
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2019 1

Control oriented modeling of soft robots: the polynomial curvature case
Cosimo Della Santina, Daniela Rus

Abstract—The complex nature of soft robot dynamics calls
for the development of models specifically tailored on the
control application. In this paper we take a first step in this
direction, by proposing a dynamic model for slender soft robots
taking into account the fully infinite-dimensional dynamical
structure of the system. We also contextually introduce a
strategy to approximate this model at any level of detail
through a finite dimensional system. First, we analyze the
main mathematical properties of this model - in the case of
lightweight and non lightweight soft robots. Then, we prove that
using the constant term of curvature as control output produces
a minimum phase system, in this way providing the theoretical
support that existing curvature control techniques lack, and
at the same time opening up to the use of advanced nonlinear
control techniques. Finally, we propose a new controller, the PD-
poly, which exploits information on high order deformations, to
achieve zero steady state regulation error in presence of gravity
and generic non constant curvature conditions.

Index Terms—Modeling, Control, and Learning for Soft
Robots; Motion Control; Dynamics.

I. INTRODUCTION

In soft robots, the standard paradigm of stiff robotics
is reverted by artificial bodies fully made of continuously
deformable and compliant materials [1]. This design choice
endows soft robots with several advantages, as being in-
herently safe in the interaction with humans and other
animals, or the ability of squeezing within narrow spaces.
This however comes at the price of making much harder
the development of effective model based algorithms for
managing these systems. This gap has been filled so far
mostly and partially by learning based strategies [2]. Indeed,
understanding the behavior of these systems from a more
fundamental mathematical point of view has proven to be
quite difficult, the main reason being the continuum nature
of the problem.

In the last few years, a lot of effort has thus been put into
developing finite dimensional approximations of soft robot’s
kinematics and dynamics. Among them, piecewise constant
curvature models proved to work well in the practice - despite
clearly being an over-simplification of the problem - with
applications in kinematic control [3], feedforward dynamic
control [4], feedback dynamic control [5]. However, the
research in modeling soft robots goes now much further than
constant curvature approximations, with fascinating theoret-
ical and experimental results [6]–[10]. It is worth underlying
that the present paper does not aim to compete with existing
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models for accurately or efficiently simulate the robot - task
for which these methods are well suited. Indeed, in soft
robotics the complex nature of the modeling problem calls
for a distinction between models developed for simulating
the robot, and models for model-based control. The goals of
a good model for simulation are such as maximum accuracy,
numerical efficiency, numerical stability. The works cited
above very successfully go in this direction.

We aim instead at making a first step toward developing
a formulation of the reduced dynamics that is better suited
for designing model based controllers, and for assessing the
theoretical properties of open loop and closed loop systems.
An approach going in this direction is proposed in [11], [12],
where the order of very high dimensional FEM discretization
of the robot is reduction to achieve model based regulation.
While promising, this approach lacks of interpretability of
the results, and so far of nonlinear formulations.

This paper proposes a new modeling approach that, in
continuity with constant curvature techniques, we call poly-
nomial curvature model. Instead of operating a spatial dis-
cretization - as done by the above discussed techniques - we
express the curvature function of the robot in the standard
polynomial base of the Hilbert space. Each continuum shape
is in this way expressed by an infinite dimensional vector
having as first element the constant approximation of the
curvature, as second the linear approximation, and so on.
This allows for an exact infinite dimensional formulation
of the problem, and at the same time it provides an easy
way of approximating at any level of accuracy by order
truncation. In doing so, we take inspiration from assumed
mode technique, which has been developed for and success-
fully used in control-oriented modeling [13], and control [14]
of flexible link robots. We discuss the structural properties
of this model and we apply it for developing a high order
curvature regulator. To conclude, this paper contributes with
• A new modeling technique suited for control purposes,

allowing for a formulation of the dynamics with any
level of precision - up to infinity.

• An in depth analysis of the main properties of this
model.

• The proof that using the constant curvature of the robot
as control output produces a minimum phase system.

• The PD-poly, a controller - extending the classic PD
regulator - which can reach perfect steady state control
in non constant curvature conditions by using the full
knowledge of robot’s shape.

II. GENERAL DEFINITIONS

Consider a planar soft robot with a rod-like shape. We
call L ∈ R+ its length. We parametrize points along the
robot through a normalized coordinate s ∈ [0, 1], such as the
point at coordinate s is sL far from the base of the robot,
with distance measured along the robot itself. One end of the
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TABLE I
LIST OF MAIN SYMBOLS USED IN THE PAPER

