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Abstract—We examine the uplink spectral efficiency of a
massive MIMO base station employing a one-bit Sigma-Delta
(⌃�) sampling scheme implemented in the spatial rather than
the temporal domain. Using spatial rather than temporal over-
sampling, and feedback of the quantization error between ad-
jacent antennas, the method shapes the spatial spectrum of
the quantization noise away from an angular sector where the
signals of interest are assumed to lie. It is shown that, while a
direct Bussgang analysis of the ⌃� approach is not suitable, an
alternative equivalent linear model can be formulated to facilitate
an analysis of the system performance. The theoretical properties
of the spatial quantization noise power spectrum are derived for
the ⌃� array, as well as an expression for the spectral efficiency
of maximum ratio combining (MRC). Simulations verify the
theoretical results and illustrate the significant performance gains
offered by the ⌃� approach for both MRC and zero-forcing
receivers.

Index Terms—Massive MIMO, one-bit ADCs, sigma-delta,
spectral efficiency.

I. INTRODUCTION

TO reduce complexity and energy consumption in large-
scale MIMO systems, researchers and system designers

have recently considered implementations with low-resolution
analog-to-digital and digital-to-analog converters (ADCs,
DACs). Compared to hybrid analog/digital approaches, fully
digital architectures, even with low-resolution sampling, pro-
vide increased flexibility and fully exploit the potentially large
array gain promised by massive MIMO systems. The case of
one-bit quantization has received the most attention, both for
the uplink [1]–[9] and downlink [10]–[20] scenarios.

While one-bit ADCs and DACs offer the greatest simplicity
and power savings, they also suffer the greatest performance
loss compared to systems with higher resolution sampling,
particularly for moderate to high signal-to-noise ratios (SNRs),
and in situations with strong interference. Besides simply
increasing the ADC/DAC resolution, mixed-ADC architectures
[21]–[24] and temporal oversampling [25]–[29] have been
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proposed to bridge the performance gap, with a corresponding
increase in complexity and power consumption.

Oversampled one-bit quantization has a long history in dig-
ital signal processing, particularly using the so-called Sigma-
Delta (⌃�) approach, which quantizes the difference (�)
between the signal and its previously quantized value, and
then integrates (⌃) the resulting output [30]–[32]. This has the
effect of shaping the quantization noise to higher frequencies,
while the signal occupies the low end of the spectrum due
to the oversampling. Higher-order ⌃� modulators can be
constructed that provide increased shaping of the quantization
noise from low to high frequencies. Compared with a standard
one-bit ADC, a ⌃� ADC requires additional digital circuitry
to implement the integration, but very little additional RF hard-
ware. ⌃� ADCs have been commonly used in process control
and instrumentation applications, and more recently in the
implementation of multi-channel beamformers for ultrasound
imaging systems.

The concept of ⌃� modulation can also be applied in
the spatial as well as the temporal domain. In a spatial ⌃�
implementation, the difference signal is formed by subtracting
the quantized output of one antenna’s RF chain from the signal
at an adjacent antenna. Coupled with spatial oversampling
(e.g., a uniform linear array with elements separated by less
than one half wavelength), the quantization noise is shaped
to higher spatial frequencies, and significantly reduced for
signals arriving in a sector around broadside (0�). Applying
a phase shift to the feedback signal allows one to move the
band of low quantization error to different angular regions.

Relatively little research has focused on the spatial ⌃�
architecture. Prior related work has dealt with phased-array
beamforming [33], [34], generalized structures for interference
cancellation [35], and circuit implementations [36], [37]. Ap-
plications of the idea to massive MIMO were first presented in
[38], [39], and more recently algorithms have been developed
for channel estimation [40] and transmit precoding using ⌃�
DACs [41].

In this paper, we study the uplink spectral efficiency (SE)
of a massive MIMO basestation (BS) that employs one-bit
spatial ⌃� quantization, and compare it with the performance
achievable by systems with infinite resolution and standard
one-bit quantization for maximum ratio combining (MRC) and
zero-forcing (ZF) receivers. Past work on quantifying the SE
for standard one-bit quantization (e.g., [5], [12]) has relied on a
vectorized version of the well-known Bussgang decomposition
[43], which formulates an equivalent linear vector model for
the array of non-linear quantizers assuming that the inputs to
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the quantizers are (at least approximately) jointly Gaussian.
However, the vector Bussgang solution is not appropriate for
the more complicated ⌃� architecture, since it leads to a linear
model that is inconsistent with the corresponding hardware
implementation. Thus, we are led to derive an alternative linear
model in which we apply a scalar version of the Bussgang
approach to each quanitizer individually. This model is then
used in turn to determine the overall sum SE.

The results of the analysis indicate the significant gain of
the ⌃� approach compared with standard one-bit quantization
for users that lie in the angular sector where the shaped
quantization error spectrum is low. For MRC, the one-bit ⌃�
array performs essentially the same for such users as a BS
with infinite resolution ADCs. The angular sectorization of
users in the spatial domain is not necessarily a drawback
in cellular implementations, where cells are typically split
into 120� regions using different arrays on the BS tower. In
addition, there are many small-cell scenarios both indoors and
outdoors where the targeted users are confined to relatively
narrow angular sectors (auditoriums, plazas, arenas, etc.). Such
situations will become even more prevalent as frequencies
move to the millimeter wave band. However, the size of the
sector of good performance for ⌃� arrays depends on the
amount of spatial oversampling. Unlike the temporal case,
where oversampling factors of 10 or higher are not uncommon,
the physical dimensions of the antenna and the loss due to
increased mutual coupling for closely-spaced antennas places
a limit on the amount of spatial oversampling that is possible in
massive MIMO. Fortunately, our results indicate that spatial
oversampling by factors of only 2-4 is sufficient to achieve
good performance for angular sectors ranging from 80��150�.
Furthermore, the ability of the ⌃� array to electronically steer
the desired angular sector by means of the feedback phase shift
provides desirable flexibility. For example, multiple sectors
could be serviced in parallel with a single antenna array by
deploying a bank of ⌃� receivers tuned to different spatial
frequencies, in order to cover a wider angular region.

