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Distributed Parameter Estimation in Randomized
One-hidden-layer Neural Networks

Yinsong Wang and Shahin Shahrampour

Abstract—This paper addresses distributed parameter es-
timation in randomized one-hidden-layer neural networks.
A group of agents sequentially receive measurements of an
unknown parameter that is only partially observable to them. In
this paper, we present a fully distributed estimation algorithm
where agents exchange local estimates with their neighbors to
collectively identify the true value of the parameter. We prove
that this distributed update provides an asymptotically unbiased
estimator of the unknown parameter, i.e., the first moment of
the expected global error converges to zero asymptotically. We
further analyze the efficiency of the proposed estimation scheme
by establishing an asymptotic upper bound on the variance of
the global error. Applying our method to a real-world dataset
related to appliances energy prediction, we observe that our
empirical findings verify the theoretical results.

I. INTRODUCTION

Supervised learning is a fundamental machine learning
problem, where given input-output data samples, a learner
aims to find a mapping (or function) from inputs to outputs
[1]. A good mapping is one that can be used for prediction of
outputs corresponding to previously unseen inputs. Recently,
deep neural networks have dominated the task of supervised
learning in various applications, including computer vision
[2], speech recognition [3], robotics [4], and biomedical
image analysis [5]. These methods, however, are data hungry
and their application to domains with few/sparse labeled
samples remains an active field of research [6]. An alter-
native effective method for supervised learning is shallow
architectures with one-hidden-layer. This architecture was
motivated by the classical results of Cybenko [7] and Barron
[8], showing that (under some technical assumptions) one
can use sigmoidal basis functions to approximate any output
that is a continuous function of the input. These results later
motivated researchers to develop algorithmic frameworks
to leverage shallow networks for data representation. The
seminal work of Rahimi and Recht is a prominent point
in case [9]. In their approach, the nonlinear basis functions
are selected using Monte-Carlo sampling with a theoretical
guarantee that the approximated function converges asymp-
totically with respect to the number of data samples and basis
functions.

The problem of function approximation in supervised
learning (both in shallow and deep neural networks) is
often formulated via empirical risk minimization [1], which
amounts to solving an optimization problem over a high-
dimensional parameter. Due to the computational challenges

Yinsong Wang and Shahin  Shahrampour are with the
Department of  Industrial and Systems Engineering at
Texas A&M  University, College Station, TX 77843, USA.

email: {gritti@tamu .edu; shahin@tamu. edu}.

978-1-5386-8266-1/$31.00 ©2020 AACC

associated with high-dimensional optimization, an appealing
solution turns out to be decentralized training of neural
networks [10]. On the other hand, recent advancement in
distributed computing within control and signal processing
communities [11]-[16] has provided novel decentralized
techniques for parameter estimation over multi-agent net-
works. In these scenarios, each individual agent receives
partially informative measurements about the parameter and
engages in local communications with other agents to col-
laboratively accomplish the global task. A crucial component
of these methods is a consensus protocol [17], allowing col-
lective information aggregation and estimation. Distributed
algorithms gained popularity due to their ability to handle
large data sets, low computational burden over agents, and
robustness to failure of a central agent.

Motivated by the importance of distributed computing in
high-dimensional parameter estimation, in this paper, we
consider distributed parameter estimation in randomized one-
hidden-layer neural networks. A group of agents sequen-
tially obtain low-dimensional measurements of the parameter
(in various locations at different randomized frequencies).
Despite the parameter being partially observable to each
individual agent, the global spread of measurements is in-
formative enough for a collective estimation. We propose a
fully distributed update where each agent engages in local
interactions with its neighboring agents to construct iterative
estimates of the parameter. The update is akin to con-
sensus+innovation algorithms in the distributed estimation
literature [11], [13], [18].

Our main theoretical contribution is to characterize the
first and second moments of the global estimation error. In
particular, we prove that the distributed update provides an
asymptotically unbiased estimator of the unknown parameter
when the randomness of data samples is expected out, i.e.,
the first moment of the global error converges to zero
asymptotically. This result also allows us to characterize the
convergence rate and derive a feasible range for innovation
rate. We further analyze the efficiency of the proposed esti-
mation scheme by establishing an asymptotic upper bound on
the second moment of the global error. We finally simulate
our method on a real-world data related to appliances energy
prediction, where we observe that our empirical findings
verify the theoretical results.

