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Distributed Proprioception of 3D Configuration in
Soft, Sensorized Robots via Deep Learning

Ryan L. Truby∗, Cosimo Della Santina∗, and Daniela Rus

Abstract—Creating soft robots with sophisticated, autonomous
capabilities requires these systems to possess reliable, on-line
proprioception of 3D configuration through integrated soft sen-
sors. We present a framework for predicting a soft robot’s
3D configuration via deep learning using feedback from a
soft, proprioceptive sensor skin. Our framework introduces a
kirigami-enabled strategy for rapidly sensorizing soft robots
using off-the-shelf materials, a general kinematic description for
soft robot geometry, and an investigation of neural network
designs for predicting soft robot configuration. Even with hys-
teretic, non-monotonic feedback from the piezoresistive sensors,
recurrent neural networks show potential for predicting our new
kinematic parameters and, thus, the robot’s configuration. One
trained neural network closely predicts steady-state configuration
during operation, though complete dynamic behavior is not fully
captured. We validate our methods on a trunk-like arm with 12
discrete actuators and 12 proprioceptive sensors. As an essential
advance in soft robotic perception, we anticipate our framework
will open new avenues towards closed loop control in soft robotics.

Index Terms—Modeling, Control, and Learning for Soft
Robots, Soft Sensors and Actuators, Deep Learning in Robotics
and Automation

I. INTRODUCTION

SOFT robotics represents an auspicious new paradigm for
designing robots with improved adaptability, resilience,

safety, and more by introducing compliance and deformability
in robot bodies [1]. However, it is this collection of enabling
material properties that complicates approaches to soft robotic
control. Despite more than a decade of progress, implementing
autonomous behaviors in soft robots remains a long-standing
challenge for this interdisciplinary field.

Two factors make the control of soft robots difficult. First,
the continuum mechanics of these systems makes the im-
plementation of model-based planning and control difficult
(though some progress has recently been made on this front

Manuscript received September, 10, 2019; Revised December, 14, 2019;
Accepted January, 28, 2020. This paper was recommended for publication
by Editor Kyu-Jin Cho upon evaluation of the Reviewers’ comments. This
work was supported by the NSF EFRI Program (Grant No. 1830901). RLT is
supported by the Schmidt Science Fellows program, in partnership with the
Rhodes Trust. (Corresponding author: Ryan L. Truby)

The authors are with the MIT Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
∗ These authors contributed equally to this work. rltruby@mit.edu,
dsantina@mit.edu, rus@csail.mit.edu

This letter has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. The material contains
a video overview of all contributions. Data sets and code used for this
project are available at github.com/SensoSoRo. The authors thank Dr. Robert
Katzschmann for original designs of the 3D soft robotic arm and Ms. Olivia
Siegel for assistance in sensor fabrication.

Digital Object Identifier (DOI): see top of this page.

Fig. 1. Proprioception of 3D Configuration in a Soft Robot. The soft
robotic arm (left) has a proprioceptive skin of distributed soft sensors
(scale bar = 5 cm), which are fabricated via kirigami from off-the-
shelf conductive silicone (inset, scale bar = 1 cm). A trained neural
network provides a prediction of kinematic parameters from sensor
signals, which are used to determine a 3D representation of the soft
robot’s configuration (right).

[2]). Second, embedded sensing through soft materials is
necessary for the next generation of soft robots. However,
the design and fabrication of soft sensorized robots is non-
trivial and can require specialized methods, materials, and
equipment [3]–[8]. Consequently, advances in complex, soft
robotic feedback control have typically been achieved through
exteroception and exogenous sensing methods, including mo-
tion capture vision systems [9], [10] and magnetic tracking
[11]. While these approaches are appropriate in the lab for
proofs-of-concept, soft robots require integrated soft sensors
for more practical, sophisticated, and autonomous capabilities.

Thus, the challenge of soft robotic perception and control
is both a materials and a robotics one. Regarding control,
learning-based strategies represent an alternative approach that
bypasses the challenges of model-based methods [12]. Still,
both model-based and data-driven control approaches need
accurate, reliable sensing of the robot’s posture and extraction
of meaningful quantities from soft sensor readings to connect
them to the soft robot’s complex shape. This requires dealing
with the soft sensors’ dynamic behaviors and the continuum
nature of soft robots, simultaneously.

