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ABSTRACT

In massive MIMO, replacing high-resolution ADCs/DACs with
low-resolution ones has been deemed as a potential way to signifi-
cantly reduce the power consumption and hardware costs of massive
MIMO implementations. In this context, the challenge lies in how
the quantization error effect can be suppressed under low-resolution
ADCSs/DACs. In this paper we study a spatial sigma-delta (XA)
modulation approach for massive MIMO downlink precoding un-
der one-bit DACs. XA modulation is a classical signal processing
concept for coarse analog-to-digital/digital-to-analog conversion of
temporal signals. Fundamentally its idea is to shape the quantization
error as high-frequency noise and to avoid using the high-frequency
region by oversampling. Assuming a uniform linear array at the
base station (BS), we show how A modulation can be adapted to
the space, or MIMO, case. Essentially, by relating frequency in the
temporal case and angle in the spatial case, we develop a spatial
A modulation solution. By considering sectored array operations
we study how the quantization error effect can be reduced, and the
effective SNR improved, for zero-forcing (ZF) precoding. Our sim-
ulation results show that ZF precoding under spatial ©A modulation
performs much better than ZF precoding under direct quantization.

Index Terms— massive MIMO, spatial sigma-delta modula-
tion, one-bit precoding

1. INTRODUCTION

Recently, coarsely quantized signal processing techniques are flour-
ishing in studies of massive multi-input multi-output (MIMO)
transceiver implementations. These studies are strongly motivated
by the need to reduce the hardware cost and power consumption
of radio-frequency (RF) front-ends—which grow rapidly under
massive MIMO—and the idea is to use low-resolution analog-to-
digital converters (ADCs)/digital-to-analog converters (DACs) and
energy-efficient low-dynamic-range power amplifiers. A number
of researchers have investigated MIMO channel estimation and
MIMO detection using one-bit or low-resolution ADCs [2-8], and
it has been found that the very large number of antennas in massive
MIMO indeed helps recover information lost due to the coarsely
quantized signals.

MIMO precoding using one-bit DACs is another emerging topic
in this area. A natural direction is to simply quantize the output of
a conventional linear precoder, such as that of the zero forcing (ZF)
precoder, and the question is how the coarse quantization effects im-
pact system performance [9-11] using, for example, the Bussgang
decomposition as an analysis tool. More recently, there has been em-
phasis on directly designing a one-bit precoder, rather than follow-
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ing the aforementioned precode-then-quantize approach. The direct
one-bit precoding designs use criteria such as minimum mean-square
error and minimum symbol error probability [12-19], and numeri-
cally these designs were found to yield significantly improved per-
formance. The challenge with the direct one-bit precoding designs is
mainly with the complicated large-scale integer optimization prob-
lem.

More recently, the idea of spatial /A modulation has been ex-
ploited in massive MIMO transceiver designs. Temporal XA mod-
ulation is a classic quantization technique for oversampled signals.
The YA principle is to employ a feedback loop to quantize the ac-
cumulated error between the input and the one-bit quantized output.
The net effect is to shape the quantization noise to the high end of
the frequency spectrum, where it can be separated from the signal
of interest using a simple low-pass filter and decimator; see [20] for
details. Alternatively, one can employ the XA effect using signals
oversampled in space using an array of antennas. In such spatial
3A architectures, the feedback signal is derived from the delayed
and quantized outputs of adjacent antennas. Oversampling in this
context means that the elements of a uniform linear array would be
spaced closer than one-half wavelength apart. As a result, the quan-
tization error can be pushed to higher spatial frequencies, mitigating
the distortion for signals of interest that might arrive from lower spa-
tial frequencies, i.e., those near the broadside of the array. This idea
has been exploited recently by a number of researchers for signal de-
tection [21-24], channel estimation [25] and spectral efficiency [26]
in the uplink. However, the use of spatial XA modulation for the
downlink has received much less attention [27,28].

This paper explores what opportunities spatial ¥A modulation
can bring in the context of one-bit massive MIMO precoding. Our
study reveals that one-bit massive MIMO precoding using spatial
A modulation, or simply XA precoding for short, allows us to ef-
fectively mitigate the quantization noise effects. More precisely, we
consider uniform linear arrays with user angles lying within a sec-
tor near broadside, where the quantization noise can be substantially
suppressed when the number of antennas is large. Moreover, we
propose a ZF precoder under XA modulation. The effective SNR
analysis suggests that XA ZF is quite suitable for massive MIMO
systems. Simulation results demonstrate that the performance of XA
ZF is much better than that of the directly quantized ZF. Also, XA
ZF shows competitive performance compared to existing direct one-
bit designs that require complicated optimization.