In the next section we outline the basic system model,
and provide some background on temporal ⌃� modulation.
In Section III, we introduce the spatial ⌃� architecture.
We develop an equivalent linear model and characterize this
architecture in Section IV. The model is then applied to analyze
the spectral efficiency of the ⌃� array in Section V. While
the analysis is conducted assuming that perfect channel state
information (CSI) is available, we also discuss the impact of
imperfect CSI in Section VI. Several simulation results are
presented in Section VI, followed by our conclusions.

Notation: We use boldface letters to denote vectors, and
capitals to denote matrices. The symbols (.)⇤, (.)) , (.)� , and
(.)† represent conjugate, transpose, conjugate transpose, and
pseudo-inverse, respectively. A circularly-symmetric complex
Gaussian (CSCG) random vector with zero mean and covari-
ance matrix X is denoted n ⇠ CN(0, X). The symbol k.k
represents the Euclidean norm. The identity matrix is denoted
by O, vector of all ones by 1, and the expectation operator
by E [.]. We use diag (I), diag (x), and diag (G1, · · · , G" ) as
the diagonal matrix formed from the diagonal entries of the
square matrix I, elements of vector x, and scalars G1, · · · , G" ,

respectively. For a complex value, G = GA + 9G8 , we define
GA = Re [G] and G8 = Im [G].

II. SYSTEM MODEL

Consider the uplink of a single-cell multi-user MIMO
system consisting of  single-antenna users that send their
signals simultaneously to a BS equipped with a uniform linear
array (ULA) with " antennas. The " ⇥ 1 signal received at
the BS from the  users is given by

x = MV
1
2 s + n, (1)

where M = [g1, · · · , g ] 2 C"⇥ is the channel matrix
between the users and the BS and V is a diagonal matrix whose
:th diagonal element, ?: , represents the transmitted power of
the :th user. The symbol vector transmitted by the users is
denoted by s 2 C ⇥1 where E

�
ss
�

 
= O and is drawn from

a circularly symmetric complex Gaussian (CSCG) codebook
independent of the other users, and, n ⇠ CN

�
0,f2

=
O"

�
denotes additive CSCG receiver noise at the BS.

We consider a physical channel model described in the
angular domain and comprised of ! paths for each user with
azimuth angular spread ⇥ [42]. In particular, for the :th user,
the channel vector is modeled as

g
:
=

r
V:

!

G:h: , (2)

where G: is an " ⇥ ! matrix whose ✓th column is the array
steering vector corresponding to the direction of arrival (DoA)
\:✓ 2 \0 +

⇥
�⇥

2 ,
⇥
2
⇤
, V: models geometric attenuation and

shadow fading from the :th user to the BS, and the elements
of h: 2 C!⇥1 are assumed to be distributed identically
and independently as CN (0, 1), and model the fast fading
propagation. For a ULA, the steering vector for a signal with
DoA \:✓ is expressed as

a (D:✓) =
h
1, I�1

:✓
, · · · , I�("�1)

:✓

i
)

, (3)

where D:✓ = sin (\:;), I:✓ = 4 9lB:✓ , and thus lB:✓ = 2c 3
_
D:✓

represents the spatial frequency assuming antenna spacing 3

and wavelength _.
In a standard implementation involving one-bit quantization,

each antenna element at the BS is connected to a one-bit
ADC. In such systems, the received baseband signal at the
<th antenna becomes

H< = Q< (G<) , (4)

where Q< (.) denotes the one-bit quantization operation which
is applied separately to the real and imaginary parts as

Q< (G<) = U<,A sign (Re (G<)) + 9U<,8sign (Im (G<)) , (5)

where U<,A and U<,8 represent the output voltage levels of the
one-bit quantizer. We will allow these levels to be a function
of the antenna index <, unlike most prior work which assumes
that the output levels are the same for all antennas. The
necessity for this more general approach will become apparent
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(a)

(b)

Fig. 1. (a) Block diagram for temporal ΣΔ modulator. (b) With equivalent
linear model for quantization.

later1. Finally, the received baseband signal at the BS is given

by

𝒚 = Q (𝒙) = [Q1 (𝑥1) ,Q2 (𝑥2) , · · · ,Q𝑀 (𝑥𝑀 )]𝑇 . (6)

III. ΣΔ ARCHITECTURE

A. Temporal ΣΔ Modulation

In this subsection, we elaborate on temporal ΣΔ modulation

to clarify the noise shaping characteristics of this technique.

Fig. 1(a) shows a block diagram representing the temporal

ΣΔ modulator. To shape the quantization noise, the output

signal is fed back and subtracted form the input (Δ-stage),

and then this error is integrated (Σ-stage). To characterize the

transfer function of this non-linear system, we substitute the

one-bit quantizer with the equivalent linear model depicted in

Fig. 1(b). In Fig. 1(b), the equivalent gain of the non-linear
device, 𝛾, is a function of the quantizer’s output level and is

chosen to make the input of the quantizer uncorrelated with

the equivalent quantization noise, 𝑞 [𝑛]. This is a common ap-

proach for modeling non-linear systems [43], [44]. Therefore,

the input-output relationship of the ΣΔ quantizer can then be

written as

𝑌 (𝑧) = 𝛾

1 − (1 − 𝛾) 𝑧−1
𝑋 (𝑧) +

(
1 − 𝑧−1

)
1 − (1 − 𝛾) 𝑧−1

𝑄 (𝑧) , (7)

where 𝑋 (𝑧) = ∑∞
𝑛=0 𝑥 [𝑛] 𝑧−𝑛 denotes the 𝑧-transform. Simply

stated, the objective of ΣΔ modulation is to pass the signal

through an all-pass filter and the quantization noise through a

high-pass filter. This objective can be realized by selecting the

output voltage level of the quantizer such that 𝛾 ≈ 1. Since

commercial quantizers are provided with a built-in automatic

gain control (AGC), the 𝛾 ≈ 1 condition is inherently satisfied

in implementations of temporal ΣΔ modulators, and hence

1While the one-bit ADC output levels will be optimized, this is a one-time
optimization and the values do not change as a function of the user scenario
or channel realization. Thus the ADCs are still truly “one-bit.”