Recent works have used learning-based methods for dealing
with complex sensor characteristics in soft systems [3], [6],
[13]–[17]. However, all of them deal with simple systems,
often without actuation capabilities and/or clear directions for
how these results can be scaled or transferred to the design
and control of more complex soft robots. To the best of
our knowledge, only two works have predicted some kind of
actuated soft robot information from embedded soft sensors
[6], [17]. In [6], a soft robotic hand can predict flexion,
lateral, and twist deformations in its fingers, and in [17],
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a recurrent neural network (RNN) is used to learn the tip
position and contact forces of a single soft actuator. Neither
of these works achieve a description of full 3D configuration,
which is essential for a complete understanding of soft robot
behavior and, thus, its eventual control.

To address these interwoven challenges, we present a
framework for rapidly equipping existing soft robots with
distributed, soft, piezoresistive sensors, and enabling them
to perceive their 3D configuration via deep learning. Using
feedback from the soft sensors and motion capture data as
model inputs and ground truth, respectively, we trained long
short term memory (LSTM)-based neural networks to predict
configuration parameters for a soft robotic arm using a new
analytical description of soft robot shape. The arm is a
three-segment, modular soft robot with 12 distributed fluidic
actuators, each with corresponding sensors (Fig. 1). One of
our trained networks, selected for having the lowest overall
root mean square error (RMSE) in predicted kinematic
parameters, provided predictions of 3D configuration that
reasonably captured the steady-state geometry of the soft robot
arm, even with inputs from our soft sensors exhibiting highly
hysteretic, non-monotonic behaviors. Current predictions do
not completely capture the full dynamic 3D configuration of
the arm. Still, our framework - which is modular and universal
in the sense that it can be easily extended to a variety of soft
systems - achieves an essential step in on-line, proprioception
of body shape in soft robots. Altogether, this paper contributes:

1) A kirigami-inspired design and fabrication strategy for
rapidly integrating piezoresistive silicone sensors onto
existing soft robots as a proprioceptive skin,

2) A new kinematic description connecting the whole soft
robot’s shape to low dimensional features that can be
easily learned by a data-driven strategy, and

3) A deep learning approach to predicting an approxima-
tion of the complete 3D continuum shape of a complex,
soft sensorized robot arm.

II. DESIGN OVERVIEW AND RATIONALE
A. Sensorization Strategy and Soft Robot Design

Molded fluidic elastomer actuators (FEAs) popularly used in
soft robotics can be sensorized with flexible curvature sensors
[3], liquid metal sensors [6], soft piezoresistive composites [7],
elastomeric waveguides [5], or ionically conductive gels [4],
[8]. Soft robotic sensors offer important trade-offs between
design, performance, and manufacturability. However, they
must all be integrated into the actuator during fabrication. We
created a sensor design and fabrication strategy that enables us
to bypass any modifications to existing soft robotic fabrication
procedures. Our approach for designing soft, piezoresistive
silicone sensors that can easily be distributed across the surface
of a soft robot body is enabled by kirigami (Fig. 2). Sensors are
laser cut from off-the-shelf sheets of conductive silicone elas-
tomers used in electromagnetic interference shielding. They
can be covalently bonded without adhesives to the surface
of a soft robot by plasma treatment [18]. Neither materials
synthesis/handling nor specialized equipment beyond a hand-
held corona generator and laser cutter are needed, allowing
others to easily adopt our technique.

Fig. 2. Kirigami Sensors. (a) Four kirigami cut patterns (circle (i),
45/-45 (ii), 1D (iii), 0/90 (iv)) are used to fabricate soft sensors from
off-the-shelf sheets of electrically conductive silicone. (b) Sensors are
shown at 0 and 15% strain. (Scale bars = 1 cm).

We distributed 12 kirigami sensors on an elephant trunk-
inspired soft robotic arm, as shown in Fig. 1. The arm is
based on a previously reported, sensorless design, for which a
feedback controller based on a rigorous mathematical model
has already been developed [10]. Four kirigami patterns -
called circle, 45/-45, 1D, and 0/90 - were used as cut de-
signs for the soft sensors (Fig. 2). The soft arm consists of
three individual silicone segments with four embedded FEAs
arranged in a cross-like configuration. Complex systems with
distributed actuation networks with 3D maneuverability can
be achieved by serially adding multiple segments together.
With our methods, any number of sensors can be distributed
across the soft robot’s body in practice, and more sophisticated
sensory skins can be achieved in the future through more
complex kirigami forms, materials, and composite structures.
For this study, we arbitrarily configured each segment such that
sensors with one of each of the four unique kirigami patterns
lie over the segment’s four embedded actuators. Segments are
assembled such that the same sensor designs are arranged
identically across segments. Because an investigation into how
specific sensor designs influence configuration prediction are
beyond the scope of the present paper and warrant a separate
study, we maintain this arbitrary sensor configuration.

