrary, the gather-based method

can control the program behavior easily and preserve the

execution parallelism. Therefore, we select the gather-based

processing in our design. Nevertheless, this processing mode

leads to intensive memory access and vertex computation.

To address this problem, we employ an edge-centric PM

to exploit the edge-level parallelism. Each vertex possesses

many incoming edges (neighbors), which can be aggregated

in an edge-by-edge pipeline. In this way, workload for

each vertex can be divided into subworkloads and assigned

to each computation unit for processing in parallel. For

Combination, the situation is relatively easier. Since the

computation of each vertex acts like the MLP, we directly

focus on the MVM operations.
Our edge- and MVM-centric PM for GCNs is shown in

Algorithm 1. At each vertex v ∈ V , the sampled neighbor

indices are read first, which is a subset of all neighbors.

Each index corresponds to an edge connecting v and a

neighbor vertex u, i.e. e(u, v). By traversing all sampled

edges connected v, all the feature vectors of corresponding

neighbors can be aggregated onto the feature vector of v via

an Aggregate function. Then, a Combine function can start

performing the Combination phase that is comprised of a

series of MVMs.
Note that in Algorithm 1 we do not express the Pool

and Readout operations explicitly since they are not always

needed. In fact, the Pool operation can be represented by

two GCNs and additional matrix operations. The GCNs

can be performed entirely by the two engines, the matrix

transposes can be executed by the flexible Aggregation
engine, and the matrix multiplications can be executed by

the Combination engine. The Readout operation can be

expressed by an additional single vertex that connects all

vertices in the graph, which can be accomplished by the

Aggregation engine.

B. Architecture Overview
Based on the proposed PM, Fig. 3 depicts the architecture

of HyGCN. We construct the system using a hybrid archi-

tecture, which includes two engines (Aggregation Engine
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Algorithm 1: Edge- and MVM-Centric PM
1 initial SampleNum;
2 initial SampleIndexArray;
3 for each node v ∈ V do
4 agg res ← init();

� Edge-centric Parallelism
5 sample idxs ← SampleIndexArray[v.nid];
6 for each sample idx in sample idxs do
7 e(u, v) ← EdgeArray[sample idx];
8 agg res ← Aggregate(agg res, u.feature);
9 end

� MVM-centric Parallelism
10 v.feature ← Combine(agg res, weights, biases);
11 end
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Figure 3. Architecture overview of HyGCN.

and Combination Engine) and one memory access handler.

A communication interface (Coordinator) is introduced to

bridge these two engines. Thus, the interference between

them is mitigated and their execution pipeline is established.

The Aggregation Engine aims to realize the efficient

execution of irregular accesses and computations. To exploit

the edge-level parallelism, a task scheduler (eSched) is de-

signed to assign the edge processing workloads onto SIMD

cores. To support the Sampling operation, we introduce a

Sampler into the Aggregation Engine. The Sampler selects

edges from the edge list of each vertex using a uniform or

predefined distribution in terms of index interval. The former

indices for edge sampling are based on dynamic generation

while the latter ones are predefined and can be read from off-

chip memory like in [11, 26]. To reduce the latency of data

access, we employ embedded DRAM (eDRAM) to cache

various data to improve data reuse. An Edge Buffer is used

to cache edges to exploit spatial locality in the edge array.

An Input Buffer is used to cache the vertex features in Xk−1

and an Aggregation Buffer is used to cache the intermediate

aggregation results, to exploit temporal locality. To hide the

DRAM access latency, both the Edge Buffer and Input Buffer
adopt the double buffer technique. Specifically, we design a

Sparsity Eliminator to avoid redundant feature loads of the

vertices that share no edges with the aggregating vertex.

The Combination Engine is designed to maximize the

efficiency of regular accesses and computations. In order to

improve the processing parallelism and data reuse, we adopt

the well-known systolic array design [21] and modify it to

be compatible with GCNs. A Weight Buffer is used to cache

the weight matrix to exploit their temporal locality, and an

Output Buffer is used to coalesce the write accesses of the

final features. Similarly, they also leverage the double buffer

technique to hide off-chip access latency. The Combination
engine takes the aggregation result of each vertex v from

the Aggregation engine and the weight matrix from the

Weight Buffer as inputs to execute the MVM operation. The

vSched is responsible for the workload assignment. After

the MVM operations, an activation operation is performed

by Activate Unit to produce the new feature vector of vertex

v. Different from normal systolic array, our systolic array is

multi-granular that can be used as multiple smaller arrays or

a whole large array under different optimization scenarios.

To improve the bandwidth utilization, a prefetcher is

designed to explicitly prefetch graph data and parameter

data. For example, the prefetching of the feature vectors is as

follows. The prefetcher first prefetches the edges of current

processing vertices. After receiving these edges, Sparsity
Eliminator obtains the indices of neighbors from these edges

and sends them to the prefetcher. The prefetcher uses them

to prefetch the feature vectors immediately.

