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Abstract Markov chain Monte Carlo (MCMC) simulation methods are widely used to assess parametric
uncertainties of hydrologic models conditioned on measurements of observable state variables. However,
when the model is CPU-intensive and high dimensional, the computational cost of MCMC simulation will be
prohibitive. In this situation, a CPU-efficient while less accurate low-fidelity model (e.g., a numerical model
with a coarser discretization or a data-driven surrogate) is usually adopted. Nowadays, multifidelity
simulation methods that can take advantage of both the efficiency of the low-fidelity model and the accuracy
of the high-fidelity model are gaining popularity. In the MCMC simulation, as the posterior distribution of
the unknown model parameters is the region of interest, it is wise to distribute most of the computational
budget (i.e., the high-fidelity model evaluations) therein. Based on this idea, in this paper we propose an adaptive
multifidelity MCMC algorithm for efficient inverse modeling of hydrologic systems. In this method, we evaluate
the high-fidelity model mainly in the posterior region through iteratively running MCMC based on a Gaussian
process system that is adaptively constructed with multifidelity simulation. The error of the Gaussian process
system is rigorously considered in theMCMC simulation and gradually reduced to a negligible level in the posterior
region. Thus, the proposed method can obtain an accurate estimate of the posterior distribution with a small
number of the high-fidelity model evaluations. The performance of the proposed method is demonstrated by
three numerical case studies in inverse modeling of hydrologic systems.

1. Introduction

For a better understanding and management of hydrologic systems, there is a growing interest in applying
numerical modeling techniques to conduct qualitative and quantitative analyses (Anderson et al., 2015;
Vieux, 2001). However, the existence of uncertainties in model structure, model parameters, initial and
boundary conditions, measurement data, etc., would hinder the predictive accuracy of hydrologic modeling
(Clark et al., 2011; Refsgaard et al., 2012; Wagener & Gupta, 2005). To reduce the predictive uncertainty of the
hydrologic system of concern, it is common practice to calibrate the conceptual model against measure-
ments of some state variables, for example, hydraulic head, solute concentration, temperature, and stream-
flow, through solving an inverse problem (Hu et al., 2017; Kang et al., 2017; Zha et al., 2018; Zhu et al., 2017).

When handling uncertainties in hydrologic modeling, inverse methods based on Bayes’ theorem are
appropriate options as they can be formulated in a coherent and consistent manner (Stuart, 2010;
Vrugt, 2016). It means that each time we run the Bayesian method, it should converge to the same
distribution. In the Bayesian framework, quantities of interest are modeled as random variables, whose
posterior distribution is proportional to the prior distribution times the likelihood. In most situations,
closed-form expressions of the posterior distribution are nonexistent, so one has to resort to Monte
Carlo simulation methods to obtain numerical approximations. Over the past decades, Markov chain
Monte Carlo (MCMC) methods have been widely used to assess uncertainties of hydrologic systems con-
ditioned on measurements of observable state variables (Shi et al., 2014; T. J. Smith & Marshall, 2008;
Vrugt, 2016; L. Zeng et al., 2012; X. Zeng et al., 2018; Zhang et al., 2015; Zhang et al., 2016). However,
MCMC has to sufficiently explore the parameter space to obtain reliable estimation results. This usually
requires a large number of model evaluations. However, it is common that the execution time of a single
forward model simulation can be in hours or even longer, for example, for distributed groundwater mod-
els (Elshall & Tsai, 2014; Keating et al., 2010). In this situation, the computational cost of MCMC simulation
will be prohibitive, especially for high-dimensional problems.
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To alleviate the computational cost, one can use a CPU-efficient low-fidelity model (denoted by fL(m), where
m signifies the model parameters) of the original model (denoted by fH(m), that is, the high-fidelity model in
this paper) in the MCMC simulation. A low-fidelity model could be a data-driven surrogate based on interpo-
lation or regression, a numerical model that considers fewer processes or has a lower numerical precision
(e.g., with a coarser discretization) or is constructed by projecting high-dimensional variables onto their
low-dimensional subspace, etc. (Asher et al., 2015; Mo et al., 2017; Razavi et al., 2012; R. C. Smith, 2014;
X. Zeng et al., 2018; Zhang et al., 2017). Inevitably, using the low-fidelity model fL(m) can introduce some bias
if no error model is considered (Forrester & Keane, 2009; Razavi et al., 2012). To address this issue, one popular
approach is to further evaluate fH(m) in a two-stage manner; that is, first explore the parameter space suffi-
ciently using fL(m) with a low computational cost at stage one, then use fH(m) to correctly sample the target
distribution at stage two (Efendiev et al., 2005; Laloy et al., 2013; L. Zeng et al., 2012; Zhang et al., 2015). In this
way, many unnecessary evaluations of fH(m) can be avoided. More recently, another approach that adap-
tively refines a data-driven surrogate over the posterior distribution is proposed, which has shown to be
highly efficient (Gong & Duan, 2017; Ju et al., 2018; Zhang et al., 2016).

In the above approaches, nevertheless, the correlation relationship between fH(m) and fL(m) is not utilized,
which leaves some potential untouched. One method that is suitable for fusing fH(m) and fL(m) into an inte-
grated system is the multifidelity simulation (Kennedy & O’hagan, 2000). Given a small number of fH(m) eva-
luations and a much larger number of fL(m) evaluations, the multifidelity simulation can take advantage of
both the efficiency of fL(m) and the accuracy of fH(m). The integrated system can be constructed with many
methods, for example, polynomial chaos expansion (Narayan et al., 2014; Palar et al., 2016; Zhu et al., 2014)
and Gaussian process (GP) (Kennedy & O’Hagan, 2000; Le Gratiet & Garnier, 2014; Parussini et al., 2017;
Raissi et al., 2017). GP is a generic supervised learning method that uses a (multivariate) Gaussian distribution
to predict the quantity of interest based on a set of training data (Williams & Rasmussen, 2006). GP has been
widely used in hydrologic science to simulate the input–output relationship of the systemmodel (Asher et al.,
2015; Sun et al., 2014; Zhang et al., 2016) and the model structural error (Xu et al., 2017; Xu & Valocchi, 2015),
etc. As GP is very flexible (i.e., we can specify different covariance functions) and can provide the uncertainty
estimation (variance) of the system output, we adopt it in this paper to simulate the input–output relation-
ship of fH(m) with multifidelity simulation. In the multifidelity GP framework, the correlation between fH(m)
and fL(m) is rigorously considered with the covariance (kernel) functions, and the corresponding hyperpara-
meters are estimated with an optimization method conditioned on simulation data of both fH(m) and fL(m).

