A Specialized Concurrent Queue for Scheduling Irregular
Workloads on GPUs

David Troendle
The University of Mississippi
Department of Computer and
Information Science
University, Mississippi, USA
david@cs.olemiss.edu

ABSTRACT

The persistent thread model offers a viable solution for ac-
celerating data-irregular workloads on Graphic Processing
Units (GPUs). However, as the number of active threads
increases, contention and retries on shared resources limit the
efficiency of task scheduling among the persistent threads. To
address this, we propose a highly scalable, non-blocking con-
current queue suitable for use as a GPU persistent thread task
scheduler. The proposed concurrent queue has two novel prop-
erties: 1) The supporting enqueue/dequeue queue operations
never suffer from retry overhead because the atomic operation
does not fail and the queue empty exception has been refac-
tored; and 2) The queue operates on an arbitrary number
of queue entries for the same cost as a single entry. A proxy
thread in each thread group performs all atomic operations
on behalf of all threads in the group. These two novel prop-
erties substantially reduce thread contention caused by the
GPU’s lock-step Single Instruction Multiple Threads (SIMT)
execution model.

To demonstrate the performance and scalability of the
proposed queue, we implemented a top-down Breadth First
Search (BFS) based on the persistent thread model using
1) the proposed concurrent queue, and 2) two traditional
concurrent queues; and analyzed its performance and scal-
ability characteristics under different input graph datasets
and hardware configurations. Our experiments show that the
BFS implementation based on our proposed queue outper-
forms not only ones based on traditional queues but also the
state-of-the-art BF'S implementations found in the literature
by a minimum of 1.26 X and maximum of 36.23x. We also
observed the scalability of our proposed queue is within 10%
of the ideal linear speedup for up to the maximum number of
threads supported by high-end discrete GPUs (14K threads
in our experiment).

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ICPP 2019, August 5-8, 2019, Kyoto, Japan

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6295-5/19/08. .. $15.00
https://doi.org/10.1145/3337821.3337837

Tuan Ta
Cornell University
School of Electrical and Computer
Engineering
Ithaca, New York, USA
qtt2Q@cornell.edu

Byunghyun Jang
The University of Mississippi
Department of Computer and

Information Science
University, Mississippi, USA

bjang@cs.olemiss.edu

CCS CONCEPTS

o Computing methodologies — Massively parallel algorithms;
Concurrent algorithms; e Software and its engineering —
Concurrent programming structures.

KEYWORDS

Persistent threads, Task scheduling, Concurrent queue, Irreg-
ular workloads, GPU computing

ACM Reference Format:

David Troendle, Tuan Ta, and Byunghyun Jang. 2019. A Spe-
cialized Concurrent Queue for Scheduling Irregular Workloads on
GPUs. In 48th International Conference on Parallel Processing
(ICPP 2019), August 5-8, 2019, Kyoto, Japan. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3337821.3337837

1 INTRODUCTION

GPUs are proven, powerful accelerators for data and com-
pute intensive applications. They achieve high throughput
by running a massive number of threads, each of which op-
erates on a part of a dataset. Unlike traditional processors,
GPU threads are created, scheduled, and destroyed by hard-
ware, and the programmer has no control over the order of
thread execution. GPUs have two levels of hardware thread
scheduling: one that assigns a software thread group (i.e.,
workgroup in OpenCL and thread block in CUDA terminol-
ogy) to GPU cores (i.e., Compute Units (CUs) in OpenCL
and Streaming Multiprocessors (SMs) in CUDA), and an-
other that schedules hardware thread groups (i.e., wavefront
in AMD and warp in NVIDIA terminology) on the Single
Instruction Multiple Data (SIMD) engines (we use OpenCL
terminology hereinafter to simplify the presentation). This
GPU hardware thread scheduling/execution model imposes
programming challenges for workloads that require a certain
thread execution order. For example, in graph traversal algo-
rithms, multiple threads traversing different parts of a graph
may need to run in a specific order to satisfy dependencies
among vertices. Such workloads cannot fully benefit from
GPU acceleration without a special programming technique.

Data irreqular workoads are those whose execution flow
and parallelism change dynamically at runtime depending
on data [1]. While there are other forms of irregularity (e.g,
associated with control flow or memory access patterns [1]),
efficiently dealing with data irregularity has been one of the
most difficult challenges in GPU programming. A scheduling
technique known as persistent threads is a viable method

https://doi.org/10.1145/3337821.3337837
https://doi.org/10.1145/3337821.3337837

ICPP 2019, August 5-8, 2019, Kyoto, Japan

for scheduling data irregular workloads! on GPUs [8, 17].
The persistent thread model creates just enough threads to
saturate the GPU compute cores, where all threads stay alive
until the end of a kernel. Tasks (e.g., data to process) are
created dynamically by a kernel and scheduled to running
threads under an algorithm-specific task dependency con-
straint. A queue data structure (or variant) plays a critical
role in designing the task scheduler. The queue is shared by
all threads and thus requires atomic serialization of its shared
access variables.