Symbol Meaning
s ∈ [0, 1] Coordinate along the robot
L ∈ R+ Robot’s length
ρ ∈ R+ Robot’s density
φ ∈ [0, 2π] Angle between the base and

the gravity acceleration
τ : R+ → R Input torque applied in s = 1
κ : [0, 1]× R+ → R Local curvature at a given location

and a given time
α : [0, 1]× R+ → R Local orientation at a g.l. & g.t.
(x, y) : [0, 1]× R+ → R2 Cartesian coordinates at a g.l. & g.t.
KKK Sequence space of functions

mapping N× R+ into R
MMM Space of bounded linear operators

mapping KKK into itself
Θ ∈KKK Modal configuration at a g.t.
B : KKK →MMM Inertia of the robot
C : KKK ×KKK →KKK Coriolis and centrifugal forces
K ∈MMM Stiffness in modal space
D ∈MMM Damping in modal space
A ∈KKK Input field
m ∈ N Order of the approximation
[ · ]m : MMM → Rm+1×m+1 Matrix truncation
[ · ]m : KKK → Rm+1 Vector truncation
θi

.
= Θ(i, ·) : R+ → R i−th coordinate in modal space

at a given time
θ
.
= [Θ]m : R+ → Rm+1 Reduced dimensionality description

of the robot at a given time

robot is fixed to an inertial system. This end has coordinate
s = 0, the other end s = 1. We assume constant (normalized)
density ρ through the robot length. We also considered the
robot inextensible. Both the hypotheses are made for the sake
of space and will be relaxed in future work.

The soft robot pose is fully specified by the curvature1

function κ(s, t), which we consider as configuration variable
of the robot. We hypothesize this function to be analytic in
s. Under this hypothesis, we can express it as an infinite
expansion of monomials

κ(s, t) =

∞∑
i=0

θi(t)s
i . (1)

We call θi ∈ Rn modal component of order i. We also
introduce Θ ∈ KKK as the infinite sequence having θi as
i−th element. This function provides an exact description
of the robot shape, mathematically equivalent to κ itself.
The core idea of this paper is to build a kinematic and
dynamic description of the robot in Θ rather than in some
space discretization, as typically done in the literature.

Table I reports a list of main symbols used through the
paper.

A. Kinematics

The local orientation of the robot is obtained by direct
integration of the curvature

α(v, t) =

∫ v

0

κ(s, t)ds =
∞∑
i=0

θi(t)
vi+1

i+ 1
. (2)

1Strictly speaking κ is the inverse of the curvature, and it is sometimes
referred as to bending angle. We consider this variable instead of the actual
curvature for reasons that can not be discussed here for the sake of space.
This choice is done w.l.o.g. since the two are connected by a bijective map.

Knowing the angle function, the Cartesian coordinates of
each point along the robot can be evaluated as

x(v, t)

L
=

∫ v

0

cos (α(s, t)) ds,
y(v, t)

L
=

∫ v

0

sin (α(s, t)) ds. (3)

B. Finite dimension approximation and truncation operators
Working in Θ coordinates has the strong advantage of

allowing for a finite dimensional approximation of the cur-
vature in the form

κ(s, t) '
m∑
0

θi(t)s
i . (4)

Note that θ0 is the constant approximation of the robot’s
curvature. Thus the proposed model for m = 0 will be
equivalent to the classic constant curvature model. Higher
values of m will provide increasingly more precise finite
dimensional descriptions of the robot’s shape. So we call
the models that can be obtained for any given value of m
polynomial curvature models. The exact description can then
be recovered as limit for m going to infinity.

We call θ ∈ Rm+1 the (approximated) modal description
of the robot, having θi as i−th element. As Θ, Θ̇ is the state
of the exact model, θ, θ̇ will serve as state of the model that
can be derived by assuming (4).

To move from the infinite dimensional model to the
finite dimensional one, we introduce the truncation operators
[ · ]m : MMM → Rm+1×m+1, [ · ]m : KKK → Rm+1. They
map infinite dimensional linear operators and vectors to their
finite dimensional counterparts, by selecting the elements
with indexes less or equal to m, and putting θi>m ≡ 0.
We use the same symbol for both operators to simplify the
notation. In the following we will derive the model in the
infinite dimensional case, extracting the finite dimensional
representation when needed.

III. MODEL IN THE LIGHTWEIGHT CASE

In this section we derive all the non mass-related terms of
the model, i.e. elastic forces, actuation, dissipative actions.

A. Elastic field
We consider a linear elastic field. The energy stored in

the whole robot is UE(t) =
∫ 1

0
k
2κ

2(s, t) ds, where k is the
flexure rigidity of the rod. The elastic force field is evaluated
as follows

GE,k(Θ) =
k

2

∫ 1

0

∂

∂θk
κ2(s,Θ) ds = k

∫ 1

0

κ
∂

∂θk
κ ds

= k

∫ 1

0

(
∞∑
i=0

θis
i

)
sk ds = k

∞∑
i=0

θi

∫ 1

0

si+k ds

= k

∞∑
i=0

1

i+ k + 1
θi .

(5)

Thus the elastic field is linear in Θ and equal to GE(Θ) =
KΘ with K ∈MMM infinite dimensional matrix with element
(i, j) equal to

Ki,j =
k

i+ j + 1
. (6)

This is an Hankel operator, and all its truncations [K]m are
Hankel matrices [15].
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Lemma 1. det([K]m) 6= 0, ∀ m ∈ N, k > 0.

