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ABSTRACT

Massive MIMO using low-resolution digital-to-analog convert-
ers (DACs) at the base station (BS) is an attractive downlink ap-
proach for reducing hardware overhead and for reducing power con-
sumption, but managing the large quantization noise effect is a chal-
lenge. Spatial Sigma-Delta (Σ∆) modulation is a recently emerged
technique for tackling the aforementioned effect. Assuming a uni-
form linear array at the BS, it works by shaping the quantization
noise as high spatial-frequency, or angle, noise. By restricting the
user-serving region to be within a smaller angular region, the quan-
tization noise incurred by the users can be effectively reduced. We
previously showed that, under the one-bit DAC case, the quantiza-
tion noise can be satisfactorily contained using a simple first-order
Σ∆ modulation scheme. In this work we study the potential of spa-
tial Σ∆ modulation in the two-bit DAC case and under second-order
modulation. Our empirical results indicate that second-order spatial
Σ∆ modulation provides better quantization noise suppression.

Index Terms— spatial Sigma-Delta modulation, massive MIMO,
low-resolution DACs

1. INTRODUCTION

Recently, coarsely quantized massive MIMO signaling methods
have generated significant interest. These methods allow us to
employ low-resolution analog-to-digital convertors (ADCs)/digital-
to-analog convertors (DACs) and power-efficient power amplifiers
(PAs) in massive MIMO systems. As a result, the hardware cost
and power consumption at the base station (BS) are tremendously
reduced.

There have been a variety of studies on signal processing tech-
niques to combat the coarse quantization for channel estimation and
signal detection in uplink transmission [1–7] and more recently for
downlink precoding [8–15]. Early studies directly apply the conven-
tional linear detection/precoding techniques, e.g., zero-forcing (ZF)
detector/precoder, under low-resolution ADCs/DACs. The research
interest in those studies lies in characterizing the subsequent quanti-
zation noise effect; see [1,4,5] for uplink transmission and [8,10] for
downlink precoding. More recently, the research focus has shifted
to direct designs of the decoder and precoder to address the im-
pact of coarse quantization. In the uplink, approximate maximum-
likelihood detectors are studied in [2, 3]; in the downlink, direct
one-bit precoder designs, rather than quantizing the output of an ex-
isting linear precoder, are proposed under different criteria such as
mean-square-error [8, 11, 16], constructive interference [13, 17] and
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symbol-error-probability [12,14,15]. These approaches were empir-
ically shown to yield improved performance, but they often involve
complicated optimization.

Spatial Sigma-Delta (Σ∆) modulation has recently been pro-
posed to handle the aforementioned tasks. We should mention that
temporal Σ∆ modulation is a well-known quantization technique for
temporal signals; see [18,19]. What we are interested is its potential
in space for massive MIMO systems. Using a uniform linear array
at the BS and feedback loops among adjacent antennas, the spatial
Σ∆ modulation quantizes the signals in such a way that the quan-
tization noise is pushed to high spatial frequencies, or angle. Thus
the signals for users lying in the low spatial frequency region are
less affected by the quantization noise. A number of studies have
been conducted to show the efficacy of spatial Σ∆ modulation on
signal detection [20–23], channel estimation [24] and spectral effi-
ciency [25] in the uplink. The idea, however, is rarely exploited in
the downlink [26, 27]. Our very recent study considers spatial Σ∆
modulation for massive MIMO downlink precoding [28]. Both the
analysis and simulation results show that the first-order spatial Σ∆
modulation can effectively mitigate the quantization noise when the
users of interest lie in a sector near the broadside of the array. Also,
spatial Σ∆ modulation favors large numbers of antennas as in mas-
sive MIMO and closely placed antenna elements. Simple precoding
designs such as ZF show competitive performance compared to the
existing designs, including those that employ sophisticated optimiza-
tion.