B. Encoding the Geometry of the Soft Robot: 3D Kinematic
Description

The goal of the kinematic model is to connect orientation
and position of each point along the robot to a reduced set
of variables, thus analytically encoding the geometric features
of the robot. Knowing these variables’ values at a given time
and the kinematic description is equivalent to knowing the
complete (approximated) shape of the robot. This reduced set
of variables (configuration hereinafter) can then be learned by
the deep learning part of our method, a task that would be
unfeasible with the complete continuum shape.

We consider the central axis of the robot divided in nsegment

segments, corresponding to the soft robot design discussed
above. Fig. 3 depicts a schematic representation of the robot
with main quantities highlighted. {S0} is the base frame of
the robot. {Si} is the frame fixed to the tip of the i−th
segment, in such a way that {Si} and {Si−1} are aligned
when the robot is in a straight configuration, the local z axis
is tangent to the robot, and the local x axis points in the
direction of the first (i.e., circle) sensor. We call si ∈ [0, 1]
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Fig. 3. Kinematic Model for the Soft Robotic Arm. Local reference
frames are indicated by their principal axes. Transformations between
reference frames are depicted as dashed arrows. The rotation matrix
and the translation vector implementing the transformation are re-
ported close to the arrow. {Si} are the main reference frames along
the robot, which are determined with our motion capture system.

the coordinate parametrizing points along the i−th segment.
The distance of a point with coordinate si from the base
of the segment is si times the length of the segment itself:
si = 0 indicates the beginning of the segment, and si = 1 its
end. Each material point has its own orientation and position
in space, which we express using a rotation matrix1 and a
triple of real numbers. We call them Ri

0(si) ∈ SO(3) and
ti0(si) ∈ R3 when expressed in base coordinates {S0}, and
Ri

i−1(si) ∈ SO(3) and tii−1(si) ∈ R3 when expressed in
local coordinates {Si−1}.

To derive such a description, we consider four lengths
on the i−th segment running parallel with each sensor:
Li,1, Li,2, Li,3, Li,4 ∈ R+. These quantities can be linearly
combined in the following manner: ∆x,i =

L2,i−L1,i

2 , ∆y,i =
L4,i−L3,i

2 , δLi = 1
4

∑4
j=1 Lj,i − L0,i, where L0,i ∈ R is the

length of the segment when the robot is at rest. Intuitively, ∆x,i

carries information on the extent of segment bending in the
x direction in {Si−1} coordinates. Similarly, ∆y,i quantifies
segment bending toward the local y. Finally, δLi measures the
segment’s net change in length.

It can be proven that ∆x,i, ∆y,i, δLi provide a complete
parametrization of the configuration manifold of the i−th soft
segment under the hypothesis of locally constant curvature
and homogeneous elongation within the segment. In other
words, these variables carry all the information we need
for describing the configuration of the i−th segment qi =
[∆x,i, ∆y,i, δLi]

T ∈ R3. The formal proof of this statement
is provided in Ref. [19]. The actual kinematic description of
the segment is provided by Ri

i−1(si; qi) =1 +
∆2

x,i

∆2 Ci(si; ∆i)
∆x,i∆y,i

∆2 Ci(si; ∆i) −∆x,i

∆
Si(si; ∆i)

∆x,i∆y,i

∆2 Ci(si; ∆i) 1 +
∆2

y,i

∆2 Ci(si; ∆i) −∆y,i

∆
Si(si; ∆i)

∆x,i

∆
Si(si; ∆i)

∆y,i

∆
Si(si; ∆i) 1 + Ci(si; ∆i)

 ,

tii−1(si; qi) =
disi(L0,i + δLi)

∆2

[
Ci(si; ∆i)∆x,i

Ci(si; ∆i)∆y,i

Si(si; ∆i)∆i

]
,

1Representation of one element of the Special Orthogonal group of dimen-
sion 3, SO(3).

where ∆ =
√

∆2
x,i + ∆2

y,i, Si(si; ∆i) = sin
(

si∆
di

)
, Ci(si; ∆i) =(

cos
(

si∆
di

)
− 1
)