Designing a persistent thread task scheduler that performs
well under a GPU’s SIMT execution model is a difficult
task because of the significantly increased thread contention
caused by the massive number of threads and SIMT’s lock-
step execution. Also, GPUs do not support dynamic mem-
ory management at runtime and limit the size of available
memory. In this paper, we propose a non-blocking, bounded,
array-based concurrent queue that scales well in a GPU’s
massively multi-threaded SIMT environment. Our proposed
concurrent queue exhibits two novel properties that signifi-
cantly reduce thread contention and other associated over-
head. The first property is named “retry-free” where the
enqueue/dequeue operations never suffer from retry overhead
from queue-empty and queue-full exceptionsQ. The atomic
operations that serialize accesses to shared resources never
trigger a retry mechanism. The second property is named
“arbitrary-n”, which refers to queue operations that operate
on an arbitrary number of queue entries for the same cost as a
single entry. The arbitrary-n property allows a proxy thread
to perform all atomic operations on behalf of all threads in
the group.

To demonstrate the performance and scalability of the
proposed queue, we used representative irregular workloads,
a top-down Breadth First Search (BFS) and a persistent
thread model to schedule tasks to threads using the proposed
concurrent queue. To show the performance contribution of
the proposed queue’s novel properties (i.e., retry-free and
arbitrary-n), we then compare that to the same BFS imple-
mentations using two other queue designs that lack these
properties. Finally, we compare the performance of our BFS
implementation with well-known, state-of-the-art top-down
BFS implementations found in the literature. Our experi-
ments show that due to the improved efficiency of the pro-
posed concurrent queue, our implementation outperforms the
closest competing top down BFS algorithm by up to 36.23x.
Although we use the proposed queue in a persistent thread
task scheduler, it can be used for other purposes on GPUs
with little change and without losing its performance and
scalability.

We simply refer to data irregular workloads as irregular workloads.
2Queue—full exceptions abort the kernel because there is insufficient
space to store ready tasks, but do not retry.

David Troendle, Tuan Ta, and Byunghyun Jang

2 BACKGROUND AND RELATED WORK
2.1 Irregular workloads on GPUs

The challenges associated with processing irregular workloads
on GPUs have been well-studied. Che et al. [14] developed
a suite of OpenCL applications to study irregular graph
workloads. Tzeng et al. [17] studied task scheduling for irreg-
ular GPU workloads, from a single monolithic task queue to
distributed queuing with task stealing and donation. They
also proposed static and dynamic dependency-aware schedul-
ing schemes for irregular workloads, and studied them with
H.264 intra prediction video compression and the N-Queens
constraint satisfaction problem [1].

In irregular workloads, a task may depend on the comple-
tion of other task(s) before it can be scheduled for execution.
As a task progresses, it can clear dependencies in other tasks.
When all dependencies for a task clear, that task can be
scheduled for execution. Processing an irregular workload
requires a mechanism for scheduling the dynamic subset of
independent tasks. A common approach is to use a software
scheduler that is shared by all threads. This requires atomic
serialization of the shared access variables, which in turn
causes significant atomic contention in a GPU’s massively
parallel environment. An effective irregular workload sched-
uler must be aware of the GPU’s unique thread execution
model, and mitigate its adverse effects.

2.2 Persistent thread model

The persistent thread model launches just enough indepen-
dent threads [8] to saturate the hardware. Those persistent
threads remain alive until all tasks complete. A task sched-
uler assigns ready tasks to hungry persistent threads. The
scheduler holds unique tokens that identify the ready tasks.
When a persistent thread needs new work, it requests a task
token from the scheduler. As a thread executes a task, it
may produce new tasks by clearing dependencies. When this
happens the thread stores the unique token(s) of the newly
discovered independent task(s) in the scheduler.

Algorithm 1 Persistent thread model.

1: while WorkRemains() do

2 if GetWorkToken() then

3: DoWorkUnit/()

4: ScheduleNewlyDiscovered Work Tokens|()
5 end if

6: end while

Algorithm 1 shows the basic structure of persistent thread
model. Each pass through lines 1-6 is called a work cycle
that all threads execute as long as any task remains. Line 2
requests a task token from the scheduler. If it gets work, line
3 works on the task associated with the task token, and line 4
schedules any work tokens whose dependencies were cleared
by the work done on line 3. If the thread fails to get work at
line 2 it simply loops until all work is done or it gets work.

A Specialized Concurrent Queue for Scheduling Irregular Workloads on GPUs

2.3 Concurrent Data Structures (CDS)

In multithreaded shared memory systems, threads commu-
nicate and synchronize with each other through data struc-
tures in logically shared memory. Concurrent Data Struc-
tures (CDSs) play a crucial role in achieving good perfor-
mance on such systems. CDS research evolved as an alter-
native to mutual exclusion serialization strategies such as
critical sections. Traditionally, CDSs are implemented us-
ing two techniques: blocking and non-blocking, and their
characteristics are classified as follows [11, 12]:
e Obstruction-free: A competing thread makes progress
only after the interference from other threads ceases.
e Lock-free: At least one competing thread makes
progress after finite time.
e Wait-free: All competing threads make progress after
finite time.