C. Aggregation Engine

To optimize the computation of Aggregation, we introduce

a vertex-disperse processing mode. To optimize memory

accesses, we employ a static graph partition method to

enhance data reuse and a dynamic sparsity elimination

technique to reduce unnecessary data accesses.

1) Execution Mode: There are two processing modes for

SIMD cores to process edges in parallel. The first one is

vertex-concentrated, where the workloads of each vertex are

assigned to a single SIMD core. This mode can produce the

aggregated features of vertices in burst mode, i.e. periodi-

cally processing a group of vertices. However, the processing

latency of a single vertex (termed as vertex latency) is long,

and the fast vertices have to wait for the slow vertices

leading to workload imbalance. Furthermore, it also loses the

parallelism that the aggregation of each element can be per-

formed in parallel (i.e., intra-vertex parallelism). Therefore,

we use the second processing mode, which is shown in Fig.

4. It assigns the aggregation of elements inside the vertex

feature vector of each vertex to all cores, termed as vertex-

disperse mode. If a vertex cannot occupy all cores, free

cores can be assigned to other vertices. Thus, all cores are

always busy without workload imbalance. Moreover, since

the intra-vertex parallelism has been exploited, the vertex

latency for a single vertex is smaller than processing multiple

vertices together. Furthermore, it also enables the immediate

processing of each vertex in the following Combination
Engine.

2) Graph Partitioning (Static): We borrow the abstraction

of vertex interval and edge shard from [32, 33] to partition
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Figure 4. Vertex-disperse processing mode where the workloads of each
vertex are assigned to all SIMD cores.

graph data, which is the basis of our data-aware sparsity

elimination in the next subsection. We do not need explicit

preprocessing to generate the intervals and shards since we

directly take the data format of compressed sparse column

(CSC) as input. As exampled in Fig. 5(a), the 16 vertices are

organized as several intervals (i.e. from I1 to I4, each with

four vertices), and the edges are organized as 4×4 shards

(i.e. from S(1, 1) to S(4, 1), each with 16 edges at most).

The intervals and shards are disjoint.

The feature vector length of each vertex is usually large,

so exploiting the locality of features is critical. We group the

vertices within the same interval together (e.g. Ii) and then

process the aggregation of their source neighbors also inter-

val by interval (i.e. traverse Ij), as expressed in Algorithm

2. Based on this flow, the feature accesses of all vertices in

an interval are merged (see Fig. 5(b)). The resulting benefits

are twofold. First, the vertices in Ii usually have overlapped

neighbors in Ij , therefore, the loaded feature data of Ij
can be reused when performing feature aggregation. Second,

when traversing all Ij , the intermediate aggregated results

of Ii are remained in buffer which can also be reused when

performing feature update. In practice, the shard height is

determined by the capacity of Input Buffer, while the shard

width is determined by the capacity of Aggregation Buffer.

The Edge Buffer size affects both height and width since it

accommodates all edges of each shard.

3) Data-Aware Sparsity Elimination (Dynamic): With the

data reuse optimization, we further attempt to reduce the

redundant accesses since the graph connections are sparsely

distributed. To eliminate the sparsity, we propose a window-

based sliding and shrinking approach. The key idea is that

we first slide the window (with the same size of an edge

shard) downward until an edge appears in the top row, and

then we shrink the window size by moving the bottom row

upward until an edge is met.

Window Sliding. Fig. 5(c) illustrates the window sliding

process. For each vertex interval, the top shard window

gradually slides downward. It will not stop until an edge

appears on its top row. Then a new window with the same

size is created, whose top row follows the bottom row of

its previous window. The stop criterion is the same for

every window. In this way, windows continuously arise, slide

downward, and stop. All the positions where windows stop

are recorded as effectual shards.

Window Shrinking. Although the window sliding can cap-

ture most effectual edges, sparsity still exists on the bottom

side (within the purple dashed boxes). This is because the

above sliding direction is downward. To reduce this part of

sparsity, we propose window shrinking here. Specifically, the

bottom row of each recorded window moves upward until

it meets an edge, and then the window shrinks. Fig. 5(d)

illustrates the sliding and shrinking process of one window in

detail and gives the final recorded effectual shards. Different

from previous partition, the sizes of final shards are usually

different due to the window shrinking.