To improve the performance of the multifidelity GP system, people would like to acquire the training data
adaptively via active learning. One intuitive strategy is to add a new set of training data that have the largest
output variance (Raissi et al., 2017). Other strategies can be more sophisticated, for example, the expected
informativeness of candidate points (Mackay, 1992), the mutual information criterion (Krause et al., 2008),
and the integrated posterior variance (Gorodetsky & Marzouk, 2016), just name a few. How to acquire the
optimal new training data adaptively for a specific problem is still an open problem. In many cases, the pos-
terior occupies a very small proportion of the prior region. If the multifidelity system is built over the whole
prior distribution, its accuracy cannot be guaranteed if only a limited number of fH(m) evaluations are afford-
able. Considering that the posterior distribution is the region of interest, it is wise to distribute most of the
computational budget (i.e., fH(m) evaluations) therein. Based on this idea, we propose an adaptive multifide-
lity MCMC (AMF-MCMC) algorithm for efficient inverse modeling of hydrologic systems in this paper. Here we
iteratively run MCMC with a GP system constructed with multifidelity simulation to search the posterior
region and accordingly add new fH(m) and fL(m) data to refine the GP system locally. Gradually, the GP system
will be accurate enough in the posterior region. Finally, we can obtain an accurate estimate of the posterior
distribution. In the AMF-MCMC algorithm, most of the fH(m) simulations are run near or within the posterior
region, thus very little computational budget is wasted.

It is noted that, multi-fidelity simulation methods, that is, using paired simple and complex models to achieve
a balance between accuracy and efficiency, have become increasingly popular in hydrologic science (Doherty
& Christensen, 2011; Linde et al., 2017; Lu et al., 2016; Moslehi et al., 2015; Watson et al., 2013), while the appli-
cation of these methods in Bayesian inference is very limited. Here we adopt the method originally devel-
oped by Kennedy and O’Hagan (2000) to build the multifidelity GP system. The novelty of this paper is
that we propose an efficient framework to build the multifidelity GP system adaptively in the posterior
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distribution, not the traditional way in the prior distribution. The method proposed in this work can accu-
rately sample the posterior distribution, but only requires a small number of fH(m) evaluations. To our best
knowledge, this framework (i.e., refine the multifidelity surrogate adaptively over the posterior distribution)
is rather new and it has value in both theoretical and practical aspects.

The remainder of this paper is organized as follows. In section 2, we provide a detailed formulation of the
AMF-MCMC algorithm. Then, its performance is demonstrated by three numerical case studies in section 3.
Finally, some conclusions and discussions are provided in section 4.

2. Methods
2.1. Bayesian Inference With DREAM(ZS)

For simplicity, here we represent the observation process of the hydrologic system of concern in the follow-
ing compact form:

ed ¼ f mð Þ þ ε; (1)

where ed is a Nd-vector for the measurements, f(·) is the system model, m is a Nm-vector for the unknown
model parameters, and ε is a Nd-vector for the measurement errors. Before obtaining the measurementsed , our knowledge about the unknown model parameters m is represented by the prior distribution, p(m).
When ed is available, we can update our knowledge aboutmwith the posterior distribution, p mjed� �

, accord-
ing to Bayes’ theorem:

p mjed� �
¼

p mð Þp ed jm
� �

p ed� � ; (2)

whereL mjed� �
≡p ed jm

� �
is the likelihood function that quantifies the mismatch between the model outputs

f(m) and the measurements ed , p ed� �
¼ ∫p ed jm

� �
p mð Þdm is the evidence. When the measurement errors

are assumed to fit multivariate Gaussian distribution, the likelihood L mjed� �
can be expressed as

L mjed� �
¼ 1

2πð ÞNd=2 Σj j1=2
exp � 1

2
ed � f mð Þ

h iT
Σ�1 ed � f mð Þ

h i� �
; (3)

where Σ is the covariance of the measurement errors, |·| signifies the determinant operator.

In most situations, analytical forms of p mjed� �
do not exist. Here we resort to an efficient MCMC algorithm,

that is, DREAM(ZS) (Laloy et al., 2013; Laloy & Vrugt, 2012; Vrugt, 2016), to explore the parameter space and

estimate p mjed� �
numerically. MCMC works by constructing a Markov chain that gradually converges to

the posterior distribution. To better explore the parameter space, Nc parallel chains are generated
and evolved simultaneously by DREAM(ZS). At iteration t, based on an archive of thinned chain history, Z,
the parallel direction jump and the snooker jump are used to update the previous state in the ith chain

(i.e., mi
t�1 ) to obtain the proposal state, mi

p . Then, we will compare the acceptance rate, pacc ¼ min

1; p mi
pjed� �

=p mi
t�1jed� �h i

, with a random sample u drawn from the uniform distribution,U 0; 1ð Þ. If pacc> u,

we will acceptmi
p and letmi

t ¼ mi
p; Otherwise, we will rejectm

i
p and letmi

t ¼ mi
t�1. In every Tthin iterations, we

will append the current Nc states in the Markov chains to the archive Z. When the Markov chains converge to
the stationary regime, we can view states in the chains as random samples drawn from the posterior distribu-
tion. For more details about DREAM(ZS) and related algorithms, one can refer to (Vrugt, 2016).

2.2. Multifidelity Simulation With Gaussian Process

To obtain reliable estimations, MCMC needs to sufficiently explore the parameter space, which generally
requires a large number of model evaluations. When f(m) is CPU-intensive (then f(m) is called the high-fidelity
model and represented by fH(m) thereafter), the computational cost of MCMC simulation will be prohibitive.
In this situation, a CPU-efficient low-fidelity model fL(m) is usually adopted. To balance accuracy and
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efficiency, it is desirable to construct an integrated system for the MCMC simulation through fusing the infor-
mation provided by a small number of fH(m) evaluations and a much larger number of fL(m) evaluations. This
can be realized with the autoregressive model (Kennedy & O’Hagan, 2000):

uH mð Þ ¼ ρuL mð Þ þ δ mð Þ; (4)

where uL mð Þ∼GP 0; k1 m;m
0
;ϕ1

� �� �
and δ mð Þ∼GP 0; k2 m;m

0
;ϕ2

� �� �
are two independent GPs; ki(m,m0;ϕi)

are the covariance functions with hyperparameters ϕi, for i = 1, 2; ρ is the cross-correlation coefficient;
m and m0 are two arbitrary samples in the parameter space. Then uH(m) has the following form (Raissi
et al., 2017):

uH mð Þ∼GP 0; k m;m0;ϕð Þð Þ; (5)

where k(m,m0;ϕ) = ρ2k1(m,m0;ϕ1) + k2(m,m0;ϕ2), and ϕ = [ϕ1,ϕ2, ρ]. Consequently, we have

uL mð Þ
uH mð Þ

� 	
∼GP 0;

kLL kLH

kHL kHH

� 	
 �
; (6)

where kLL = k1(m,m0;ϕ1), kLH ¼ kTHL ¼ ρk1 m;m
0
;ϕ1

� �
, and kHH = k(m,m0;ϕ). In this paper, we adopt the com-

monly used squared exponential covariance function (Williams & Rasmussen, 2006) for both k1 and k2:

ki m;m
0
;ϕi

� �
¼ σ2i exp � 1

2
∑
Nm

n¼1

mn �m
0
n

� �2
l2n;i

" #
; (7)

where ϕi¼ σ2i ; l2n;i
� �Nm

n¼1

� 	
are the hyperparameters of the covariance functions ki, for i = 1, 2.