Non-blocking CDSs guarantee that if one or more active
threads try to perform operations on a shared data structure,
some operations will complete in finite time. Cederman et
al. [2] showed that non-blocking CDSs perform better than
blocking ones in most cases. Most state-of-the-art CDSs are
lock-free and implemented using Compare and Set/Swap
(CAS) operations to manage shared variable access.

A concurrent stack (Treiber et al. [16]), queue (Valois et
al. [18]) or deque (Michael et al. [10], Valois [19]) are potential
candidates for the persistent thread task scheduler. While
a deque is a more general form of a queue, the scheduler
requires only the features of a simpler single ended queue. A
stack’s push and pop operations compete for a single shared
access location, the top of stack pointer, which increases
contention. For these reasons, a concurrent queue is most
commonly selected as the underlying data structure for the
persistent thread task scheduler.

3 CHALLENGES IN CONCURRENT QUEUE
DESIGN AND OUR APPROACH

The massively threaded GPU environment imposes unique
design challenges on a persistent thread task scheduler. The
queue data structure plays a critical role in the efficiency
and scalability of the scheduler. This section summarizes the
major challenges in designing an efficient persistent thread
task scheduler.

3.1 Limited memory management

Dynamic parallelism in irregular workloads is highly data
dependent and difficult to bound. This strongly suggests
basing the queue on a dynamically allocated, unbounded
linked-list. However, the GPU run-time does not support dy-
namic memory allocation, and its programming APIs restrict
total memory allocation in the device’s memory space. All
application data, including supporting data structures such
as the scheduler queue, must be allocated statically before
kernel launch and fit in the space available.

Due to the constraints on dynamic allocation and available
memory size, a GPU design should contemplate the reuse of

ICPP 2019, August 5-8, 2019, Kyoto, Japan

queue entries. A queue implemented with CAS-based lock-
free linked-list usually requires versioning overhead to deal
with the pointer recycling problem, which is also known as
the ABA problem [19]. A linked-list also adds the overhead
of linking neighbor nodes. That overhead typically triples the
space required to store a simple task token.

An alternative to an unbounded, linked-list based queue is
a bounded, circular, array-based queue. The queue payload
data is typically the integer index of a task ready for thread
assignment. Thus each queue entry contains only the task
token payload. There is no other space overhead.

3.2 Managing accesses to shared data

All threads must access the shared queue, which requires
atomic serialized access on the queue’s head and tail to
avoid race conditions. There are two suitable widely used
atomic operations available on modern GPUs: CAS (Compare
and Set/Swap) and Atomic Fetch-Add (AFA). Each has
advantages and disadvantages on GPUs as discussed below:

e CAS takes three parameters — a target, expected value
and new value. If the target equals the expected value
the target is set to the new value. While there are some
implementation variations, all CAS operations return
a value that allows the programmer to know if the set
succeeded. Because a CAS can fail, atomic contention
can be mitigated. In lock-free CAS-based CDS imple-
mentations, often the program simply retries on CAS
failure. This introduces the overhead of retrying an
unsuccessful operation.

e AFA adds an arbitrary value to its atomic target, and
returns the old value of the target. It does not return
until the operation successfully completes. This can
result in long latency and contended hot spots [13].
However, the program does not need to retry as it
never fails.

AFA offers an advantage over CAS on GPUs: While the la-
tency of both AFA and CAS atomic operations can be hidden
by a GPU, the overhead of retrying an unsuccessful CAS can-
not be hidden. Since an AFA never fails, there is no retry cost,
and the cost associated with atomic serialization can be effec-
tively hidden with zero-cost thread switching on GPUs. Our
experiments demonstrate that an AFA-based queue scales
significantly better than CAS-based ones.

Figure 1 reveals that CAS failures increase as the number
of actively running threads increases. §6.3 (Retry overhead)
analyzes the consequences of retry overhead.

3.3 Lock-step execution

SIMT lock-step execution affects queue design more than any
other GPU architectural feature. The threads in a wavefront
share a common Program Counter (PC) and execute in lock-
step. Thus, all wavefront threads share the same code path.
Threads not using a code path used by other threads idle
through that code path, treating their instructions as if they
were No Operations (NOPs). This is called thread divergence.
No thread in a wavefront completes until the longest running

ICPP 2019, August 5-8, 2019, Kyoto, Japan

(a) LKS on Fiji.

(b) USA on Fiji.

David Troendle, Tuan Ta, and Byunghyun Jang

WG (64 threads [WG) WG (64

(c) LKS on Spectre. (d) USA on Spectre.

Figure 1: Retries caused by CAS failure for a top-down BFS (Breadth First Search) application.

thread completes. Faster threads idle until the longest running
thread completes.