2. PROBLEM SETTINGS

We consider the multiuser MISO downlink over a quasi-static
frequency-flat channel and under one-bit transmitted signal con-
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straints. The model is given by

P
yi,t:\/ﬁhfmt+vi,t, t=1,...,T, 1)

fori = 1,..., K, where y;+ € C represents the complex base-
band received signal of the ith user at symbol time ¢; K denotes
the number of users; 7' is the transmission block length; P is the
total transmission power; N is the number of antennas of the base
station (BS); h; € C¥ is the channel from the BS to the ith user;
VP/(2N)x;, with &, € {41 £ i}, represents the complex base-
band one-bit transmitted signal; v; ; is noise and is assumed to be
i.i.d. circular complex Gaussian with mean zero and variance o2.

The BS aims to transmit parallel data symbols to the users. Let
sit € S denote the symbol to be transmitted to the ith user at sym-
bol time ¢, where S denotes the symbol constellation set. For conve-
nience, we will assume that

max |s| = 1;
sES

or, the symbol constellation is normalized such that the above equa-
tion holds. The challenge is to find 2, € {#+1 + i}V, fort =
1,...,T, such that
hiTa:t ~ ¢iSit, foralli,t, 2)
where c;; > 0 denotes a scaling factor. In words, we aim to shape
the symbols at the user side under the one-bit transmitted signal con-
straints; see [1] for further discussions of ¢; ¢+ for PSK and QAM. We
are interested in the single-path angular array channel. Each h; is
characterized as
hi = 0@0.(907 (3)

where o; € C is the complex channel gain; 6; € [—7/2,7/2] de-
notes the angle of departure from the BS to the ith user;

2md . . xd
CL(H) _ [ 1’ (37]2A sm(9)7 o efl(Nil)zk sin(6) ]T (4)

denotes the array response vector at 6, in which X is the carrier wave-
length and d < \/2 is the inter-antenna spacing.

3. BASICS OF XA MODULATION

%

Fig. 1: The first-order A modulator.

This section reviews the basic concepts of ¥ A modulation. Con-
sider the the first-order XA modulator in Fig. 1. We have a discrete-
time real-valued signal sequence {Zn }nez L as the modulator input.
In the application of temporal DACs, Z,, is a significantly oversam-
pled version of some signal. Here, it is sufficient to know that Z,,
is a low-pass signal. The problem is to one-bit quantize {Z,, }» in
a way that the resulting quantization noise is high-pass. Doing so
satisfactorily will result in negligible quantization noise effects on

the low-pass frequency region of the desired signal Z,,. The XA
modulator output sequence, denoted by {z» }nez. ., is generated as

Zn = sgn(by), (5a)
bn - bn—l + (-’En - mn—l), (Sb)

forn =0,1,...,and withb_; =x_1 =0. Letq, =z, — b, n €
7.4, denote the quantization noise, and let g_; = 0 for convenience.
From (5) one can show that

Tn = Tn +Qqn — qn-1, TLEZ+,

and subsequently
X(2) = X(2) + (1 -27)Q(2),

where X (z) = > 77 2z~ " denotes the z-transform. The high-
pass response 1 — 2z~ suppresses the quantization noise at low fre-
quency.

A key issue in XA modulation is the effect of overloading.
Overloading refers to the situation when the quantizer input b,, has
amplitude greater than 2. The consequence is that the corresponding
quantization noise g, goes beyond the range [—1, 1]. As an example
of showing what problem overloading can bring, consider

Tn=14¢ foralneZ,,

where € > 0. This is an instance in which the signal amplitude is
greater than one. One can verify from (5) that b,, = 14 (n+1)e and
gn = —(n + 1)e. We see that the quantization noise is unbounded
as n — oo. A sufficient condition under which overloading can be
safely avoided is to limit the input signal range as

-1<z,<1, forallneZ;. (6)

Under the above condition it is guaranteed that |b,| < 2 forall n €
Z+, and consequently,

—-1<q, <1, forallneZ;.

Under the no-overload condition (6), it is very common to as-
sume that the quantization noise gy is i.i.d., uniformly distributed
on [—1,1], and independent of {Z,}. This assumption is widely
adopted for signal-to-quantization-noise ratio (SQNR) prediction in
the XA-DAC/ADC literature [29].