II. PROBLEM STATEMENT

Notation: We adhere to the following notation table through-
out the paper:
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[n] set {1,2,3,...,n} for any integer n

x| transpose of vector x
Iy identity matrix of size M
1, vector of all ones with dimension n
0 vector of all zeros
11, L,-norm operator
Ai(P) i-th largest eigenvalue of matrix P

E[] expectation operator

p(Q) spectral radius of matrix Q
Tr[] trace operator
A=<B B — A is positive semi-definite

The vectors are in column format. Boldface lowercase vari-
ables (e.g., a) are used for vectors, and boldface uppercase
variables (e.g., A) are used for matrices.

A. One-Hidden-Layer Neural Networks: The Centralized
Problem

Let us consider a regression problem of the form

y=f(x)+v,

where ¥y € ¥ C R is the output, x € X C R? is
the input, and v is the noise term with zero mean and
constant variance. The objective is to find the wunknown
mapping (or function) f : X — ) based on available input-
output pairs {(x;,y;)}. Various regression methods assume
different functional forms to approximate f(-). For example,
in linear regression, the input-output relationship is assumed
to follow a linear model. In this work, we focus on one-
hidden-layer neural networks [7], where the approximated
function f(-) is a nonlinear function of the input, and

M
Fx) =" o(x,wi), (1)
=1

where ¢ is called a basis function (or feature map) pa-
rameterized by w;. In the above model, the parameters
w; and 6; are unknown and should be learned from data
(i.e., input-output pairs). The underlying intuition behind
this model is that the feature map transforms the original
data from dimension d to M, where often time we have
M > d. Since the new space has a higher dimension, it
provides more flexibility for approximation of the unknown
function (as opposed to a linear model that is restrictive). It
turns out that approximations of form (1) are dense in the
space of continuous functions [7], i.e., they can be used to
approximate any continuous function (on the unit cube).
However, from an algorithmic perspective, learning both 6;
and w; is computationally expensive. For a nonlinear feature
map ¢ (e.g., cosine feature map), the problem is indeed
non-convex and thus hard to solve. An alternative approach
was proposed in [9] where one-hidden-layer neural networks
are thought as Monte-Carlo approximations of kernel expan-
sions. In particular, if we assume that w is a random variable
with a support 2 and a probability distribution 7(w), the
corresponding kernel can be obtained via [19]

k(x, %) = /Q 6%, w)$(x', w)dr (w). @

Hence, if {w;}}4, are independent samples from 7(w),
the approximated kernel expansion corresponds to (1) and
learning #; becomes a convex optimization problem with a
modest computational cost. {w;}£, are then called random
features in this model.

One such example is using cosine feature map to approx-
7112

. . X—X . .

imate a Gaussian kernel k(x,x’) = exp w with unit

width. In this case, (1) will be as follows

M
f(x) = Z 0;v/2 cos(v] x + by), 3)

=1

where {v;}, come from a multi-variate Gaussian distribu-
tion N'(0,1,) and {b;}}%, come from a uniform distribution
U(0,2m).

B. Local Measurements in Multi-agent Networks

The proposed scenario in the previous section was cen-
tralized in the sense that the estimation task was done only
by one agent that has all the data {(x;,y;)}. In this section,
we propose an iterative distributed scheme where we have a
network of n agents, each of which has access to a subset
of data. In particular, agent ¢ € [n| has access to only m;
data points at each iteration.

Assumption 1: Without loss of generality, we assume each
agent observes the same number of data points at each time,
ie.,, m; = mg = --- = m, = c throughout the paper.

This assumption is only for the sake of presentation clarity.
Our main results can be extended to the case where different
agents have various numbers of measurements.

Now, in the distributed model, the observation matrix
H;; € R™M at time ¢t will be as follows

¢(X1,i,ta‘-‘-’1) ¢(X1,i,t7wM)
H,; = - ... , 4)

A(Xe,it, W) A(Xeyit,wWar)

with any agent i € [n] having access to {x;,;+}5_;. We then
have the following measurement model

Viie = H; 0 + vy,

where @ = [01,...,0)]" € RM is the unknown parameter
that needs to be learned, and v;; denotes the observation
noise at agent ¢. The above local measurement model can
be interpreted as iteratively collecting low-dimensional mea-
surements of parameter 6 at c different locations using M
distinct frequencies.

We follow the general assumptions of zero mean and
constant variance on the noise term, i.e., we have E[v; ;] =0
and E[vi,tviT’t] 021.. We further denote by éi,t the
estimate of 6 for agent ¢ at time ¢.