The promising results of the first-order spatial Σ∆ modulation
motivate us to further question how its higher-order generalizations
work. We answer this question by investigating second-order spatial
Σ∆ modulation for multiuser massive MIMO downlink precoding.
We show that second-order spatial Σ∆ modulation is more pow-
erful in mitigating the quantization noise near the broadside. Our
study also suggests that we need two-bit DACs, rather than one-bit
DACs in the first-order case, to ensure safe (or no-overload) oper-
ation for the second-order spatial Σ∆ modulation. We extend the
Σ∆ ZF design to the second-order case and show its connections
with first-order Σ∆ ZF. Moreover, empirical study is conducted for
overloading, e.g., employing one-bit DACs for second-order Σ∆ ZF.
Interestingly, numerical evidence suggests that overloading may en-
hance the performance of Σ∆ ZF, which provides new insights into
the practical use of Σ∆ ZF.

2. PROBLEM SETTINGS

Consider the downlink transmission of a multiuser massive MISO
system. After propagating over a frequency-flat fading channel, the
received signal at the user side can be modeled by

yi = hTi u + vi, i = 1, . . . ,K, (1)
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where yi is the received signal at user i; hi ∈ CN is the downlink
channel of user i; u ∈ CN is the transmit signal at the BS; vi is
circular complex Gaussian noise with mean 0 and power σ2

v , i.e,
vi ∼ CN (0, σ2

v); N and K denote the number of antennas at the
BS and the number of users, respectively. For simplicity, we will
focus our discussion on the single-path angular channel model with
a uniform linear antenna array at the BS:

hi = αi · a(θi), (2)

where αi ∈ C is the complex channel gain; θi is the angle of depar-
ture from the BS to user i;

a(θ) = [1, z−1, . . . , z−(N−1)]T , z = ej2π
d sin(θ)
λ ,

is the spatial signature vector; d is the inter-antenna spacing and λ is
the carrier wavelength.

We consider unicast transmission, where the BS transmits sepa-
rate data streams for each user. Our design seeks to achieve

hTi u ≈ cisi, (3)

where si is the information symbol for user i drawn from a PSK
constellation S; ci > 0 is a scaling factor. If the BS is equipped with
l-bit DACs, the transmit signal u could take the form

u = βlx, x = <{x}+ j={x}, (4)

where
<{x},={x} ∈ XN ;

X , {−2l + 1,−2l + 3, . . . , 2l − 3, 2l − 1}; βl > 0 is chosen to
satisfy the total power constraint P assuming that the elements are
uniformly distributed on X . For example, in the one-bit DAC case,

X = {−1, 1}, β1 =
√
P/(2N); (5)

and in the two-bit DAC case,

X = {−3,−1, 1, 3}, β2 =
√
P/(10N). (6)

The quantization noise incurred by low-resolution DACs poses
great challenges in designing x (or u). In such a scenario, many of
the existing works address this issue by formulating the precoding
design as an optimization problem with integer variables. Herein, we
resort to a different approach – spatial Σ∆ modulation – to alleviate
the quantization noise power experienced by the targeted users.

3. REVIEW OF FIRST-ORDER Σ∆ MODULATION

This section will give a brief review of the basic idea of first-order
Σ∆ modulation and its use in massive MIMO downlink precod-
ing [28].

Fig. 1: System diagram of the first-order Σ∆ modulation.

Fig. 1 shows the system diagram of the first-order Σ∆ modula-
tor. Given an input signal x̄ ∈ RN , the input-output relation of the
first-order Σ∆ modulator is expressed as

xn = x̄n + qn − qn−1, n = 1, . . . , N, (7)

where xn = sign(bn) with bn = bn−1+(x̄n−xn−1); qn = xn−bn
is the quantization noise. Here, the DACs applied on bn are one-bit.
The corresponding system response is given by

X(z) = X̄(z) + (1− z−1)Q(z), (8)

where X(z) =
∑∞
n=0 xnz

−n denotes the z-transform. The re-
sponse 1 − z−1 corresponds to a simple high-pass filter, and thus
the quantization noise is shaped towards the high frequency region.
At the same time, by keeping x̄ in the low-frequency region, the
impact of the quantization noise on x̄ can be mitigated.

As a key remark, to avoid unbounded quantization noise due to
the feedback loop, the system should not be overloaded [18, 19].
Technically speaking, the quantization error amplitude should be
limited to be within half a quantization step size, i.e., |qn| < 1.
This will be safely guaranteed that the input signal satisfies |x̄n| ≤ 1
[18,28]. When the system is not overloaded, it is common to assume
that the quantization noise qn’s are independent and identically dis-
tributed (i.i.d.) and uniformly distributed on [−1, 1] [18].