Proof. First, we recognize that det( 1
k [K]m) is a special case

of the Cauchys double alternant (see for example [16, Sec.
2.1]), defined as

det
1≤i,j≤m

(
1

Xi + Yj

)
=

∏
1≤i<j≤m(Xi −Xj)(Yi − Yj)∏

1≤i,j≤m(Xi + Yj)
, (7)

where Xi and Yj are elements of two generic sequences of
numbers. Considering Xi = i and Yj = j + 1 yields

det

(
1

k
[K]m

)
= det

1≤i,j≤m+1

(
1

i+ j + 1

)
=

∏
1≤i<j≤m+1(i− j)2∏

1≤i,j≤m+1(i+ j + 1)
> 0 .

(8)

The last step holds by considering that all the terms involved
in the products are strictly positive. The lemma follows by
considering that det( 1

k [K]m) = 1
km det([K]m).

Corollary 1. [K]m � 0, ∀ m ∈ N, k > 0.

Proof. The corollary follows by direct application of
Sylvester’s criterion [17], which states that a matrix is
positive defined if and only if all its leading principal minors
are positive, which is assured by (8) in Lemma 1.

These results prove that [K]m is a well defined stiffness
matrix, and they will be used later in the paper.

B. Input field

We contemplate a generic number of inputs applied along
the robot structure. As typically hypothesized in the literature
[18], [19], we consider here actuations in the form of a pure
torque. To express the effect of a single action applied at
coordinate sa, we evaluate the Jacobian mapping Θ̇ to the
derivative of the orientation in that location

α̇(sa, t) =

∞∑
i=0

∂α(l, t)

∂θi

∣∣∣∣
l=sa

θ̇i = AT(sa)Θ̇ , (9)

with A ∈KKK being the transpose of the infinite dimensional
Jacobian with i−th element equal to

Ai(sa) =
si+1

a

i+ 1
. (10)

We can now exploit kineto-static duality, to say that A(sa,j)
serves as an operator mapping the input τj in generalized
forces in the modal space. The overall input action is thus∑
A(sa,j)τj . For the sake of conciseness we consider in the

following a single actuation acting at the tip of the robot, i.e.
A(1)τ . The argument will be omitted.

C. Damping forces

In analogy with the elastic field, we consider a damping
force acting proportionally to the derivative of curvature. The
force exerted on the infinitesimal element at coordinate s
is dκ̇(s,Θ) = d

∑∞
0 θ̇is

i = dJ(s)Θ̇ , with J(s) infinite
dimensional Jacobian with i−th element equal to Ji(s) = si.
This generalized force produces an equivalent action in Θ
equal to dJTJΘ̇ - evaluated using kinetostatic duality. The

overall damping force is the sum of all the local effects, and
can thus be evaluated by integrating the infinitesimal terms∫ 1

0

dJT(s)J(s)Θ̇ds = DΘ̇ , (11)

with D infinite dimensional matrix with element (i, j) equal
to

Di,j =
d

i+ j + 1
. (12)

Note that D is equal to K, with the exception of a multi-
plicative constant. It is thus a Hankel operator too, and the
following Corollaries hold.

Corollary 2. det([D]m) 6= 0, ∀ m ∈ N, d > 0.

Proof. The proof adheres to the same arguments followed in
proving Lemma 1.

Corollary 3. [D]m � 0, ∀ m ∈ N, d > 0.

Proof. The proof adheres to the same arguments followed in
proving Corollary 1.

These results prove that [D]m is a well defined damping
matrix, and they will be used later in the paper.

D. Overall model and steady state behavior
Combining results of the previous subsections yields the

following infinite dimensional mechanical system

DΘ̇ = −KΘ +Aτ, (13)

where D,K ∈ MMM are the damping and stiffness opera-
tors, and A ∈ KKK is the input field - as introduced in
(6),(10),(12). This is an exact description of the system under
the assumption that inertia-related forces are negligible, i.e.
lightweight robot. It is worth underlying that this system is
linear. Furthermore, the following lemma holds.

Lemma 2. The system

[D]mθ̇ = −[K]mθ + [A]mτ (14)

has the following unique globally asymptotically stable equi-
librium; θ0 = τ

k and θi = 0, ∀i 6= 0, ∀m > 0.

Proof. First note that since Lemma 1 holds, the solution of
the equilibrium problem [K]mθ = [A]mτ is unique for all
τ . To prove that θ0 = τ

k and θi = 0 is the equilibrium, it is
sufficient to recognize that [A]m is the first column of [K]m
scaled of a factor 1

k . To prove the asymptotic stability we
rewrite (14) as

θ̇ = −[D]−1
m [K]mθ + [D]−1

m [A]mτ , (15)

which is always possible thanks to Corollary 2. Finally the
following holds [D]−1

m [K]m � 0 , since [D]m, [K]m � 0
(Corollaries 1 and 3), and inverse and products of positive
defined matrices are positive defined [20]. This assures the
global asymptotic stability of the equilibrium, being the
system linear.