, and di ∈ R+ is the radius of a segment’s
cross-section. These equations connect the configuration qi to
the posture of each point si, expressed in coordinates {Si−1}.
They can be derived from the corresponding elements in the
standard parametrization [20], by exploiting a transition map
connecting the bending and curvature variables used there with
the ∆x,i, ∆y,i introduced here. Ref. [19] provides more details.
Ri

i−1 and tii−1 can be further reorganized into the SE(3)
element2

T i
i−1(si; qi) =

[
Ri

i−1(si; qi) tii−1(si; qi)
0 0 0 1

]
. (1)

The posture of the point si on the i−th segment of the soft
robot, in base coordinates, can then be derived using the
standard SE(3) algebra

T i
0(si, q) = T 1

0 (1, q1) . . . T i−1
i−2 (1, qi−1)T i

i−1(si, qi). (2)

Finally, the continuum shape of the segment in configuration
qi is represented by the sub-set Si = {T i

0(si; q), ∀si ∈ [0, 1]},
while the shape of the whole robot S is the collection of these
sets ∀i ∈ {1 . . . nsegment}.

C. Inversion Problem

The ultimate goal of our framework is to estimate the robot’s
continuum shape, Si, through the information that can be
retrieved from the soft sensor readings, vi. This problem is
studied in dynamic system theory as system inversion [21].
However, existing techniques in the field are not suitable for
soft robotics, since they require reliable and relatively simple
models of the dynamic relationship between input and output.
Such models would take the form of the dynamical system
ξ̇i = Fi(ξi,Si), vi = Hi(ξi,Si), to be connected in series to
the actual dynamics of the soft robot. The variable of interest
Si serves here as the input, and the sensor readings vi as
output. ξi are internal states, taking into account short and long
term memory effects. The former include low pass behaviors
common to many soft sensing systems. The latter include the
hysteretic behaviors of soft sensor composites. Finally, Fi, Hi

are generic applications, describing the internal dynamics and
the output characteristics, respectively.

The complexity of the inversion problem can be strongly
reduced by relying on salient geometric features that can
be extracted from the kinematic model, as introduced in the
previous subsection. Thus, we substitute the parametrization
of Si in terms of qi into Fi and Hi, getting the following set
of standard ordinary differential equations

ξ̇i = fi(ξi, qi), vi = hi(ξi, qi), (3)

where qi ∈ R3 is the parametrization of the i−th segment,
as introduced in the previous section. fi : Rninternal × R3 →
Rinternal defines the internal dynamics of the sensor, and hi :
Rninternal × R3 → Rnsensor is the output function.

Finally, our goal is to regress the low dimensional robot
configuration qi from the sensor readings vi, without having a

2Element of the Special Euclidean group of dimension 3.
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direct knowledge of the internal states ξi. Deriving adequately
precise models of fi and hi remains difficult, if not impossible.
Instead, we turn to black box nonlinear system identification
[22], specifically deep learning. Since these techniques ignore
the causal relationship between data [23], we can directly
regress an approximation of the inverse system instead of
estimating fi and hi and inverting them:

ψ̇i = κi(ψi, vi), q̃i = ιi(ψi, vi),

s.t. q̃i ' qi, if vi = hi (ξi, qi) .
(4)

where ψ ∈ Rninternal is the internal state of the inverse model,
and q̃i ∈ R3 the estimation of the segment configuration. κi
and ιi are the functions to be learned from data, specifying the
internal dynamics of the inverse model and its output function,
respectively. Given the dynamic, multi-scale nature of (3) and
(4), we use LSTM-based neural networks as approximators.
We do not report the structure of κi and ιi for LSTM
architectures (see [24] for details).

III. METHODS

A. Soft Sensor and Soft Sensorized Robot Fabrication

Soft strain sensors with circle, 45/-45, 1D, and 0/90 cut pat-
terns are fabricated from 0.5 mm-thick, electrically conductive
silicone sheets (Shore A hardness of 65+/-5, Silex Silicones
Ltd) via laser cutting (CO2 laser, Universal Laser Systems).
The conductive silicone is filled with carbon black and has
an approximate volume resistivity of 5 Ω-cm. All sensors
are cleaned by alternating 15-min intervals of sonication in
isopropanol and acetone.