Fig. 2. Spatial ΣΔ architecture.

this issue is not generally discussed in the literature. However,

as we show in the next subsection, the choice of the scaling

factor is critical in the mathematical modeling of spatial ΣΔ
architectures, and we derive a criterion for addressing this

issue.

B. One-Bit Spatial ΣΔ Modulation

As mentioned earlier, the basic premise of temporal ΣΔ
modulation can be adopted in the angle domain, in order

to spatially shape the quantization noise in a desired way.

Instead of forming the Δ component using a delayed sample

of the quantized input as in the temporal case, we use the

quantization error signal from an adjacent antenna. A direct

transfer of the temporal ΣΔ idea to the angle domain as

in [38], [39] pushes the quantization noise to higher spatial

frequencies, which correspond to DoAs away from the array

broadside (|𝜃 | 	 0◦), while the oversampling (reduced 𝑑/𝜆)

pushes signals of interest near broadside closer to zero spatial

frequency. However, by phase-shifting the quantization error

in the feedback loop prior to the Δ stage, a ΣΔ frequency

response can be obtained in which the quantization error

is shaped away from a band of frequencies not centered at

zero. This bandpass approach has been proposed for both the

temporal (e.g., see [30]) and spatial [41] versions of the ΣΔ
architecture.

Fig. 2 shows the architecture of an angle-steered ΣΔ array.

Using Fig. 2 and equation (8) at the top of the next page,

we can formulate a compact input-output description of the

spatial ΣΔ array by defining

𝑼 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1

𝑒− 𝑗 𝜙 1
...

. . .
. . .

𝑒− 𝑗 (𝑀−1)𝜙 · · · 𝑒− 𝑗 𝜙 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(9)

𝑽 = 𝑼 − 𝑰𝑀 , (10)

and expressing the input to the quantizers as

𝒓 = 𝑼𝒙 − 𝑽𝒚. (11)
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H< =

(
Q1 (G1) < = 1
Q<

�
G< + 4� 9 q

�
G<�1 + 4� 9 q

�
· · ·

�
G2 + 4� 9 q (G1 � H1) � H2

�
· · ·

�
� H<�1

� �
< > 1

(8)

The output of the angle-steered one-bit ⌃� array is then
defined by

y = Q (r) . (12)

IV. CHARACTERIZING THE SPATIAL ⌃� ARCHITECTURE

A. Linear Model
To analyze the performance of spatial ⌃� processing,

analogous to temporal ⌃� , we will represent the one-bit
quantization operation in (12) with an equivalent linear model
as follows:

y = Q (r) = ⌫r + q, (13)

where ⌫ is an " ⇥ " matrix and q denotes the effective
quantization noise. The value of ⌫ that makes the equivalent
quantization noise, q, uncorrelated with r is ⌫0 = X

�

ryX
�1
r . For

the case where the elements of r are all jointly Gaussian, the
computation of Xry is possible by resorting to the Bussgang
theorem2 [43]. This was the approach used in [5], [12]
for a massive MIMO implementation with standard one-bit
quantization, and the resulting ⌫0 was a diagonal matrix.

For the case of the ⌃� architecture, even if the matrix
⌫0 could be computed, this decomposition would not be
of interest, for at least two reasons. First, the equivalent
quantization noise q that results from setting ⌫ = ⌫0 in (13)
bears no connection to the quantization error fed from one
antenna to the next as shown in Fig. 2. Setting ⌫ = ⌫0 would
produce a model in which A< and @<�1 are uncorrelated,
but it is clear from Fig. 2 that A< for the ⌃� array directly
depends on the quantization error from the (< � 1)-th stage.
Second, ⌫0 cannot be a diagonal matrix3, unlike the standard
one-bit quantization case considered in [5]. The presence of
off-diagonal elements in ⌫0 implies that the model in (13)
represents the output of each quantizer as a linear combination
of the inputs to that quantizer as well as other quantizers in
the array. Such a model does not have an apparent connection
with the scheme in Fig. 2, where each quantizer produces its
output depending only on its input alone. These inconsistencies
between the mathematical model based on ⌫ = ⌫0 and the
physical block diagram of the ⌃� array in Fig. 2 are the result
of attempting to force r and q to be uncorrelated, when the
architecture is actually propagating the quantization error from
one stage to the next.

Consequently, in order to derive an appropriate model for
the analysis of the ⌃� architecture, we propose to apply the
Bussgang decomposition to each quantizer individually. In
particular, we formulate the model in (13) using a matrix
⌫ = diag (W1, . . . , W" ) that is forced to be diagonal. This

2The result can also be extended to cases where r belongs to a limited
class of distributions, see [45] for details

3If ⌫0 were diagonal, it could be made equal to the identity matrix by
a proper scaling of each H<. However, ⌫0 can never be the identity matrix
because this implies that A< = G< � 4� 9 q

@<�1, while simultaneously A< is
uncorrelated with @<�1, which is impossible.

is equivalent to imposing a model in which r and q are
uncorrelated component-wise: E

⇥
A<@

⇤
<

⇤
= 0, which is the

same criterion used to generate the model for the scalar case
in Section III-A. The elements of ⌫ are given by

W< =
E

⇥
A<H

⇤
<

⇤
E

⇥
|A< |2

⇤ = U<
E [|Re [A<] | + |Im [A<] |]

E
⇥
|A< |2

⇤ , (14)

where in the last equality and from now on, we assume that
A< is circularly symmetric. This assumption implies that the
quantizer output levels are identical for the real and imaginary
parts, and thus we use U< to represent both U<,A and U<,8 .