In a persistent thread model, thread divergence can be a
significant source of performance degradation that impacts
the efficiency of persistent thread task scheduling if tasks
do not have homogeneous complexity. Within a wavefront,
work cycles with complex tasks delay the completion of less
complex tasks. In many cases, an effective solution for this
problem is to refactor tasks into sub-tasks with uniform
complexity For instance, many graph algorithms are based
on traversing the children of vertices. While the processing
complexity of a vertex varies with the number of children,
the processing complexity for each child is roughly uniform.
Therefore, this issue can be addressed by processing a fixed
number® of uniformly complex sub-tasks in each work cycle
instead of traversing all children. Hungry threads (i.e., threads
that need work) can request a task after each work cycle,
which has been refactored to a fixed number of homogeneous
complexity sub-tasks.

The GPU’s SIMT lock-step execution exacerbates the la-
tency of atomic operation, especially AFA operation because
they wait their turn rather than fail. If all threads within
a SIMT are hungry and each performs an AFA-based de-
queue operation, then the latency of the operation could be
increased by the factor of the number of SIMT threads. This
could easily become a performance bottleneck and must be
avoided. Our approach to avoiding such intensified atomic
contention and overhead is to have a representative thread
(named as proxy thread) perform all atomic operations on
behalf of all threads in the SIMT group.

Front Rear

v v

Index —» 0 1 2 3 4 5 6 7

oata —»{dna[dna| a | b [dna| ana [ana ana|

Figure 2: Proposed queue structure and sentinels. The circular prop-
erty of the array is implemented by manipulating Front and Rear
indices (i.e., modulus operation).

3 Empirically we found work cycles of 4 sub-tasks works well.

4 DESIGN AND IMPLEMENTATION OF
CONCURRENT QUEUE

A concurrent queue specialized for use as a GPU persistent
thread task scheduler should avoid the adverse effects of lock-
step execution while accessing shared data. Our proposed
queue is implemented using a bounded array and AFA op-
erations to manage access to the shared queue resources. It
also uses a sentinel named data-not-arrived to remove queue
operation exceptions (e.g., queue empty), which, when com-
bined with AFA, enables the use of prozy threads. We store a
data-not-arrived sentinel in all queue slots where valid data
has not yet arrived. Figure 2 depicts the proposed queue
structure. The data-not-arrived sentinels are labled as “dna’
in shaded entries. Rather than actually storing or retrieving
task tokens, the queue operations return the slot index where
the task tokens will be enqueued or dequeued.

)

4.1 Atomic operations by proxy thread

We arbitrarily chose the first thread in each wavefront as the
proxy thread. The proxy thread performs all global atomic
operations for all threads (including itself) using a single
atomic operation. It functions as a normal thread except
for atomic operations. Suppose three threads are hungry in
Figure 2, then the proxy thread performs:

StartSlotIndex = atomic_fetch_add (Fromf7 3)

StartSlotInder is set to 2, and Front atomically advances
to 5. The first, second, and third hungry threads are assigned
slot index 2, 3, and 4 respectively. All slot assignments are
done in parallel. The first two threads have data and start
processing it immediately. The third thread sees its data
has not yet arrived (dna sentinel) and checks again in each
subsequent work cycle until data arrives. Since only the proxy
thread performs an atomic operation, contention for the queue
access variable is significantly reduced and completes faster.

4.2 Dequeue operation

Dequeue operations feed each hungry thread a unique slot
index to monitor. The atomic operation occurs once when a
thread becomes hungry. Since the slot index is unique, only a
simple global memory operation is required to check for data
arrival. When a thread sees data has arrived (no sentinel), it
picks up its work token from its slot and replaces it with the
sentinel. This has the effect of refactoring an atomic queue

A Specialized Concurrent Queue for Scheduling Irregular Workloads on GPUs

Listing 1: Dequeue kernel code snippet.

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Listing 3: Enqueue kernel code snippet.

1 // Get base index of the slots for hungry threads.

2 if (IsProxyThread) {

3 1nQueueSlotsNeeded = Ou;

4 }

5

6 if (ThreadNeedsWork) {

7 // Count all threads and assign each thread its relative slot index;
8 DequeueThreadSlotIndex = atomic_inc(&lnQueueSlotsNeeded);

9

10

11 // Get base indez of the slots for hungry threads.

12 if (IsProxyThread & lnQueueSlotsNeeded) {

13 1QueueSlotBaseIndex = atomic_add(&Parms->WorkQueueFront, lnQueueSlotsNeeded);
14 }

15

16 if (ThreadNeedsWork) {

17 DequeueThreadSlotIndex += lQueueSlotBaseIndex;

18 ThreadNeedsWork = false;

19 QueueDataAvailable = false;
20

Listing 2: Data arrival kernel code snippet.

1 if (!QueueDataAvailable) {

2 // Check to see if data has arrived.