Arm segments are molded from Dragon Skin 30 (Smooth-
On) using lost-wax casting methods with 3D printed molds
[10] (Fig. 4a-d). Molds are lined with 0.1 mm-thick acetate
films to create a smooth surface that facilitates plasma bonding
of sensors to the arm segments (Fig. 4b). After curing, the
kirigami strain sensors are plasma bonded to the surface of
the segments using a hand-held, atmospheric corona treater
(Electro-Technic Products) [18]. The corona treated sensor is
firmly pressed against the arm segment and left undisturbed.
After 24 hr of bonding at room temperature, Kapton tape is
laid over all sensors, and the wax is removed through melting
by heating segments in a 90◦C oven, followed by complete
immersion in boiling water, both for 1 hr [10]. The Kapton
tape is removed, and neodymium rare earth magnets are glued
at the ends of each strain sensor using a conductive, silver-
filled silicone adhesive (SS-26, Silicone Solutions). Steel disks
are soldered to 28 gauge wire and placed as break-away leads
on each magnet. Silicone tubing is glued into the four actuator
inlets of each segment using Sil-Poxy (Smooth-On) (Fig. 4e).
All leads and actuator tubing are threaded through the segment
cores, and the segments are glued together to form the arm.

B. Soft Robot Operation and Characterization

The test bed for operating and characterizing the soft robot
includes a 16-line pressure manifold for pneumatic actuation
(Festo Corporation), readout electronics, digital acquisition
unit (DAQ, USB-6212, National Instruments), and motion

Fig. 4. Sensorized, Soft Robotic Arm Segment Fabrication. (a)
Molded wax cores are loaded into a 3D printed mold. (b) An acetate
film lines the mold’s inner wall. (c) Silicone is cast into the mold and
cured. (d) A cured arm segment is removed, and inner wax cores are
melted out. (e) The final arm segment with plasma bonded sensors
is ready for arm assembly. (Scale bars = 2 cm.)

capture setup (OptiTrack). Inflation pressures of 0 to 120
kPa are used for actuation. Sensor feedback is obtained with
voltage dividers, whose output voltages are recorded with the
DAQ. Each sensor’s resistance, RS, is given by RS = ρ(l/A),
where ρ is the resistivity of the conductive silicone, l is the
sensor length, and A is the sensor cross-sectional area. As
a sensor deforms, RS changes. The voltage divider converts
RS to an output voltage, V , where V = VCCR2/(RS + R2).
VCC and R2 are 9 V and 7.5 MΩ, respectively. If V0 is a
sensor’s initial voltage, then ∆V decreases as RS increases
(where ∆V = V − V0). Optical tracking markers are placed
at the arm’s base and at the end of each arm segment to
designate {Si}. Motive motion capture software (OptiTrack)
coordinates all motion capture data and sensor inputs from the
DAQ. Camera and sensor sampling rates are 100 frames/sec
and 1000 Hz, respectively.

The motion capture provides direct measurements of posi-
tion and posture of each segment’s end, expressed in base
coordinates. To extract q from these data, we express the
postures in local coordinates and invert (1) for si = 1.
The operations needed to perform this task are reported in
Algorithm 1 as pseudo-code. We call tii−1[j] the j−th element
of the translation part of T i

i−1(1), and Ri
i−1[j, k] the element

(j, k) of the rotation part of the same matrix.

Algorithm 1 Extract posture q from one set of motion capture
readings T 1

0 (1) . . . T
nsegment

0 (1).

T 0
0 (1)← I4×4 . Initialization

for i← 1, nsegment do
T i

0(1)← ReadMotionCapture(i)

for i← 1, nsegment do . Posture extraction
T i
i−1(1)←

(
T i−1

0 (1)
)−1

T i
0(1)

∆i ← arccos
(
Ri

i−1[3, 3]
)
di

δLi ← tii−1[3]∆i/[di sin (∆i/di)]− L0

∆x,i ← tii−1[1] ∆2
i /[di(L0,i + δLi)

(
Ri

i−1[3, 3]− 1
)
]

∆y,i ← tii−1[2] ∆2
i /[di(L0,i + δLi)

(
Ri

i−1[3, 3]− 1
)
]



TRUBY et al.: DISTRIBUTED PROPRIOCEPTION OF SOFT ROBOT CONFIGURATION VIA DEEP LEARNING 5

Fig. 5. Neural Network Designs. Schematics for Architectures 1 (i)
and 2 (ii), indicating input (IN), multi-layer perceptron (MLP), long
short term memory (LSTM, with HL hidden layers), fully connected
(FC), dropout (DL), and output (OUT) layers.