Algorithm 2: Interval-wise Aggregation
1 for each interval Ii in Xk do
2 agg res ← init();

3 for each interval Ij in X(k−1) do
4 agg res ← Aggregation(Ij , agg res);
5 end
6 Ii ← Combination(agg res);
7 end

Algorithm 3: Interval-wise Aggregation with Spar-
sity Elimination

1 for each interval Ii in Xk do
2 row pos ← 1;
3 agg res ← init();
4 do
5 (Ij , row pos) ←

GetOneEffectInterval( X(k−1), A, Ii, row pos);
6 agg res ← Aggregation(Ij , agg res);
7 while (Ij != ∅);
8 Ii ← Combination(agg res);
9 end

Algorithm 4: GetOneEffectInterval
� Window Sliding

1 while (edge(row pos, v) == ∅ for ∀v ∈ Ii) do
2 row pos ← row pos+ 1;
3 end
4 winstart ← row pos;
5 winend ← row pos+Windowheight − 1;
6 row pos ← winend + 1;

� Window Shrinking
7 while (edge(winend, v) == ∅ for ∀v ∈ Ii) do
8 winend ← winend − 1;
9 end

10 Ieffectual ← X(k−1)[winstart : winend];
11 return Ieffectual;

Given the effectual shards after sparsity elimination, the

execution flow of Aggregation follows Algorithm 3. The

only difference from Algorithm 2 is that the each neighbor

interval Ij is dynamically determined by window sliding

and shrinking (see Algorithm 4). The starting row of each

neighbor interval varies due to sliding and the interval length

in the row dimension also varies due to shrinking. In this
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Figure 5. Static graph partition for data reuse and dynamic sparsity elimination to reduce redundant accesses: (a) interval-shard partition; (b) interval-wise
feature access; (c) window sliding; (d) window shrinking.

way, only the feature data of remaining neighbor vertices

when performing the aggregation operation for each interval

Ii are loaded, which eliminates plenty of redundant accesses.

Compared to traditional graph analytics, the feature data

reuse from graph partitioning and redundant access reduction

from sparsity elimination in GCNs are considerable efforts.

This is because the feature of each vertex in GCNs is a

vector with thousands of elements, while the feature data in

graph analytics are small, usually with one element for each

vertex. Besides, our optimization achieves more when the

Sampling operation is used, which increases sparsity since

only sampled neighbors are required during Aggregation.

D. Combination Engine

The Combination operation at each vertex acts like a

neural network, the execution of which is regular but

compute-intensive. Our design is based on the well-known

systolic array. To adapt it for the two processing modes of

Aggregation Engine (see Fig. 4), we integrate multiple arrays

rather than a single one, as shown in Fig. 6(a). A group

of systolic arrays is assembled to form a systolic module.

We allow a multigranular use of these systolic modules,

including the independent working mode and cooperative

working mode.
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Figure 6. Combination Engine design: (a) multiple systolic modules; (b)
different dataflow patterns.

1) Independent Working Mode: In this mode, the systolic

modules work independently from each other. Each of them

processes the MVM operations of a small group of vertices,

as illustrated in Fig. 7(a). The weight parameters for each

module in this case are directly accessed from the Weight
Buffer and just reused within module, as depicted in Fig.

6(b). The advantage of this mode is the lower vertex latency

because we can process the Combination operations of this

small group of vertices immediately once their aggregated

features are ready, without waiting for more vertices. This

mode matches well with the vertex-disperse processing

mode of Aggregation Engine in Fig. 4, where the aggregated

features are produced quickly but sequentially.
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Figure 7. Different use of the systolic arrays: (a) independent working
mode; (b) cooperative working mode.

2) Cooperative Working Mode: Besides working sep-

arately, these systolic modules can be further assembled

together to simultaneously process more vertices, as shown

in Fig. 7(b). Different from the immediate processing of

vertices, this mode requires to assemble the aggregated

features of a large group of vertices together before per-

forming their Combination operations. The advantage is that,

the weight parameters can flow from the Weight Buffer to

the downstream systolic modules and then gradually to the

upstream ones (see Fig. 6(b)), which are greatly reused by all

systolic arrays. This helps reduce the energy consumption.

No matter which working mode is selected in the Com-
bination Engine, the weights can be reused inherently in

Weight Buffer when processing different vertices. However,

in traditional neural networks, especially MLPs, the weights

cannot be shared without batching technique. The multi-

granular systolic array design is also specific to our archi-

tecture in order to accommodate different application needs.

E. Inter-Engine Optimization

To efficiently fuse the phase-by-phase execution, we or-

chestrate the execution pipeline and DRAM access of Aggre-
gation engine and Combination engine by the Coordinator.
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1) Latency- or Energy-Aware Pipeline: To reuse the

aggregation results produced by the Aggregation engine,

we add an Aggregation Buffer between the two engines.

This buffer can be written by the Aggregation Engine and

can be read by the Combination Engine. Before the final

aggregated results are generated, the Aggregation Buffer
stores the partial results that will be read by the Aggregation
Engine for feature accumulation. In order to increase the

parallelism of these two engines, we implement a ping-pong

buffering mechanism where the Aggregation Buffer is split

into two chunks. In this way, the executions of aggregation

and combination are decoupled, which enables an inter-

engine pipeline.

To accommodate the needs of different applications, we

provide two pipeline modes as follows.