As we will see later on, since the elements of ⌫ depend only
on the signals at one stage of the ⌃� architecture, they are
much easier to compute than the elements of ⌫0. Moreover,
the resulting decomposition is consistent with Fig. 2. Given
that no precondition is imposed on the correlation E

⇥
A<@

⇤
;

⇤
for < < ;, the model is compatible with the fact that the
quantization noise of one stage appears in subsequent stages.

Plugging (13) into (11) and using some algebraic manipu-
lations, we obtain the following mathematical model for the
⌃� architecture:

y =
�
O + ⌫\

��1
⌫[x +

�
O + ⌫\

��1
q. (15)

Equation (15) is the spatial ⌃� equivalent to the temporal
domain ⌃� description in (7). Similar to the temporal case,
(15) indicates that ⌫ = O should hold for the spatial ⌃� array
to work as desired, that is, to pass x and q through spatial
all-pass and high-pass filters, respectively. If ⌫ = O, then (15)
becomes

y = x +[
�1
q , (16)

and the <-th element of y is expressed as

H< = G< +
�
@< � 4� 9 q@<�1

�
, (17)

which explicitly shows the quantization noise-shaping charac-
teristic of the spatial ⌃� architecture. The only task remaining
to complete our proposed linear model is to calculate the
power of the equivalent quantization noise. The condition
⌫ = O for the adequate operation of the ⌃� scheme determines
the quantization levels that have to be set. Setting (14) equal
to 1, we obtain the optimum value of U<:

U
¢

<
=

E
⇥
|A< |2

⇤
E [|Re [A<] | + |Im [A<] |]

=
E

⇥
|Re [A<] |2

⇤
E [|Re [A<] |]

. (18)

It is worth noting that (18) is different from

U< = E [|Re [A<] |] , (19)

which leads to the Lloyd-Max one-bit quantizer that minimizes
the mean-squared-error (MSE) between the input and the
output of the quantizer. However, the Lloyd-Max approach
makes the quantization error uncorrelated with the quantizer
output, but not with the input.
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While the expression derived in (18) is useful, it is difficult
to analytically evaluate the expectations in closed form, and
it is not clear how the output level could be tuned using
analog processing in the RF chain (e.g., via an AGC or some
other type of calibration). To address this issue, we use the
assumption that A< is Gaussian inherent in the Bussgang
decomposition to find an approximation for U¢

<
that is easier

to deal with, both for the subsequent mathematical analysis
and from the viewpoint of a hardware implementation. The
validity of the approximation will be apparent in the numerical
examples presented later. If A< is Gaussian, we can write

U
¢

<
=

q
cE

⇥
|A< |2

⇤
2 . (20)

In the discussion below, we show how to express (20) in
terms of the statistics of the array output x, which provides
an analytical solution and clarifies how the quantizer output
levels could be set in a practical setting.

B. Quantization Noise Power

In this section, we calculate the power of the effective
quantization noise and the power of the quantizers’ inputs,
which is needed to properly set the output levels using (20).
With ⌫ = O, (13) becomes

y = r + q. (21)

Since A< and @< are uncorrelated, and using (20), we obtain

E
⇥
|@< |2

⇤
= E

⇥
|H< |2

⇤
� E

⇥
|A< |2

⇤
=

⇣
c

2 � 1
⌘
E

⇥
|A< |2

⇤
. (22)

To determine E
⇥
|A< |2

⇤
, we substitute (21) into (11), so that

r = x �[
�1
\q. (23)

It can be shown that

[
�1
\ = 4� 9 q`�1 , (24)

where4

`�1 =

2666666664

0
1 0
.
.
.

.
.
.

.
.
.

0
.
.
. 1 0

3777777775
. (25)

Moreover, following the same reasoning as in Appendix A
of [5], it can be shown that E

⇥
G<0@⇤

<

⇤
⇡ 0, 8<,<0 2 M =

{1, · · · ,"}. This results in Xqx ⇡ 0. Therefore,

Xr = Xx + `�1Xq`
�

�1 . (26)

Eq. (26) implies that

E
⇥
|A< |2

⇤
=

(
E

⇥
|G< |2

⇤
< = 1

E
⇥
|G< |2

⇤
+ E

⇥
|@<�1 |2

⇤
< > 1

(27)

4Note that `�1 is the spatial domain equivalent of the delay operator I�1

for the z-transform in the time domain.

Substituting (22) into (27) and noting that E
⇥
|A1 |2

⇤
=

E
⇥
|G1 |2

⇤
, we obtain the following recursive equality to cal-

culate E
⇥
|A< |2

⇤
for < > 1:

E
⇥
|A< |2

⇤
= E

⇥
|G< |2

⇤
+

⇣
c

2 � 1
⌘
E

⇥
|A<�1 |2

⇤
. (28)

Let

p6 =
⇥
E

⇥
|j1 |2

⇤
,E

⇥
|j2 |2

⇤
, · · · ,E

⇥
|j" |2

⇤ ⇤
)

, (29)

where 6 can be any element of the set 6 2 {r, x, q}. Then,
using (22) and (28), we have

pr = ⇧ px (30)

pq =
⇣
c

2 � 1
⌘
⇧ px , (31)

where

⇧ =

266666666666664

1 0�
c

2 � 1
�

1
.
.
.

.
.
. 1�

c

2 � 1
�
<

.
.
.

.
.
.

.
.
.

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.�

c

2 � 1
�
"�1 · · ·

�
c

2 � 1
�
< · · ·

�
c

2 � 1
�

1

377777777777775

.

(32)
Equation (30) shows that the calculation of E

⇥
|A< |2

⇤
needed

in (20) can be formulated in terms of the power of the antenna
outputs E

⇥
|G< |2

⇤
, for which simple expressions exist from (1).