We use two discrete actuation patterns to characterize our
soft sensorized robot: inflation sweeps and inflation steps.
During inflation sweeps, segment S3 is inflated to 120 kPa
then deflated back to 0 kPa at 10-kPa increments held for 3 sec
each. The inflation pressure is swept sequentially in Actuators
1, 2, 3, and 4 of segment S3 (i.e., the actuators beneath the
circle, 45/-45, 1D, and 0/90 sensors, respectively). During
inflation steps, the same actuator is inflated in all segments to
100 kPa and held for 15 sec before deflation to 0 kPa, which
is held for 15 sec. This step inflation is applied sequentially
to Actuators 1 through 4 in all segments.

For training and validation purposes, we also collect data
from the arm as it undergoes several additional actuation
sequences. These actuation motifs are called random actu-
ations, swing inflation, and extension sequences. In random
actuations, all 12 actuators in the arm are randomly actuated
at inflation pressures of 50 to 120 kPa and changed every 3
sec for 100 cycles. Swing inflation sequences are identical to
inflation steps, except two neighboring actuators are inflated
simultaneously, cycling between Actuators 1+2, 2+3, 3+4, and
4+1. Fig. 1 shows the arm with Actuators 3+4 inflated at 100
kPa during a swing inflation sequence. Extension sequences
involve inflating all actuators in S1 to 50 kPa for 15 sec and
then deflating to 0 kPa for 15 sec, repeating for S2 then S3.

C. Neural Network Design and Training

All neural network design, training, and validation was per-
formed with MATLAB’s Deep Learning Toolbox. Two
types of neural networks, noted Architectures 1 and 2, were
designed (Fig. 5). The input layer features of each architecture
are time series responses from a single sensor, while the
regression output layers provides values corresponding to pre-
dictions of the qi parameters. With Architecture 1, we explore
a quasi-static simplification of the inversion problem discussed
in Section IIC, i.e. vi ' hi(qi), which ignores the dynamic,
hysteretic behavior of the soft sensors. This leads to the sim-
pler static inverse model q̃i = ιi(vi) : Rnsensors → R3nsegments

such that ιi(hi(qi)) ' qi. To model this, Architecture (Arch.)
1 is based on a shallow MLP layer with two hidden layers,
followed by a set of low pass filters. In contrast, Arch. 2
contains an LSTM layer, rendering it sensitive to the sensors’
dynamic responses, followed by dropout and fully connected
layers. Both architectures have 12 inputs and 9 outputs (i.e.,
12 sensor signals and 9 qi parameters, respectively).

Training and validation sets are comprised of data collected
from unique sequences of inflation steps (ISt), inflation sweeps

(ISw), random actuations (RAs), swing inflations (SwI), and
extension (Ext). The training data set includes a concatenated
sequence of the following: RAs, ISt*, Ext, RAs, ISw, ISt*,
RAs, RAs, ISt*, RAs, ISw, ISt*, SwI*, ISt, ISt, SwI, SwI*, ISt,
SwI, ISt, RAs, ISt, SwI (where * indicates that the sequence
was only performed on S3). The validation data set includes
a concatenated sequence of the following: RAs, ISw, ISt.
While we use repeat actuation sequences in the training and
validation sets, note that the sensor response is different in
each due to the dynamics and deformation history-dependent
nature of the soft sensors’ responses. Also, RAs are the longest
sequences, especially compared to the ISt and ISw motifs,
ensuring that random behaviors from the arm are prominently
featured in the data sets. Training and validation data sets
amount to approximately 80 and 13 min of data, respectively,
with both training and validation sets including data over
intervals where the arm was at rest. Following the practices
used in [17], we use the validation set as our test set for
evaluating neural network performance, due to the challenge
of collecting extensive data sets with soft robots.

Three networks of each architecture were trained with
various sets of hyperparameters. Networks are trained using
the Adam optimizer for a maximum of 1000 epochs with a
validation frequency of 10. Over-fitting is minimized by L2
regularization and a patience of 20. In Arch. 1, the number
of hidden neurons in both the first and second layers were
varied in [8, 16, 24, 32], in all combinations. In Arch. 2, the
dropout layer rates were varied in [0.1, 0.2, 0.5], and the
number of hidden states were varied in [10, 100, 200]. The
root mean square error on the prediction from the test (i.e.,
validation) set is evaluated for each network as RMSE =√∑12

j=0

∑nsample

k=0
||q[j,k]−q̃[j,k]||22

12nsample
where nsensornsegment = 12,

q[j, k] is the j−th element of the configuration at the sample
k, and q̃[j, k] its estimation.