Latency-Aware Pipeline. In this pipeline mode, the Com-
bination Engine works in the systolic module independent

mode. The aggregated features are produced vertex by vertex

in the Aggregation Engine, and the following combination

will be processed immediately once the aggregated features

of a small group of vertices are ready. Thus, the average

processing latency for each vertex can be lower. The overall

timing is illustrated in Fig. 8(a), where V denotes the ver-

tices for aggregation, and I represents the neighbor intervals.

Energy-Aware Pipeline. The energy-aware pipeline uses

the systolic module cooperative mode in the Combination
Engine. The vertex-by-vertex processing changes to a burst

mode, where a large group of vertices will be processed

together every time. Although the vertex latency is longer,

the energy consumption can be reduced due to the weight

propagation in the merged systolic arrays without redundant

accesses. Fig. 8(b) presents its timing sequence.
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Figure 8. Timing illustration of different pipeline modes: (a) latency-aware
pipeline; (b) energy-aware pipeline.

2) Coordination of Off-chip Memory Access: It is hard

to determine the memory bandwidth ratio between the two

engines since the practical workloads usually vary between

Aggregation and Combination. Moreover, the separation of

memory systems will increase the configuration overheads

and cause bandwidth waste. This is the reason why we use

only one off-chip memory.
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Request Issue 

Time

 Time
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 Time
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 Time

Figure 9. Coordination of off-chip memory access.

Both the two engines access this memory at runtime,

which causes a frequent switching of access locations,

leading to inefficiencies. In total, there are four buffers (Edge
Buffer & Input Buffer in Aggregation Engine, and Weight
Buffer & Output Buffer in Combination Engine) that will be

used for accessing the off-chip memory. Due to the interval

processing and pipeline mechanism, these accesses usually

come concurrently as shown in Fig. 9(a). If we sequentially

handle these access requests, the discontinuous addresses

greatly degrade the utilization of row buffer within DRAM.

To solve this problem, we predefine an access priority

(edges > inputfeatures > weights > outputfeatures)

to assemble the discontinuous requests shown in Fig. 9(b).

The motivation in using this priority is based on the access

sequence when processing a vertex. The access requests are

executed batch-by-batch. Therefore, low-priority accesses in

the current batch are handled before high-priority accesses

coming at the next batch, rather than always high-priority

accesses first. With the improved continuity, the utilization

of row buffer can be significantly enhanced. Next, we remap

these reordered addresses to index the channel and bank

using low bits. In this way, the memory channel- and bank-

level parallelism can be further exploited.

V. EVALUATION RESULTS

We first describe our experimental setup in Section V-A.

Next, to demonstrate the advantages of our design, we

compare HyGCN to the state-of-the-art software framework

in Section V-B. Next, we give the detailed analysis of our

optimization techniques in Section V-C. Finally, we present

a scalability exploration of our architecture in Section V-D.

A. Experimental Setup

Methodology. The performance and energy of HyGCN are

measured by using the following tools.

Architecture Simulator. We design and implement a cycle-

accurate and execution-driven simulator to measure exe-

cution time in number of cycles. This simulator models

the microarchitectural behaviors of each module, which is

integrated with Ramulator [34] to simulate the behaviors of

memory accesses to High Bandwidth Memory (HBM).

CAD Tools. For the measurements of area, power, and

critical path delay (in cycles) for each module, we implement

and synthesize each module in Verilog. We use the Synopsys

Design Compiler with the TSMC 12 nm standard VT library

for the synthesis, and estimate the power using Synopsys

PrimeTime PX. The slowest module has a critical path delay

of 0.9 ns including the setup and hold time, putting the

HyGCN comfortably at 1 GHz clock frequency.

Memory Measurements. The area, power, and access

latency of the on-chip scratchpad memory are estimated

using Cacti 6.5 [35]. Since Cacti only supports down to 32

nm technologies, we apply four different scaling factors to
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Table IV
DATASET INFORMATION [27, 39].

Dataset #Vertex Feature Length #Edge Storage
IMDB-BIN (IB) 2,647 136 28,624 1.5MB

Cora (CR) 2,708 1,433 10,556 15MB

Citeseer (CS) 3,327 3,703 9,104 47MB

COLLAB (CL) 12,087 492 1,446,010 28MB

Pubmed (PB) 19,717 500 88,648 38MB

Reddit (RD) 232,965 602 114,615,892 972MB

Table V
CONFIGURATION OF CONVOLUTION LAYERS. HERE |akv | DENOTES THE

LENGTH OF FEATURE VECTOR akv .

#Sampling Neighbors Aggregation & Combination (MLP)

GCN (GCN) — Add & |akv |–128

GraphSage (GSC) 25 Max & |akv |–128

GINConv (GIN) — Add & |akv |–128–128

DiffPool (DFP)
GCNpool GCNembedding

Min & |akv |–128 Min & |akv |–128

convert them to 12 nm technology as shown in [36, 37]. The

energy of HBM 1.0 is estimated with 7 pJ/bit as in [38].