This further implies that control of E
⇥
|G< |2

⇤
via an AGC

would allow the quantizer output levels to be set without
feedback from the digital baseband. In the following remark,
we show that, using the optimal quantizer output settings, the
power of the quantization noise does not grow with < despite
the fact that it is propagated from one antenna to the next.

Remark 1. Eq. (31) implies that, by appropriately selecting the
quantizers’ output levels, the quantization noise power does
not increase without bound. In particular, consider the case
where the power of the received signal is constant over the
array elements, i.e., px = ?G1. Then,

E
⇥
|@< |2

⇤
=

⇣
c

2 � 1
⌘ 1 �

�
c

2 � 1
�
<

1 �
�
c

2 � 1
� ?G �����!

<!1

c

2 � 1
2 � c

2
?G ,

(33)
which shows that, in the limit of a large number of antenna
elements, the quantization noise power converges to a constant
value of approximately 1.33 times the input power.

C. Quantization Noise Power Density
In the time domain, it is well-known that sampling a band-

limited signal by a rate # times larger than the Nyquist rate
and down-sampling after quantization can reduce the in-band
quantization noise power by a factor of 1/# and 1/#3 for
standard one-bit and ⌃� modulation, respectively [46]. In this
subsection, we look for a similar behaviour for quantization
across an array in space. More precisely, we want to quantify
how spatial oversampling, i.e., decreasing the antenna spacing,
3/_, (or equivalently, increasing the number of antennas for
space-constrained arrays) can reduce the quantization noise
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power for the in-band angular spectrum. To do so, we define
the quantization noise power density as

d@ (D) ,
1
"

a (D)� X a (D), (34)

where X is the covariance matrix of the quantization noise. To
differentiate the two cases, we denote the covariance matrix
of the quantization noise for standard one-bit quantization as
Xq1 , and the covariance of the ⌃� quantization noise as Xq⌃�

.
Expressions for these covariance matrices will be derived later
in this subsection. Hence, the normalized received quantization
noise power over some angular region, ⇥, is given by5

P@ =
1
2X

π
X

�X
d@ (D) 3D, (35)

where X = sin
⇣
⇥
2

⌘
. Next we find P@ for standard one-bit and

⌃� quantization.
1) One-bit Quantization: Unlike [5], for standard one-bit

quantization, we choose the quantizer output levels as U< =q
cE

⇥
|G< |2

⇤
/2 so that H< = Q (G<) = G<+@<. This causes no

loss of generality for standard one-bit quantization, since the
value of the quantizer output has no impact on the performance
of the resulting system. Therefore, the covariance matrix of the
quantization noise can be written as

Xq1 = Xy � Xx , (36)

where the arc-sine law [47], [48] is used to obtain

Xy = diag (Xx)
1
2 sin�1 (⌥) diag (Xx)

1
2 , (37)

and

⌥ = diag (Xx)�
1
2 Re (Xx) diag (Xx)�

1
2 +

9diag (Xx)�
1
2 Im (Xx) diag (Xx)�

1
2 . (38)

Note that the arc-sine in (37) is applied separately to each
element of the matrix argument, and also separately to the
real and imaginary parts of the matrix elements.

From [5], we have that diag
�
Xy

�
= c

2 diag (Xx). Since the
off-diagonal elements of ⌥ are small, we use the approxima-
tion sin�1 (G) ⇡ ZG, where Z > 1, to obtain

Xq1 ⇡ (Z � 1) Xx +
⇣
c

2 � Z
⌘

diag (Xx) . (39)

Moreover, from (1), Xx becomes

Xx =
 ’
:=1

?: V:

1
!

!’
✓=1

a (D:✓) a (D:✓)� + f2
=
O, (40)

where for ! � 1, D:✓ can be taken as a random variable
uniformly distributed in [�X, X]. That is,

1
!

!’
✓=1

a (D:✓) a (D:✓)� ⇡ E
⇥
a (D) a (D)�

⇤
=

1
2X

π
X

�X
a (D) a (D)� 3D. (41)

5To simplify the calculation of the quantization noise power, we assume
without loss of generality that the ⌃� array is steered to broadside (\ = 0).

Therefore,

Xx =
 ’
:=1

?: V:

1
2X

π
X

�X
a (D) a (D)� 3D + f2

=
O. (42)

Now we are ready to calculate the standard one-bit quanti-
zation noise power, P@1 .

Proposition 1. The normalized quantization noise power for
standard one-bit quantization is

P@1 = (Z � 1) ⇥"
f

2
=
+ 1
"

 ’
:=1

?: V:

"�1’
==0

"�1’
<=0

sinc2
✓
2c 3
_

(< � =) X
◆#

+

c

2 � Z
"

Tr [Xx] , (43)

where sinc (G) , sin(G)
G

.

Proof. Plugging (42) into (39) results in

P@1 = (Z � 1) ⇥
266664
f

2
=
+ 1

4X2
"

 ’
:=1

?: V:

X∫
�X

��a (E)� a (D)
��2
3D3E

377775
+

c

2 � Z
"

Tr [Xx] . (44)

Using Eq. (10) in [49] yields

1
4X2

X∫
�X

��a (E)� a (D)
��2
3D3E = E

h��a (E)� a (D)
��2i =

"�1’
==0

"�1’
<=0

sinc2
✓
2c 3
_

(< � =) X
◆
, (45)

which completes the proof. ⌅

Remark 2. Consider the case that " � 1. Then, from (43)

P@1

(a)⇡ (Z � 1) f2
=
+

(Z � 1)
"

1
2X

✓
3

_

◆�1
� 1

4c2
X

2

✓
3

_

◆�2
5

✓
3

_

◆#
 ’
:=1

?: V:

+
⇣
c

2 � Z
⌘  ’
:=1

?: V: , (46)

where 5 (G) , 2
"

Õ
"�1
==1

sin2 (2cGX=)
=

and in (0) we have used
Eq. (14) of [49]. Equation (46) states that, for standard one-
bit quantization, increasing the spatial oversampling in a large
antenna array (3/_ ! 0) increases the quantization noise
power proportional to (3/_)�1.

