
Characterizing and Understanding
GCNs on GPU

Mingyu Yan , Zhaodong Chen, Lei Deng ,
Xiaochun Ye , Zhimin Zhang,
Dongrui Fan, and Yuan Xie

Abstract—Graph convolutional neural networks (GCNs) have achieved state-of-

the-art performance on graph-structured data analysis. Like traditional neural

networks, training and inference of GCNs are accelerated with GPUs. Therefore,

characterizing and understanding the execution pattern of GCNs on GPU is

important for both software and hardware optimization. Unfortunately, to the best

of our knowledge, there is no detailed characterization effort of GCN workloads on

GPU. In this letter, we characterize GCN workloads at inference stage and explore

GCN models on NVIDIA V100 GPU. Given the characterization and exploration,

we propose several useful guidelines for both software optimization and hardware

optimization for the efficient execution of GCNs on GPU.

Index Terms—Graph convolutional neural networks, characterization, execution

pattern, GPU

Ç

1 INTRODUCTION

IN recent years, Graph Convolutional Neural Networks (GCNs)
that operate on graph-structured data have achieved state-of-the-
art performance on tasks like node classification, link prediction,
and recommendations, etc. GCNs have become a new workload
family member in data-centers [1], [2]. Like traditional neural net-
works, training and inference of GCN models are accelerated with
Graphics Processing Units (GPUs) to achieve an order of magni-
tude lower latency [1]. Therefore, characterizing the execution pat-
tern of GCNs on GPUs is important for both software and
hardware optimization for GCNs.

To the best of our knowledge, there is no characterizing effort of
GCNs on GPU. Popular GCN models usually contain two major exe-
cution phases with distinct execution pattern: Aggregation and Combi-
nation. The former phase aggregates the feature vectors of the neighbor
nodes like graph processing, so it exhibits a similar irregular execution
pattern. The latter phase updates the feature vectors with multi-layer
perceptrons (MLPs), so it has alike regular patterns with traditional
neural networks. Nevertheless, GCNs have shown several new fea-
tures that make their execution patterns differ from traditional work-
loads, so conclusions in existing characterization studies on graph
processing and neural networks cannot be directly inferred inGCNs.

To understand the computation and memory accessing pattern
of GCNs, we profile and analyze the inference stage of several
GCN models on popular benchmarks with NVIDIA GPU V100,
and the results are compared with traditional graph processing
and MLP workloads. Besides, we also conduct an exploration of

how configurations like dimension size influence the execution
time. Our key observations and insights toward architecture design
are summarized below.

� Comparison to Graph Processing: 1) High-degree spatial data
locality and parallelism exist intra vertex; 2) Only inter-
warp atomic collision exists; 3) L2 cache hit ratio in Aggre-
gation phase is extremely lower than graph processing due
to the long reuse distance of vertex data.

� Comparison to MLP-based Neural Network: 1) The parameters
of MLP exhibit extremely high reusability inter vertex; 2)
High-degree parallelism exists inter vertex.

� Overall Execution: 1)Hybrid executionpattern exists inGCNs;
2) Execute Combination phase ahead of Aggregation phase
helps reduce data access and computation of Aggregation
phase; 3) A dataflow exists inter phase for each vertex.

� Exploration: 1) The execution time of Combination is almost
proportion to input feature length, while the execution time
of Aggregation phase in various length are almost the same
since it is independent on the length of input feature vector;
2) Both the execution time for Aggregation phase and Combi-
nation phase are almost proportion to output feature length;
3) There are sweet spots for the execution of Combination
phase in terms of the length of input and output feature.

Given the characterization and exploration, we propose useful
guidelines as follows for both software framework optimization
and hardware optimization for GCNs.

� Software Optimization Guideline: 1) A degree-aware feature
access scheduling to reuse the vertex with high degree; 2)
Vectorizing atomic operation to improve the efficiency of
parallelism; 3) An adaptive execution granularity to leverage
the inter-phase dataflowand hardware-optimized function.

� Hardware Optimization Guideline: 1) A degree- and length-
aware replacement policy for Cache to reuse the feature of
high-degree vertex and improve memory level parallelism.

