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ABSTRACT During closed mitosis in fission yeast, growing microtubules push onto the nucle-
ar envelope to deform it, which results in fission into two daughter nuclei. The resistance of
the envelope to bending, quantified by the flexural stiffness, helps determine the microtu-
bule-dependent nuclear shape transformations. Computational models of envelope mechan-
ics have assumed values of the flexural stiffness of the envelope based on simple scaling argu-
ments. The validity of these estimates is in doubt, however, owing to the complex structure
of the nuclear envelope. Here, we performed computational analysis of the bending of the
nuclear envelope under applied force using a model that accounts for envelope geometry.
Our calculations show that the effective bending modulus of the nuclear envelope is an order
of magnitude larger than a single membrane and approximately five times greater than the
nuclear lamina. This large bending modulus is in part due to the 45 nm separation between
the two membranes, which supports larger bending moments in the structure. Further, the
effective bending modulus is highly sensitive to the geometry of the nuclear envelope, rang-
ing from twofold to an order magnitude larger than the corresponding single membrane.
These results suggest that spatial variations in geometry and mechanical environment of the
envelope may cause a spatial distribution of flexural stiffness in the same nucleus. Overall, our
calculations support the possibility that the nuclear envelope may balance significant me-
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chanical stresses in yeast and in cells from higher organisms.

INTRODUCTION

Intranuclear microtubule elongation during closed mitosis in the fis-
sion yeast Schizosaccharomyces pombe generates pushing forces
on the nuclear envelope (West et al., 1998; Zheng et al., 2007).
These forces deform the initially spherical nucleus into ellipsoidal
and then dumbbell shapes, finally ending in nuclear fission into two
daughter nuclei. Because yeast lack a lamin-like structure, mechani-
cal stresses associated with bending and in-plane extension of the
nuclear envelope likely balance the forces of microtubule elonga-
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tion during close mitosis. For example, a computational model ac-
counting for microtubule forces and nuclear envelope mechanics
has been used to predict nuclear shape transformations typical of
closed mitosis (Lim et al., 2007). Deformation of the yeast nuclear
envelope also helps balance forces due to cytoplasmic microtubule
polymerization that position the nucleus (Tran et al., 2001). In all
these situations, the extent to which the nuclear envelope deforms
depends on its flexural stiffness, but the stiffness of the envelope is
currently unknown. In addition to its obvious importance in yeast,
envelope mechanics may be important in other contexts. For ex-
ample, mammalian stem cells lack nuclear lamins. As such, any me-
chanical stresses on the stem cell nucleus must be balanced at least
in part by the envelope. In confined cell migration, the nuclear en-
velope separates from the lamina and the nucleoplasm, forms
blebs, and then ruptures (Denais et al., 2016; Halfmann et al., 2019;
Warecki et al., 2020). The flexural stiffness of the envelope likely
plays an important role in determining the stress distribution in the
membranes during this process and may be important in the subse-
quent mechanics of repair.
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FIGURE 1: Geometry of the nuclear envelope. The outer nuclear membrane (ONM) and the
inner nuclear membrane (INM) are fused together at donut-shaped pores with an average
diameter of 90 nm. The membranes are maintained at an average separation of 45-50 nm. The

spacing between adjacent pores is 250-500 nm.