3 if ((DequeueThreadSlotIndex < QueueSize) &&

4 (QueueDataAvailable = (WorkQueue [DequeueThreadSlotIndex] !=
5 Missing))) {

6

7 // Work has arrived. Setup to process this node.

8 // No atomics are needed because this is the only thread accessing
9 // the slot or node.
10
11 // Get work token (indez of node to process).
12 CurrentNodeIndex = WorkQueue[DequeueThreadSlotIndex];
13
14 // Get assigned node.
15 CurrentNode = Nodes[CurrentNodeIndex] ;
16
17 // Get starting edge for this node.
18 CurrentEdge = Edges + CurrentNode.StartingEdgeIndex;
19
20 // Get current mode cost;
21 CurrentNodeCost = Costs[CurrentNodeIndex];
22 }
23 }

1 // Initialize
2 if (IsProxyThread) <{
3 1nQueueSlotsNeeded = Ou;
4 ¥
5
6 // Count all newly discovered work in this cycle and assign slot index
7 // for each thread.
8 if (nNewlyDiscoveredWork) {
9 EnqueueThreadSlotIndex =
10 atomic_add(&1nQueueSlotsNeeded, nNewlyDiscoveredWork);
11 3
12
13 // Reserve space in queue, and get base indez.
14 if (IsProxyThread && 1nQueueSlotsNeeded) {
15 1QueueSlotBaseIndex = atomic_add(&Parms->WorkQueueRear, lnQueueSlotsNeeded);
16
17
18 if (nNewlyDiscoveredWork) <{
19 // Convert slot index to base indez within queue.
20 EnqueueThreadSlotIndex += 1lQueueSlotBaseIndex;
21
22 // Copy newly discovered work to the queue slot reserved for this
23 // work token.
24 for (uint32_t i = Ou; i < nNewlyDiscoveredWork; ++i) {
25 if (WorkQueue[EnqueueThreadSlotIndex] != Missing) QueueFullAbort();
26 WorkQueue [EnqueueThreadSlotIndex++] = NewlyDiscoveredWork[i];
27 }
28 }

empty exception to a non-atomic memory check for data
arrival.

Listing 1 shows the kernel code snippet for the dequeue
operation. In Lines 2-4, 1InQueueSlotsNeeded which will con-
tain a count of the number of hungry threads in the wave-
front for a given work cycle is zeroed by the proxy thread.
In Lines 6-9, the hungry threads (ThreadNeedsWork) are
assigned a slot. Line 8 increments the number of hungry
threads (1nQueueSlotsNeeded) and assigns the private vari-
able DequeueThreadSlotIndex a slot index relative to the
wavefront. Later, this will be converted to an actual queue slot
index. The local atomic operations are executed by all hun-
gry wavefront threads in lock-step. Like their global atomic
counterparts, they do not fail and the GPU can hide the
latency associated with these operations.

In Lines 12-14, the proxy thread reserves queue slots for
all the hungry threads in the wavefront. To avoid unnecessary
atomic contention, this is done only if there is at least one hun-
gry thread. Line 13 performs the actual allocation. The base
index of the reserved area is stored in 1QueueSlotBaseIndex,
and WorkQueueFront is atomically incremented by the num-
ber of slots allocated. Line 17 converts the thread’s wavefront
relative slot index to an actual queue index unique for this
thread. Lines 18-19 mark that the thread is no longer hungry
and needs to check for data arrival.

4.3 Data arrival

Listing 2 is the kernel snippet that checks data arrival, which
occurs when the thread’s unique slot index no longer has the
dna sentinel. Lines 1-23 are executed only if data has not yet
arrived, which is signaled by QueueDataAvailable. Lines 3-5
perform the actual data arrival check. No atomic operations
are required. They ensure the assigned slot index is within
queue bounds and the data at the slot index is no longer the
dna sentinel. If data has arrived, it sets QueueDataAvailable
to true. As the kernel concludes, no new tasks are discovered.
Threads are assigned slots to monitor where no data will ever
arrive. The slot may, in fact, be outside the queue bounds
and cannot be accessed. Lines 3-5 handle these details. The
enqueue operation ensures data is never stored out of bounds.
Lines 6-22 are executed once just before node enumeration
occurs. They form the enumeration prolog and setup for child
enumeration.

4.4 Enqueue operation

Enqueue operations proceed in a complementary manner
to dequeue operations. The proxy thread reserves indices
for all newly independent tasks discovered this work cycle
using a single AFA operation. All threads in the wavefront
then copy their data to the queue in parallel. The threads
monitoring that slot see the newly arrived data and begin
processing it. Each thread ensures the slot contains a sentinel
before writing its data. If a sentinel is not there, then a queue
full exception has occurred. When a queue full exception
occurs the problem is too large for the allocated queue size.
It indicates there are more available tasks ready for execution
than can be stored in the queue. Buffer space, including the
queue, is allocated by the host prior to kernel execution. If
more space can be allocated, the user can retry the kernel
with a larger queue.