2 BACKGROUND OF GCNS

In general, GCNs follow a neighborhood gather scheme. The fea-
ture vector of each vertex is updated by recursive aggregation of
the feature vectors of neighbor nodes and combination of features
via an MLP or a single fully-connected layer [3]. Let hðk�1Þ

v be the
feature vector of vertex v at layer k� 1, NðvÞ be the neighbor list of
vertex v, and s be the activation function, we briefly summarize
three popular GCNmodels as follows.

Graph Convolutional Network (GCN) [4]. The propagation rule of
GCN at layer k is defined as follows:

hðkÞ
v ¼ s mean W ðkÞhðk�1Þ

u ju 2 fNðvÞg [fvg
� �� �

; (1)

where the term W ðkÞhðk�1Þ
u (Combination) multiplies the feature vec-

tor of each vertex by the weight matrix W ðkÞ and then the term

mean (Aggregation) updates each feature vector with the average of

its neighborhood.

Graph Isomorphism Network (GIN) [5]. In GIN-0 introduced in Xu
et al. (2018) [5], the feature vector of each vertex is updated with

hðkÞ
v ¼mlp sum hðk�1Þ

u ju 2 fNðvÞg [fvg
� �� �

; (2)

in which the feature vectors are first aggregated by the summation
of neighborhood and then updated with MLP.

GraphSAGE (SAG) [6]. In GraphSAGE, the feature vectors are
updated with the same propagation rule of GCN, the difference is
that while GCN updates the feature vectors of all vertexes in the

� M. Yan is with the SKLCA, Institute of Computing Technology (ICT), Chinese Academy
of Sciences (CAS), Beijing 100864, China, the University of Chinese Academy of Sciences
(UCAS), Beijing 100049, China, and also with theUniversity of California, Santa Barbara,
Santa Barbara, CA 93106. E-mail: yanmingyu@ict.ac.cn.

� Z. Chen, L. Deng, Y. Xie are with the University of California, Santa Barbara, Santa
Barbara, CA 93106. E-mail: {chenzd15thu, leideng, yuanxie}@ucsb.edu.

� X. Ye and Z. Zhang are with the SKLCA, Institute of Computing Technology (ICT),
Chinese Academy of Sciences (CAS), Beijing 100864, China.
E-mail: {yexiaochun, zzm}@ict.ac.cn.

� D. Fan is with the SKLCA, Institute of Computing Technology (ICT), Chinese Academy of
Sciences (CAS), Beijing 100864, China, and also with the University of Chinese Academy
of Sciences (UCAS), Beijing 100049, China. E-mail: fandr@ict.ac.cn.

Manuscript received 31 Dec. 2019; accepted 26 Jan. 2020. Date of publication 30 Jan.
2020; date of current version 3 Apr. 2020.
(Corresponding author: Xiaochun Ye.)
Digital Object Identifier no. 10.1109/LCA.2020.2970395

22 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 19, NO. 1, JANUARY-JUNE 2020

1556-6056� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 30,2020 at 18:51:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6915-955X
https://orcid.org/0000-0002-6915-955X
https://orcid.org/0000-0002-6915-955X
https://orcid.org/0000-0002-6915-955X
https://orcid.org/0000-0002-6915-955X
https://orcid.org/0000-0002-5172-9411
https://orcid.org/0000-0002-5172-9411
https://orcid.org/0000-0002-5172-9411
https://orcid.org/0000-0002-5172-9411
https://orcid.org/0000-0002-5172-9411
https://orcid.org/0000-0003-4598-1685
https://orcid.org/0000-0003-4598-1685
https://orcid.org/0000-0003-4598-1685
https://orcid.org/0000-0003-4598-1685
https://orcid.org/0000-0003-4598-1685
mailto:yanmingyu@ict.ac.cn
mailto:chenzd15thu@ucsb.edu
mailto:leideng@ucsb.edu
mailto:yuanxie@ucsb.edu
mailto:yexiaochun@ict.ac.cn
mailto:zzm@ict.ac.cn
mailto:fandr@ict.ac.cn

graph in each iteration, GraphSAGE only update a batch of vertexes
alongwith their 2-hop neighbors in an iteration.