The nuclear envelope is not a single membrane, but comprises
the outer nuclear membrane (ONM) and the inner nuclear mem-
brane (INM), which are fused at donut-shaped pore sites (Figure 1;
see also Figure 1 in Otsuka et al., 2016). The bending modulus of
the double-membrane envelope is expected to be higher than that
of the single membrane, but predicting its value is not trivial. The
bending modulus of a thin film scales with the cube of its thickness
(Landau and Lifshitz, 1986); however, this scaling is valid for a film
in which the layers cannot slide past each other and also is valid
only for continuum materials where the thickness is much larger
than molecular size and not for liquids that exhibit quadratic scaling
(Bermudez et al., 2004). In contrast, the ONM and the INM can
slide past each other. As such, models of nuclear envelope me-
chanics have typically assumed that the bending modulus of the
envelope is twice that of a single lipid membrane (Vaziri et al.,
2006; Lim et al., 2007; Vaziri and Mofrad, 2007). A similar assump-
tion has been made in models of membranes adherent to each
other in other contexts (Deserno et al., 2007; Agrawal, 2011; Vi
et al., 2011). Such an assumption may be inapplicable to the nu-
clear envelope given the fact that the two nuclear membranes are
spaced ~30-50 nm apart (Franke et al., 1981). This spacing may
cause the bending modulus of the envelope to be even larger than
current estimates (Deviri et al., 2017). Furthermore, the two mem-
branes are also fused at pores spaced at 250-500 nm (Belgareh
and Doye, 1997; D'Angelo et al., 2006; Dultz and Ellenberg, 2010),
which can in turn impact the flexural stiffness of the nuclear
envelope.

Here we used computational modeling to analyze the deforma-
tion of a patch consisting of two membranes fused at a donut-
shaped pore under an applied force. We tested two hypotheses:
1) the resistance to bending deformations of the nuclear envelope,
that is, its flexural stiffness, defined as the ratio of the applied force
to the displacement undergone at the point of application of the
force (units of pN/nm), is higher than that of a single lipid mem-
brane, and 2) the flexural stiffness of the envelope depends on the
spacing between the constituent membranes of the envelope and
on the distance between adjacent pores. We used the calculations
to estimate the effective bending modulus of a single membrane
with a hole. The effective bending modulus accounts for the mate-
rial property of the membrane and the cross-sectional geometry of
the double-membrane system (units of pN nm) and is independent
of the size of the membrane or the nature of the applied force on
the membrane. Our calculations show that the effective bending
stiffness and bending modulus of a membrane patch consisting of
two membranes fused at a pore are more than one order of magni-
tude higher than that of a single membrane. These properties are
sensitive to the spacing between the membranes and the interpore
separation distance.
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RESULTS

Mechanics of a single membrane

We modeled a patch of membrane under
force as a homogeneous two-dimensional
(2D) elastic surface that resists bending de-
INM formations and is inextensible. The internal
energy of the membrane was defined by the
Helfrich-Canham energy (Eq. 1 Canham,
1970; Helfrich, 1973; Jenkins, 1977; Steig-
mann, 1999). We solved the Euler-Lagrange
equation along with geometric equations
(Eg. 3) to calculate membrane shapes under
a locally applied tensile force F. We com-
puted force-displacement curves and com-
puted the effective flexural stiffness as the slope of this curve at low
displacements where the force-displacement relationship is linear.

Our goal was to compare the mechanical behavior of a single-
membrane patch with that of two-membrane patches joined to-
gether at a pore. As such, we first calculated the shape of a single
axisymmetric membrane patch with or without a pore in it, under
applied force (Figure 2, A and B). In the next section, we assume a
pore-to-pore separation of 350 nm. We therefore set the radius of
the single-membrane patch at 175 nm for comparative purposes
(Figure 2A). We numerically solved the Euler-Lagrange equations
(Eq. 3) for appropriate boundary conditions (see Methods Model
section for details). For the patch without a pore, the membrane is
assumed to be locally flat at the center point where a point force is
applied. For the patch with a pore, the membrane is assumed to
rotate freely at the inner boundary (i.e., at a radius of 45 nm). The
membrane shape far away from the point of force application for
both patches was assumed to be unperturbed from its original rest-
ing flat shape (Figure 2A). As a check on the numerical calculations,
we compared them with analytical solutions for the shape of the axi-
symmetric membrane under force calculated from the linearized
Euler-Lagrange equations (Eq. 4).