Listing 3 shows the kernel snippet for the enqueue opera-
tion. In Lines 8-11, if a thread has enqueued new tasks, the
number of new task tokens is counted. Each thread will be

ICPP 2019, August 5-8, 2019, Kyoto, Japan

assigned the number of slots needed. The base of that area rel-
ative to the wavefront is stored in EnqueueThreadSlotIndex.
Later it will be converted to an actual queue index. In
Lines 14-16, the proxy thread reserves queue slots for all
newly discovered task tokens in the wavefront. To avoid un-
necessary atomic contention, this is done only if there is
at least one newly discovered task token. Line 15 performs
the actual allocation. The base index of the reserved area
is stored in 1QueueSlotBaseIndex, and WorkQueueRear is in-
cremented by the number of slots allocated. to an actual
queue index. Lines 24-27 copy each newly discovered task
token index to its queue slot in lock-step. This overwrites the
dna sentinel. The thread monitoring this slot sees the arrival
in its next work cycle when it executes lines 3-5 of Listing 2.
In Line 25, tokens can only be enqueued to slots where data
has not yet arrived, which is signaled by the presence of
a sentinel value. If the sentinel is not present, a queue full
exception has occurred, which aborts the kernel.

5 EXPERIMENTAL SETUP

The performance of an ideal queue must scale as threads are
added. This is especially important in a massively threaded
GPU environment, but difficult to achieve due to increased
thread contention on shared resources and lock-step execution.
The objective of our experimental setup is to reveal the
performance and scalability characteristics of the proposed
queue.

5.1 BFS as a driver application

We chose Breadth First Search (BFS) to test the proposed
concurrent queue for use in a persistent task scheduler. BFS
is an important, fundamental graph algorithm that finds
numerous applications in many different fields. It is often
considered as a representative irregular workload on GPUs.
While faster BFS algorithms exist [9], we chose a classic
top-down BFS algorithm [4, 15] because it is well-known and
well-suited for driving the proposed queue. It traverses a
graph in a width-first manner starting from a source vertex.
In a multi-threaded environment, all threads at any given
level enumerate their children, and must complete their enu-
merations before next level processing can begin. This is the
source of data irregularity and dynamic parallelism.

5.2 Input graph datasets

For BFS, the number of vertices available for processing at
any given instant depends on the input dataset. Therefore,
input datasets must be carefully chosen to thoroughly evalu-
ate the performance and scalability of the proposed queue.
This ranges from a synthetic dataset that massively satu-
rate threads to road map datasets that do not saturate the
hardware. We selected six diverse graph datasets in three
categories as test input data. The three categories are:
e Synthetic: To analyze the scalability of the proposed
persistent scheduler without the influence of other fac-
tors, we constructed a synthetic dataset designed to

David Troendle, Tuan Ta, and Byunghyun Jang

keep all persistent threads busy. This ensures kernel per-
formance differences are due only to thread contention
and not due to idle threads (lack of parallelism). Fig-
ure 3a shows the number of vertices available for thread
assignment at each level for synthetic dataset, which
has 10,485,760 vertices, with a fanout of 4 edges per
vertex. After the first 8 levels, both the Spectre and
Fiji GPUs are fully saturated. This effectively removes
lack of work as a source of poor acceleration.

e Social media: Social media graphs and their processing
speed are becoming increasingly important as Social
Networking Service (SNS) gets popular. We selected
two representative social media datasets [7] as detailed
in Table 1. Typically social media graphs have a large
edge fanout47 but are not very deep. The two datasets
cover small- and medium-sized social media graphs.
Figures 3b and 3c show this characteristic graphically
as well as their dynamic parallelism.

e Roadmap: Roadmap graphs typically have a fanout
of between 2 and 3, but are deep. Table 2 details
the three selected roadmap datasets from the 9" DI-
MACS implementation challenge [5]. Each selected
dataset has about 10x more vertices and edges than
the next smaller dataset. This covers a broad spectrum
of roadmap graphs. Because roadmap graphs are so
deep, the number of vertices available at any given
level is smaller than in social media graphs. Figures 3d,
3e and 3f show this characteristic graphically. Only the
USA dataset saturates the Spectre with a small num-
ber of CUs to any significant degree. Thus, insufficient
data parallelism is a limiting factor in this category.

5.3 Dissecting the effects of queue properties

We designed and implemented three concurrent queue varia-
tions to expose the effects of the retry-free and arbitrary-n
properties respectively:

e BASE: This is a traditional lock-free concurrent queue
using CAS atomic operations. This version has neither
the retry-free nor arbitrary-n properties.

e AN: This queue variant adds the arbitrary-n property
to BASE. This version retries on CAS failures.

e RF/AN: This is the proposed retry-free, arbitrary-n
concurrent queue. It uses non-failing AFA atomics.

The difference between the AN and RF/AN queue varia-
tions exposes the effect of the retry-free property on perfor-
mance, while the difference between the BASE and AN queue
variations exposes the effect of the arbitrary-n property on
performance.