4. SPATIAL XA MODULATION

We now present the spatial 3>/ modulation approach. For notational
simplicity, we remove the time index ¢ from (1) and write

_ P _
Yi = 2Nhl x + v;. (@)

Also, with a slight abuse of notation, let & = [ Z1,...,Zn |* be
the signal we wish to X A-modulate. We apply first-order ©A mod-
ulation (as described in the preceding section) to {‘%n}ﬁle to obtain
{x,}2_,. The resulting x = [ x1,...,zn |* then serves as the
one-bit transmitted signal. More precisely, we use two first-order
32A modulators, one for the real part and another for the imaginary
part, to get . To avoid overloading, we restrict —1 < R(Z,) < 1
and —1 < $(Z,) < 1 for all n. By doing so, we perform XA
modulation in space.
Following the preceding section, we can write

r=x+q—q )
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where ¢ = [q1,q2...,qn |75~ = [0,q1,...,qv-1]"; each g;
is complex quantization noise with —1 < R(gn) < 1 and —1 <
S(gn) < 1 (this is guaranteed when —1 < R(Z,) < land —1 <
$(Zn) < 1). For the sake of analysis, we model the g’s as i.i.d.
uniform noise on the unit box interval {¢g = a+jb | a,b € [—1,1]}.

Putting (8) into (7) gives

\/ haz—i—wl,

where w; combines quantization noise and background noise. We
are interested in knowing how the noise power scales with the system

(9a)

) + i, (9b)

s27d s ) .
parameters. Let z; = ¢! » (%) for convenience. We see that

N-2
— — —-n —(N-1
al(@—q ) =12 2 "qur1+2 ¥ Van,
n=0

and consequently, E[af (g — ¢~)] = 0 and

Ellai (g—q )I’] =1 — 2z '[*(N — 1)og + o,

where o2 = E[|gn|?] = 2/3 due to the assumption of uniform i.i.d.
quantization noise. It follows that E[w;] = 0 and

Q) 2P
o2 1 -

By assuming large N, the above quantization noise variance formula
can be simplified to

o =E[lwi|’] = PN -

D+1)+o

S | 23 11—z +o0 (10a)
. 2 2
= % sin (%d sin(6¢)> + ol (10b)

Eq. (10b) reveals interesting behaviors with the quantization
noise effects at the user side.

1. First, the quantization noise power increases as the absolute value
of the angle |0| increases; broadside (§ = 0) is the best, while
endfire (0 = w/2 or 6 = —m/2) is the worst. This suggests
that spatial XA modulation serves users with smaller |0] better.
An illustrative example showing the >A-modulated signal an-
gular power spectrum is presented later in Section 6. Here we
also draw connections between conventional XA modulation for
discrete-time signals and the spatial XA modulation proposed
above. Simply speaking, frequency in the temporal case becomes
angle in the spatial case. XA modulation in time and space serve
low frequency and low angle signals better, respectively.

. Second, the quantization noise power decreases as we decrease
the inter-antenna spacing d. This means that we may want to
employ more densely spaced antennas. In practice, however, it
is infeasible to have very small inter-antenna spacing as that will
introduce strong mutual coupling effects. Also, the physical di-
mensions of the antennas prevent small spacing. We will have to
rely on large N and smaller operating angular ranges to reduce
the quantization noise.

Third, the quantization noise power at the user side is indepen-
dent of the number of antennas /N. This will give us substantial
advantages in using massive MIMO to suppress the quantization
noise, as we will further show in the next section.
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5. YA ZERO-FORCING

This section proposes a ZF precoder under spatial >/A modulation.
For notational convenience, define

(R(zn)], [S(zn)l};

that is, the infinity norm applied on the in-phase and quadrature-
phase components of a vector. Also, assume M -ary PSK constella-
tions. The ZF precoding scheme implements

[2]l1@-0c = max{[R(z1)[,[S(z1)],.. .,

z =~A'Ds,

an

where s € S¥ is the symbol vector, with s; representing the symbol

for the 7th user;

0wk ak/lax]?),

a; = a(@i);

D = Diag(aw,la’{/|a1‘2’

A:[ah...,aK]T,

and ~ is a normalization constant such that ||Z|;g—oc = 1. Itis

easy to see that
1

|ATDs|[1@—o0
This ZF precoding scheme is designed such that every user has the
same effective SNR, and consequently, uniform SEP performance.
To see this, consider putting (11) into (9). It can be shown that

_Jr._
=\ an o

P
oN |

7= (12)

Yi = Ci*Si + Wi, G

The effective SNR of the ith user is

2
Uw,i

SNResr,; = (13)

Clearly, the effective SNRs of all the users are identical. How the
effective SNRs scale with the system parameters is shown as follows:

Proposition 1 Consider the XA ZF precoding scheme described

above. Let k = argmaxi—1,... K Ow,i/|ai|. The users’ effective
SNRs are bounded by
PN A R
SNRerr; > o Ane (R) o (4)

2K3 (% ‘sm (=2 s1n(9k))‘2 + 012])
for all i, where R = AAH/N; Amin(R) denotes the smallest
eigenvalue of R. Also, it holds that