The thesis of Lemma 2 tells us that a pure torque produces
steady state constant curvature behavior, as also predicted by
classic theories in continuum mechanics.
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Fig. 1. Open loop lightweight case, with κ(s, 0) = 5es, τ = −2Nm,
ρ ' 0, k = 1Nm, and d = 1Nms. The solution is exact, i.e. no
truncation is applied. Panel (a) shows the first six components only
because higher order ones would have been too small to be seen.
Corollary 4. Eq. (14) is equivalent to the set of decoupled
first order linear systems

θ̇0 = −k
d
θ0 +

1

d
τ , θ̇i = −k

d
θi , ∀i > 0 . (16)

Proof. The proof follows directly from (15) by recognizing
that D = d

kK, and by considering that the scalar multiplying
τ should be such that the equilibrium is the one predicted
by Lemma 2.

Example 1. Consider a soft limb with ρ ' 0, k = 1Nm,
and d = 1Nms. The system starts from the initial condition
κ(s, 0) = 5es, which corresponds to the exact modal de-
scription θi(0) = 5

i! , ∀i. According to (1) and (16) the exact
system evolution is

κ(s, t) =

∞∑
0

5e−t
si

i!
+ τ(1− e−t) = 5es−t + τ(1− e−t) .

Fig. 1 shows this evolution when τ = −2Nm and L = 1m.

IV. MODEL IN THE CASE OF NON NEGLIGIBLE MASS

A. On the integrability of Cartesian coordinates

Eq. (3) contains integrals of trigonometric functions of
polynomials, which are well know for not being integrable
in closed form. This issue prevents an exact and analytical
dynamical description of the general case, for reasons that
will become later clear in the paper. In the following we will
adhere to two parallel paths
i) Exact non analytical case; the integrals can be evaluated

numerically at any level of precision. This enables
using the exact expression of the model and of model-
based controllers, but it makes harder to provide general
theoretical results.

ii) Analytical approximated solution; as direct extension of
the constant curvature case to the polynomial world, we
introduce the following hypothesis of constant curvature
dominance

θ0 >>

∞∑
i=1

θi
i+ 1

. (17)

We will explicitly state any time this hypothesis is used.
Having closed form solutions, even if of local validity,
helps in proving general theoretical results.

Under hypothesis (17), the Cartesian coordinates of each
point of the robot can be approximated using a first order
Taylor expansion

x(s,Θ)

L
'

(∫ s

0

cos(θ0l)dl −
∞∑
i=1

θi
i+ 1

∫ s

0

li sin(θ0l)dl

)
,

y(s,Θ)

L
'

(∫ s

0

sin(θ0l)dl +

∞∑
i=1

θi
i+ 1

∫ s

0

li cos(θ0l)dl

)
.

(18)

Both terms of each sum have now solution in closed form,
the first by direct integration and the second by iterative
integration by parts. The result is

x(s,Θ)

L
' sin(θ0s)

θ0

+

∞∑
i=1

θi
i+ 1

[
i∑

k=0

i!

(i− k)!

si−k

θk+1
0

cos(θ0s+ k
π

2
)

− i!

θi+1
0

cos(i
π

2
)

]
,

y(s,Θ)

L
' 1− cos(θ0s)

θ0

+

∞∑
i=1

θi
i+ 1

[
i∑

k=0

i!

(i− k)!

si−k

θk+1
0

sin(θ0s+ k
π

2
)

− i!

θi+1
0

sin(i
π

2
)

]
.

(19)

The first term is the position of a constant curvature robot,
and the second is a perturbation. Note that the perturbation
itself is nonlinearly dependent on θ0.

B. Gravitational field
Call φ ∈ [0, 2π] the angle that the base of the robot has

w.r.t. the gravity field. The total gravitational potential energy
is UG(t, φ) = ρg (− cos(φ)Cx + sin(φ)Cy), where Cx, Cy

are the Cartesian coordinates of the center of mass. Their
dependency on κ is not reported for the sake of space. ρ is
the normalized density of the robot - equal to the mass of
the robot - and g is the gravity acceleration constant. The
overall gravity force field is obtained through derivation

GG =
∂UG

∂θ
=ρg

(
sin(φ)

∫ 1

0

∇T
y ds− cos(φ)

∫ 1

0

∇T
x ds

)
, (20)

where we substituted the explicit definition of Cx and Cy ,
and where ∇x and ∇y are row vectors, with i-th element
∂x
∂θ̇i

and ∂y

∂θ̇i
respectively.

Under assumption (17), we can obtain the closed form
solution in modal coordinates as shown by (21). For the sake
of space, we do not report the steps of the derivation, and
we take φ = 0. The generic case assumes a similar form.
It is easy to see either through manipulations of (20), or
through direct inspection of (21), that under assumption (17)
the following holds

GG(Θ, φ) = G(θ0, φ)Θ + g0(θ0, φ),

G(θ0, φ) =

0 gG,2(θ0, φ) gG,3(θ0, φ) . . .
0 0 0 . . .
...

...
...

 , (22)

where Θ is the modal description of the robot’s shape, θ0 is
the constant curvature component of Θ. g0 : R×[0, 2π]→KKK
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GG,0 = L
sin(θ0)θ0 − 2(1− cos(θ0))

θ3
0

+
L

θ2
0

∞∑
i=1

θi
i+ 1

{
(i+ 1)!