4 The large fanout of social media graphs present a design challenge.
As edges are discovered, they must be stored in local or private memory
before being queued. Private and local memory are scarce resources
that limit the number of edges that can be processed. Our proposed
queue and the Rodinia benchmark avoid this issue, but is an issue for
the CHAI BFS benchmark.

A Specialized Concurrent Queue for Scheduling Irregular Workloads on GPUs

— n Vertices
10,000,000 70,000
1,000,000 60,000

100,000 50,000

10,000 40,000

1,000 30,000

n Vertices
n Vertices

100 20,000

—— nFiji

ICPP 2019, August 5-8, 2019, Kyoto, Japan

—— n Spectre

2,500,000
2,000,000

1,500,000

n Vertices

1,000,000

10 10,000 /

L 500,000

1 0
1 2 3 4 5 6 7 8 9 10 1 12 13 T 2 3

Depih Levels

(a) Synthetic dataset.

(b) gplus__combined dataset.

0

5 6 7 8 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Depth Levels Depth Levels

(c) soc-LiveJournall dataset.

16,000 16,000 16,000
14,000 14,000 14,000
12,000 12,000 12,000
10,000 10,000 10,000

g 8,000 g 8,000 g 8,000
% 6,000 % 6,000 % 6,000
4,000 4,000 4,000

2000 2o //'v' Aww o \AA\.\
e e~ 0
R YRR S Qe Trern SEPSECESIEIEAOSIS PESEOREEEFEOS PRI ESEINISS

Depth Levels

(d) NY dataset.

(e) LKS dataset.

Depth Levels Depth Levels

(f) USA dataset.

Figure 3: Dynamic data parallelism in our selected input graph datasets.

. Edges Per Vertex
Dataset n Vertices n Edges Nin NMax Avg Std
gplus__combined 107,614 | 30,494,866 0 | 49,041 | 283.4 | 1,245.18
soc-LiveJournall | 4,847,571 | 68,993,773 0 | 20,293 14.2 36.08

Table 1: Selected SNAP social media graph datasets statistics.

Dataset Description n Vertices n Edges MinEd%\‘/sIZfer X;e;texst 1
USA-road-d.NY New York City 264,346 733,846 1 8| 2.8 |0.98
USA-road-d.LKS | Great Lakes 2,758,12 6,885,658 1 8| 2.5 | 0.95
USA-road-d.USA | Full USA 23,947,347 | 58,333,344 1 91 24| 095

Table 2: Selected 9th DIMACS implementation challenge roadmap dataset statistics.

5.4 Programming language and test hardware

We chose an OpenCL 2.0 programming environment because
it is an established non-proprietary cross platform industry
standard. However, porting to CUDA should not lose any
intellectual merit.

All experiments were performed on two hardware plat-
forms: a powerful high-end discrete GPU (AMD Radeon R9
Fury codenamed F'iji), and a low-end integrated GPU with
shared CPU-GPU memory (AMD Radeon R7 APU code-
named Spectre). The Spectre GPU has 8 CUs and shares
memory with the CPU. The Fiji GPU has 56 CUs and sepa-
rate device memory.

We used a workgroup size of one wavefront (64 threads)
to avoid barriers, and launched 4 workgroups on each CU to
facilitate zero-cost thread switching. This resulted in 2,048
persistent threads (32 workgroups of 64 threads) on the
integrated Spectre GPU, and 14,336 persistent threads (224
workgroups of 64 threads) on the discrete Fiji GPU.

6 EXPERIMENTAL RESULTS AND
ANALYSIS

The performance and scalability of the proposed queue are
investigated under a variety of loads using a persistent thread
implementation of top down BFS. We also compare the
performance of our BFS implementation to the ones found in
the well-known benchmark suites, CHAI [6] and Rodinia [3].

6.1 Kernel execution time

Kernel execution time combines all factors affecting per-
formance into a single, absolute metric. Table 3 shows the
execution times for each queue variant, dataset and GPU.
The proposed retry-free/arbitrary-n queue (RF/AN) is the
fastest in all cases. Table 4 shows the kernel execution time
improvement of the AN and RF/AN kernels relative to the
BASE kernel. Figure 4 illustrates execution time and speedup
for the three queue implementations across all datasets and
hardware as the number of threads (workgroups) increases.

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Speedup

The Fiji discrete GPU uses 14,336 threads (224 workgroups
of 64 threads), and the Spectre integrated GPU uses 2,048

David Troendle, Tuan Ta, and Byunghyun Jang

Proposed RF/AN Speedup
« Traditionial BASE Exec Time

Ideal Speedup
« AN Exec Time

AN Speedup Traditionial BASE Speedup

roposed RF/AN Exec Time

1000

T 25
o
2w
: 3
I
oo §
0
s
oo
A5 s s 3 3 % s & 8 7 0
NWG (64 Threads / WG)
(a) Synthetic on Fiji.
100
=
oot
nwe(éAT:reads/weT h b
(d) gplus__combined on Spectre.
1o

e oao
we@ahesds /we)
(g) soc-LiveJournall on Fiji.
10
om 3
2 &
oo §

0.001

WG (64 Threads / WG)

(j) LKS on Spectre.