When we have NL sets of training data obtained by simulating fL(m) at NL parameter samples and NH

sets of training data obtained by simulating fH(m) at NH parameter samples (here NL and NH are two
positive integers), we can estimate the hyperparameters ϕ by minimizing the negative log marginal
likelihood:

NL ¼ � logp DjM;ϕð Þ ¼ 1
2
DTK�1Dþ 1

2
log Kj j þ NL þ NH

2
log 2πð Þ; (8)

where

K ¼ kLL ML;MLð Þ þ σ2LINL kLH ML;MHð Þ
kHL MH;MLð Þ kHH MH;MHð Þ þ σ2HINH

" #
; (9)

ML ¼ m1;…;mNL½ � are NL parameter samples for fL(m), DL ¼ f L m1ð Þ;…; f L mNLð Þ½ � are the corresponding
low-fidelity model outputs; MH ¼ m1;…;mNH½ � are NH parameter samples for fH(m),
DH ¼ fH m1ð Þ;…; fH mNHð Þ½ � are the corresponding high-fidelity model outputs; M = [ML MH],
D = [DL DH]; INL and INH are identity matrices of size NL and NH, respectively. Here the hyperparameters
to be estimated are [ϕ, σL, σH]. The above equation (8) calculates the goodness of fit given the training
data and a set of hyperparameters, and it can be easily derived from the (logarithmic) probability density
function of multivariate Gaussian distribution (it is noted here that the most general zero-mean function
of GP is used; Williams & Rasmussen, 2006).

Minimizing equation (8) defines a nonconvex optimization problem. In practice, we use the trust-region algo-
rithm, which is based on the interior reflective Newton method described in Coleman and Li (1996), to find
the minimum solution. Although it does not guarantee convergence to a global optimum, it is usually suffi-
cient for obtaining a good solution. The most computationally intensive part of solving the optimization pro-
blem is associated with inverting the covariance matrix K, which scales cubically with the number of training
data. This is a well-known limitation of GP, but it has been effectively addressed with techniques like sparse
GP (Quinonero-Candela & Rasmussen, 2005; Snelson & Ghahramani, 2006). As will be demonstrated in section
2.3, the method proposed in this paper does not require a large number of training data. Moreover, the pro-
cess of training GPs can be accelerated by adopting parallel computation. Thus, the computational cost of
training GPs will not be a big problem.
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After training the GP system conditioned on the multifidelity data D [i.e., after obtaining the optimal
hyperparameters by minimizing the objective function defined in equation (8)], we can obtain a new
GP system represented by eg mð Þ , which can be used to predict the model output given an arbitrary
parameter set m*:

eg m�ð Þ ¼ uH m�ð Þ∣D∼N μgp; σ
2
gp

� �
; (10)

where μgp = aK�1D is the mean estimate, σ2gp ¼ kHH m�;m�ð Þ � aK�1aT is the estimation variance, and
a = [kHL(m

*,ML) kHH(m
*,MH)]. Then the multifidelity system eg mð Þ can be used in MCMC simulations to gain

efficiency.

As the multifidelity GP (MF-GP) can fuse the efficiency of fL(m) and the accuracy of fH(m), it is advantageous
over the GP system constructed only on data from fH(m) (here we call it the single-fidelity GP, i.e., SF-GP). As
shown in Figure 1, in a one-dimensional problem, with three training data from the high-fidelity model and
20 training data from the low-fidelity model, we can build an MF-GP system that is more accurate than the
SF-GP system based on four training data from the high-fidelity model, especially in the area that is far away
from the high-fidelity training data. Here the high-fidelity model is fH(m) = sin (m), and the low-fidelity
model is obtained by adding an error term, �0.1m � 0.1, to the high-fidelity model, that is,
fL(m) = sin (m) � 0.1m � 0.1. In this simple case, both the high- and low-fidelity models are very quick to
simulate, and this case is only used to demonstrate the performance of multifidelity GP.

In the above approach, we only utilize data from two levels of model fidelity. If s levels of data Dt Mð Þf gst¼1

sorted by increasing fidelity are available, we can readily extend the autoregressive scheme:

ut mð Þ ¼ ρt�1ut�1 mð Þ þ δt mð Þ; t ¼ 2;…; s; (11)

where δt(m) is a Gaussian process independent of {ut�1(m),…, u1(m)}, ρt�1 is the cross-correlation coefficient.
Moreover, we can consider complex, nonlinear relationship between ut�1(m) and ut(m) (Perdikaris et al.,
2017):

ut mð Þ ¼ qt�1 ut�1 mð Þð Þ þ δt mð Þ; t ¼ 2;…; s; (12)

where qt�1(·) is a nonlinear mapping.

It is noted here that the autoregressive model considers the relationship between the high- and low-fidelity
models, not the input-output relationship of the hydrologic system. In practice, the low-fidelity model should
resemble and capture the right trend of the high-fidelity model, otherwise the low-fidelity model would be
useless. In that case, using a linear autoregressive model is still applicable even in nonlinear problems. For
the sake of clarity, the nonlinear mapping described above is not adopted in the present paper. For more
details about GP and its construction with multifidelity data, one can refer to Kennedy and O’Hagan
(2000), Parussini et al. (2017), Raissi et al. (2017), and Williams and Rasmussen (2006).

2.3. The Adaptive Multifidelity MCMC Algorithm

Generally, we can only afford a limited number of fH(m) evaluations. If the multifidelity system eg mð Þ is con-
structed over the whole prior distribution, its accuracy cannot be guaranteed. In MCMC simulations, our con-
cern is the posterior distribution. Thus, it is crucial that eg mð Þ is accurate enough therein, but there is no need
to ensure its accuracy elsewhere. Below we propose an AMF-MCMC algorithm which adaptively refines eg mð Þ
over the posterior distribution and finally obtains an accurate estimate of p mjed� �

.

The AMF-MCMC algorithm first builds an initial multifidelity system eg0 mð Þ conditioned on NL evaluations
of fL(m) and NH evaluations of fH(m), where NH is usually a small integer and NL is much larger than NH.
With eg0 mð Þ, we can run DREAM(ZS) to sufficiently explore the parameter space, which can be done very

quickly. Here the variance of the GP system (σ2gp) is considered in the MCMC simulation by augmenting it

with the variance of the measurement error (σ2meas); that is, σ
2
total ¼ σ2gp þ σ2meas, and using σ2total in the like-

lihood function, L mjed� �
. Then we can draw two random samples, mp

H and mp
L , from the approximated
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posterior, ep0 mjed� �
, which are expected to be much closer to the posterior region than the prior samples.