θi0
cos(i

π

2
) +

i∑
k=0

i!

θk+1
0

[
i−k∑
w=0

i− 2k

θi−k0

sin(i
π

2
)

+
sin(θ0v + (k + w)π

2
)(k + 1) + θ0 cos(θ0 + (k + w)π

2
)− (w + 1) sin(θ0v + (k + w)π

2
)

(i− k − w)!θw0

]}
,

GG,i 6=0 =

i∑
k=0

L

i+ 1

i!

θk+1
0

[
i−k∑
w=0

1

θw+1
0

1

(i− k − w)!
sin(θ0v + (k + w)

π

2
)− 1

θi−k+1
0

sin(i
π

2
)

]
− L

i+ 1

i!

θi+1
0

cos(i
π

2
).

(21)

is a nonlinear force field describing how θ0 affects itself
and higher order modal terms through gravity. Vice versa,
G : R× [0, 2π]→MMM describes how non constant curvature
terms affect the dynamics of θ0 through the gravity field. It
is interesting to notice that non constant curvature terms do
not directly affect themselves through gravity.

C. Inertia matrix
The general form of the inertia matrix can be derived from

the kinetic energy

Ek =
ρ

2

∫ 1

0

ẋTẋ+ ẏTẏ ds =
1

2
Θ̇TB(Θ)Θ̇,

B(Θ) = ρ

∫ 1

0

∇T
x∇x +∇T

y∇y ds,

(23)

where ∇x and ∇y are defined as in (20). The following
general result can be derived

Lemma 3. [B]m(θ) � 0, ∀ m ∈ N, ρ̄ > 0, θ ∈ Rm+1.

Proof. We test the thesis by applying the definition of
positive definiteness, according to which the following must
be true for all values of ξ ∈ Rm+1

ξT[B]mξ ≥ 0

⇐⇒ ρ̄

∫ 1

0

ξT
(
∇T

x∇x +∇T
y∇y

)
ξds ≥ 0

⇐⇒ ρ̄

∫ 1

0

(∇xξ)
T

(∇xξ) + (∇yξ)
T

(∇yξ) ds ≥ 0

⇐⇒ ρ̄

∫ 1

0

||∇xξ||2 + ||∇yξ||2ds ≥ 0,

(24)

which always holds true, being the last term an integral of
positive elements.

Again, (23) can be analytically evaluated under hypothesis
(17). Note that this derivation is not an obvious one, since
it involves integrations. However, it should result clear from
a quick analysis of (23), that all the terms to be integrated
are polynomials, trigonometric functions, or products of the
two. We already provided above examples of integration of
these kinds of function. We can not reported here the explicit
form of (23) for the sake of space. However, the following
general properties can be proven

Lemma 4. Under hypothesis (17), the elements of B(Θ) and
[B]m(θ) are such that

i) Bi 6=0,j 6=0 depends only and nonlinearly on θ0,
ii) Bi 6=0,0 and B0,j 6=0 are affine in θz 6=0, with coefficients

nonlinear in θ0,
iii) B0,0 is quadratic in θz 6=0, with coefficients nonlinear in

θ0.

Proof. The element (i, j) of B is

Bi,j
ρ

=

∫ 1

0

∂x

∂θi

∂x

∂θj
+
∂y

∂θi

∂y

∂θj
ds. (25)

Consider now that both x and y can be written as (see (19))

x = Γx(θ0) + Λx(θ0)Θ, y = Γy(θ0) + Λy(θ0)Θ, (26)

where Γx,Γy,Λx,Λy are functions of θ0 only, with their
opportune dimensions. Thus

∂x

∂θ0
=
∂Γx

∂θ0
(θ0) +

∂Λx

∂θ0
(θ0)Θ,

∂x

∂θi6=0
= Λx,i(θ0)

∂y

∂θ0
=
∂Γy

∂θ0
(θ0) +

∂Λy

∂θ0
(θ0)Θ,

∂y

∂θi 6=0
= Λy,i(θ0).

(27)

The thesis follows by direct substitution of these equations
in (25), which yields (28).

D. Coriolis and centrifugal terms

Coriolis and centrifugal terms are collected into the fol-
lowing term

C(Θ, Θ̇) = Ḃ(Θ)Θ̇− 1

2

(
∂

∂Θ
Ek(Θ, Θ̇)

)T

. (29)

Note that, while potentially computationally heavy, the
derivation of this form does not carry any fundamental
difficulty. No integrations is indeed involved, and deriva-
tions can be evaluated both numerically and symbolically
in an automatic fashion. For the latter, we used Symbolic
toolbox of MatLab2019b. We can not report here the
result for the sake of space. However, it is worth introducing
the following general property.

Lemma 5. Under hypothesis (17), [C]m(θ, θ̇) = 0, ∀θ̇ s.t.
θ̇0 = 0, ∀m > 0.