Typical examples of an analytical solution (solid blue) of the lin-
earized Euler-Lagrange equations and numerical solutions (dashed
cyan) of the nonlinear Euler-Lagrange equations for the membrane
patches in Figure 2, A and B, are shown in Figure 2C (the maximum
displacement in the solutions is 5 nm). The analytical solutions and
numerical solutions are in good agreement with each other for both
types of patches (Figure 2C). Both linear and nonlinear calculations
predicted a linear force-displacement relationship, again in good
agreement with each other (Figure 2D). The slope of the force-dis-
placement curve yielded an effective stiffness F/z . of the mem-
brane patch without a pore of ~0.13 pN/nm (meaning that a tensile
force of 0.13 pN is required for every nanometer deflection of the
center of the membrane patch) and an effective stiffness of 0.16 pN/
nm for the membrane patch with a pore. These calculations validate
our numerical method, which we next used for computing the me-
chanics of two membranes fused together at a pore.

ONM

Mechanics of two membranes fused at a pore

Analytical calculations are not feasible for the two-membrane sys-
tem owing to its complex geometry (Figure 1). As such, we simu-
lated a unit cell of the nuclear envelope that consisted of two mem-
brane patches each of radius ~175 nm fused at a single donut-shaped
pore of radius 45 nm (Figure 3A). The separation between mem-
branes far away from the pore was fixed at 45 nm (Franke et al.,
1981). One boundary condition imposed a fixed pore radius while
allowing membranes there to rotate and translate freely in the verti-
cal direction. To maintain the separation between membranes at
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FIGURE 2: Calculations of the mechanics of a single-membrane patch. (A) A single membrane
of radius 175 nm is subjected to an upward-acting point force at the center. Schematic shows
the boundary conditions for the model. At the center (r = 0), the membrane is required to be
locally flat and the applied force is equal to F. At the outer boundary (b = 175 nm), the
membrane is required to be flat and have zero height. (B) A single membrane with a pore of
radius 45 nm (outer radius is 175 nm) is subjected to an upward-acting point force at the inner
boundary. Schematic shows the boundary conditions for the model. At the inner boundary

(a =45 nm), the membrane is free to rotate and the applied force is equal to F. At the outer
boundary (b= 175 nm), the membrane is required to be flat and have zero height. (C) The
cross-section of the membranes under force calculated analytically (solid blue and green lines)
and numerically (red and magenta circles) at a maximum displacement of 5 nm. (D) Force-
displacement plots calculated from analytical (solid blue and green lines) and numerical
calculations (red and magenta circles). The slopes of the lines are ~0.13 and 0.16 pN/nm for the
membranes with no pore and pore, respectively. These are the effective stiffnesses of the two
single-membrane systems.

FIGURE 3: Force application on two membrane patches fused together. (A) Geometry of the
nuclear membranes fused at the donut pore under an applied force at the equatorial ring. The
schematic shows the geometric quantities and the boundary conditions employed to compute
the force-deformation response. The boundary conditions correspond to Eq. 3 in the Methods
section. At the inner boundary, the radius is fixed at 45 nm (a = 45 nm) and the total applied
force is equal to F. At the outer boundary (b =175 nm), the two membranes have zero slope
with a height equal to half the separation distance between the ONM and INM (Hg = 22.5 nm)
below and above the reference plane (z= 0). (B) The system in A is subjected to force at the
outer boundary of both the membranes. The total vertical force acting on the two membranes is
equal to F. (C) Calculated three-dimensional geometry of the model in A under a force of 7.13
pN and no imposed in-plane tension.
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45 nm away from the pore, the other bound-
ary condition prescribed the vertical height
of the membrane above the line of symme-
try and required the membrane to be flat
(clamped support) far away from the pore
(Figure 3B).

Membranes at nuclear pores typically
tend to be flat and at a regular distance
from each other (Ogawa-Goto et al., 2003).
We have previously shown that a flat shape
near the pore necessitates prescription of
tension in a membrane lacking curvature-
inducing proteins (Torbati et al., 2016). To
ensure that the membrane was flat near the
pore, in one calculation we imposed a mod-
est in-plane tension of 0.2 mN/m in the
membrane (Torbati et al., 2016), while in an-
other, we set the tension to zero. We ap-
plied force on an equatorial ring of the pore
(Figure 3A) and integrated the set of nonlin-
ear Euler-Lagrange equations numerically
to compute the geometry of the two-mem-
brane system. Figure 3C shows a typical ex-
ample of the calculated three-dimensional
solution under an applied force of 7.13 pN
on the equatorial ring (in-plane tension in
this example was set to zero). Because the
geometry is axisymmetric, it is sufficient to
examine the vertical cross-section of the
geometry.