Remark 3. Consider the fixed-aperture case where 30 = " 3

_
is

a constant (i.e., the antenna spacing decreases proportionally
to the increase in the number of antennas). Then, from (43)

P@1 �����!
"!1

(Z � 1)
"
f

2
=
+ "

 ’
:=1

?: V:

#
+
⇣
c

2 � Z
⌘  ’
:=1

?: V: .

(47)
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Equation (47) states that, for standard one-bit quantization,
increasing the number of antennas for an array with a fixed
aperture, 30, increases the quantization noise power linearly
with " .

2) ⌃� Quantization: From (16), the covariance of the
quantization noise for the ⌃� architecture is Xq⌃�

=
[

�1
Xq[

�� . We derive an expression for the normalized
quantization noise power of the ⌃� array, P@⌃� , in the next
proposition.

Proposition 2. The quantization noise power for spatial ⌃�
quantization is

P@⌃� =
2
"

⇣
Tr

⇥
Xq

⇤
� f2

@"

⌘ 
1 � sinc

✓
2c 3
_

X

◆�
+
f

2
@"

"

, (48)

where f2
@"

= E
⇥
|@" |2

⇤
.

Proof. Substituting Xq⌃�
= E

⇥
[

�1
qq

�
[

�� ⇤
into (34) leads

to
P@⌃� =

1
"

1
2X

π
X

�X
E

h��a (D)� [
�1
q

��2i
3D. (49)

We set q = 0 due to the assumption of D 2 [�X, X] in the
definition of the quantization noise power, and we note that

[
�1 = O" � `�1 . (50)

Then

[
�1
q = (O" � `�1) q =

266666664

@1
@2 � @1

.

.

.

@" � @"�1

377777775
. (51)

In addition, from (23), and the fact that Xqx ⇡ 0, it can be
readily shown that E

⇥
@<@

⇤
<±1

⇤
⇡ 0. Hence, for the sake of

analysis, we approximate E
⇥
@<@

⇤
<

0
⇤
⇡ 0, 8< < <0 2 M, and

therefore Xq = diag
⇣
pq

⌘
. Consequently,

E
h��a (D)� [

�1
q

��2i =
���1 � 4 92c 3

_ D

���2 "�1’
<=1
E

⇥
|@< |2

⇤
+ E

⇥
|@" |2

⇤
=

4
⇣
Tr

⇥
Xq

⇤
� f2

@"

⌘
sin2

✓
c

3

_

D

◆
+ f2

@"
. (52)

By integrating (52) and using some algebraic manipulation,
we arrive at (48). ⌅

Remark 4. Consider the case that " � 1. Then, from (48)

P@⌃�
(a)⇡ 4

3

c

2 � 1
2 � c

2
c

2
X

2
✓
3

_

◆2
?G , (53)

where in (0) we have used sinc (G) ⇡ 1 � G
2

6 and

1
"

⇣
Tr

⇥
Xq

⇤
� f2

@"

⌘
⇡

c

2 � 1
2 � c

2
?G (54)

for " � 1 and assuming px = ?G1. Equation (53) states
that, by increasing the spatial oversampling (3/_ ! 0), the
quantization noise power for the ⌃� array tends to zero
proportional to (3/_)2. This result is in contrast to that for

the standard one-bit quantization power, which was shown
earlier to increase proportional to (3/_)�1. Hence, the spatial
⌃� architecture brings about an oversampling gain of (3/_)3

compared to the standard one-bit architecture. While this is a
promising result, as mentioned earlier the practical limitations
of placing antenna elements close to each other prevent us
from achieving a high degree of spatial oversampling.

Remark 5. Consider the case that 30 = "
3

_
is a constant.

Then, from (48)

"
2P@⌃� �����!

"!1
4
3

c

2 � 1
2 � c

2
c

2
X

2
3

2
0 ?G . (55)

Equation (55) states that, for spatial ⌃� quantization, increas-
ing the number of antennas for an array with a fixed aperture,
30, decreases the quantization noise power proportional to
1/"2. Hence, the spatial ⌃� architecture brings about an
oversampling gain of "3 compared to the standard one-bit
architecture.

In the next section, we study the spectral efficiency of
a massive MIMO system with spatial ⌃� processing and
discuss the impact of the spatial ⌃� architecture on the system
performance.

V. SPECTRAL EFFICIENCY

In this section, we study the SE of a massive MIMO
system with spatial ⌃� processing. We consider maximum
ratio combining (MRC) and zero-forcing (ZF) receivers. We
derive here an approximation for the SE of the system with
an MRC receiver, and evaluate the SE for the ZF receiver
in the next section, numerically. We first present the case
where perfect channel state information (CSI) is assumed to
be available at the BS, and then we discuss the impact of
imperfect CSI on the system performance at the end of the
section.

From (1) and (16), the received signal at a BS with a ⌃�
architecture can be modeled as

y = MV
1
2 s + n +[

�1
q. (56)

Denoting the linear receiver by ], we have

ŝ = ]
�

MV
1
2 s +]

�

n +]
N
[

�1
q , (57)

and the :th element of ŝ is given by

B̂: =
p
?:w

�

:
g
:
B: +

 ’
8=1,8<:

p
?:w

�

:
g
8
B8+

w
�

:
n + w

�

:
[

�1
q, (58)

where w: is the :th column of ]. We assume the BS
treats w

�

:
g
:

as the desired channel and the other terms of
(58) as worst-case Gaussian noise when decoding the signal.
Consequently, a lower bound for the ergodic achievable SE at
the :th user can be written as [50]

S: = E
"
log2

 
1 +

?:

��w�
:
g
:

��2
⌦

!#
, (59)
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where

⌦ =
 ’

8=1,8<:
?:

��w�
:
g
8

��2 + f2
=
kw: k2 + w

�

:
[

�1
Xq[

��
w: . (60)

A. MRC Receiver
For the case of an MRC receiver, ] = M. The following

proposition presents an approximation for the achievable SE
of a massive MIMO system with spatial ⌃� processing and
an MRC receiver.

