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Abstract—Blockchain technology is the cornerstone of digital
trust and systems’ decentralization. The necessity of eliminat-
ing trust in computing systems has triggered researchers to
investigate the applicability of Blockchain to decentralize the
conventional security models. Specifically, researchers continu-
ously aim at minimizing trust in the well-known Public Key
Infrastructure (PKI) model which currently requires a trusted
Certificate Authority (CA) to sign digital certificates. Recently,
the Automated Certificate Management Environment (ACME)
was standardized as a certificate issuance automation protocol.
It minimizes the human interaction by enabling certificates to be
automatically requested, verified, and installed on servers. ACME
only solved the automation issue, but the trust concerns remain as
a trusted CA is required. In this paper we propose decentralizing
the ACME protocol by using the Blockchain technology to
enhance the current trust issues of the existing PKI model and to
eliminate the need for a trusted CA. The system was implemented
and tested on Ethereum Blockchain, and the results showed that
the system is feasible in terms of cost, speed, and applicability
on a wide range of devices including Internet of Things (IoT)
devices.

Keywords—ACME; Blockchain; Ethereum; Public Key Infras-
tructure; Trust; Certificate Authority.

I. INTRODUCTION

In today’s digital age, critical data is constantly sent across
the globe through diverse technologies and protocols: Internet
of Things (IoT), E-Commerce, E-Government, Instant Mes-
saging (IM), conversational media (Voice over IP/LTE), and
several others. Many applications are facing deployment issues
due to the lack of proper security and privacy measures [1],
including essential sectors such as healthcare [2]. IoT for
instance, which includes interconnected low-powered comput-
ing devices, has not been widely adopted by organizations
and consumers due to security challenges, specially client
authentication [3]. Most existing systems are secured through a
Public Key Infrastructure (PKI) with a trusted third-party Cer-
tificate Authority (CA). The PKI/CA infrastructure depends
heavily on its trust model. Trust in this context involves having
CAs issue certificates to appropriate users, and include in
their ’chain of trust* behaved CAs only. Unfortunately, trust
remains a critical challenge: in 2011, Diginotar, a Dutch CA,
got penetrated by a student who was able to issue hundreds
of fraudulent certificates and infect domains pertaining to the

This work was supported by the U.S. National Science Foundation (NSF)
(Division Of Graduate Education (DGE) #1822567.

CIA, Mossad, Google, Microsoft, Twitter and others [4]. This
incident led major browsers and operating systems to remove
Diginotar from their list of trusted CAs. Eventually, Diginotar
declared bankruptcy the same month that the attack occurred.
Furthermore, the attacker claimed to have access to four other
CAs, including the reputable Comodo; an unauthorized party
got a certificate issued by Comodo for the domain live.fi [5].
Other incidents related to injecting inappropriate CAs into the
trusted list have also occurred [6].

A major reason for having trust problems with CAs is central-
ization [7] [8]. The organization’s system represents a single
point of failure, which can lead to Denial of Service (DoS)
attacks and security breaches.

Besides the aforementioned trust issues, acquiring certifi-
cates from CAs can be cumbersome as the domain name
verification is done through a collection of ad-hoc mech-
anisms. This typically accomplished by following interac-
tive natural-language instructions from the CA rather than
through machine-implemented published protocols. Recently,
the Automated Certificate Management Environment (ACME)
protocol has been proposed to automate the certificate issuance
process [9]. ACME only solved the automation issue, but the
trust concerns remain as ACME requires a trusted CA.

The idea of decentralizing systems has been investigated us-
ing the emergent Blockchain technology [10]. Blockchain aims
at offering decentralization by leveraging consensus algorithms
among participating nodes using standardized cryptographic
functions and protocols. It redefines trust by providing a per-
missionless, censorship-resistant, immutable and transparent
data store.

In this paper we propose a method that decentralizes the
ACME protocol by leveraging the Blockchain technology,
aiming at reducing the trust concerns of existing PKI sys-
tems. This paper proposes to build on top of Blockchain a
decentralized mechanism for domain ownership verification,
a scheme that performs on-chain verification with minimal
trust. The verification process resembles “Let’s Encrypt” CA
and the ACME protocol. The proposed system not only solves
the automation of certificates’ issuance, but also minimizes
the trust concerns. Furthermore, by creating such scheme, the
problem of having compelled certificates is implicitly resolved
since the CA is not doing the verification manually. As a result,
governments and third parties can no longer interfere in the
verification process. The main contributions of this paper can



be framed as follows:

1) Resolving the server-side trust concerns through an auto-
mated Blockchain-based Domain Control Verification (B-
DCV) with a provably-verifiable approach.

2) Eliminating the need for a trusted CA in the domain
verification process.