There are three major different features between GCNs with tra-
ditional graph processing and neural networks:

1) Large and Variable Feature Length. The feature data in graph
processing are small, usually one element for each vertex,
while the feature vector of each vertex in the Aggregation
phase of GCNs usually contains hundreds of entries and
varies across layers and datasets.

2) Parameters Shared by Vertices. In traditionalMLP-based neural
network, to classify one sample, only one feature vector is for-
ward through the MLP, and the parameters in the MLP are
not shared. However, in node classification of GCNs with k
layers, the feature vectors of all k-hop neighbours are for-
warded; In graph classification, the feature vectors of all ver-
texes are required. As a result, in GCNs, the parameters in
theMLP can be fully shared by each feature vector.

3) Alternative Execution, the two phases are executed alterna-
tively until the final result is produced.

3 EVALUATION SETUP

Benchmark. Tables 2 and 1 provide the information of the benchmark
GCN models and graph datasets used in our evaluation. For GCNs,
we select three advanced models: Graph Convolutional Network
(GCN) [4], Graph Isomorphism Network (GIN) [5], and GraphSAGE
(SAG) [6]. For clarity, we evaluate the first graph-convolutional layer
of eachmodel on popular datasets including Cora, Citeseer, Pubmed,
and Reddit. For classical graph processing, we run PageRank on the
Reddit and LiveJournal dataset. For traditional MLP, we test a single
fully-connected layer on MNIST. Notably, we mainly focus on the
inference stage rather than training.

Profiling Platform. The GCN models are implemented with the
state-of-the-art GPU-based software framework for GCNs: PyTorch
Geometric [8]. The PageRank is implemented with Gunrock [9]. All
the workloads are profiled on single NVIDIA GPU V100 with NVI-
DIANVProf and averaged among 5 iteration.

4 OBSERVATION AND ANALYSIS

This section is organized as follows. First, we present an overview
of our profiling result. Then, we characterize dominant kernels in
Aggregation and Combination phase and compare them with

traditional workloads. At last, we explore the impact of feature
length on execution time.

4.1 Overview of Profile

Execution Time Breakdown. Fig. 1 illustrates the execution time break-
down ofmajor kernels that occupymost of execution time onGPU.

The sgemm kernels multiplies the weight matrix with feature
vectors to perform Combination. The indexSelect kernel and scatter
kernel execute Aggregation function for all vertices. Specifically, the
indexSelect kernel uses the neighbor ID to select the neighbor’s fea-
ture vector of each vertex, and then uses these feature vectors to
build a dense feature matrix for the input of scatter kernel. Each
thread in the scatter kernel executes aggregation operator for each
element in a neighbor’s feature vector.

As illustrated in Fig. 1, the above three kernels take up 65 to
90 percent execution time in different configurations. The portion
of execution time that each kernel takes is determined by the
sequence of Combination and Aggregation as well as the length of
feature vectors. Specifically, GIN executes Aggregation phase first
while the other two execute Combination phase first. While the scale
of Combination is similar among the three models, the feature vector
length in GCN and SAG are significantly reduce by Combination, so
their Aggregation phase take much fewer time than GIN. In terms
of dataset, the Combination takes more execution time in the data-
sets with longer feature length, i.e., CS.

4.2 Analysis of Aggregation Phase

Here, we provide detailed analysis of the Aggregation phase in SAG
and compare it with PGR on the RD and LJ datasets.

High-degree spatial data locality exists in the access to feature data. This
locality derives from the access to each long-length feature vector.
Figs. 2a and 2b respectively illustrate that L1 cache hit ratio and L1 cache
to multiprocessor throughput(GB/sec) of Aggregation phase are higher
than that in graph processing on the same dataset (i.e., RD). Besides,
Fig. 2c depicts that the value of Memory Throttle of PGR is extremely
higher than Aggregation phase (39.27 percent versus 0.225 percent). It
means a large number of pendingmemory operations prevent further
forward progress in the micro-architecture pipeline on PGR due to
the fine-grained and irregular data access to feature data. However,
the accesses to long-length feature data in Aggregation phase can be
reduced by combining several memory transactions into one. These
three results demonstrate that Aggregation phase has an extra spatial
locality in the access to feature data compared to graph processing.