By utilizing the new data fH mp
H

� �
and f L mp

L

� �
, the multifidelity GP system can be refined locally. This pro-

cess will be further iterated Imax � 1 times. Since it is very cheap to evaluate fL(m), we can also collect
more samples from the approximated posterior for fL(m) simulations in GP refinement at each iteration.
However, an increased number of training data will inevitably increase the computational cost in con-
structing the multifidelity GP system. To address this issue, one practical strategy is to remove some
bad data according to the closeness of the training data to the measurements [e.g., the likelihood func-
tion defined in equation (3)].

In the AMF-MCMC algorithm, we gradually improve the accuracy of the multifidelity GP system by iteratively
adding new training data from fH(m) and fL(m) simulations in the posterior distribution. At each iteration, the
new training data are obtained by runningMCMC based on the previous GP system to sufficiently explore the
parameter space. As the GP error is considered, the MCMC simulation results will not be overconfident and
biased (although the posterior will be wider). Based on both the new and old training data, we can obtain
an updated GP system that is slightly more accurate in the posterior distribution. Finally, we can obtain a
GP system that is locally accurate (i.e., with a negligible σ2gp ) in the posterior region and an

accurate estimate of p mjed� �
.

After each DREAM(ZS) simulation, the thinned chain history Z will be saved and used in the next DREAM(ZS)

simulation. Actually, this treatment tailors the Imax + 1 eg mð Þ-based MCMC simulations into an integrated
one, which is beneficial to better explore the parameter space. The complete scheme of the AMF-MCMC algo-
rithm is given in Algorithm .

Algorithm 1 The adaptive multi-fidelity MCMC algorithm.

1. Draw NL random samples from the prior distribution, ML ¼ m1;…;mNL½ � , calculate DL ¼
f L m1ð Þ;…; f L mNLð Þ½ �.

2. Draw NH random samples from the prior distribution, MH ¼ m1;…;mNH½ � , calculate DH

¼ fH m1ð Þ;…; fH mNHð Þ½ �. Here NH ≪ NL.
3. Build the initial GP system eg0 mð Þ with multi-fidelity simulation conditioned on [ML MH] and [DL DH].
4. Run MCMC with eg0 mð Þ, obtain ep0 mjed� �

.
5. for i = 1, …, Imax do

Draw two random samples, mp
H and mp

L , from epi�1 mjed� �
, let MH ¼ MH mp

H

� 

, DH ¼ DH fH mp

H

� �� 

, ML ¼

ML m
p
L

� 

, and DL ¼ DL f L mp

L

� �� 

.

Build the GP system egi mð Þ conditioned on [ML MH] and [DL DH].

Run MCMC with egi mð Þ and previous MCMC simulation results, obtain epi mjed� �
.

end for
6. The posterior is approximated with epImax

mjed� �
.

3. Illustrative Examples
3.1. Example 1: Estimation of Soil Hydraulic and Thermal Parameters

In example 1, we first test the performance of the AMF-MCMC algorithm in estimating soil hydraulic and ther-
mal parameters in a single-ring infiltration experiment (Nakhaei & Šimůnek, 2014). Here the processes of
water flow and heat transport are considered. As shown in Figure 2, the flow domain is 100 cm × 200 cm.
The initial conditions for water content and temperature in the domain are 0.100 cm3/cm3 and 17.5 °C,
respectively. The domain has three types of boundary conditions, that is, impervious condition at the two lat-
eral boundaries and part of the upper boundary (represented by the green lines in Figure 2), free drainage
condition at the lower boundary (represented by the blue line in Figure 2), and constant temperature
(61.0 °C) and water content (0.430 cm3/cm3) conditions at part of the upper boundary (represented by the
red line in Figure 2).
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With the initial and boundary conditions prescribed above, we can simu-
late unsaturated water flow in the domain by numerically solving the
Richards’ equation with HYDRUS-2D (Šimůnek et al., 2008):

∂θ
∂t

¼ ∂
∂x

K hð Þ ∂h
∂x

� 	
þ ∂
∂z

K hð Þ ∂h
∂z

þ K hð Þ
� 	

; (13)

where θ[L3L�3] is volumetric water content of the soil; t[T] is time; x[L] and
z[L] are distances along the horizontal and vertical directions; h[L] is pres-
sure head; K(h)[LT�1] is hydraulic conductivity, which is a function of h
(Mualem, 1976; Van Genuchten, 1980):

K hð Þ ¼ KsS
l
e 1� 1� S1=me

� �mh i2
; (14)

where Ks[LT
�1] is saturated hydraulic conductivity, Se[�] is effective

saturation:

Se ¼ θ � θr
θs � θr

¼
1

1þ αhj jnð Þm h < 0

1 h ≥ 0

8<: ; (15)

where θr and θs are residual and saturated water content [L3L�3]; l[�] is a
pore-connectivity parameter; α[L�1], n[�], andm = (1� 1/n)[�] are empiri-
cal shape parameters, respectively.

Based on the simulation results of unsaturated water flow, we can further
simulate heat transport by numerically solving the following governing
equation (Sophocleous, 1979) with HYDRUS-2D:

C θð Þ ∂T
∂t

¼ ∂
∂z

λxz θð Þ ∂T
∂x

� 	
� Cwqz

∂T
∂z

; (16)

where C(θ) = Cnθn + Coθo + Cwθ is volumetric heat capacity of soil
[ML�1T�2K�1], Cn, Co, and Cw are volumetric heat capacities of solid phase,
organic phase, and liquid phase[ML�1T�2K�1], θn and θo are fraction of
solid phase and organic phase[L3 L�3], respectively; T[K] is temperature;
λxz(θ)[MLT�3K�1] is apparent thermal conductivity:

λxz θð Þ ¼ λxCw qj jδxz þ λz � λxð ÞCw
qxqz
∣q∣

þ λ0 θð Þδxz; (17)

where λx and λz are components of thermal dispersivity in the horizontal
and vertical directions [L]; q[LT�1] is fluid flux density with absolute
value ∣q∣, and components in the horizontal and vertical directions, qx
and qz, respectively; δxz is Kronecker delta function; λ0(θ) = b1 + b2θ + b3θ

0.5

is thermal conductivity of soil in the absence of flow, where b1, b2, and b3
are empirical parameters, [MLT�3K�1]. In this example, the total simulation
time is 10 hr. For more details about the model descriptions, one can refer
to Nakhaei and Šimůnek (2014).