We quantified the vertical displacement
of the equatorial plane and plotted the
force-displacement relationships of two-
membrane patches under in-plane tension
(purple), two-membrane patches under zero
in-plane tension (yellow), and a single-mem-
brane patch with a pore under zero in-plane
tension (green) (Figure 4A). We applied
force over the equatorial ring of the pore for
the two-membrane calculations (Figure 3A)
and over the circumference of the pore for
the case of the single membrane (Figure
2B). The force—displacement curves for both
two-membrane patches were substantially
different from that of the single membrane.
The force-displacement relationship devi-
ated from linearity at larger force magni-
tudes for the two-membrane patches at
zero tension. Figure 4B shows calculated
cross-sections of the three systems (same
color coding as Figure 4A), each at a maxi-
mum vertical displacement of 5 nm.

By analogy with the analytical solution
for the single membrane with a pore, we
computed the effective stiffness F/z, . for
the two-membrane patch as the slope of the
initial linear region of the force-displace-
ment curves in Figure 4A; Figure 4B shows
the corresponding shapes of the membrane
system. The flexural stiffness of the fused
membranes with and without tension was
found to be ~1.65 pN/nm, which is more
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order of magnitude larger than the modulus

of a single membrane of ~165 pN/nm (see
Table 1).

To further test the robustness of our pre-
dictions, we set the force at the equator to
zero and instead applied it to the outer
boundary of the double-membrane domain
and computed the effective bending mod-
uli. Changing the location of the force in this

manner did not have any noticeable impact

on the flexural stiffness (Figure 4, C and D).
Since the stiffness is unchanged for two dis-
tinct forcing scenarios (force applied at the
inner and force applied at the outer bound-

ary), we conclude that the calculated flex-
ural stiffness is generally valid for the dou-
ble-membrane patch.

Effect of geometry on envelope
mechanics

The calculations above showed that two-
membrane patches fused at donut-shaped
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FIGURE 4: Mechanical response of the two-membrane patch. (A) Force-displacement plots of
the two-membrane system depicted in Figure 3A under a prescribed in-plane tension of 0.2
mN/m (purple curve) and zero in-plane tension (yellow curve). The two curves have
approximately the same initial slope of 1.65 pN/nm, which is ~10 times the slope of the single
membrane with a pore of 0.16 pN/nm (green curve). (B) The cross-section of the three systems
at 5 nm displacement (color coding corresponds to that in A). (C) Force-displacement plots of
the two-membrane system depicted in Figure 3B under a prescribed in-plane tension of 0.2
mN/m (purple curve) and zero in-plane tension (yellow curve). The two curves again show an
initial slope ~10 times the slope of the single membrane with a pore (green curve). (D) The
cross-section of the three systems at 5 nm displacement (color coding corresponds to that in C).

than an order of magnitude larger than that of the single membrane
with a pore (0.16 pN/nm).

As modeling studies typically model the envelope as a single
membrane with an effective bending stiffness, we can approximate
the two-membrane patch with an equivalent single-membrane
system with the same outer radius (i.e., 175 nm). Because the bend-

ing stiffness ky, is proportional to the bending modulus k (k, = L

where B, is a factor accounting for the size and the boundary

conditions of the membrane; see Eq. 12 in the Model section), the
effective bending modulus of the two-membrane patch for the esti-
mated bending stiffness of 1.65 pN/nm is ~1700 pN/nm, which is an

for this, we varied the geometry of the
membrane patches and quantified the ef-
fect on effective flexural stiffness. Specifi-
cally, we examined the effect of 1) distance
of separation between the membranes,
2) pore-to-pore separation (meaning mem-
brane patch radius), and 3) pore radii, on
stiffness.