High-degree parallelism exists intra vertex. Except for the inter-ver-
tex and inter-edge parallelism as in graph processing, Aggregation
phase possesses a new kind of parallelism, the intra-vertex parallel-
ism. This parallelism comes from the element-wise aggregation of
each neighboring vertex feature vector. As a result, the Achieved
Occupancy and Issue Slot Utilization of Aggregation phase are higher
than that in graph processing as shown in Figs. 2d and 2e.

Only inter-warp atomic collision exists in parallelism exploitation.
Atomic collision refers to scenarios where multiple threads try to
read-modify-write the same data word simultaneously. To guarantee
the atomicity, these updates from different threads will be serialized.

TABLE 2
Datasets Information [4], [7]

Dataset #Vertex Feature Len. #Edge

Cora (CR) 2,708 1,433 5,429
Citeseer (CS) 3,327 3,703 4,732
Pubmed (PB) 19,717 500 44,338
Reddit (RD) 232,965 602 11,606,919
LiveJournal (LJ) 4,847,571 1 68,993,773

TABLE 1
Configuration of Convolution Layers

Aggregation Operator & Combination Operator

GCN (GCN) Mean &MLP: jhðk�1Þ
u j–128

GraphSage (SAG) Mean &MLP: jhðk�1Þ
u j–128

GINConv (GIN) Add &MLP: jhðk�1Þ
u j–128–128

PageRank (PGR) Graph Processing
MLP-MNIST MLP: 784–128 with batching size 1000

Here jhðk�1Þ
u j denotes the length of feature vector hðk�1Þ

u . Fig. 1. Execution time breakdown on V100 GPU.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 19, NO. 1, JANUARY-JUNE 2020 23

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 30,2020 at 18:51:41 UTC from IEEE Xplore. Restrictions apply.

There are two collisions existing in GPUs: inter-warp collision and
intra-warp collision. Since each thread inside a warp processes one of
the consecutive feature elements of neighboring feature vector, there
is almost no intra-warp collision in Aggregation phase. In contrary, in
PGR, each thread processes a random vertex with a single feature ele-
ment. It means that the threads intra or inter warp may update the
samevertex,which causes inter-warp collision or intra-warp collision.
Thus, Atomic Transactions Per Request is 1.1 in Aggregation phase
(Fig. 2f), smaller than the 17.9 in PGR.

Aggregation phase exhibits lower reuse of neighbors’ feature data than
that in graph processing. Although the graph traversal in Aggregation
phase is same to that in PGR, L2 cache hit ratio inAggregation phase is
extremely low. Fig. 2g shows L2 cache hit ratio ofAggregation phase is
only 6.9 percent while that is 56.2 percent in PGR, even although
they process the same graph. The reason is as follows. The vertex
data in graph processing is only one element, while the feature vec-
tor contains hundreds element in Aggregation phase. As a result, L2
cache can hold many vertex data in PGR, which enlarges the oppor-
tunity to reuse the vertex data of the shared neighbor. However, L2
cache can only contain smaller amount of feature vectors inAggrega-
tion phase,which results in longer data reuse distance of feature vec-
tor than that in graph processing. Therefore, Aggregation phase
exhibits low reuse of neighbors’ feature data.

4.3 Analysis of Combination Phase

Here, we provide detailed analysis of the Combination phase on
SAG model with RD dataset and compare it with MLP-MNIST
with batch size 1,000, such that both model has similar batch size
and input feature vector length.

The parameters of neural network exhibits extremely high reusability inter
vertex. To classify one handwritten number inMNIST withMLP, only
a single feature vector need to be forwarded. On the contrary, in node
classification tasks, the feature vectors of all the neighbors within
k-hop of the target node need to be processed. In graph classification
tasks, all the vertex in the graphs should be processed.When process-
ing multiple feature vectors, the parameters in the model can be
shared across all the features. As a result, Combination phase presents
more reusability on the parameters of neural network.