Assumption 2: @ = [01,...,00]7 € RM is globally
identifiable yet locally unobservable, i.e., the following two
properties hold:

o Rank of G; £ ¢ 'E[H/ H, ] is strictly less than M.

e Yo, G, is invertible.

Note that G; is also the kernel matrix formed with random
features at agent ¢ where its pg-th entry is g;(wp,w,) =
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E[¢(,wp)@(-, wy)]. We are interchanging the role of random
features w and data x here since both of them are random
samples from probability measures.

Assumption 3: We assume that the feature map is bounded
[9] and sup, ,{|¢(x,w)|} < V2. This also suggests a trivial
bound where ||G;l|, < Tr[G;] < 2M.

C. Multi-agent Network Model

The interactions of agents, which in turn defines the
network, is captured with the matrix P. Formally, we denote
by [P];;, the ij-th entry of the matrix P. When [P];; >
0, agent ¢ communicates with agent j. We assume that
P is symmetric, doubly stochastic with positive diagonal
elements. The assumption simply guarantees the information
flow in the network. Alternatively, from the technical point
of view, we respect the following hypothesis.

Assumption 4: (connectivity) The network is connected,
i.e., there is a path from any agent i € [n] to another agent
j € [n]\ {i}. We further assume that P = I,, — oL, where
L is the Laplacian matrix and 0 < o < deg™ ', where deg
denotes the maximum degree of connectivity in the network.

The assumption implies that the Markov chain P is
irreducible and aperiodic, thus having a unique stationary
distribution, i.e., 1"P = 1T is the unique (unnormalized)
left eigenvector corresponding to A (P) = 1. It also entails
that A; (P) is unique, and the other eigenvalues of P are less
than unit in magnitude [20].

D. Distributed Estimation Update

To construct an iterative estimate of the parameter 8, each
agent i € [n] at time ¢t performs the following distributed
update

éi,tJrl = Z Pijéj,t + aHz—'l,—t(Yi,t - Hi,téi,t)7 5)
j=1

where o > 0 is the step size. The update is akin to
consensus-+innovation schemes in the distributed estimation
literature [11], [13], [18], and we analyze this update in
Section III in the context of one-hidden-layer neural net-
works. Intuitively, the first part of the update (consensus)
allows agents to keep their estimates close to each other,
and the second part (innovation) takes into account the new
measurements.

III. MAIN THEORETICAL RESULTS

In this section, we provide our main theoretical results.
We show that the local update (5) is an asymptotically
unbiased estimator of the global parameter €. Based on
this result, we derive the feasible range for step-size to
guarantee convergence. We then prove that the asymptotic
second moment of the collective estimation error is bounded.

A. First Moment
Let us define the local error for each agent i € [n] as

.
e=0;,—0.

(6)
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Subtracting @ from both sides of the local update (5), we
can write the iterative local error process as follows

n
T T
€it+1 = Z Pije;r —aH,; H; e, + aH; v, ;.
j=1

(7

Stacking the local errors in a vector, we denote the global
error by

T

T
SRR

e

) n,t]T'

e 2| 8)
We now characterize the global error process with the
following proposition.

Proposition 1: Given Assumptions 1-4, the expected
global error can be expressed as an LTI system that takes
the form

Ele:] = QE[e; 1],
where

Q21,,—-aB B2L®Iy+cG, 9)

A

and ® denotes the Kronecker product, G
diag[Gy,...,G,] and {G;}?_, is defined in Assumption 2.
The expectation is taken over the stochasticity of x and v.
a

The proof of proposition 1 is given in the Appendix. It
shows that the agents will collectively generate estimates of
the parameter 6 that are asymptotically unbiased as long as
the spectral radius of Q is less than 1.

B. Step Size Tuning

According to Proposition 1, a sufficient condition for the
convergence of the first moment is that the spectral radius of
Q should be less than 1. The spectral radius of Q is decided
by the following two quantities:

)\1(Q) =1- O[)\]V[n(B)7 (10)

and

A (Q) =1 — aXi(B). (11)
Now, given the condition for convergence p(Q) < 1, we
can derive the feasible range for step size «. According
to Assumption 4, 1, is the (un-normalized) eigenvector of
the matrix L associated with the unique zero eigenvalue
An(L) = 0, because L1,, = 0. Therefore, due to Assumption
2, G1,;, > 0 and B is always positive definite. It is then
immediate that 1 — aAps,(B) < 1. On the other hand,

aM(B) - 1< l<=ac< (12)

2
M(B)

In conclusion, a sufficient condition for first moment
convergence of global error is o < 2/\;(B).
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C. Asymptotic Second Moment

To capture the efficiency of the collective estimation, we
should also study the variance of the error, which (asymptot-
ically) amounts to the second moment in view of Proposition
1. In the next theorem, we present an asymptotic upper bound
on the second moment for a feasible range of step size a.