Here the unknown model parameters are α, n, Ks, b1, b2, and b3, which are
assumed to be homogeneous in the domain and fit multivariate uniform
prior distribution (Table 1), while other parameters are assumed to be
known, as listed in Table 2. To infer the six unknown model parameters,
we collect pressure head and temperature measurements at t = 1, 2, …
10 hr at three locations denoted by the magenta circles in Figure 2. The
measurements are generated from one set of true model parameters
(Table 1) evaluated with fH(m) and perturbed with additive measurement

errors, ε∼N 0; σ2ð Þ. Here the standard deviation of the measurement errors
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Figure 2. Flow domain for the first example.
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Figure 1. Comparison between the single-fidelity Gaussian process (SF-GP)
simulation (magenta dashed curve) and the multifidelity Gaussian process
(MF-GP) simulation (black dashed curve). Here the fH(m) and fL(m) simula-
tions are represented by the blue curve and red curve, the training data for
SF-GP and MF-GP are represented by the magenta squares and black circles,
respectively.
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for pressure head is σh = 1 cm, the standard deviation of the measurement
errors for temperature is σT = 0.5°C. Then we use the Gaussian likelihood
function defined in equation (3) to evaluate the goodness of fit between
the model simulation and measurement data.

In this example, the high- and low-fidelity models are constructed with dif-
ferent levels of discretization. In fH(m), the flow domain is evenly discre-
tized into 41 × 41 grids, while in fL(m), there are 21 × 21 grids. In a Dell
Precision T7610 workstation (Intel Xeon Processor E5-2680 v2 @ 2.80GHz;
512GB RAM; Windows 10 Pro., 64 Bit), the average time of evaluating
fH(m) once is about 54 s, while the average time of evaluating fL(m) once

is about 5.6 s. We admit here that the high-fidelity model used in this test case is not actually very time con-
suming, so that we can implement the high-fidelity MCMC simulation to obtain the reference results to verify
the performance of the AMF-MCMC algorithm. As shown in Figure 3, although fL(m) can capture the main
trend of fH(m), systematic errors do exist.

We first run MCMC with fH(m) and fL(m), respectively to approximate the posterior. Here the twoMCMC simu-
lations have four parallel chains with 4,000 iterations, which means 16,000 model evaluations for each simu-

lation. Using the bR-statistic proposed in Brooks & Gelman (1998) and Gelman & Rubin (1992), we can monitor

the convergence of the fH(m)- and fL(m)-MCMC simulations. In each panel of Figure 4, traces of the bR-statistic
of different parameters are coded with different colors. The red dashed line in both panels demarcates the
threshold of 1.2 below which the chains are assumed to have converged to a stationary distribution. As
shown in Figure 5, the fH(m)-MCMC simulation can identify the unknown model parameters properly, while
the estimation results of the fL(m)-MCMC simulation are significantly biased, especially for the first three para-
meters. Thus, although using a low-fidelity model in the MCMC simulation can gain computational efficiency,
the estimation accuracy cannot be guaranteed.

We then run the AMF-MCMC algorithm with the same set of measurements to approximate the posterior.
Here the initial number of fL(m) evaluations is NL = 200, and the initial number of fH(m) evaluations is
NH = 30. These initial samples are randomly drawn from the prior distribution. Conditioned on these multi-
fidelity data, we build the initial GP system,eg0 mð Þ, based on which the MCMC simulation (four parallel chains

with 4,000 iterations) can be implemented very quickly. From the approximated posterior, ep0 mjed� �
, we can

draw two random parameter samples, mp
H and mp

L , which are expected to be much closer to the posterior

region than the prior samples. Then we can add fH mp
H

� �
and f L mp

L

� �
to the existing multifidelity training data

to refine the GP system locally. The coupled process of GP-based MCMC simulation and GP system refine-
ment is further repeated 69 times (i.e., Imax = 70). In Figure 6, we plot the evolution of the variance of the mul-
tifidelity GP output [i.e., bσgp hð Þ and bσgp Tð Þ] and the root-mean-square error (RMSE) between the multifidelity
GP output and the high-fidelity output [i.e., RMSE(h) and RMSE(T)] averaged over 400 posterior samples. It is
found that for both hydraulic head and temperature outputs, the accuracy of the multifidelity GP system will
improve with the iteration. Finally, the multifidelity GP system will be rather accurate in the posterior region.

As shown in Figure 7, the successively added new parameter samples (blue dots) for fH(m) evaluations gra-
dually approach to the true values (black crosses), which are the basis of a locally accurate GP system.

Based on this GP system, we can obtain a rather accurate approximation of p mjed� �
. As shown in Figure 8,

the marginal posterior probability density functions obtained by the fH(m)-MCMC algorithm and the AMF-
MCMC algorithm are almost identical, which confirms the accuracy of the
AMF-MCMC algorithm.

In the AMF-MCMC algorithm, the total numbers of fH(m) and fL(m) evalua-
tions are 100 and 270, respectively. With respect to the number of model
evaluations, the AMF-MCMC algorithm is much more efficient than both
the fH(m)-and fL(m)-based MCMC simulations. It is noted here that, when
building a GP system, the training data of model parameters are a matrix
of Nm × Ntr, while the training data of model outputs should be a vector
of 1 × Ntr, where Ntr is the total number of training data. It means that

Table 1
Prior Ranges and True Values of Unknown Model Parameters in the
First Example

Parameter Prior range True value

α[cm�1] [0.0190 – 0.0930] 0.0387
n[�] [1.360 – 2.370] 2.210
Ks[cm/hr] [4.828 – 11.404] 6.759
b1[kg · cm · hr�3 · K�1] [2.179 × 1012 to 4.857 × 1012] 2.948 × 1012

b2[kg · cm · hr�3 · K�1] [4.778 × 1011 to 2.426 × 1012] 2.118 × 1012

b3[kg · cm · hr�3 · K�1] [2.174 × 1012 to 5.184 × 1012] 2.972 × 1012

Table 2
Values of Known Model Parameters in the First Example

Parameter Value Parameter Value

θr[cm
3 cm�3] 0.041 l[�] 0.500

θs[cm
3 cm�3] 0.430 Cw[J · cm

�3 · K�1] 4.180
θn[cm

3 cm�3] 0.600 Cn[J · cm
�3 · K�1] 1.920

θo[cm
3 cm�3] 0.001 Co[J · cm

�3 · K�1] 2.510
λx[cm] 0.200 λy[cm] 2.000

10.1029/2018WR022658Water Resources Research

ZHANG ET AL. 4874



when the model outputs are Nd dimensional, we have to build Nd GP systems for each of the Nd model
outputs separately. When we run the high- or low-fidelity model to acquire the training data, we can
obtain the Nd model outputs at the same time. So the total number of function evaluations that are used
to build GPs for all observation data points is still Ntr. Nevertheless, the time needed by the multifidelity
GP system constructions and GP-based MCMC simulations should not be neglected, especially when the
number of model outputs Nd is large. To improve the efficiency of the AMF-MCMC algorithm, we can build
the Nd GPs in parallel. In our simulations, there are 20 cores available, which can be utilized to greatly
accelerate the simulation of the AMF-MCMC algorithm.