Calculations  of  force-displacement
curves along with examples of membrane
shapes at displacements of 5 nm are shown
in Figure 5. In these calculations, force was
applied at the equatorial ring and the in-
plane tension was set to zero. The initial
slope of the force-displacement curves varied directly as the separa-
tion between membranes (Figure 5) and the pore radius (Figure 5, A
and E), and it varied inversely as the pore-to-pore separation (Figure
5C; the numerical value of flexural stiffness is marked as the slope of
the force-displacement curves in Figure 5). At large displacements
of 5 nm, the slopes tended to decrease but remained significantly
larger than for the single membrane.

Motivated by the above calculations, we hypothesized that the
stiffness of the double-membrane system should approach that of
two single membranes in close apposition upon reducing the pore
diameter and the membrane spacing to their minimum value.
Interestingly, the flexural stiffness was found to be ~0.3 pN/nm

System Bending modulus (pN/nm) Reference
Single membrane 165 Boal and Boal, 2012
Two-membrane model with geometry in Figure 3A 1700 This study
Nuclear envelope modeled as a single membrane 400 Lim et al., 2007
360 Vaziri et al., 2006
200 Vaziri and Mofrad, 2007
Nuclear lamina 350 Vaziri et al., 2006; Vaziri and Mofrad, 2007

TABLE 1: Bending moduli of membranes and the nuclear lamina.
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FIGURE 5: Effect of geometry on the mechanical response of the two-membrane system.

(A) Force-displacement plots of the two-membrane system, depicted in Figure 3A, but at bilayer
separations of 60 nm (purple curve), 45 nm (yellow curve), and 20 nm (red curve). (B) The
calculated geometry of the three systems at a displacement of 5 nm (color coding as in A).

(C) Force-displacement plots of the two-membrane system as in Figure 3A, but with outer radii
of ~220 nm (purple curve), 175 nm (yellow curve), and ~140 nm (red curve). (D) The geometry of
the three systems corresponding to a displacement of 5 nm (color coding as in C). (E) Force-
displacement plots of the two-membrane system as in Figure 3A, but with pore radii of 67.5 nm
(purple curve), 45 nm (yellow curve), and 22.5 nm (red curve). (F) The geometry of the three
systems corresponding to a displacement of 5 nm (color coding as in E). The effective flexural
stiffnesses at low and high displacements are labeled on the plots in A, C, and E.
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FIGURE 6: Mechanical response of the two-membrane patch at vanishing membrane spacing
and pore radius. (A) Force-displacement plot shows a flexural stiffness of 0.3 pN/nm, which is
nearly two times the stiffness of a single membrane. (B) The geometry of the membranes

corresponding to a displacement of 5 nm.
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(Figure 6A), which is about 2.3 times the
stiffness of a single membrane (0.13 pN/
nm). Figure 6B shows the geometry of such
a structure. These results validate our dou-
ble-membrane calculations and also con-
firm the assumption of other authors (Vaziri
et al., 2006) that the double-membrane sys-
tem should have twice the stiffness of the
single-membrane system when the two
membranes have zero membrane spacing.

DISCUSSION

In this paper, we calculated the flexural stiff-
ness of the nuclear envelope with a compu-
tational model that accounted for its geom-
etry. The calculations revealed that for the
assumed geometry and boundary condi-
tions, the envelope is much stiffer than has
been previously assumed. The bending
modulus is an order of magnitude higher
than that of a single membrane (Figure 4
and Table 1) and approximately five times
higher than the estimated bending modulus
of the mammalian nuclear lamina (Table 1).