IV. EXPERIMENTAL RESULTS

A. Soft Robot Characterization

Fig. 6a illustrates the steps of an inflation sweep actuation
pattern in segment S3. Figs. 6b and 6c show ∆V for all sensors
and q3 parameters (∆x,3, ∆y,3, and δL3) as a function of
inflation pressure, respectively, during inflation sweeps in each
actuator. All sensors exhibit hysteretic and non-monotonic
behavior (Fig. 6b). In general, the sensor responses vary sig-
nificantly for different kirigami cut patterns. Also, all sensors
decrease in RS (i.e., increase in ∆V ) when the opposing
actuator is inflated and compresses the sensor. Otherwise, all
other trends are less obvious.

First, all sensors exhibit a similar trend when the actuators
they lay above are inflated: the sensors begin to decrease in V ,
but begin increasing in V around 80 to 100 kPa (Fig. 6b). One
would expect that increasing sensor strain during inflation-
induced bending would lead to monotonically increasing RS

(i.e., decreasing V ). However, the structural dynamics of the
percolated networks of conductive carbon black particles in
the sensors can result in a changing ρ, yielding non-monotonic
sensor responses [25]. Monotonic changes in RS are observed
when sensors lie perpendicular to bending direction. Finally,
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Fig. 6. Characterization of a Single Arm Segment. (a) Photographs
show the arm’s third segment (S3) actuating at 120 kPa inflation
pressure, sequentially applied from Actuator 1 (top) to Actuator 4
(bottom). Transparent overlays of the segment at 0 kPa are included
for visual reference of deflated state. (Scale bars = 2 cm). (b) Voltage
change, ∆V , for each sensor and (c) configuration values versus
inflation pressure are provided for each actuation pattern shown in
(a). In both (b) and (c), shaded error bands indicate standard deviation
(n=3); filled lines with solid markers and dashed lines with empty
markers indicate data from inflation and deflation cycles, respectively.

we observe expected changes in ∆x,3, ∆y,3, and δL3: in-
creasing inflation pressures at Actuators 1, 2, 3, and 4 induce
bending in the direction along the −x, −y, x, and y axes of
{S2}, respectively (Fig. 6c), and δL3 > 0 during bending.

Figs. 7a and 7b provide the sensor readings and the posture
parameters, respectively, for all segments during inflation
step actuation patterns. From Fig. 7a, the sensors’ nonlinear,
deformation history-dependent responses and their evolution
when the robot is at rest are clearly shown. In Fig. 7b, the
oscillatory swinging of the actuated arm is captured. Due to
inertia and the arms’ mechanical properties, the swinging of
the arm should be most pronounced at S1 and minimal for S3.
These features are correctly reflected in our kinematic model.
We note that only some of the sensors’ responses in Fig. 7a
reflect the arm’s swinging motion.

B. Neural Network Design and Training

Tables I and II provide RMSE values (in units of mm) for
all trained networks. Overall, LSTM-based Arch. 2 provides
lower RMSE than MLP-based Arch. 1, presumably due to
Arch. 2’s sensitivity to the sensors’ dynamic responses over
time. For Arch. 2, changes in dropout rates did not have
clear trends for influence on RMSE. Finally, for Arch. 2
networks with a given dropout rate, more hidden layers in
the LSTM layer typically resulted in lower RMSE. An
Arch. 2 network with a dropout rate of 0.1 and 200 hidden
layers in the LSTM layer provided the lowest RMSE of
all trained networks, at 1.27 mm. We emphasize that these

Fig. 7. Characterization of the Full Arm. In a sequential pattern with
all actuators, moving from inflating Actuator 1 of all segments to
Actuator 4 of all segments, the arm is inflated for 15 sec at 100 kPa
and deflated for 15 sec. (a) The output voltage from sensors in the first
(S1), second (S2), and third (S3) segments and (b) the configuration
values for the first (q1), second (q2), and third (q3) segments are
provided versus time (all plots share the same x-axis.)

hyperparameters are optimal for our specific validation data
set here, not, necessarily, for a generic new set of data.