3) Resolving DDoS attacks targeting single points of failure
in CAs through the usage of Blockchain.

4) Enabling certificate issuance automation by imitating the
ACME protocol.

The rest of this paper is organized as follows. In the
next section, we provide a background on Blockchain and
ACME. In Section III, we elaborate on the proposed system
and detail its architecture, components, and configuration.
In Section IV, we present the implementation and analyze
the obtained results. Finally, Section V provides concluding
remarks discusses the future work.

II. BACKGROUND

A. Blockchain background

In 2008, Satoshi Nakamoto published a paper entitled
“Bitcoin: A peer-to-peer electronic cash system” [11] which
introduced an innovative and novel way to transfer (send and
receive) digital money (called crypto-currency) without the
need of going through a trusted third party or intermediary
bank. This paper is considered a breakthrough in the cryp-
tography world, as it solved the digital cash’s well-known
“double spending” problem [12]. The idea is based on having
an immutable digital ledger that records all transactions in a
verifiable and persistent way. The ledger is replicated across
several nodes, which means that no single authority owns
or maintains it. The ledger’s version validity is established
through consensus among the participating nodes, also called
miners. The transactions are stored in blocks linked using
cryptography (hence the term Blockchain), specifically using
hash functions: each block stores the hash of the previous
block, timestamp, and transactions data. Therefore, data on a
specific block cannot be altered without changing subsequent
blocks, which requires the network’s consensus.

B. Smart contracts

The exchange of digital currency was the main purpose of
Bitcoin. Afterwards, researchers involved in creating a more
general platform for decentralized applications (DApps) [13]
development through” Smart Contracts”. A smart contract is
defined as a computer code running over Blockchain, capable
of exchanging any value (money, property, etc.) without the
need of a third party. They offer the following advantages
over the existing computer programs: 1) Autonomous: their
execution is managed by the network, 2) Trust-less: the
ledger’s version is validated with consensus among nodes, 3)
Data safe: the application’s data remain permanently in the
Blockchain, 4) Transparent: smart contract’s code and storage
are publicly available

C. Ethereum

Ethereum is an open source decentralized Blockchain-based
computing platform that executes smart contracts [14]. It
includes the Ethereum Virtual Machine (EVM) as its runtime
environment. Its smart contracts are written in high-level
programming languages like Solidity, Serpent, Mutan, and are
compiled to EVM bytecode for execution. Smart contracts are
considered as accounts in Ethereum, and are controlled by
their code. Once deployed, the contract becomes identified by
an address, and its associated data become publicly visible.
The other account type is the Externally Owned Account
(EOA): 1t is a user type account, linked to a keypair gen-
erated upon account creation. The holder of the private key
corresponding to a wallet controls it and signs transactions
initiated from the wallet address. The EOA address is used
to reference the account, while the private key is used for
signing the transactions. Executing smart contracts functions
is considered as a transaction in Ethereum. The cryptocurrency
which Ethereum uses is called Ether. It is not only transferred
between the users, but also to incentivize miners who run the
Blockchain network.

D. Light Client

A light client is developed to enable constrained devices
(mobile, IoT, etc.) interact securely with the Blockchain. The
devices download only the block headers, and fetch data from
the Blockchain on-demand. These clients cannot be used as
miners, and do not participate or affect the consensus process.
In Ethereum, the Light Ethereum Protocol (LES) [15] is
adopted, whose security is based on Merkle proofs. Basically,
a light client initiates a request to a light client server, which
in turns, finds the data, fetches the Merkle branch (all hashes
from the requested data to the tree root), and returns them to
the client, which then verifies the authenticity of the requested
data in logarithmic complexity.

E. ACME (Automated Certificate Management Environment)

Automatic Certificate Management Environment (ACME) is
a proposed standard used by “Let’s Encrypt” CA to automate
the issuance of domain-validated (DV) certificates [16]. De-
ploying an HTTPS-enabled website is complicated, expensive,
and error-prone for server operators. The HTTPS difficulty
resides in generation of the certificate and the interactions
with the certificate authorities that should be trusted by the
Web browser. The installation of a certificate in a webserver
requires the server to use a key generation software and to
manually follow steps to configure and validate the control
of the domain name. Let’s Encrypt has simplified the HTTPS
protocol adoption through ACME protocol. It automates the
server configuration, identity validation, certificate issuance,
and server configuration, which results in providing certificates
at low cost. The ACME mechanism can be summarized as
follows:
1) The CA generates a random token and sends the token and

list of challenges that the client (certificate’s requester) can

complete to prove ownership of identifier.



2) The client selects the HTTP challenge, creates a file con-
taining a token, and hosts it at a directory on the claimed
server.

3) Client informs the CA that challenge is complete.

4) The CA verifies that the file is present and that it contains
the correct challenge response.