Benchmark Graph Datasets and GCN Models. Table

IV and Table V provide the information of the benchmark

graph datasets and GCN models used in our evaluation. The

datasets in Table IV are standard ones in the GCN domain.

They are actually not small although the number of vertices

is smaller than that used in conventional graph analytics,

due to the long length of feature vectors. On CPU, the

datasets with more than one graphs are tested by assembling

randomly selected 128 graphs into a large graph before

processing for GCN, GSC, and GIN or batching the same

number of graphs for DFP. On HyGCN, the testing methods

remain the same with CPU except that the selected graphs

for DFP are processed one by one rather than in batch.

Baseline Platform. To compare the performance and en-

ergy consumption of HyGCN with state-of-the-art works,

we evaluate PyTorch Geometric (PyG) [17] on a Linux

workstation equipped with two Intel Xeon E5-2680 v3 CPUs

and 378 GB DDR4 memory and on an NVIDIA V100 GPU,

denoted as PyG-CPU and PyG-GPU, respectively. Table VI

lists the system configurations for above implementations.

Table VI
SYSTEM CONFIGURATIONS.

PyG-CPU PyG-GPU HyGCN

Compute
Unit

2.5 GHz @
24 cores

1.25Ghz @
5120 cores

1 GHz @ 32 SIMD16 cores and
8 systolic modules (each with 4×128 arrays)

On-chip
Memory 60MB 34MB

128 KB (Input), 2 MB (Edge), 2 MB (Weight),
4 MB (Output) and 16 MB (Aggregation)

Off-chip
Memory

136.5GB/s
DDR4

∼900GB/s
HBM∼2.0

256GB/s
HBM∼1.0

Note: GPU’s on-chip memory includes the register files, and L1 and L2 caches.

B. Overall Results

We first apply our algorithm optimization on PyTorch

Geometric. And then, we compare our work with PyG-CPU

and PyG-GPU in terms of speedup, energy consumption,

utilization of DRAM bandwidth, and DRAM access. Finally,

the area and power of our design is presented.

• Algorithm Optimization on PyG Framework. To show

the effect of our algorithm optimization on CPU and

GPU platforms, we implement our algorithm optimization

proposed in Section IV-C on PyG framework. The graph

is partitioned into multiple shards and they are executed

shard by shard (see Fig. 5(a)). The number of partitions

is determined by the capacity of L2 Cache and the length of

feature vectors. Note that, PyG leverages the Pytorch Scatter

library [40] for the acceleration of Aggregation on both

CPU and GPU. It helps eliminate the sparsity and exploit

the edge parallelism by executing each vertex’s Aggregation
in a hardware thread. Furthermore, the hardware-optimized

libraries such as Intel MKL [41] and NVIDIA cuBLAS

library [30] are used to accelerate Combination on CPU and

GPU, respectively.

Fig. 10(a) shows the speedup of PyG-CPU with our

algorithm optimization (PyG-CPU-OP) over the naive one

without optimization. Thanks to the algorithm improvement,

PyG-CPU-OP achieves 2.3× speedup on average. The per-

formance benefits come from the reduction of frequent re-

placement of feature vectors since the reusable features after

graph partition and the intermediate results of Aggregation
are buffered in L2 Cache. Fig. 10(b) presents the same

testing on GPU. The performance of PyG-GPU-OP degrades

since only a small amount of vertices are processed for

each graph partition, which cannot fully utilize thousands

of hardware threads on GPU and miss the core advantage

of GPU to hide the access latency through many parallel

threads. As a result, it is inefficient for GPU to exploit our

optimization to improve performance. The optimized PyG-

CPU and the naive PyG-GPU are used as baselines in the

following evaluation.

• Speedup. Fig. 10(c) depicts that HyGCN achieves aver-

age 1509× and 6.5× speedup compared with PyG-CPU

and PyG-GPU, respectively. The performance improvement

comes from the individual optimizations in Aggregation
Engine & Combination Engine, and the inter-engine pipeline

& coordination. First, the parallel processing in SIMD cores

and systolic arrays speed up the computations. Second,

the graph partition and sparsity elimination increase the

feature reuse and decrease redundant accesses in Aggre-
gation Engine, which saves DRAM bandwidth. Third, the

weight parameters are reused efficiently in Combination En-
gine, which also helps better utilize the bandwidth. Finally,

the inter-engine pipeline further optimizes the parallelism

and the off-chip memory access coordination improves the

DRAM access efficiency.