The flexural stiffness of the nuclear enve-
lope was significantly larger at higher spac-
ings between the adjacent membranes
(Figure 5), which suggests that a key reason
for the increased flexural stiffness is the fact
that the membranes are spaced apart from
each other. In contrast to membranes that
are close to each other, forces acting in the
plane of membranes that are farther apart
generate higher moments around the
curved plane about which the membranes
bend. For the same deformation, the in-
plane forces produce larger moments, en-
abling the membranes to support larger
moments. This is similar to the classic ex-
ample of an I-beam structure that is de-
signed to maximize its flexural stiffness. In
an |-shape, material is arranged away from
the middle of the cross-sectional plane
about which the I-beam bends, resulting in
a larger moment of inertia and hence larger
effective flexural stiffness compared with a
beam without the I-cross-section. Nuclear
membranes in a way, are a 2D analogue of
the same design principle. Confirming this
concept, the flexural stiffness of the double-
membrane system approached a value that
is twice that of a single membrane when the
membrane spacing and the pore diameter
were reduced to minimum values.

Our model did not account for linkages
between nesprins and SUN proteins, which
are embedded in the ONM and INM, re-
spectively (Tapley and Starr, 2013; Cain et al.,
2014). Linkages between them may reinforce
the envelope against applied mechanical
stresses (Agrawal and Lele, 2019). Also, the
LINC complex transmits mechanical stresses

[ 1819
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to the envelope that could modulate the in-plane tension in the en-
velope, thereby altering nuclear envelope bending. It is therefore
possible that the envelope may be stiffer than our estimate here,
particularly in cells that contain an intact LINC complex. Likewise,
nuclear pore complexes may also contribute to the stiffness of the
nuclear envelope, as the NPC is deformable (Deviri et al., 2019).

Our results suggest that the nuclear envelope is in principle ca-
pable of balancing significant mechanical stresses even in cell types
containing the nuclear lamina and may be important in determining
nuclear response to cellular stresses. This is roughly consistent with
a previous study that the mechanics of the nuclear membrane is re-
quired for explaining the deformation behavior of the nucleus under
indentation (Vaziri et al., 2006). However, our calculations do not
account for key effects that could potentially make the envelope
softer than our theoretical estimates here. For example, our as-
sumed geometry of a uniform separation between the ONM and
the INM may not be generally true but applicable only in some re-
gions for a given nucleus. Indeed, substantial waviness in the ONM
is commonly seen in electron micrographs of the envelope (e.g., see
Figure 6F in Crisp et al., 2006). The pore radius also may not be
exactly what we have assumed (Deviri et al., 2017), and furthermore,
the assumed interpore separation may be spatially inhomogeneous
for a given nucleus. Also, the envelope itself may be substantially
bent in cells in high-curvature regions of the nucleus. The presence
of a pressure differential across the nuclear envelope can generate
additional tension in the membranes and stiffen the membrane
against bending. However, if the pressure differential across the
nuclear envelope reduces the membrane spacing, the nuclear enve-
lope may become softer. All these parameters can profoundly im-
pact the flexural stiffness. Our assumed boundary conditions need
not be obeyed in cells; how the membranes behave mechanically,
for example, at the pore is not known.

In summary, we estimated the bending modulus of the nuclear
envelope by explicitly accounting for its geometry. Our calculations
support the possibility of a spatial distribution of flexural stiffness
even in the same nucleus caused by spatial variations in geometry
and mechanical environment of the envelope. Our future studies
will focus on how envelope proteins that link the membranes to the
nuclear lamina and chromatin, and the membranes to the cytoskel-
eton, modulate envelope stiffness.

METHODS

Model

We modeled a membrane patch as a homogeneous 2D elastic sur-
face that resists bending deformations. The internal energy of the
membrane is defined by the Helfrich-Canham energy (Canham,
1970; Helfrich, 1973; Jenkins, 1977; Steigmann, 1999):

W = kH? + kK 1

where H is the mean curvature, K is the Gaussian curvature, and k, k
are the bending moduli. We consider the membrane to be inexten-
sible and impermeable and define an augmented energy functional
with membrane tension and transmembrane pressure as Lagrange
multiplier fields. The equilibrium configurations then render station-
ary the potential energy and satisfy the Euler-Lagrange equation
(Agrawal and Steigmann, 2009a,b),

k[ AH+2H(H2-K)]-22H = p 2
Here, AH is the surface Laplacian of the mean curvature, 1 is the

membrane tension, and p is the pressure across the membrane.
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Computational model