Proof. The i−th element of [C]m can be written as

([C]m)i(θ, θ̇) =

m∑
j=0

m∑
k=0

(
∂Bi,j
∂θk

− 1

2

∂Bj,k
∂θi

)
θ̇kθ̇j . (30)

When θ̇0 = 0, the terms in k 6= 0 and j 6= 0 are the only
ones to be not null. When i 6= 0, they are ∂Bi6=0,j 6=0

∂θk 6=0
, which

are null according to Lemma 4.
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B0,0

ρ
=

∫ 1

0

∂Γx

∂θ0
(θ0)2 +

∂Γy

∂θ0
(θ0)2 ds

+ 2

[∫ 1

0

∂Γx

∂θ0
(θ0)

∂Λx

∂θ0
(θ0) +

∂Γy

∂θ0
(θ0)

∂Λy

∂θ0
(θ0) ds

]
Θ + ΘT

[∫ 1

0

∂Λx

∂θ0

T

(θ0)
∂Λx

∂θ0
(θ0) +

∂Λy

∂θ0

T

(θ0)
∂Λy

∂θ0
(θ0) ds

]
Θ,

B0,j 6=0

ρ
=

∫ 1

0

∂Γx

∂θ0
(θ0)Λx,j(θ0) +

∂Γy

∂θ0
(θ0)Λy,j(θ0) ds+

[∫ 1

0

∂Λx

∂θ0
(θ0)Λx,j(θ0) +

∂Λy

∂θ0
(θ0)Λy,j(θ0) ds

]
Θ,

Bi6=0,j 6=0

ρ
=

∫ 1

0

Λx,i(θ0)Λx,j(θ0) + Λy,i(θ0)Λy,j(θ0) ds.

(28)
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Fig. 2. Open loop evolution when mass is not negligible, with
κ(s, 0) ' 5es, κ̇(s, 0) = 0, τ = −2Nm, ρ = 1Kg, k = 1Nm,
d = 1Nms, and m = 4. Two orientations w.r.t. gravity are
considered; φ = 0, π.

To prove that ([C]m)0 = 0, we start by considering the
terms of the sum such that j = j̄, k = k̄ and k = j̄, j = k̄

∂B0,j̄ 6=0

∂θk̄ 6=0

=

∫ 1

0

∂Λx,k̄

∂θ0
Λx,j̄ +

∂Λy,k̄

∂θ0
Λy,j̄ ds,

∂B0,k̄ 6=0

∂θj̄ 6=0

=

∫ 1

0

∂Λx,j̄

∂θ0
Λx,k̄ +

∂Λy,j̄

∂θ0
Λy,k̄ ds,

∂Bk̄ 6=0,j̄ 6=0

∂θ0
=
∂Bj̄ 6=0,k̄ 6=0

∂θ0
=

∫ 1

0

∂Λx,̄i

∂θ0
Λx,j̄

+ Λx,̄i

∂Λx,j̄

∂θ0
+
∂Λy,̄i

∂θ0
Λy,j̄ + Λy,̄i

∂Λy,j̄

∂θ0
ds.

(31)

Thus (
∂B0,j̄ 6=0

∂θk̄ 6=0

− 1

2

∂Bj̄ 6=0,k̄ 6=0

∂θ0

)
θ̇k̄ 6=0θ̇j̄ 6=0

+

(
∂B0,j̄ 6=0

∂θk̄ 6=0

− 1

2

∂Bj̄ 6=0,k̄ 6=0

∂θ0

)
θ̇k̄ 6=0θ̇j̄ 6=0 = 0.

(32)

Only the terms in k = h̄ and j = h̄ remain in the sum,
for which we can prove following similar steps as the ones
discussed above that ∂B0,h̄

∂θh̄
= 1

2

∂Bh̄,h̄

∂θ0
, concluding the proof.

E. Overall Dynamical system

Finally, we write the infinite dimensional nonlinear dy-
namical system describing the behavior of the soft robot by
combining (6) (10) (12) (20) (23) and (29)

B(Θ)Θ̈ + C(Θ, Θ̇) +GG(Θ, φ) +KΘ +DΘ̇ = Aτ, (33)

where B : KKK →MMM is the inertia of the robot, C : KKK×KKK →
KKK are Coriolis and centrifugal forces, GG : KKK →KKK are the
gravitational forces, K ∈ MMM and D ∈ MMM are stiffness and

damping matrices in modal space, and A ∈ KKK is the input
field.

The finite dimensional approximation of (33) can be
derived by applying the truncation operator [ · ]m to all its
terms, obtaining

[B]mθ̈ + [C]m + [K]mθ + [D]mθ̇ + [GG]m = [A]mτ, (34)

where dependencies on θ, θ̇, φ are not reported for the sake
of space.

Example 2. We consider a soft robot as in example 1, with
same input and initial conditions. We include here inertia
related effects, with ρ = 1Kg, φ = 0 and φ = π. Fig. 2
shows the resulting evolution for m = 4.

V. MODEL BASED CONTROL

As already discussed in the introduction, the main aim of
this model is to provide a framework for advance model
based control in soft robots, both in terms of controller
design and theoretical assessment of structural properties.
This section is a first example of the use of the proposed
model in this direction.