Proposition 3. For a massive MIMO system employing a
spatial ⌃� architecture and an MRC receiver, the SE of the
:th user assuming perfect CSI is given by eq. (61) shown at
the top of the next page, where ⌃8: , 1

!
G
�

8
G: .

Proof. From [50], an approximation for (59) can be calculated
as

S: ⇡ log2
©≠≠
´
1 +

?:E
h��w�

:
g
:

��2i
E [⌦]

™ÆÆ
¨
. (62)

By setting w: = g
:

and using Lemma 2 of [51] and
Lemma 1 of [52], the expected values of the desired signal,
interference, and thermal noise can be readily calculated. For
the quantization noise term, note that

[
�1 = O" � 4� 9 q`�1. (63)

Therefore,

[
�1
q =

�
O" � 4� 9 q`�1

�
q =

266666664

@1
@2 � 4� 9 q@1

.

.

.

@" � 4� 9 q@"�1

377777775
. (64)

In addition, the :th user channel vector can be written as

g
:
=

r
V:

!

!’
;=1

⌘:;a (\:;), (65)

where ⌘:; is the ;th element of h: . Hence,

E
h��g�

:
[

�1
q

��2i =
V:

!

E

266664

�����
!’
✓=1

⌘:;

�
1 � 4� 9 qI:;

� "�1’
<=1

@<I
<�1
:;

+ @" I"�1
:;

�����
2377775

, (66)

which, after some algebraic manipulation, leads to (61) and
the proof is complete. ⌅

Remark 6. The noise shaping characteristic of the spatial
⌃� architecture is explicitly manifested in (61). A similar
characteristic is observed in [41] for ⌃� precoding. It shows
the importance of the design parameter q which should be
chosen to minimize G = 1

!

Õ
!

✓=1 sin2
⇣
q�2c 3

_ sin(\k✓ )
2

⌘
for all

users. By writing the steering angle as q = 2c 3
_

sin (\), we
have

G =
1
!

!’
✓=1

sin2
✓
c

3

_

⇣
sin (\) � sin (\:✓)

⌘◆
. (67)

Eq. (67) indicates that G could be made arbitrarily small
by decreasing the relative antenna spacing 3/_ (the spatial
oversampling gain) or sin (\) � sin (\:✓) (the angle steering
gain). However, physical constraints on the antenna spacing
and larger angular spreads, ⇥, limit the lower bound on G.
For the case that ! � 1, sin (\:✓) = D:✓ can be taken as
a random variable uniformly distributed in [X1, X2] where
X1 = sin

⇣
\0 � ⇥

2

⌘
and X2 = sin

⇣
\0 + ⇥

2

⌘
. Hence,

G ⇡ 1
X2 � X1

π
X2

X1

sin2

 
q � 2c 3

_
D

2

!
3D =

1
2 + 1

4c

✓
3

_

◆�1 1
X2 � X1

(10sin (q) � 11cos (q)) , (68)

where
10 = cos

✓
2c 3
_

X2

◆
� cos

✓
2c 3
_

X1

◆

11 = sin
✓
2c 3
_

X2

◆
� sin

✓
2c 3
_

X1

◆
.

In this case, the optimal value of the steering angle that
minimizes G can be simply derived as

q
¢ =

(
0 X2 = �X1

�tan�1
⇣
10
11

⌘
otherwise

(69)

which indicates that the optimal steering angle is dependent
on X1, X2, and the relative antenna spacing 3/_.

B. ZF receiver

For the ZF receiver, ] = M

⇣
M
�

M

⌘�1
. After substituting

this for ] in (62), the SE achieved for the :th user with the
⌃� architecture and ZF receiver can be written as in (70) at
the top of the next page. Although (70) does not provide direct
insight into the effect of the shaped quantization noise on the
SE, in Section VI we numerically evaluate this expression
and show the superior performance of the ⌃� architecture
compared with standard one-bit quantization.

VI. NUMERICAL RESULTS

In this section, we numerically evaluate the SE performance
of ⌃� massive MIMO systems in various scenarios. We
assume static-aware power control in the network [53] so that
?: = ?0/V: . In all of the cases considered, unless otherwise
noted, we assume " = 100 antennas,  = 10 users, and
an angular spread of ⇥ = 40� centered at \0 = 30�. We
assume the same DoAs for all users, i.e., G: = G, 8: , drawn
uniformly from the interval [10�, 50�], which corresponds to
D = sin(\) 2 [0.17, 0.77], and the steering angle of the ⌃�
array is set to q = 2c 3

_
sin (\0). The SNR is defined to be

SNR , ?0
f

2
=

. We further assume CSCG symbols and 104 Monte
Carlo trials for the simulations.

Fig. 3 shows the simulated and analytically derived quanti-
zation noise power density, i.e., d@ (D) , D 2 [�1, 1], for ⌃�
and standard one-bit quantization when the relative antenna
spacing is 3 = _/4. We see that the quantization noise power
for the ⌃� array is substantially lower over the angles where
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S: ⇡ log2
©≠≠
´
1 +

?: V:

⇣
|Tr [⌃:: ] |2 + Tr

⇥
⌃2
::

⇤ ⌘
Õ
 

8=1,8<: ?8V8Tr
⇥
⌃8:⌃�

8:

⇤
+ f2

=
Tr [⌃:: ] + 4

!

�
Tr

⇥
Xq

⇤
� f2

@"

� Õ
!