Theorem 2: Given Assumptions 1-4, the expected second
moment of the estimation error is bounded under the follow-

ing condition. When o < %,

< 2acMno?
= 22 (B) — a(A (L) + 2Mce)?’

The expectation is taken over the stochasticity of data x and
observation noise v. O

The proof of theorem 2 is given in the Appendix. It
shows that the (asymptotic) expected second moment of the
estimation error is bounded by a finite value that scales
linearly with respect to the number of agents n for a certain
range of step size a.

. T
Jim Ele; e

IV. NUMERICAL EXPERIMENTS

We now provide empirical evidence in support of our
algorithm by applying it to a regression dataset on UCI
Machine Learning Repository!. In this dataset, the input x €
R2® includes a number of attributes including temperature
in kitchen area, humidity in kitchen area, temperature in
living room area, humidity in laundry room area, temper-
ature outside, pressure, etc.. The regression model aims at
representing appliances energy use in terms of these features.
More details about this dataset can be found in [21] as well as
the UCI Machine Learning Repository. We randomly choose
16000 observations out of its 19735 observations for our
simulation.

We consider observation matrices H; ; of form (4), where
the bases are cosine functions as follows

P(x,w) = d(x,v,b) = V2cos(x v +b),

as described in Section II-A where {v;}}, come from
a multi-variate Gaussian distribution N'(0,1,) and {b;}},
come from a uniform distribution ¢/(0, 27). Without loss of
generality, we set M = 5, i.e., we use five basis functions in
the approximation model (3). One can consider other values
for M and perform cross-validation to find the best one, but
this is outside of the scope of this paper, as our focus is on
estimation rather than model selection.

Network Structure: We consider a network of 40 agents.
Each agent ¢ has access to observation matrix H; ; with ¢ =
40 data points at time ¢. Also, each agent 7 is connected to
4 agents ¢ — 2,9 — 1,7+ 1,7 + 2 (with a circular shift for
any number outside of the range [1,40]). The matrix P is
such that agent ¢ is connected to itself with weight 0.84 and
connected to agents ¢ — 2,4 — 1,7 + 1,7 + 2 with weight
0.04. According to estimation, the largest eigenvalue of B
is A1(B) = 42, so according to the step size constraint for
the first moment convergence, the feasible step size range is

13)

Thttps://archive.ics.uci.edu/ml/datasets/Appliances+energy-+prediction
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Average First Moment with 100 Monte Carlo Simulations
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Fig. 1: The squared norm-2 of averaged (over agents) global error
converges to zero over 100 Monte-Carlo simulations as the number
of iterations increases.

a < 0.047. Also, the step size recommendation in Theorem
2 is a < 0.0005, but to achieve a faster convergence, we set
a = 0.04, which violates the latter condition in theory but
works in practice.

Benchmark: Since this dataset is real-world and the ground
truth value 6 is unknown, we consider the solution of
the centralized problem as the baseline. The local error at
time ¢ is then calculated as the difference between local
estimates 9” and the centralized estimates as given in (6).
We run update (5) for 30000 iterations such that the process
reaches a steady state. To verify our results, we repeat the
update process using Monte-Carlo simulations for 100 times
by giving the agents random data points to estimate the
expectations.

Performance: We visualize the error process in Proposition
1 by presenting the plot of squared norm-2 of the expected
global error (averaged over agents), i.e., the squared norm-
2 of Ele;] (divided by 40) given in Proposition 1 against
number of iterations t. The vertical axis in Fig. 1 represents
the average global error obtained by repeating Monte-Carlo
simulations to form an estimate of the expected global error.
The horizontal axis shows the number of iterations. By
setting the number of Monte-Carlo simulations as 100, we
can expect the squared norm-2 of the average global error
converging to the squared norm-2 of the expected global
error in Proposition 1. As we can observe, the estimation
of the expected global error converges to zero verifying
that agents form asymptotically unbiased estimators of the
parameter.