TABLE I
RMSE OF VALIDATION SET PREDICTIONS FOR ARCH. 1 (MM)

Hidden neurons, 1st layer
8 16 32 64

2
n
d

la
ye

r 8 5.9 5.7 6.4 5.9 6.0 11 7.2 7.2 6.4 6.1 6.7 6.3
16 5.6 6.0 6.3 8.2 6.2 6.5 7.1 6.9 8.0 8.6 8.6 10
32 6.1 6.0 7.3 7.8 8.4 8.3 9.0 10 9.0 11 10 8.1
64 7.7 7.4 7.1 9.0 8.6 7.6 9.0 8.0 11 11 15 10

TABLE II
RMSE OF VALIDATION SET PREDICTIONS FOR ARCH. 2 (MM)

Hidden layers
10 100 200

D
ro

po
ut 0.1 1.93 2.22 2.03 1.54 1.52 1.67 1.27 1.70 1.46

0.2 2.23 1.77 2.01 1.50 1.42 1.71 1.68 1.37 1.37
0.5 2.22 2.10 2.11 1.45 1.53 1.35 1.46 1.53 1.43

C. Validation of 3D Configuration

With our trained neural network (Arch. 2 with RMSE
of 1.27 mm), sensor voltage inputs are used to predict q̃i
for all segments during inflation steps (Fig. 8) and random
actuation cycles (Fig. 9). Fig. 8a shows four near-steady state
configurations after swinging about, for each actuation step of
the inflation step sequence. Fig. 8b shows the corresponding
ground truth 3D configurations computed from motion capture
data compared with the predicted configurations. Fig. 8c shows
ground truth parameters, qi, and estimated ones, q̃i, over
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Fig. 8. Validation Results on Full Arm Swings. (a) Photographs and (b) respective plots of ground truth and predicted configurations are
provided for the same actuation pattern in Figure 7, in which the arm swings in different directions by inflating one of the same actuator
networks in each segment from 0 to 100 kPa for 15 sec. In (b), the grey curves represent ground truth configurations over several seconds;
the red and black curves represent the near-steady state configuration and predicted configuration from the neural network, respectively. (c)
Plots of ground truth (dashed lines, qi) and predicted configuration parameters (solid lines, q̃i) versus time are provided for segments S1

(top), S2 (middle), and S3 (bottom) during the actuation shown in the second column of (a) and (b). Scale bars = 5 cm.)

time for the second step inflation, in which Actuator 2 in
all segments is inflated to 100 kPa. q̃i is in relatively close
agreement with qi during step inflation cycles. The network
dampens the amplitude of the oscillatory, dynamic motion in
q1 and q2 (Fig. 9c), though it does predict the general steady-
state behavior of the arm’s motion during these actuation
steps. Thus, the network satisfactorily predicts the steady-state
configuration of the arm but not its full dynamics.

Fig. 9 provides data regarding predictions of q̃i as the arm
is randomly actuated at inflation pressures of 50 to 120 kPa
changed every 3 sec (Fig. 9a). Again, as for Fig. 8b, Fig. 9b
shows the computed and predicted 3D configurations using
posture parameters qi and q̃i. Fig. 9c shows qi and q̃i for
the course of this study, with colored regions indicating the
specific postures shown in Figs. 9a and 9b. A slight phase
delay between q̃i and qi is observed in Fig. 9c. This behavior,
not observed in Fig. 8c, is likely due to the higher level of
dynamicity during random actuations. We again see agreement
between qi and q̃i during random actuations, with the network
better predicting steady-state configuration.

V. DISCUSSION AND CONCLUSIONS

We have developed a framework for learning 3D con-
figuration in a soft robot through distributed proprioception
enabled by a soft sensor skin. We have shown an example
of a trained RNN that reasonably predicts the steady-state
configuration of our soft robotic arm during both prescribed
and random actuation sequences, even with feedback from
non-monotonic, hysteretic, soft piezoresistive sensors. Our
neural network’s inability to predict all details of the arm’s
full dynamic motion is likely the result of two important
features: (i) the soft sensor’s current sensitivity is insufficient
for capturing small dynamic, oscillatory motions, and (ii) the
use of voltage dividers as convenient readout electronics can
unintentionally suppress dynamic details in sensor signals. The
former represents a general limitation and challenge for the

development of soft robotic sensors from soft materials, while
the latter speaks to a general question of how data engineering
also influences our approach. We are now working towards
two follow-up investigations of how sensor and neural network
designs influence our ability to predict the full, dynamic, 3D
configuration of soft sensorized robots. First, we are exploring
how our different kirigami sensor designs influence the ac-
curacy of configuration prediction. Second, we are interested
in exploring new neural network architectures that enable us
to look at sensory feedback in both the time and frequency
domains and/or better identify important sensor signal features
in order to predict subtle configuration dynamics.

Overall, our results represent a fundamental step towards
learning-based, soft robotic proprioception, which is necessary
for addressing key challenges in closed-loop feedback control
for soft robotics. We hope our framework can be readily
used by others in the field to model, sensorize, and learn 3D
configuration in other soft robots, expediting advances in soft
robotic perception and control.
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