Σ∆ modulation has been widely studied for quantizing tempo-
ral data. Our interest, however, lies in its use in space for massive
MIMO systems under (2). In the spatial domain, spatial frequency
corresponds to spectral frequency in the temporal domain. Spatial
Σ∆ modulation pushes the quantization noise towards the high spa-
tial frequency region. Thus users within a sector near broadside ben-
efit most from the Σ∆ modulation [28]. To put this into context,
with a little abuse of notation, let x̄ ∈ CN be the precoded signal to
be Σ∆ modulated and let x be the Σ∆ modulator output used as the
transmit signal at the BS in (4). We apply first-order Σ∆ modulation
separately to the real and imaginary parts of x̄. This leads to

yi =

√
P

2N
hTi x̄ + wi, wi =

√
P

2N
hTi (q − q−) + vi, (9)

where q = [q1, . . . , qN ]T , q− = [0, q1, . . . , qN−1]T ; wi is approx-
imated as a zero-mean Gaussian noise with power

σ2
w,i =σ2

q,i + σ2
v, (10)

where σ2
q,i ≈ 4|αi|2P

3

∣∣sin (πd
λ

sin(θi)
)∣∣2 is the effective quantiza-

tion noise power; see [28]. We see that σ2
q,i increases with the user

angle |θi|.
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Fig. 2: Angular power spectrums of first- and second-order Σ∆ ZF.

To provide intuition, Fig. 2 shows the angular power spectrum
E[‖a(ψ)x‖2] over the angular range [−90◦, 90◦] for spatial Σ∆
modulation. In Fig. 2, a BS with N = 512 antennas with spacing
d = λ/4 serves K = 3 users at angles −5◦, 0◦ and 5◦; the channel
gains are |αi| = 1 for all i and phases are i.i.d. uniformly distributed
on [−π, π]. The background noise power is zero, i.e., σ2

v = 0. The
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blue line shows the angular power spectrum of the first-order Σ∆
ZF precoder, which will be specified soon. The angular power spec-
trum consists of three spikes at the user angles and a bowl-shaped
quantization noise, as the theoretical results in (9) and (10) predict.

The first-order Σ∆ ZF precoder is designed as [28]

x̄ = γA†Ds, (11)

where A = [a1, . . . ,aK ] and ai = a(θi); (·)† is the Moore–Penrose
inverse; D = Diag(σw,1α

∗
1/|α1|2, . . . , σw,Kα∗K/|αK |2); s =

[s1, . . . , sK ]T ; γ =1/‖A†Ds‖IQ−∞; ‖ · ‖IQ−∞ is defined as

‖x‖IQ−∞ = max{|<(x1)|, . . . , |<(xN )|, |=(x1)|, . . . , |=(xN )|}.

The choice of γ ensures that the first-order Σ∆ modulators will not
be overloaded, i.e., |<{x̄}|, |={x̄}| ≤ 1. The first-order Σ∆ ZF
(11) also ensures that the effective SNRs of all the users are identical
and given by

SNRi,eff =
P

2N
γ2, i = 1, . . . ,K. (12)

It can be shown that

SNRi,eff ≥ L ,
PN |αk|2λ2

min(R)

2K3
(

4|αk|2P
3

∣∣sin (πd
λ

sin(θk)
)∣∣2 + σ2

v

) , (13)

where R = AAH/N and λmin(R) is the smallest singular value
of R; k = arg max

i=1,...,K
σw,i/|αi|; see [28]. It is interesting to see

that the effective SNRs increase at least linearly with the number of
transmit antennas at the BS. Thus, Σ∆ ZF is favorable in massive
MIMO scenarios.

4. SECOND-ORDER Σ∆ MODULATION

Fig. 3: System diagram of the second-order Σ∆ modulation.

In this section, we investigate second-order spatial Σ∆ modula-
tion. The system of interest is shown in Fig. 3, and can be mathe-
matically expressed as

an = an−1 + (x̄n − xn−1), bn = bn−1 + (an − xn−1), (14)

where xn = Q(bn) for some quantizer Q, which will be specified
later. At the initial stage,

a−1 = a0 = b−1 = b0 = x−1 = x0 = 0.