We next plot the expected squared norm-2 of global error,
i.e., E[e] e;] (divided by 40) given in Theorem 2 estimated
over 100 Monte-Carlo simulations. The vertical axis in Fig.
2 represents the squared norm-2 of the global error averaged
over Monte-Carlo simulations. The horizontal axis shows the
number of iterations. We observe that though the step size
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Fig. 2: The estimates across all agents have a finite variance.

does not satisfy the (sufficient) condition in Theorem 2, the
second moment converges.

V. CONCLUSION

In this paper, we considered a distributed scheme for
parameter estimation in randomized one-hidden-layer neural
networks. A network of agents exchange local estimates of
the parameter, formed using partial observations, to collab-
oratively identify the true value of the parameter. Our main
contribution is to characterize the behavior of this distributed
estimation scheme. We showed that the global estimation
error is asymptotically unbiased and its second moment is
finite under mild assumptions. Interestingly, our results shed
light on the interplay of step size and network structure,
which can be used for optimal design in practice. We verified
this empirically by applying our method to a real-world data.
Future directions include studying the estimation problem
when the parameter has some dynamics [22] or the random
frequencies are generated from a time-varying distribution.
Due to the non-stationary nature of the problem in these
two cases, the theoretical analysis becomes challenging and
interesting to explore.

APPENDIX

For presentation clarity, we use the following definitions
in the proofs:

B, £ L ® Iy + diag[H{ Hy,, ..., H} H,,]
E.;= HItVi,t
E 2 [E/,.. . . E " (14)
A. Proof of Proposition 1
Notice that E[H/, H; ;] = ¢G;, entailing that
E[B:] = L ® Iy + cdiag[Gy,...,G,] = B, (15)
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in view of (14). Following the lines of the proof of Lemma 1
in [18], the error process can be expressed as the following
er1 = Qier + aEy, (16)

where
Q; = Inr — aBy.

Taking expectation over data on both sides and noting (15),
we have

Q £ E[Q;] = I — aE[Bt] =TIy — aB.

7)

Recalling (14), we can also immediately see from the zero-
mean assumption on the noise that E[E; ;] = 0 for every
i € [n]. Combining this with above and returning to (16)
will finish the proof of Proposition 1.

B. Proof of Theorem 2

To prove Theorem 2, we first need to show a recursive
relationship for the error process based on (16) where

E [e/irer1] = E[(Qier +aB0)(Qe; + aBy)]
—E[e/ Q) Qle] + 0% [E/E/]
<o (E[Qi" Q) Elee] +aE [ B
A\ (EQTQ) ) Efefe] + a’E[B/E/],
(18)
where we used the fact E[v; ;] = O, resulting in zero cross-

terms in the second line. To further bound A;(E[ ;TQ;]),
let us recall (17), we have that

E[ ;TQQ} - E[IM,L —20B; + oﬂBﬂ

— Ty — 20B + a2E[Bf}.

Now, observe that A1 (B;) < A\;(L) + 2Me¢ due to Assump-
tion 3. We can bound the spectral radius of the above matrix
as

M (E[QLT

L QL) <1 —2a 1, (B) + (A (L) 4+ 2Me)?.

(19)
Recalling (14), we can then bound the additive term in the
recursive relation (18) as follows

2E [E:Et:| —a’E [ Z Ez—'l,—tEM}

i=1

—o’E [ Z VZtHi,tHz—',rtvi,t}

i=1
=a® Y Tr [B[H; HJE[vivi]] 0
i=1
:a2 Z TI‘ [E [HItHl,t]] 0'12}
i=1
=a’c Z Tr [G;] 02 < 2a%cMno?.
i=1

Letting
®, 21— 2adn(B) + a?*(A\i (L) +2Mc)?
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®y £ 20°cMno?, 2n

and using (19) and (20), we can re-write the recursive relation
in (18) as
E[e:_HetH} < CIDGE[e:et] + Oy, (22)

We can find the feasible range of « through the inequality
®, < 1 which ensures that the recursive process (22) will
converge.

B, < 1<=1-2a\n(B)+a?(\ (L) +2Mc)* < 1

—=a?(\ (L) +2Mc)? < 20Xy (B)

2A v (B)

TS M) + 2MoR

(23)

Therefore, given o < ) 2Anin(B) we have that

a (L) +2Ma)?>

Ele/, ew11] < ®.Ele] e] + P,

< BLE[e] eq] + @y (DL + ..+ Dy + 1)

Py(1 - @F)
= @ZE[eIel] + W.
This upper bound will converge to 1:1)3) as t — 0, and

noting definitions of ®, and ®; in (21), we derive the upper
bound in the statement of Theorem 2.
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