In the above simulation, we only add one set of fH(m) data and one set of fL(m) data at each iteration. As sta-
ted in section 2.3, we can also add more than one set of new data once. In Figure 9, we compare the finally
obtained variance of the multifidelity GP output [i.e., bσgp hð Þ and bσgp Tð Þ] and RMSE between the multifidelity
GP output and the high-fidelity output [i.e., RMSE(h) and RMSE(T)] when adding different numbers of new
training data once. Here the iteration numbers are set as 70, 35, 14, 7, 5, and 4 for adding 1, 2, 5, 10, 15,
and 20 sets of fH(m) and fL(m) training data at each iteration, respectively, to make sure that the total num-
bers of added data sets are roughly equal. It is clear that in this case, adding one set of fH(m) data and one set
of fL(m) data once can bring about a more accurate multifidelity system in the posterior region.

In our previous paper (Zhang et al., 2016), we proposed an efficient method to estimate hydrologic model
parameters by combining MCMC simulations with a GP surrogate adaptively refined over the posterior

f m

f
m

f m

f
m

Figure 3. Comparison of simulated (a) head and (b) temperature outputs between fH(m) and fL(m).

Figure 4. Trace plots of the bR-statistic of the six model parameters in (a) fH(m)-MCMC simulation and (b) fL(m)-MCMC
simulation. The threshold of 1.2 for convergence diagnosis is represented by the red dashed lines. MCMC = Markov
chain Monte Carlo.
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distribution. Here we call that method the adaptive Gaussian process MCMC (AGP-MCMC) algorithm. It is
obvious that the AMF-MCMC algorithm proposed in the present paper is an extension of the AGP-MCMC
algorithm through introducing the adaptive multifidelity simulation. As the AMF-MCMC algorithm takes
advantage of the correlation relationship between fH(m) and fL(m), it generally requires fewer fH(m) evalua-
tions than the AGP-MCMC algorithm. In other words, with similar computational cost, the multifidelity GP sys-
tem helps to better explore the parameter space compared to the single-fidelity GP system. To demonstrate
this point, we further compare the performances of the two algorithms in this example when limited num-
bers of fH(m) and fL(m) evaluations are affordable. In the AMF-MCMC algorithm, the initial number of fL(m)
evaluations is NL = 60, the initial number of fH(m) evaluations is NH = 10, and an extra number of Imax = 40
fH(m) and fL(m) evaluations are called to adaptively refine the multifidelity GP system in the posterior region.

Figure 5. Trace plots of model parameters obtained by the fH(m)-MCMC algorithm (red dots) and the fL(m)-MCMC algorithm (blue dots) in the first example. The true
values are represented by the black crosses. MCMC = Markov chain Monte Carlo.

Figure 6. Evolution of (a, b) variance of themultifidelity GP output and (c, d) RMSE between themultifidelity GP output and
the high-fidelity output averaged over 400 posterior samples. GP = Gaussian process; RMSE = root-mean-square error.
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In the AGP-MCMC algorithm, we first evaluate NH = 20 prior samples with fH(m). Then we further evaluate
Imax = 40 more parameter samples with fH(m) that are gradually approaching to the posterior region. Since
the simulation time of 100 fL(m) evaluations is approximately equal to the simulation time of 10 fH(m) evalua-
tions, the computational costs in model evaluations for AMF-MCMC and AGP-MCMC are roughly equal. As
shown in Figures 10a–10c, the adaptively added parameter samples by the AMF-MCMC algorithm converge
faster to the true values. For the AGP-MCMC algorithm, only 60 fH(m) evaluations in total are still not enough,
especially for the parameters b1 and b3.

As shown in Figure 11, the finally estimated posterior probability density functions of the unknown model
parameters by the AMF-MCMC algorithm (blue dashed curves) are overall much closer to the reference

Figure 7. NH initial parameter samples (red dots) and Imax successively added parameter samples (blue dots) for fH(m) evaluations in the AMF-MCMC algorithm. The
true values are represented by the black crosses. AMF-MCMC = adaptive multifidelity-Markov chain Monte Carlo.

Figure 8. Marginal posterior probability density functions obtained by the fH(m)-MCMC algorithm (red curves) and the
AMF-MCMC algorithm (blue dashed curves). The true values are represented by the black vertical lines. AMF-MCMC =
adaptive multifidelity-Markov chain Monte Carlo.
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results (red curves) than the AGP-MCMC algorithm (magenta dash-dotted curves). Therefore, it is important
to leverage the multifidelity system based on a large number of fL(m) simulations to sufficiently explore the
parameter space especially at the early stage of the GP-based MCMC simulations. In practical applications, to
guarantee the estimation accuracy of the AMF-MCMC algorithm, more evaluations of fH(m) are suggested.
For more details about the AGP-MCMC algorithm, one can refer to Zhang et al. (2016) and a more recent work
by other researchers (Gong & Duan, 2017).

3.2. Example 2: Contaminant Source Identification With Multimodal Posterior

In example 2, we further test the performance of the AMF-MCMC algorithm in solving an inverse problem
with multimodal posterior distribution. Here we consider the processes of steady state saturated

Figure 9. Finally obtained (a, b) variance of the multifidelity GP output and (c, d) RMSE between themultifidelity GP output
and the high-fidelity output when adding different numbers of new training data sets at each iteration. GP = Gaussian
process; RMSE = root-mean-square error.

Figure 10. Trace plots of model parameters evaluated by fH(m) in the AMF-MCMC algorithm (blue dots) and the AGP-MCMC algorithm (red dots). The true values are
represented by the black crosses. AMF-MCMC = adaptive multifidelity-Markov chain Monte Carlo.
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groundwater flow and contaminant transport. As shown in Figure 12, the flow domain is 20[L] × 10[L]. The
upper and lower sides are no-flow boundaries, the left (h = 12[L]) and right (h = 11[L]) sides are constant-head
boundaries, respectively. At the initial time, hydraulic heads in the domain are all 11[L] except for the left
boundary (12[L]).

Given the above initial and boundary conditions, we can obtain the flow field through numerically solving the
following governing equations with MODFLOW (Harbaugh et al., 2000):

∂
∂xi

K i
∂h
∂xi


 �
¼ 0; (18)

and

vi ¼ � Ki

θ
∂h
∂xi

; (19)

Figure 11. Marginal posterior probability density functions obtained by the fH(m)-MCMC algorithm (red curves), the AMF-MCMC algorithm (blue dashed curves), and
the AGP-MCMC algorithm (magenta dash-dotted curves), respectively. The true values are represented by the black vertical lines. AMF-MCMC = adaptive multifi-
delity-Markov chain Monte Carlo.