1> Amin(R) > 1— (K —1)p, (15)
where
Dn (%d(sin(ei) - sin(ﬁj)))
and Dy (¢) = sin(N¢) /(N sin(¢)) is the digital sinc function.

p = max )
i#]

The proof of proposition 1 can be found in the journal version
of this paper [1]. Let us discuss the implications of the theoreti-
cal result in (14)—(15). First, the quantization noise effect increases
with the absolute value of the angle. Second, the lower bound of the
effective SNRs increases linearly with the number of antennas IV,
which suggests that XA precoding is favorable for massive MIMO.
Third, Amin (R), which appears in the signal power part of the effec-
tive SNR, is large if the user angles are well separated, but small if
some of the angles are close. This factor is relative to /N. Fixing the
angles, larger N brings Amin (R) closer to its largest value, 1.
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6. SIMULATION RESULTS

This section presents some representative simulation results for spa-
tial YA modulation. First, we consider the PSK case. Fig. 2 shows
the angular power spectrum E[||a(x)z||*] on [-90°,90°] for ©A
ZF. There are N = 256 antennas at the BS with spacing d = \/4;
the complex channel gain «;’s are generated by |«;| = 1 and phases
uniformly drawn on [—, 7]; there are three users with angles —10°,
0° and 5°; we also assume no background noise in this case, i.e.,
o2 = 0; 8-ary PSK is used in the simulation. In Fig. 2, it is seen
that the angular spectrum of XA ZF comprises three sharp peaks at
the user angles and a high-pass response for the quantization noise.
This result is in agreement with the theoretical analysis in (10).

10°

Angular Spectrum (dB)

Angle (degree)

Fig. 2: An illustration of the angular power spectrum of first-order
YAZE

Next we consider the bit-error rate (BER) of the massive MISO
system. The simulation settings are as follows: The number of an-
tennas is N = 256; the inter-antenna spacing is d = A/8; the num-
ber of users is K = 24, and the users lie within an angular range
[—22.5°,22.5°]; the angles 0; of the users are randomly chosen from
the interval [—22.5°, 22.5°] with inter-angle difference no less than
1°; the complex channel gains «; have phases uniformly drawn from
[—7, 7], and their amplitudes are generated as |o;| = 70/7; where
ro = 30 and the r; are uniformly drawn from [20, 100] (this is a
standard free-space path-loss model, with 7; being the distance from
the BS to the ¢th user and ro being a reference value); the symbol
constellation is 8-ary PSK.

Fig. 3 shows the results. The algorithms compared are the
SQUID algorithm [13] and the maximum safety margin (MSM)
algorithm [16]. In the legend, “unquant. ZF” is the unquantized
ZF scheme under the average power constraint; “quant. ZF” is the
direct one-bit quantization of the unquantized ZF scheme; “>A ZF”
is the XA ZF scheme. We also show the result of the nullspace-
assisted XA ZF scheme, which takes advantage of the nullspace of
the channel matrix to further improve the performance of XA ZF;
see [1] for details. We see that both the proposed XA ZF and the
nullspace-assisted XA ZF schemes work better than the directly
quantized ZF. Also, the nullspace-assisted XA ZF performs much
better than MSM and SQUID at high SNRs.

Finally, we consider the BER for the QAM case. The simulation
settings are: 16-ary QAM, N = 256, K = 16, and transmission
block length 7" = 100. Also, the angular range is [—30°, 30°], and
the «v;’s are generated as before. Fig. 4 shows the results. The XA
ZF and XA nullspace-assisted ZF for QAM follow [1, Section 5.C].
“GEMM?” is the direct one-bit precoding design in [19]. We see that
the A ZF schemes, with and without nullspace assistance, achieve
good performance. Also we see that the nullspace-assisted XA ZF
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Fig. 3: BERs of the multi-user XA precoding schemes in the 8-ary
PSK case.
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Fig. 4: BERs of the multi-user 3 A precoding schemes in the 16-ary
QAM case.

scheme achieves a 5dB gain compared to the XA ZF approach, and
it is only 3dB away from GEMM, which requires a significantly
higher optimization complexity than the nullspace-assisted XA ZF
approach.

7. CONCLUSION

This paper studied the potential of spatial A modulation for one-bit
massive MIMO precoding. By implementing the BS with a uniform
linear array and one-bit DACs, XA modulation is able to substan-
tially reduce the quantization noise effects for users with signals that
are received near the broadside of the array. Our analysis and simu-
lations showed that spatial A modulation favors large antenna ar-
rays, and thus is compatible with massive MIMO. Empirical results
showed that the proposed XA ZF approach can achieve much better
performance than directly quantized ZF precoding.
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