Consequently, from (14) the end-to-end relation is given by

xn =x̄n + qn − 2qn−1 + qn−2, (15)

or, in the z-transform domain,

X(z) = X̄(z) + (1− z−1)2Q(z). (16)

Here, the high-pass noise-shaping factor (1 − z−1)2 is of higher
order compared to first-order Σ∆ modulation (8). Thus the second-
order Σ∆ modulation is stronger in shaping the quantization noise
to high spatial frequencies. In addition, it is generally believed that
the quantization noise of higher-order Σ∆ modulation can be more
accurately characterized as i.i.d. uniform noise [18].

Similar to the first-order case, the amplitude of the input x̄
should be controlled such that the second-order Σ∆ modulator will
not be overloaded. This can be guaranteed by the following:

Fact 1 Consider the second-order Σ∆ modulator in (15). If the
input signal x̄ satisfies |x̄| ≤ 1, and the quantizerQ is given by

Q(x) =


−3, if − 4 ≤ x < −2

−1, if − 2 ≤ x < 0

1, if 0 ≤ x < 2

3, if 2 ≤ x ≤ 4,

(17)

then the second-order Σ∆ modulator in (15) will not overload, i.e.,
qn ∈ [−1, 1] for all n. Moreover, if one-bit DACs are employed as
the quantizer Q, there always exists a signal x̄ with |x̄| ≤ 1 that
will overload the second-order Σ∆ modulator.

The proof of Fact 1 follows the same spirit as in the first-order
case [18,28]. Fact 1 suggests that 4-level (two-bit) DACs are needed
to avoid overloading the second-order Σ∆ modulator. More gener-
ally, one can show that an M -bit DAC is sufficient to prevent over-
loading for an M th-order Σ∆ modulator. While higher modulator
orders can provide a better noise shaping, we suggest that the first-
and second-order Σ∆ modulators can already provide reliable per-
formance.

Applying the second-order Σ∆ modulation (15) in space to the
downlink model (1) leads to

yi =

√
P

10N
hTi x̄ + w̃i,

w̃i =

√
P

10N
hTi (q − 2q− + q=) + vi,

(18)

where q= = [0, 0, q1, . . . , qN−2]T . To avoid notational overlap, we
will use the notation ·̃ to denote the variables under second-order Σ∆
modulation, e.g. w̃i. Assuming qn is an i.i.d. uniform sequence, the
effective noise power of w̃i is given by

σ̃2
w,i =σ̃2

q,i + σ2
v, (19)

where σ̃2
q,i ≈ 16|αi|2P

15

∣∣sin (πd
λ

sin(θi)
)∣∣4 is the effective quantiza-

tion noise power.
In the same vein as (11)-(13), we can design a ZF precoder for

second-order Σ∆ modulation:

x̄ = γ̃A†D̃s, (20)

where D̃ = Diag(σ̃w,1α
∗
1/|α1|2, . . . , σ̃w,Kα∗K/|αK |2) and γ̃ =

1/‖A†D̃s‖IQ−∞. Again, the effective SNR for all users is the
same and given by

S̃NRi,eff =
P

10N
γ̃2, i = 1, . . . ,K, (21)

which can be lower-bounded by

S̃NRi,eff ≥ L̃ ,
PN |αk̃|

2λ2
min(R)

10K3
(
16|α

k̃
|2P

15

∣∣sin (πd
λ

sin(θk̃)
)∣∣4+ σ2

v

) , (22)
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where k̃ = arg maxi=1,...,K σ̃w,i/|αi|. As in the first-order case,
the effective SNR increases linearly with the number of antennas N
at the BS.

Remark 1 An interesting question to consider is when does the
second-order Σ∆ ZF outperform the first-order approach. Implica-
tions can be obtained by comparing the effective SNR lower bounds
L and L̃ in (13) and (22). By assuming |α1| = . . . = |αK | = α, it
can be verified that L ≤ L̃ when the largest angle θj satisfies

λ

πd
arcsin

( 1

2
√

2

√
1− p

)
≤| sin(θj)|≤

λ

πd
arcsin

( 1

2
√

2

√
1 + p

)
,

(23)

where p =
√

1− 48σ2
v

|α|2P given σ2
v ≤ |α|2P/48; j = arg max

i=1,...,K
|θi|.