A. Regulating the constant curvature term produces a mini-
mum phase system

Given an output function representing some aspect of
the system that we aim at directly control y = h(θ, θ̇) ,
with h : Rm+1 × Rm+1 → Rg , the zero-dynamics is the
collection of all trajectories such that ẏ ≡ 0, i.e. for any
given perfect regulation of the output. A system is said to be
non minimum phase if the trajectories of its zero dynamics
are not divergent, vice versa it is minimum phase. An in
depth introduction to the topic is provided by [21]. Note that
in the context of nonlinear control, being minimum phase
is a very important property for a system to have, since it
enables formulating the regulation of the output y as a control
goal. If this property is fulfilled, advanced techniques can be
used to control the system, as high gain control, feedback
passification, and feedback linearization. If the answer is
negative, then there is no way of designing a controller -
either with classic theories, or more recently developed data-
driven strategies - that can regulate y. So, understanding if a
system is minimum phase w.r.t. a meaningful output should
be regarded as a major challenge in any emergent sub-fields
of control theory, as control of soft robots.

As direct extension of curvature control in constant cur-
vature robots, we analyze here the regulation of the constant
approximation of κ. This function would be very complex
to even formulate using other means of discretizing the



DELLA SANTINA et al.:: CONTROL ORIENTED MODELING OF SOFT ROBOTS: THE POLYNOMIAL CURVATURE CASE 7

dynamics, preventing any general solution. It is instead trivial
to define in our framework, i.e.

y = θ0. (35)

The dynamics of the output is obtained by deriving y two
times, getting θ̈0. This is coincident with the first equation
of (34). Consequently, we partition the complete reduced
dynamics as follows[

B0,0 B0,zd

Bzd,0 Bzd,zd

] [
θ̈0

θ̈zd

]
+

[
C0

Czd

]
+

[
K0,0 K0,zd

Kzd,0 Kzd,zd

] [
θ0

θzd

]
+

[
D0,0 D0,zd

Dzd,0 Dzd,zd

] [
θ̇0

θ̇zd

]
+

[
G0

Gzd

]
=

[
A0

Azd

]
τ,

(36)

where dependencies on θ, θ̇, φ are not reported for the sake
of space. θzd ∈ Rm collects the modal coefficients going
from θ1 to θm, and θ̇zd ∈ Rm their derivatives. The block
matrices result from partitioning the matrices appearing in
(34).

Theorem 1. In the hypothesis of dominant constant curva-
ture (17), all the trajectories of the zero-dynamics of (34),
(35) verifying the following conditions converge to a constant
equilibrium, for all given and fixed θ0. This is equivalent of
saying that the system is (non strictly) minimum phase2

i) Bzd,zd(θ0) � AzdB0,zd(θ0, θzd),

ii) Dzd,zd � AzdD0,zd + 1
2Azd

[
∂B0,zd

∂θzd
θ̇zd

]T
,

iii) Kzd,zd � AzdK0,zd.

Proof. The zero dynamics of the robot is coincident with the
m second order differential equations governing θ̈zd, when
θ0 ≡ θ̄, θ̇0 = 0, θ̈0 = 0. This yields the following dynamical
system, where dependencies are not reported for the sake
of space Bzd,zdθ̈zd +Dzd,zdθ̇zd +Kzd,zdθzd = −Kzd,0θ̄0 −
Gzd + Azdτ̄ . Note that no Coriolis and centrifugal terms
appear here, thanks to Lemma 5. τ̄ is the torque such that
the conditions on θ0 are enforced, which can be evaluated in
closed form through direct substitution into the first equation
of (36) as being τ̄ = B0,zdθ̈zd + K0,0θ0 + K0,zdθzd +
D0,zdθ̇zd +G0(θ), where we exploited that A0 = 1. The two
can be combined, obtaining the following explicit expression
of the zero dynamics

(Bzd,zd −AzdB0,zd) η̈ + (Dzd,zd −AzdD0,zd) η̇

+ (Kzd,zd −AzdK0,zd) η = 0,
(37)

with η = θzd − (Kzd,zd −AzdK0,zd)
−1
c, where c collects

terms that are constants once θ0 is fixed. Thus η̇ = θ̇zd, and
η̈ = θ̈zd. Eq. (37) has the structure of a multi-dimensional
mechanical system, with constant stiffness and damping, and
configuration dependent inertia. This dependence is linear, as
stated by Lemma 3. Furthermore both inertia and stiffness
are positive defined by hypothesis (i) and (iii). The following
Lyapunov candidate can thus be introduced; V (θ, θ̇) =

2Note that condition (iii) is not state dependent, and it can be shown
holding always true. The remaining two conditions are LMIs, and can thus
be very efficiently evaluated. Note also that the conditions are well posed
since Bzd,zd, Dzd,zd,Kzd,zd � 0, begin sub-matrices of positive defined
matrices.