High-degree parallelism exists inter vertex. As mentioned before, the
amount of feature vectors processed in Combination phase is much
larger than traditional neural networks,which introducesmore paral-
lelism. As a result, it is more capable of feeding up the thousands of
parallel floating-point units in GPU and hiding the latency to

memory. As shown in Figs. 3a and 3b,Multiprocessor Activity(%) and
Executed IPC of Combination phase are 98.885 percent and 1.8, more
than 76.829 percent and 1.3 respectively, the values ofMLP-MNIST.

4.4 Analysis of Overall Execution

Here, we analysis the overall execution on SAG model.
Hybrid execution patterns exist. In Aggregation phase, the

Computation Unit Utilization is only 50 percent and the Executed IPC is
only 1.78 on average as shown in Table 3. The aggregation heavily
relies on the graph structure so that it is obstructed by irregularity [7]
and load-load data dependency chain [10]. Therefore, it is mainly
stalled forData Request and ExecutionDependency as depicted in Fig. 4.
The irregularity also leads to low L2 Cache Hit Rate (6.87 percent) and
high DRAM Byte per Operation (2.35). In contrary, the Combination
phase achieves 90 percent Computation Unit Utilization and 2.49 Exe-
cuted IPC. The intensive Float-Point calculations well hide the data
access latency, and the stalls are issuedmajorly for Pipe Busy andNot
Selected, which is due to the limited number of computation units.
The regular execution pattern leads to high spatial and temporal data
locality, the L2 Cache Hit Rate is 82.5 percent andDRAMByte per Oper-
ation is as low as 0.01. As a result, while theAggregationphase ismem-
ory boundwith irregular data access pattern and lowdata reusability,
the Combination phase is computation boundwith regular data access
pattern and high data reusability.

Execute Combination phase ahead of Aggregation phase helps reduce
data access and computation of Aggregation phase. While the feature
length in RD is 602, theCombinationphase usually reduces the dimen-
sion to 128 by a factor of 4:7�. Therefore, in theAggregation phase, the

Fig. 2. The profiling result of Aggregation phase.

Fig. 3. The result of Combination phase. Fig. 4. Percentages of issue stall reasons on SAG model.

TABLE 3
Characterization of Hybrid Execution Patterns on RD

Aggregation Combination

Computation Unit Utilization 50% 90%
Executed IPC 1.78 2.49
L2 Cache Hit Rate 6.87% 82.5%
DRAMByte per Operation 2.35 0.01
Execution Bound Memory Compute
Data Access Pattern Irregular Regular
Data Reusability Low High

24 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 19, NO. 1, JANUARY-JUNE 2020

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 30,2020 at 18:51:41 UTC from IEEE Xplore. Restrictions apply.

data access to neighbor’s feature vector becomes less and the compu-
tation for the aggregation of each neighbor also becomes less. Table 4
illustrates the reduction of data accesses and computations in Aggre-
gation phase, up to 4.75� and 4.72� respectively. Moreover, the per-
formance achieves 4.76� improvement.

A dataflow exists inter phase in GCNs for each vertex. The result of
each vertex in Aggregation phase is taken as the input of Combination
phase for the transformation of each vertex. It indicates that a vertex
is able to start the execution in Combination phase after this vertex
completes its aggregation. Therefore, an inter-phase dataflow exists
in GCNs for each vertex. However, to leverage the hardware-opti-
mized functions, the implementation of GCNs on GPU misses this
inter-phase dataflow. As a result, many unnecessary data accesses
and data addressing computations are introduced.

4.5 Exploring GCN Model

Here, we explore the new features of GCNs on SAG model with
RD dataset. As SAG executes Combination phase ahead of Aggrega-
tion phase, the execution time of Combination phase is determined
by the length of both input and output feature vector, while Aggre-
gation is only determined by the length of output feature vector.

Various Length of Input Feature Vector. As illustrated in Fig. 5a,
the execution time of Combination phase is almost proportion to
input feature length. An interesting observation is that there are
sweet spots when the input dimension is the index of 2, i.e., 256.