Figure 12. Flow domain for the second and third examples.
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where xi[L], Ki[LT
�1], and vi[LT

�1] signify distance, hydraulic conductivity,
and pore water velocity along the respective Cartesian coordinate axis,
for i = 1, 2; h[L] is hydraulic head; θ[�] is porosity of the aquifer. Here
K = 8[LT�1] and θ = 0.25 are known beforehand. In the steady state flow
field, some amount of contaminant is released from a point source located
somewhere in the red dashed rectangle depicted in Figure 12. The
contaminant source is characterized by five parameters, that is, location,
(xs, ys)[L], source strength measured by mass loading rate, Ss[MT�1], start
time of contaminant release, ton[T], and end time of the release, toff[T].
Then we can obtain contaminant concentration C[ML�3] at different times

and locations through numerically solving the following advection-dispersion equation with MT3DMS
(Zheng & Wang, 1999):

∂ θCð Þ
∂t

¼ ∂
∂xi

θDij
∂C
∂xj


 �
� ∂
∂xi

θviCð Þ þ qsCs; (20)

where t[T] is time; qs[T
�1] and Cs[ML�3] are volumetric flow rate per unit volume of the aquifer and concen-

tration of the source, respectively; Dij[L
2T�1] are hydrodynamic dispersion coefficient tensors:

D11 ¼ αLv21 þ αT v22
� �

=∣v∣;

D22 ¼ αLv22 þ αT v21
� �

=∣v∣;

D12 ¼ D21 ¼ αL � αTð Þv1v2=∣v∣;

8><>: (21)

where αL = 0.3[L] is longitudinal dispersivity, αT = 0.03[L] is transverse dispersivity, and∣v∣ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
is

magnitude of the velocity.

In this example, the unknown model parameters to be estimated are the five contaminant source para-
meters. Here we assume that our prior knowledge about them are rather limited and thus represented by
a multivariate uniform distribution (Table 3). To infer the five unknown parameters, we collect concentration
measurements at t = 6, 8, 10, 12, 14[T] at a well, denoted by the blue square in Figure 12. Here the measure-
ments are generated from one set of true model parameters (Table 3) evaluated with fH(m) and perturbed

with additive measurement errors that fit N 0; 0:012
� �

.

Table 3
Prior Ranges and True Values of Unknown Model Parameters in the
Second Example

Parameter Range True value

xs[L] [3–5] 3.854
ys[L] [3–7] 5.999
Ss[MT�1] [10–13] 11.044
ton[T] [3–5] 4.897
toff[T] [9–11] 9.075

Figure 13. Trace plots of model parameters obtained by the fH(m)-MCMC algorithm (red dots) and the fL(m)-MCMC algorithm (blue dots) in the second example. The
true values are represented by the black crosses. MCMC =Markov chain Monte Carlo.
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In this example, the high-fidelity model fH(m) is the coupled numerical model built with MODFLOW and
MT3DMS. While the low-fidelity model fL(m) is built with a data-driven surrogate, that is, the adaptive sparse
grid interpolation method proposed by Klimke and Wohlmuth (2005), based on 41 evaluations of fH(m). We
compare the simulation results between fH(m) and fL(m) with 50 random parameter samples drawn from the
prior distribution and obtain R2 = 0.949. It should be pointed out here that other low-fidelity models, for
example, a numerical model with a coarser discretization, can also be utilized. Considering that data-driven
surrogates are widely used in hydrologic science (Asher et al., 2015; Razavi et al., 2012), and many times in
MCMC simulations (Elsheikh et al., 2014; Laloy et al., 2013; L. Zeng et al., 2012; X. K. Zeng et al., 2016), here
we test the applicability of data-driven surrogates in the AMF-MCMC algorithm. Then we run MCMC with

fH(m) and fL(m), respectively, to approximate the posterior (six parallel
chains and 3,000 iterations). As shown in Figure 13, the results obtained
by the fL(m)-MCMC simulation are significantly biased due to the approx-
imation errors, especially for xs and toff.

With the same set of measurements, we further run the AMF-MCMC algo-
rithm to approximate the posterior. Here the initial number of fL(m) evalua-
tions isNL = 300, and the initial number of fH(m) evaluations isNH = 30. Then
we successively add another Imax = 50 parameter samples for both fH(m)
and fL(m) evaluations to refine the GP system over the posterior distribu-

tion. Finally, we can obtain a rather accurate approximation of p mjed� �
.

As shown in Figure 14, the bivariate scatter plots of the posterior
samples obtained by the fH(m)-MCMC algorithm and the AMF-MCMC
algorithm are almost identical, which indicates the accuracy of the
AMF-MCMC algorithm. Moreover, the bimodality of ys is well identified
by both algorithms.

Here we also test how the parametric uncertainty affects the credible
intervals of the model simulation and prediction for the different

Figure 14. Bivariate scatter plots of posterior parameter samples obtained by the fH(m)-MCMC algorithm (red dots) and the AMF-MCMC algorithm (blue dots) in the
second example. The true values are represented by the black crosses. AMF-MCMC = adaptive multifidelity-Markov chain Monte Carlo.

Figure 15. Predictive uncertainty of the QoI based on estimation results of
the fH(m)-MCMC simulation (blue curve), the fL(m)-MCMC simulation (black
curve), and the AMF-MCMC simulation (red curve), respectively. The true
value of the QoI is represented by the black cross. MCMC =Markov chain
Monte Carlo.
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MCMC approaches. In this case, the quantity of interest (QoI) is the
concentration at a well denoted by the red square in Figure 12 at
a future time t = 16[T]. To quantify the predictive uncertainty of
the QoI, we further run fH(m) to the future time given posterior sam-
ples obtained by the fH(m)-MCMC simulation, the fL(m)-MCMC simula-
tion, and the AMF-MCMC simulation, respectively. As shown in
Figure 15, the AMF-MCMC simulation (red curve) can obtain similar
uncertain range of the QoI as the fH(m)-MCMC simulation (blue
curve). However, using the posterior samples of the fL(m)-MCMC
simulation can result in a wider and more biased prediction of the
QoI (black curve).

3.3. Example 3: Contaminant Source Identification With 28 Unknown Parameters

In the first two cases, the numbers of unknown parameters are relatively small. To demonstrate the perfor-
mance of the AMF-MCMC algorithm in high-dimensional problems, we further test a third numerical case
that has 28 unknown parameters. This case is an extension of the second one by considering a more complex
contaminant source and heterogeneous conductivity field.

Here the contaminant source is characterized by eight parameters, that is, the source location (xs, ys) and
the source strengths si during t = i : i + 1[T], for i = 1, …, 6. Here we assume that our prior knowledge
about the eight source parameters are rather limited and represented by a multivariate uniform distribu-
tion (Table 4).