For PyG-CPU and PyG-GPU, abundant DRAM accesses

and synchronization overheads lead to performance degra-

dation. Specifically, the high randomness of neighbor in-

dices results in poor locality of neighbors’ feature vectors,

causing many unnecessary DRAM accesses. From the per-

spective of computation, PyG-CPU and PyG-GPU leverage

the hardware-optimized functions (such as scatter [40] and
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Figure 10. Comparistion to PyG-CPU and PyG-GPU: Speedup of our algorithm optimization on (a) CPU and (b) GPU; (c) Speedup over the optimized
PyG-CPU. OoM means the evaluation fails in running on GPU due to out of memory.

matrix multiplication [30]) to perform GCNs in a coarse-

grained fashion. Although it is the best way to utilize

CPU and GPU, it loses the inter-phase parallelism and

produces redundant operations. The delay for data copy

and synchronization between threads further degrades the

performance.

In term of models, GIN achieves better performance

than others. The underlying reason is that GIN executes

Aggregation first on PyG-CPU and PyG-GPU, which in-

troduces abundant computations and accesses since the

feature vector size is an order of magnitude larger than

that after Combination. By contrast, other models execute

Combination first, which greatly reduces the feature length

before performing Aggregation. This difference causes the

inefficient execution of GIN on CPU and GPU, while our

HyGCN can maintain the performance to a great extent

due to the parallel processing and data reuse. For DFP, it

includes three matrix multiplications (see Equation (8)) that

can be efficiently executed on CPU and GPU. Therefore, our

speedup when performing DFP is relatively lower. The GSC

model consumes significant time on the Sampling operation

in a preprocessing step, which is not included in the result of

PyG-CPU and PyG-GPU. For example on the RD dataset,

the preprocessing can cost up to 15 seconds while the

execution time is only 0.65 second on PyG-CPU and 0.0025

second on PyG-GPU. In our work, the Sampling operation

is executed together with Aggregation and considered in the

reported result. Thus, the performance of our work is lower

than PyG-GPU in Fig. 10(c) but the overall execution time

ratio is 0.136 second v.s. 15.7 seconds.

• Energy Consumption. As Fig. 11 shows, HyGCN con-

sumes only 0.04% and 10% energy on average compared

to PyG-CPU and PyG-GPU, respectively. The energy con-

sumption of all platforms includes the off-chip memory.

Note that, although the results of PyG-CPU and PyG-GPU

do not include the overhead of the Sampling operation, they

are still costly. For example, the Sampling energy of GSC

is 2715J on the RD dataset. In contrast, our work consumes

only 1.79J compared to the total 2716J in PyG-GPU.

As aforementioned, GIN causes additional computations

and data accesses when performing Aggregation, which in-

troduces extra energy consumption on PyG-CPU. Although

HyGCN cannot reduce these computations, the optimizations

of data reuse, sparsity elimination, and inter-engine pipeline

can reduce redundant accesses to these additional data.
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Figure 12. Energy breakdown of HyGCN.

Among the architectural components, Combination Engine
consumes most of the energy due to the intensive compu-

tation of MVMs as depicted in Fig. 12, while Aggregation
Engine consumes more energy on high-degree graph datasets

(i.e., CL and RD).

• DRAM Bandwidth Utilization. As seen in Fig. 13,

HyGCN demonstrates 16× and 1.5× improvement on aver-

age on the utilization of DRAM bandwidth compared with

PyG-CPU and PyG-GPU, respectively. The high bandwidth

utilization of HyGCN and PyG-GPU derive from the high-

degree parallelism. By contrast, PyG-CPU cannot suffi-

ciently exploit the bandwidth, since there is only one thread

most of time to reduce the heavy overheads of frequent

thread creation. Our consistent lower bandwidth on the CL

dataset is due to the higher data reuse, which benefits from

denser connections.

• DRAM Access. Although the 16MB on-chip memory

is much smaller than the 60MB L3 cache on CPU and

34MB on GPU, HyGCN accesses only 21% and 33% of

off-chip data compared with PyG-CPU and PyG-GPU on

average, respectively, as given in Fig. 14. This benefits

from our data reuse optimizations, sparsity elimination, and

the immediate processing between two engines. On the

CL dataset for GCN, GSC, and GIN, multiple graphs are

assembled to form a larger one before being processed,

which results in intensive sparsity. HyGCN can efficiently

eliminate the sparsity via window sliding and shrinking, thus

avoiding unnecessary data accesses. Whereas, PyG-CPU and

PyG-GPU produce many unnecessary accesses due to the
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Figure 15. Effect of sparsity elimination on
(a) execution time, (b) DRAM access, and (c)
sparsity reduction.

Figure 16. Effect of inter-engine pipeline on (a) execution time and (b)
DRAM access, and the comparison of (c) vertex latency and (d) energy
of Combination Engine under different pipeline modes.

Figure 17. Effect of memory
coordination on (a) execution
time and (b) bandwidth utiliza-
tion.

irregularity in Aggregation phase and without the fusion of

phase-by-phase execution. As aforementioned, the results of

PyG-CPU and PyG-GPU do not include the data access of

the Sampling operation. For example, the Sampling access

volume of GSC is 56.5GB on the RD dataset. In contrast,

our work only accesses 28GB data, compared with the total

58GB in PyG-GPU.