5) Client sends a Certificate Signing Request
PKCS#10.

6) CA issues the certificate.

(CSR)

III. PROPOSED SYSTEM

The proposed system decentralizes the domain ownership
verification used by the ACME protocol. The aim is to use
Blockchain, which is a trustless decentralized network, in
the domain verification process. Fig. 1 depicts the high level
architecture, which has the following components:

Device. The device is the server that needs to register
its domain name in the Blockchain. Typically, the device is a
web server that has a domain name. The device is composed
of a 1) registrar: a software module that is responsible for
initiating and completing the registration process; 2) light
client (LES): a software component that enables a secure
interaction with the Blockchain without having to download
all the blocks; 3) Wallet: the server’s EOA; and 4) web
server: used in the domain verification process.

Smart contract. The smart contract deployed in the
Blockchain has a mapping data structure which maps the
devices’ domain names to their records. Each record contains:
a) Domain name: represented in UTF-8 string encoding, b)
Public Key: RSA 2048-bits public key, ¢) Address: Device’s
wallet address, d) Verified: Boolean variable to identify the
verification result. A mapping data structure can be seen as
a hash table, and has a complexity of O(1) in storage and
retrieval. The smart contract additionally contains functions
used for the identities’ verification.

Oracle Service and Attestators. The Oracle service is
a component situated between the Blockchain network and
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Fig. 1. Proposed System Architecture

the public Internet. It helps smart contracts issue requests
to the Internet via HTTP(S) POST and GET methods to
gather information or post data. The main challenge with
oracles is trust. Fortunately, recent substantial research
attempts succeeded in solving these trust issues by providing
different trusted computing techniques. They provide an
“authenticity proof” which is essentially a cryptographic
based evidence that the data is not tampered with, and
the data integrity property is maintained. This is achieved
via oracle services such as Oraclize. Oraclize provides an
enhanced oracle network that uses the TLSNotary proof [17],
which returns a cryptographic proof for the user showing that
a certain HTTPS request returned data from the right server
at a specific time Hence, Oraclize refer to their service as
“provably-honest”. On the other hand, companies like Town
Crier are focusing on using Trusted Execution Environments
(TEE) such as the Intel Software Guard Extensions (SGX), to
guarantee that the returned data is not tampered with. Other
hardware-based techniques include Qualcomm TEE, Android
SafetyNet, Ledger Nano S attestation, Samsung Knox, etc.
Each one of the aforementioned techniques is bound to a
major company (the attestator).

A. Blockchain-based Domain Control Verification (B-DCV)

The B-DCV mechanism is depicted in Fig. 2. Initially, the
domain owner generates a certificate and install it on the
webserver. This certificate can be self-signed, or optionally
signed by a trusted CA. The device sends to the smart contract
the domain name (identity) and the generated public key in the
certificate. The smart contract challenges the device to prove
that the domain is controlled by the user. N; is generated with
the help of an oracle service, as generating random numbers
in a deterministic machine (EVM) is not possible. Hence, the
smart contracts contacts Oraclize to generate a random number
Nj. Oraclize uses the TLSNotary proof method, and stores the
secret in an Amazon Web Services virtual machine [18].

The domain owner, generates a random number No,
and stores H(N;p||N2) into the webserver’s root directory
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(.well-known/pki-validation), where H() is a hash-
ing function (Keccak-256 hash function). Afterwards, it sends
N5 to the smart contract which in turns, initiates an HTTPS
GET request to the server requesting the file hosted on the
root directory. When the result arrives to the smart contract, it
verifies the hash, the result’s proof, and approves the server’s
record. Upon approving the server’s identity, other devices can
retrieve its public key and establish a secure session.

Then main idea behind this system is that the verification
process is executed outband; verifying the claimed domain
name is being done through a different channel than that of
Blockchain. Previous approaches (e.g., [19]) considered using
two-factor authentication through SMS to verify ownership
of the mobile phone number (MSISDN). In a previous work
[20], we proposed a system to distribute Port Control Protocol
(PCP) mappings in a decentralized fashion. A verification
method closely similar to the one presented in this paper was
used to verify the ownership of the mappings.

B. Oracle Security

Introducing oracles in the Blockchain creates a trust prob-
lem, often referred to as the “Oracle Problem” [20]. The
problem is that there is a need to trust the Oracle for the
external data integrity. To overcome this concern, we propose
combining the proofs of several trusted attestators, aiming at
minimizing trust to a negligible level, as shown in Fig. 3. In
other words, the data is considered tampered with if and only if
all attestators collaborate at the same time to modify the data.
This is a very unlikely scenario as the attestators correspond
to separate companies. The downside of this method it that it
increases the total transaction cost of the verification process
as several attestators are to be contacted, and hence, several
transactions should be issued.