1
2 η̇

T (Bzd,zd −AzdB0,zd) η̇ + 1
2η

T (Kzd,zd −AzdK0,zd) η .
To evaluate the stability of (37), we derive V w.r.t. time

V̇ = +θ̇T (Bzd,zd −AzdB0,zd) θ̈+
1

2
θ̇T d (Bzd,zd −AzdB0,zd)

dt
θ̇

+θ̇T (Kzd,zd −AzdK0,zd) θ

=− θ̇T (Kzd,zd −AzdK0,zd) θ − θ̇TDzd,zdθ̇

+
1

2

m∑
1

(
θ̇T ∂ (Bzd,zd −AzdB0,zd)

∂θi
θ̇

)
θ̇i

+ θ̇T (Kzd,zd −AzdK0,zd) θ

=− θ̇T

(
Dzd,zd +

1

2

m∑
1

∂ (Bzd,zd −AzdB0,zd)

∂θi
θ̇i

)
θ̇

=− θ̇T

(
Dzd,zd −AzdD0,zd +

1

2
Azd

[
∂B0,zd

∂θzd
θ̇zd

]T
)
θ̇ ≤ 0,

where we exploited Lemma 4, and the last step holds since it
is a quadratic form of a positive defined matrix (hypothesis
(ii)) is always positive. The thesis follows by applying the
LaSalle Lemma [22].

B. Controlling with polynomial curvature: the PD-poly

Following the proof that controlling the constant approx-
imation of κ produces a well defined problem, we propose
here a controller to achieve this goal with zero error at steady
state. We call it PD with polynomial terms compensation, or
PD-poly.

Theorem 2. All the equilibria of the closed loop of system
(34) and the controller

τ =
[1, −B0,zdB

−1
zd,zd]Kθ + [1, −B0,zdB

−1
zd,zd]G(θ)

[1, −B0,zdB
−1
zd,zd]A

− γDθ̇0 − γP(θ0 − θ̄0),

(38)

are such that θ0 = θ̄0, as soon as B0,zdB
−1
zd,zdAzd 6= 1, and

γP 6= 0.

Proof. We start by expliciting the acceleration of the zero
dynamics variables θ̈zd from the general form (36)

θ̈zd = B−1
zd,zd

(
−Bzd,0θ̈0 − Czd −

[
Kzd,0 Kzd,zd

] [ θ0

θzd

]
−
[
Dzd,0 Dzd,zd

] [ θ̇0

θ̇zd

]
−Gzd +Azdτ

)
.

This equation can now be plugged into the first line of (36),
getting to

(B0,0 −B0,zdB
−1
zd,zdBzd,0)θ̈0 + (C0 −B0,zdB

−1
zd,zdCzd)

+
[
K0,0 −B0,zdB

−1
zd,zdKzd,0 K0,zd −B0,zdB

−1
zd,zdKzd,zd

] [ θ0

θzd

]
+
[
D0,0 −B0,zdB

−1
zd,zdDzd,0 D0,zd −B0,zdB

−1
zd,zdDzd,zd

] [ θ̇0

θ̇zd

]
+(G0 −B0,zdB

−1
zd,zdGzd) = (1−B0,zdB

−1
zd,zdAzd)τ.

By getting rid of θ̈zd we obtained a scalar dynamics in
the state variables, describing the evolution of the variable
of interest θ0. Substituting (36) into this dynamics, and
imposing the equilibrium conditions θ̈ = 0, and θ̇ = 0, yields
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Fig. 3. Closed loop simulations, with κ(0, s) ' 2 sin(s), κ̇(0, s) =
0, ρ = 1Kg, k = 1Nm, d = 1Nms, φ = 0, γP = 1Nm,
γD = 1Nms, and m = 4. Panel (a) shows a comparison of
constant curvature regulation when using a standard PD, and the
here proposed PD-poly. Panel (b) shows the torques produced by the
two controllers. Panel (c) shows the evolution of θ for the PD case,
and panel (d) for the PD-poly case. Panel (e,f) show the resulting
evolutions in Cartesian space. Note when using the simple PD the
soft robot is not able to lift its own weight over a certain threshold.

(1−B0,zdB
−1
zd,zdAzd)γP(θ0− θ̄0) = 0. This implies θ0 = θ̄0,

since 1−B0,zdB
−1
zd,zdAzd 6= 0 and γP 6= 0 by hypothesis.

Note that the theorem can be proven following the same
steps even when the compensation is evaluated in feedfor-
ward.

Example 3. We consider a soft robot as in example 2. This
time two loops are closed on τ , with the aim of regulating θ0;
a standard PD, and the here proposed PD-poly. The gains
are γP = 1Nm, γD = 1Nms. Fig. 3 shows the resulting
evolutions for m = 4.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduced a novel model, inspired by assumed
mode technique, and specifically devised for control oriented
applications. We developed the model, discussed its main
characteristics, and used it to attack the control of the
constant curvature approximation of the robot. Future work
will focus on; i) high gain linear feedback controllers for soft
robots, ii) designing new control goals using the theory of

dummy outputs, iii) analyzing different series expansions to
define the modal coordinates, iv) deriving controllers for the
infinite dimensional case. The latter goal is eased by the fact
that - under the hypothesis of constant curvature dominance
- the zero dynamics is quasi linear [23].
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