1) Power and Area: The total power and area of HyGCN
are only 6.7 W and 7.8 mm2, respectively. For the on-chip

buffer, we use eDRAM to reduce both the area and energy

consumption. For the computation precision, we use 32-bit

fixed point that is enough to maintain the accuracy of GCN

inference. Table VII provides area and power breakdown in

terms of buffer, computation, and control. The computation

resources of two engines consume most of power (>64%)

and area (>44%) to perform the edge-centric aggregation

and MVMs-based combination. The Coordinator occupies

∼35% of the total area since it has a large Aggregation
Buffer. The control overhead is small (only 1.2% power

and <0.45% area) owing to the simple implementations of

eSched, Sampler, Sparsity Eliminator, vSched, Coordinator,

and Memory Handler.
Table VII

LAYOUT CHARACTERISTICS OF HyGCN

Module Component Power (%) Area (%)

Aggregation Engine
Buffer 2.37 5.41

Computation 3.85 1.43
Control 0.48 0.18

Combination Engine
Buffer 14.4 15.13

Computation 60.52 42.96
Control 0.31 0.07

Coordinator Buffer 17.66 34.64
Control 0.41 0.19

C. Optimization Analysis

In this subsection, we analyze the effect of our opti-

mization techniques including sparsity elimination, inter-

engine pipeline, and off-chip memory access coordination.

The benchmark model is GCN mentioned in Table V.

1) Sparsity Elimination Optimization: We evaluate

HyGCN with and without sparsity elimination. This experi-

ment runs only Aggregation Engine to avoid the interference

of other blocks. Fig. 15(a) shows that HyGCN achieves

1.1∼3× speedup with the optimization of sparsity elim-

ination. The performance gain is due to fewer redundant

DRAM accesses as reflected in Fig. 15(b), which benefits

from eliminated sparsity as given in Fig. 15(c).

2) Inter-Engine Pipeline Optimization: First, we mea-

sure the overall performance with and without inter-engine

pipeline optimization (PP v.s. N-PP). With the pipeline

optimization, the execution time of GCN is reduced by 27%-

53%, as shown in Fig. 16(a). On one hand, the Aggregation
Engine and Combination Engine work in parallel with inter-

engine pipeline. On the other hand, the DRAM accesses

occupy most of the execution time (see Fig. 16(b)), therefore

the inter-engine pipeline helps improve the performance by

decreasing DRAM accesses of the intermediate aggregation

results between two engines. It is observed from Fig. 16(b)

that total DRAM accesses are significantly reduced to only

50%-73% with this pipeline optimization.

Second, we compare the vertex latency and energy

of Combination Engine with energy-aware pipeline and

latency-aware pipeline (Epipe v.s. Lpipe). From Fig. 16(c),

the Lpipe reduces the average latency for each vertex by 7%-

29% via the immediate processing without waiting for the

aggregation results of many vertices. By contrast, as shown

in Fig. 16(d), the Epipe saves energy consumption by 35%

via assembling a large group of vertices to process together

for reusing weight parameters aggressively. In practice, the

application requirement determines the pipeline mode.

3) Memory Coordination Optimization: To show the ef-

fect of the memory access coordination, we present the

execution time and bandwidth utilization with and without

coordination in Fig. 17(a) and Fig. 17(b), respectively. With
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the memory access coordination for address continuity, the

DRAM row buffers are better utilized and the channel-/bank-

level parallelism is better exploited, which saves 73% of time

and improves 4× bandwidth on average.

D. Scalability Exploration

The following evaluations are measured in GSC model.

• Sparsity Elimination with Sampling. The Sampling op-

eration increases the sparsity, thus it has the potential to

enlarge the benefits produced by sparsity elimination. In

Fig. 18(a)-(c), horizontal axis sweeps the sampling factor. It

indicates that only 1
sampling factor edges of each vertex are

sampled to perform aggregation. As the increasing sampling
factor, the performance is significantly improved on the PB

dataset by reducing the DRAM accesses owing to the higher

sparsity. For other datasets, since many edges have been

removed, the Combination phase gradually dominates the

execution time. Therefore, there is no significant speedup.

Note that the sampling factor cannot be too high, as it might

harm the accuracy of applications.

• Capacity of Aggregation Buffer. The size of the Aggre-
gation Buffer affects the execution time, amount of data

accesses, and even the effect of sparsity elimination. As the

capacity of Aggregation Buffer increases from 2 MB to 32

MB, the exeuction time is decreased as shown in Fig. 18(d).

This can be explained from two aspects: i) more intermediate

aggregated feature data can be cached in on-chip buffer,

leading to larger shard width when partitioning the graph

and thus less execution loops; ii) larger shard means that the

neighbor features can be reused more often, leading to less

DRAM accesses (see Fig. 18(e)). However, larger shard also

enlarges the window size during the sparsity elimination,

which results in higher sparsity that cannot be eliminated

(see Fig. 18(f)).