Various Length of Output Feature Vector. As illustrated in Fig. 5b,
the execution time of Aggregation phase increases linearly with the
output feature length. On the other hand, the Combination phase is
insensitive to the output feature size when the feature length is
smaller than 64, which is due to the redundant computational
resources. Besides, the sweet spot still exists when the output
dimension is the index of 2.

5 ARCHITECTURAL GUIDELINES

5.1 Software Optimization Guideline

Degree-Aware Feature Access Scheduling. Real-world graphs possess
well-connected regions where relatively few vertices share edges
with many common neighbors. It indicates that the vertices with
large degree exhibits high reusability on their feature data. Thus,
an online data access scheduling can leverage that to shorten the
reuse distance.

Vectorizing Atomic Operation. To improve the parallelism effi-
ciency, vectorizing atomic operation is available for Aggregation to
reduces the atomic overhead in GPU since only inter-warp colli-
sion exits in GCNs.

Adaptive Execution Granularity. Leveraging inter-phase dataflow
is an excellent opportunity to overlap the memory-bound Aggrega-
tion phase and computation-bound Combination phase. Meanwhile,
it is also important to leverage the architecture’s advantage. There-
fore, an appropriate or adaptive granularity for execution can
achieve a better trade-off.

5.2 Hardware Optimization Guideline

Degree- and Length-Aware Replacement Policy. To ease the program-
mer efforts and improve data reuse, L2 Cache can be modified to
equip a degree- and length-aware replacement policy. This policy
can replace the vertex feature by aware of its degree, which indi-
cates its reusability. Besides, it can replace the whole vertex feature
vector in a time since all the elements in vector are used together.
This way helps fire many requests at the same time to exploit the
high bandwidth memory.

6 CONCLUSION

In this work, we characterize and explore an emerging application
GCNs on NVIDIA V100 GPU. The characterization results can help
programmers understand the execution pattern of GCNs. We also
believe the observations made in this paper will provide useful guid-
ance to enable future architecture and system research for GCNs.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science
Foundation of China 61732018 and US National Science Founda-
tion 1725447.

REFERENCES

[1] A. Lerer et al., “PyTorch-BigGraph: A large-scale graph embedding
system,” in Proc. 2nd SysML Conf., 2019.

[2] P. W. Battaglia et al., “Relational inductive biases, deep learning, and graph
networks,” 2018, arXiv:1806.01261.

[3] Y. Hongxia, “AliGraph: A comprehensive graph neural network platform,”
in Proc. 25th ACM SIGKDD Int. Conf. Know. Discovery Data Mining, 2019,
no. 2, pp. 3165–3166, doi: 10.1145/3292500.3340404.

[4] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

[5] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?,” 2018, arXiv: 1810.00826.

[6] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on
large graphs,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2017, pp. 1024–1034.

[7] M. Y. Yan et al., “Alleviating irregularity in graph analytics acceleration: A
hardware/software co-design approach,” in Proc. 52th Annu. IEEE/ACM
Int. Symp. Microarchit., 2019, pp. 615–628.

[8] M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch
Geometric,” 2019, arXiv:1903.02428.

[9] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens, “Gunrock:
A high-performance graph processing library on the GPU,” in Proc. 21st
ACM SIGPLAN Symp. Princ. Practice Parallel Program., 2016, pp. 11:1–11:12.

[10] A. Basak et al., “Analysis and optimization of the memory hierarchy for
graph processing workloads,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit., 2019, pp. 373–386.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

TABLE 4
Impact of the Execution Flow on Aggregation Phase

Com! Agg Agg! Com Reduction

Data Accesses (bytes) 568,064,375 2,698,865,170 4.75�
Computations (Operations) 231,995,186 1,096,220,688 4.72�
Execution Time (ms) 1.12 5.34 4.76�

Fig. 5. Exploration on the length of input feature vector (a) and output feature vec-
tor (b).

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 19, NO. 1, JANUARY-JUNE 2020 25

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 30,2020 at 18:51:41 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/3292500.3340404