C. Client-Server Secure Session Establishment

We demonstrate in this section how the session can be set up
between a client and a server using SSL/TLS. The certificate
remains in the session establishment in order to enable an easy
integration with the existing systems (i.e., web server based
on PKI). Once a device is properly configured and registered,
it can setup a secure session by using the destination’s public
key from Blockchain. The certificate remains in the session
establishment process in order to simplify the integration with
existing PKI systems. The sequence of messages exchanged
between the client and the server for the session setup is
depicted in Fig. 4. After performing the standard certificate
exchange mechanism, the client compares the public key
stored in the Blockchain against the certificate’s public key.

Ledger Attestator,

Technology

| | | |
| | | |
| Amazon ‘ Google /' Qualcomm '\
\ TLSNotary  /I\  SafetyNet /\  Android |
| | | |
| | | |

Fig. 3. Attestators chain of trust

Get Domain Public Key (Domain)

Server

P

u

Standard Certificate
Exchange Mechanism

Verify Cert(P,) =P, W

Secure Session

Kmmm e T >

Fig. 4. Secure Session Establishment

D. Revocation mechanism

Conventional X.509 certificates are revoked whenever they
can no longer be trustable. This can be due to the certificate’s
expired date, or leakage of the private key. The proposed
system takes into consideration these concerns, and provides
a way to update the public key, only if the owner authorizes
this update. As explained previously, each record in the smart
contract contains the device’s wallet address. To update a
record fo revocation purposes, a client is restricted to initiate
an update request from the wallet used initially for creating
its identity. If this assertion fails, the smart contracts denies
updating the public key.

IV. IMPLEMENTATION AND RESULTS

In this section, we provide the technical implementation
details of the system. Specifically, we list the technologies
used for development, and analyze the costs required to call
smart contracts functions and to execute them in the EVM.
Moreover, we analyze the security of the smart contract
against various security attacks by using a symbolic execution
tool. The technologies used in the development process are:
1) Ropsten Testnet [21]: A public network that simulates
Ethereum and EVM; 2) Solidity [22]: Smart contract pro-
gramming language; 3) Web3j: Lightweight Java application
for interfacing the Ethereum Blockchain; and 4) LES: Light
client running on the devices. The time used for registering
devices in the smart contract is related to the Ethereum block
mining time, therefore we do not evaluate the required storage
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TABLE 1.

SMART CONTRACT’S GAS USAGE AND FEES (ETHER AND USD)

Task (and Subtasks) Gas Ether Value for Oracle Ether Total USD
Register Domain 361762 N/A 0.00723524 1.58
Generate Random Number (+TLSNotary) 200000 0.000228749 0.004228749  0.92
Create a Record Oracle’s Callback
Validate Record 355847 N/A 0.00711694 1.55
Send HTTPS (+TLSNotary) in DCV 200000 0.000228749 0.004228749  0.92
Oracle’s Callback
Total 1117609 0.000457498 0.022809678  4.98
Update Device’s Record  Update Device’s Public Key (for Revocation) 246410 N/A 0.004928200  1.07
time. Evaluating a smart contract involves estimating the GAS [4] D. Fisher, “Final Report on DigiNotar Hack Shows
Total Compromise of CA  Servers.”  https://threatpost.com/

required for executing its transactions. Table I represents the
estimated costs in both Ether and USD for the smart contract’s
tasks execution. As of March 2020, 1 Ether ~ $218. Retrieving
the public key of a device from the smart contract is free since
the function is not modifying or storing data in the Blockchain.
As shown in the table, creating a domain record requires
0.02281 ETH, which is equal to $4.98. Note that this cost
considers a single authenticity proof, TLSNotary. Updating a
domain record requires ~ 0.004 ETH, which is equal to $1.07.
Note that the gas usage depends on the complexity of the
smart contract code, and the length of the parameters passed
to the functions. The presented values represent the average
costs required for typical domain names lengths (less than 30
characters). Additional transaction costs are required as the
length of the domain name gets larger, as shown in Fig. 5.

V. CONCLUSION

In this paper, we have proposed a Blockchain-based method
that decentralizes the ACME protocol by combining elements
of the PKI/CA model with Blockchain technology. It aims
at resolving the trust concerns of the existing PKI/CA in-
frastructure. The method eliminates the need for a trusted
CA in the domain verification process, and resolves DDoS
attacks targeting single points of failures. It also automates
the certificate issuance process by imitating the ACME proto-
col. Our implementation was tested on Testnet, an Ethereum
Blockchain public simulator. Results showed that the solution
is efficient in terms of transaction costs. For future work, we
intend to develop the session establishment software module
as a plug-in to be integrated in major browsers. Additionally,
we aim at solving the client authentication problem.
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