✓=1 sin2
⇣
q�2c 3

_ sin(\k✓ )
2

⌘
+ f2

@"

™ÆÆ
¨

(61)

S: = E

266666664
log2

©≠≠≠≠
´
1 + ?:

kw: k2
f

2
=
+

⇣
M
�

M

⌘�1
M
�

[
�1
Xq[

��
M

⇣
M
�

M

⌘�1
�
::

™ÆÆÆÆ
¨

377777775
(70)
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Fig. 3. Spatial spectrum of the quantization noise for the ⌃� and standard
one-bit architectures when ! = 50, 3 = _/4, and SNR = 0 dB.

the users are present, while the effect is the opposite for
standard one-bit quantization – the quantization noise is higher
for angles where the amplitude of the received signals is larger.
We also observe that there is excellent agreement between the
simulations and our theoretically derived expressions for both
cases. Note that the careful design of the quantizer output
levels is a critical aspect for achieving the desired ⌃� noise
shaping characteristic shown here.

The impact of spatial oversampling on the shape of the
quantization noise spectrum is illustrated in Fig. 4. We see
from the figure that, as discussed in Remarks 2, the quan-
tization noise power for the standard one-bit ADC architec-
ture grows as 3/_ decreases. Analogously to temporal ⌃�
modulation where increasing the sampling rate helps to push
the quantization noise to higher frequencies and widen the
quantization-noise-free band, we can reduce the quantization
noise power over wider angular regions by placing the antenna
elements of the array closer together. For example, when
3 = _/2, the ⌃� quantization noise power is below that of

-1 -0.5 0 0.5 1
-10

-5

0

5

10

15

20

0.2 0.4 0.6 0.8

-5
0
5

10
15

Fig. 4. Spatial spectrum of the quantization noise for the ⌃� and standard one-
bit architectures for different antenna spacings when ! = 50 and SNR = 0 dB.

the standard one-bit quantizer over a beamwidth of 40�. This
beamwidth increases to about 80�, 150�, and 180� for 3 = _/4,
3 = _/8, and 3 = _/16, respectively. Mutual coupling will
impact these results as 3 decreases, but both the standard one-
bit and ⌃� approaches would be expected to degrade.

In Fig. 5, we compare the SE performance of ⌃� and
standard one-bit quantization for the case of an MRC receiver.
It is clear that the derived theoretical SE expression in (61)
very closely matches the simulated value of the expression in
(59). The one-bit ⌃� implementation achieves a significantly
increased SE compared with standard one-bit quantization,
and performs nearly identically to an MRC receiver with
infinite resolution ADCs. It should be emphasized that this
performance gain is achieved without paying a significant
penalty in terms of power consumption (as with mixed-ADC
architectures) or complicated processing (as required by non-
linear receivers).

In Fig. 6 and 7, we numerically evaluate the SE when the
ZF receiver is employed, using Eq. (70). The SE improvement
of ⌃� processing is much greater than for the case of MRC.
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Fig. 5. SE versus SNR for MRC receiver with perfect CSI, ! = 50, and
3 = _/4.
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Fig. 6. SE versus SNR for ZF receiver with and without channel estimation
error. ! = 20, 3 = _/4.

For example, at SNR = 0 dB, about a 50% improvement in
SE can be achieved by the spatial ⌃� architecture compared
with standard one-bit quantization, which confirms its ability
to provide high SE with a simple architecture and low power
consumption.

The effect of channel estimation error on the performance of
the algorithms is also shown in Fig. 6 for the ZF receiver. For
these results, we used a least squares (LS) channel estimator
for each of the algorithms. In this approach, the channel
estimate, M̂, becomes

M̂ =
1

[

p
?0

VG_�⇤
, (71)

where [ is the training length, VG = GG
† is the orthogonal

projection onto G, _ 2 C"⇥[ is the received data during the
channel estimation phase, and � 2 C[⇥ is the orthogonal
pilot matrix satisfying ��� = [O. We set [ =  and choose
� from among the columns of the discrete Fourier transform
(DFT) matrix. Note that for the case of high-resolution quan-
tization, _ =

p
?0M�) + T, where the elements of T are

independent CN (0, 1) random variables. For standard one-bit
and ⌃� quantization, we pass _ through the corresponding
quantization, and plug the output into (71) for channel es-
timation. Fig. 7 shows the performance of the ZF receiver
with and without perfect CSI versus the number of antennas.
The presence of imperfect CSI obviously degrades all of the
algorithms, but we see that the ⌃� architecture provides a way
to successfully bridge the performance gap between standard
one-bit and high-resolution quantization with only a minimal
increase in hardware complexity.

VII. CONCLUSION

In this paper, we studied the performance of massive MIMO
systems employing spatial one-bit ⌃� quantization. Using an
element-wise Bussgang approach, we derived an equivalent
linear model in order to analytically characterize the spectral
efficiency of a massive MIMO base station with a ⌃� array,
and we compared the results with the performance achieved
by an array that employs standard one-bit quantization. Our
results demonstrated that the spatial ⌃� architecture can scale
down the quantization noise power proportional to the square
of the spatial oversampling rate. This can be interpreted as
scaling down the quantization noise power proportional to
the inverse square of the number of antennas at the BS for
space-constrained arrays. This result gains more importance
by noting that in standard one-bit quantization, the quanti-
zation noise power grows proportional to the inverse of the
spatial oversampling rate, or equivalently, proportional to the
number of antennas at the BS in space-constrained arrays.
Furthermore, it was shown how this capability allows the
spatial ⌃� architecture to bridge the SE gap between infinite
resolution and standard one-bit quantized systems. For the ZF
receiver, the spatial ⌃� architecture can outperform standard
one-bit quantization by about 50%, and achieve almost the
same performance as an infinite resolution system for the MRC
receiver. While these results were obtained by assuming the
availability of perfect CSI at the BS, we also showed that the
spatial ⌃� architecture is able to alleviate the adverse impact
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of quantization noise in the presence of channel estimation
error.
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