To calculate the full nonlinear solution numerically, we solved the
nonlinear Euler-Lagrange equation 3. In this generalized approach,
the equations that define the geometry and the equilibrium condi-
tions include (Agrawal and Steigmann, 2009a,b)

r'(s)=cosy, z'(s) =siny, w’ = 2H—siny/r,H = L/r,

2
and L’={(2kﬂ')H—2H(H—sinur/j ] (3)

where r is the radial distance from the axis of revolution, z is the
height, v is the angle the outward normal vector at a boundary
makes with the radial vector, and L is the transverse force (along the
surface normal) that the membrane experiences at a boundary. The
pressure across the membrane was set to zero. The tension is as-
sumed to be constant in the membrane, which means that the area
of the domain between adjacent pores is not conserved. Changes in
the area are assumed to be made possible through exchange of
lipids between the nuclear envelope and the endoplasmic reticu-
lum. We note that these are equilibrium calculations, and so we do
not simulate lipid exchange, but rather calculate the final structure
under force. The geometric quantities and the boundary conditions
for the single-membrane and double-membrane systems are shown
in Figures 2, A and B, and 3, A and B, respectively. We integrated
the equations numerically in Matlab using the BVP4C solver subject
to the boundary conditions discussed above for the linear system.

Mechanics of a single membrane

For purposes of comparison with the full model, here we examine a
single-membrane patch with no pore in it and an upward point force
at its center. We employ the Monge representation to model the
single membrane and assume that the gradients of membrane
height of all order are small. As such, their products can be ne-
glected. Then H =1/2Az and K= 0, and the equilibrium equation 2
can be linearized to obtain

Tk[A(Az)]- 2z =p 7

where A is the Laplacian evaluated on the projected plane (Agrawal
and Steigmann, 2009a).

We apply upward-acting point forces and compute the deflec-
tion profile (Figure 2, A and B). We assume that both the membrane
tension and the pressure across the membrane are zero. We further
assume that the membrane shape possesses rotational symmetry
about the vertical axis passing through the center of the pore. For
this case, the equilibrium equation further simplifies to A(Az) = 0,
whose solution is (Ventsel and Krauthammer, 2001)

z(r)=cyInr+cr?Inr+cyr? +¢, (5)

For the membrane with no pore, we assume that the membrane
patch has zero slope and the vertical force at the pole is equal to the
applied force (at r=0) (Figure 2A). We assume that the membrane
has zero height and zero slope at the far boundary (r= b).

Applying the boundary conditions yields the solution

__F®*=r) o (r
Z(r)—m[T‘Fr |n(5) (6)
The maximum deflection occurs at the inner rim and is given by
G5
Zmox = 20)= 7 {2 7
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To extract the effective flexural stiffness for the single membrane,
we rearrange the above solution as

_[k _
F= (ﬂ) Zmax kszmax (8)
where

_11(?
F=az [T} )

k= % is the effective bending stiffness of the membrane and deter-
mines the maximum extent to which the membrane deforms when
subjected to a point force F. It is important to note that while k is a
material property, Bis purely a geometric parameter determined by
the outer radius of the membrane patch.

For the membrane with a pore, we assume the same boundary
conditions at the far boundary. At the point of force application (r=
0), we assume that the membrane patch has zero moment and the
vertical force is equal to the applied force (Figure 2B).

Applying the boundary conditions yields the solution

z(r) = ﬁ{a2(1—a+2lna)ln($]+r2 Inr—a2 |na+%(a2 —rz)] (10)
The maximum deflection occurs at the inner boundary where
k
F= (ﬁ_hj Zimax = khzmax (11
Above, F = 2raf and
B, = %[az(’l—a+2|na)ln(%)+b2 Inb-a? |na+%(a2 —bz)} (12)
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