The log-transformed conductivity Y = ln K is assumed to be spatially correlated in the following form:

CY x1; y1; x2; y2ð Þ ¼ σ2Y exp � x1 � x2j j
λx

� y1 � y2j j
λy


 �
; (22)

Table 4
Prior Ranges and True Values of Contaminant Source Parameters in the
Third Example

Parameter Range True value

xs[L] [3–5] 4.033
ys[L] [4–6] 5.405
s1[MT�1] [0–8] 1.229
s2[MT�1] [0–8] 7.628
s3[MT�1] [0–8] 4.327
s4[MT�1] [0–8] 5.438
s5[MT�1] [0–8] 0.293
s6[MT�1] [0–8] 6.474

Figure 16. Trace plots of the fH(m)-MCMC simulation (blue dots), posterior mean estimates obtained by the fL(m)-MCMC simulation (red circles), and the AMF-MCMC
simulation (red squares) of the eight contaminant source parameters. AMF-MCMC = adaptive multifidelity-Markov chain Monte Carlo.
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where (x1, y1) and (x2, y2) are two arbitrary locations in the flow domain, σ2Y ¼ 0:4 is the variance of the Y field,
λx = 10[L] and λy = 5[L] are the correlation lengths in the x and y directions, respectively. To reduce the dimen-
sionality of the Y field, we adopt the Karhunen-Loève (KL) expansion (Zhang & Lu, 2004) in this case:

Y xð Þ≈Y xð Þ þ ∑
NKL

i¼1

ffiffiffiffi
τi

p
si xð Þξ i; (23)

where Y ¼ 2 is the mean value of the Y field, τi and si(x) are the eigenvalues and eigenfunctions of the corre-
lation function defined in equation (22), ξ i∼N 0; 1ð Þ are independent Gaussian random variables, for i = 1,…,
NKL, respectively. Here NKL = 20 is the number of truncated KL terms, which can preserve about 88.3% of the
field variance. Then the unknown model parameters for the heterogeneous Y field are transformed to the 20
KL terms, that is, ξ i, for i = 1, …, 20.

To infer the 28 unknown parameters for the contaminant source and conductivity field, we collect measure-
ments of concentration and hydraulic head at wells denoted by the blue circles in Figure 12. The concentra-
tion measurements are collected at t = 4, 6, 8, 10, 12[T], and the hydraulic head measurements are collected
only once. The measurements are generated from one set of true model parameters and perturbed with

measurement errors εC∼N 0; 0:0052
� �

and εh∼N 0; 0:0052
� �

. True values of the eight contaminant source

parameters are listed in Table 4.

In this case, fH(m) is the numerical model built with MODFLOW and MT3DMS, while fL(m) is a data-driven sur-
rogate built with a famous machine-learning method, that is, artificial neural network (ANN), using 2,000 sets
of fH(m) simulation data (80% data are used for training, 10% are used for validation, and the rest 10% are
used for testing). Here the Neural Net toolbox in MATLAB R2014a is used. The ANN has 30 hidden layers
and is trained with the Levenberg–Marquardt algorithm (Hagan & Menhaj, 1994). By comparing fL(m) and
fH(m) outputs at 200 prior samples, we can obtain R2 = 0.960. Then we apply the fH(m)-MCMC, the fL(m)-
MCMC, and the AMF-MCMC algorithms to infer the 28 unknown parameters, respectively. In both the
fH(m)- and fL(m)-MCMC simulations, the number of parallel chains is set as 20, and the length of each chain
is 12,000, which means 240,000 model evaluations in total for each simulation. In the AMF-MCMC simulation,
the initial number of fH(m) evaluations is 100, the initial number of fL(m) evaluations is 200, the iteration num-
ber is 21, and at each iteration five sets of fH(m) data and five sets of fL(m) data are added to refine the GP
system locally. In Figure 16, we plot the thinned chains of the fH(m)-MCMC simulation for the eight contami-
nant source parameters. It is clear that the Markov chains need about 100,000 fH(m) evaluations to converge
to the true parameter values (black crosses). While the results of the fL(m)-MCMC simulation are significantly
biased, although we have used 2,000 fH(m) evaluations to construct the low-fidelity model. With just 205
more fH(m) and 305 more fL(m) evaluations, a great improvement of the parameter estimation can be
obtained by the AMF-MCMC algorithm.

4. Conclusions and Discussions

In this paper, we propose an efficient method for posterior exploration of hydrologic systems, that is, the
AMF-MCMC algorithm. In the AMF-MCMC algorithm, data from both a high-fidelity model and a low-fidelity
model are simultaneously fused to build a multifidelity GP system, based on which the MCMC simulation can
be implemented quickly. As the region of interest is the posterior distribution, we successively add new para-
meter samples that are close to this region for the high- and low-fidelity model evaluations, which are then
used to refine the multifidelity GP system locally. Finally, we can obtain an accurate estimation of the poster-
ior distribution with a small number of the high-fidelity model evaluations.

To demonstrate the performance of the AMF-MCMC algorithm, we test three numerical cases in inverse mod-
eling of hydrologic systems. Different types of low-fidelity models are used for illustration. In the first exam-
ple, we estimate soil hydraulic and thermal parameters with the proposed method in a single ring infiltration
experiment. Here the low-fidelity model is built with HYDRUS-2D with a coarser discretization. In the second
example, we test a contaminant source identification problem that has multimodal posterior. Here the low-
fidelity model is a data-driven surrogate. The third example handles a similar problem as the second one but
considers more unknown parameters. In the three examples, the AMF-MCMC algorithm can obtain almost
identical results as the fH(m)-MCMC algorithm but with a very low computational cost. Furthermore, the
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adaptive multifidelity framework is universal in that it can be straightforwardly combined with other inverse
or data assimilation methods, for example, different variants of Kalman filter/smoother (Chen & Oliver, 2012;
Emerick & Reynolds, 2013; Evensen, 2007; Gu & Oliver, 2007).

When the number of unknown parameters is large (e.g., Nm > 100), many more training data from the high-
fidelity model simulations are needed. Then the CPU time of model evaluations will be prohibitive. Moreover,
the computational cost in GP system construction will also be huge as it scales cubically with the number of
training data. Although we can apply some advanced GP methods, for example, sparse GP (Quinonero-
Candela & Rasmussen, 2005; Snelson & Ghahramani, 2006), to alleviate the computational cost of GP system
construction, the AMF-MCMC algorithm proposed in this paper might still not be a good choice. In this situa-
tion, a more computationally appealing strategy is to adopt a method that assumes the posterior distribution
to be multi-Gaussian (Elshall et al., 2014; Rasmussen et al., 2015) to roughly estimate the uncertainty. Such
assumption is flawed when the posterior is strongly non-Gaussian or even multimodal, then people may take
extra techniques like normal-score transform (Zhou et al., 2011) or local updating strategy (Zhang et al., 2018)
for a remedy.
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