• Size of Systolic Module. In this experiment, we fix the

number of total systolic arrays but change the size of each

systolic module, and then to measure the cost of Combina-
tion Engine. Different from the systolic module with 4×128

systolic arrays in Table VI, here we treat 1×128 systolic

arrays as a basic systolic module. Based on the initial

32 systolic modules, we gradually decrease the number of

systolic modules under the restriction of fixed number of

total systolic arrays. It is observed that longer latency for

a vertex is consumed as the partition of systolic modules

becomes more coarse-grained as shown Fig. 18(g)(bar). This

is caused by the longer time to assemble a larger group of

vertices to be processed together. Fortunately, the energy

consumption can be reduced as shown Fig. 18(g)(red line)

because the weight parameters are reused by more vertices

within each larger systolic module. We only present the

average energy result of these datasets for simplicity. In our

architecture design, we set the systolic module with size

of 4×128 arrays to achieve a good trade-off between the

latency and energy costs.

VI. DISCUSSION

In order to leverage our proposed PM, PyG needs to be

significantly modified for its coarse-grain message-passing

mechanism to stream Aggregation and Combination for

each vertex. Note that although these two phases can be

streamed after modification, it also misses the advantage

of hardware-optimized operations, such as matrix multipli-

cation operation [30, 41]. Furthermore, further challenges

exist with 1) inefficient memory subsystem due to workload-

agnosticism [31], 2) difficulty in data reuse like systolic

arrays [21], and 3) expensive on-line preprocessing for

workload reorganization and streaming.

Following concerns make training unsuitable as a starting

work to explore GCN hardware. First, training involves

three passes with data dependency: forward, backward, and

update, whose compute and memory patterns are more

complex than that of inference with only the forward pass.

Second, the gradient propagation in graphs is far more com-

plicated than layer-by-layer propagation in neural networks.

However, training accelerators can leverage our architecture

to design the forward pass, and would need specialized

blocks for other passes and an efficient memory hierarchy

to connect them.

VII. RELATED WORK

Plenty of software frameworks for graph analytics and

neural networks have been presented to release the program-

ming efforts while achieving high performance on modern

general-purpose architectures [42–45]. However, all of them

only work well for the single-pattern workloads. Therefore,

a large number of software frameworks for hybrid-pattern

GCNs are proposed recently [7, 17, 46]. For instance, Py-

Torch Geometric [17] leverages message-passing framework

to enhance its expression ability and the hardware-optimized

operations (e.g. scatter and matrix multiplication) so that

the GCN workloads can be accelerated. Unfortunately, the

distinct execution pattern regarding computation and access

between the Aggregation phase and the Combination phase

produces processing inefficiencies on traditional platforms.

GCNs demand specialized architecture design.

With the emergence of graph analytics and neural net-

works workloads, a lot of hardware architecture designs are

proposed to accelerate these workloads [21, 31]. For exam-

ple, Graphicionado [31] is tailored for graph analtyics; while

TPU [21] focuses on the acceleration of neural networks.

However, GCNs behave not only like the graph processing

(Aggregation) but also like neural networks (Combination),

leading to intrinsic hybrid design requirement. Therefore,

current specialized architectures cannot efficiently perform

GCNs since they just handle one of the two sides.

VIII. CONCLUSION

GCNs are becoming widely adopted for analyzing graph

data and are comprised of Aggregation and Combination
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Figure 18. Scalability exploration. i) sparsity elimination with different sampling factor: (a) Execution time, (b) DRAM access, and (c) sparsity reduction;
ii) capacity of Aggregation Buffer: (d) execution time, (e) DRAM access, and (f) sparsity reduction; iii) size of the systolic module: (g) vertex latency and
energy of Combination Engine.

phases. In this work, we identify that the execution patterns

of these two phases are distinct, even almost opposite, which

requires separate design requirements. Besides, the high

intra-vertex parallelism in Aggregation phase, the highly

reusable inter-vertex data in Combination phase, and the

opportunity to fuse phase-by-phase execution introduced by

the new features of GCNs need to be leveraged for better

performance. To this end, we propose a GCN accelerator,

HyGCN, with hybrid architecture. First, we build edge-

and MVM-centric programming model to exploit various

parallelisms and enable hardware transparency. Next, we

propose the hardware design with two efficient engines

to optimize the two phases correspondingly. The latency-

and energy-aware inter-engine pipelines are orchestrated to

improve the overall latency and energy according to system

needs. The off-chip memory accesses between the two

engines are carefully coordinated to improve the efficiency.

Finally, through comprehensive evaluations, HyGCN demon-

strates significant improvements compared to the software

framework running on CPU and GPU. We believe our work

will stimulate more attention on specialized hardware for

increasingly important GCNs.
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