Eqn. (23) implies that the second-order Σ∆ ZF will outperform the
first-order Σ∆ ZF when 1) the background noise power σ2

v is suf-
ficiently low (or when the SNR is high); and 2) when the the user
angles are restricted to an interval near broadside. In the limiting
case σ2

v → 0, p→ 1, Eqn. (23) reduces to

sin(θj) ∈
[
− λ

6d
,
λ

6d

]
.

For the example in Fig. 2 where d=λ/4, the second-order Σ∆ would
be preferred when the user angles are restricted to [−41.8◦, 41.8◦].

Remark 2 Fact 1 specifies the theoretical no-overload condition of
second-order Σ∆ modulation. However, the result may be conser-
vative. In practice, a mild amount of overloading may not lead to
quantization noise growth. It is interesting to explore the impact of
overloading on second-order Σ∆ modulation. What will happen if
we replace the two-bit DACs with one-bit DACs? What if we pur-
posely violate the non-overload condition by feeding the modulator
signals with amplitudes larger than that suggested by Fact 1? These
questions will be studied by simulations in the next section.

5. SIMULATION RESULTS

This section compares the performance of the second-order Σ∆ ZF,
the first-order Σ∆ ZF and the direct quantized ZF. The direct quan-
tized ZF corresponds to using a one-bit DAC to quantize

x̄ =
H†s

‖H†s‖IQ−∞
.

We consider the bit error rate (BER) performance, and the sim-
ulation settings are as follow. The number of transmit antennas at
the BS and the number of single antenna users are N = 512 and
K = 32, respectively. The user channel angles θi’s are randomly
picked from the range [−30◦, 30◦] with inter-angle difference no
smaller than 1◦; the complex channel gains αi’s have phases uni-
formly drawn from [−π, π], and amplitudes generated by |αi| =
r0/ri. Here, ri is the distance from the BS to the ith user and r0
is the reference distance. We set r0 = 30 and ri uniformly drawn
from [20, 100]. The results are averaged over 1, 000 channel realiza-
tions with 100 time slots per channel use. We also test two heuris-
tics: 1) the second-order Σ∆ ZF using one-bit DACs, referred to as
“1-bit” in the legend; 2) the overloaded second-order Σ∆ ZF using
two-bit DACs with input signal x̄ in (20) amplified by a factor of√

5, referred to as “OL” in the legend. The later is to make the effec-
tive signal strength at the user side in (18) comparable to that in the
first-order case (9).
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Fig. 4: The BER versus P/σ2
v; 16-ary PSK.
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Fig. 5: The BER versus P/σ2
v; 16-ary QAM.

Figs. 4 and 5 show the BER performance for 16-ary PSK and
16-ary QAM signaling, respectively. The second-order Σ∆ ZF de-
sign for QAM follows the method in [28, Section 5.3]. It is seen
that both the first- and second-order Σ∆ ZF precoders outperform
the naively quantized ZF approach. While the second-order Σ∆ ZF
performs worse than the first-order Σ∆ ZF at lower SNRs, it outper-
forms the first-order Σ∆ ZF at higher SNRs. This numerical result
is in agreement with our prediction in Remark 1. Interestingly, the
overloaded second-order Σ∆ ZF “OL” achieves consistently good
BER performance for both 16-ary PSK and 16-ary QAM at all tested
SNRs. The second-order Σ∆ ZF using one-bit DACs exhibits differ-
ent behavior. Its performance is comparable to that of the overloaded
second-order Σ∆ ZF “OL” in the 16-ary PSK case, but not so im-
pressive for the 16-ary QAM case.

6. CONCLUSION

In this paper we extended our study of spatial Σ∆ modulation for
massive MIMO precoding to the second-order case. Second-order
Σ∆ modulation is effective in yielding better noise shaping at lower
spatial frequencies, although it also requires two-bit DACs to imple-
ment in order to avoid overloading. Insights were also provided for
the comparison between first- and second-order Σ∆ ZF precoders.
The overloaded Σ∆ ZF was numerically demonstrated to achieve
surprisingly good BER performance in some cases.
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