1.000

0.100

0010

0.001

WG (64 Threads / WG)

(b) Synthetic on Spectre.

1000

0.100

g
=

0010

WG (64 Threads / WG)

(e) NY on Fiji.

0010

£
£

NWG (64 Threads / WG)

(h) soc-LiveJournall on Spectre.

\

3

0010

0001

WG (64 Threads / WG)

(k) USA on Fiji.

Kernel Time (secs, log scale)

Speedup

1000

. T
1350 e H
0100 ¥
s s :
S0 H
H
75 g
oo §
%
=
0 2 oon
nWG [6: TNE;dS / WE’ B B N N
(c) gplus__combined on Fiji.
=
1w
©
2
000
»
.
© oo
s
0 ooon
nWG (64 T‘I‘wreads / WGT
(f) NY on Spectre.
s
H
H
75 g
ouo §
©
»
o om
etz /we)
(i) LKS on Fiji.
35
1.000
o100
oo

0.001

NWG (64 Threads / WG)

(1) USA on Spectre.

Figure 4: Execution time and speedup across different input graph datasets and hardware.

threads (32 workgroups of 64 threads).

Figures 4a and 4b show the synthetic dataset speedup
and execution time for the discrete and integrated GPUs
respectively. The synthetic dataset removes lack of work as

Kernel Time (secs, log scale)

Kernel Time (secs, log scale)

a factor limiting acceleration, and thus reveals the perfor-
mance limiting effects of atomic contention and retries. The
speedups of the proposed retry-free/arbitrary-n queue are
within 10% of the ideal. When the atomic operations are
replaced by a CAS-based lock-free queue, AN, the increased
atomic contention and retry overhead clearly limits speedup.
When the CAS-based lock-free version of the proposed queue

A Specialized Concurrent Queue for Scheduling Irregular Workloads on GPUs

GPU nWG Dataset BASE AN RF/AN
Synthetic 0.09760 0.06777 0.00865

gplus__combined 0.15066 0.15066 0.14229

Fiji 294 soc-LiveJournall 0.15778 0.13217 0.07642
USA-road-d.NY 0.01056 0.01038 0.00767

USA-road-d.LKS 0.07808 0.07706 0.04172
USA-road-d.USA 0.28393 0.27274 0.08829

Synthetic 0.12501 0.09125 0.05957

gplus__combined 0.16799 0.16736 0.16343

Spectre 32 soc-LiveJournall 0.32705 0.32428 0.31613
USA-road-d.NY 0.01055 0.01064 0.00808

USA-road-d.LKS 0.06764 0.06789 0.04722
USA-road-d.USA 0.42379 0.41971 0.40307

Table 3: Execution times (in seconds) of queue variants across
different datasets and hardware.

Performance improvement over BASE
Fiji Spectre
Dataset AN RF/AN AN RF/AN
Synthetic 144.03% 1128.12% | 137.00% | 209.86%
gplus__combined 100.00% 105.88% | 100.37% | 102.79%
soc-LiveJournall 119.38% 206.46% 100.85% 103.45%
USA-road-d.NY 101.70% 137.57% 99.18% | 130.58%
USA-road-d.LKS 101.33% 187.14% 99.63% | 143.24%
USA-road-d.USA | 104.10% 321.60% | 100.97% | 105.14%

Table 4: Performance improvement of RF/AN and AN over
BASE.

is replaced by a traditional lock-free queue, BASE, speedup
is further limited by the way a traditional queue handles a
dequeue attempt on an empty queue.

Figures 4c thru 4h show the execution time and speedup
for the selected social media graphs. The gplus_ combined
dataset (Figures 4c and 4d) only briefly saturates the per-
sistent threads, which limits speedup. The faster speed of
the more capable discrete GPU (Fiji) does reduce execution
time, but has no effect on speedup. The soc-Live-Journall
dataset (Figures 4g and 4h) saturates more threads, but only
the Fiji GPU shows modest improved scalability. Figures 4e
thru 41 show the execution time and speedup for the selected
roadmap graphs. None of these graphs saturate the Fiji GPU,
and only the USA graph partially saturates the Spectre GPU.
Except for the USA dataset on the Fiji GPU, all have similar
scaling characteristics. The above suggests that speedup for
the proposed queue is very sensitive to thread saturation
(dynamic parallelism) because idle threads do not contribute
to acceleration.

6.2 Scalability

Scalability is measured by comparing the speedup of the three
studied queue implementations as threads (workgroups) are
added. All speedups are computed relative to using one work-
group. Ideally, increasing the number of threads should pro-
portionally decrease the execution time. The ideal speedups
are shown as the black straight lines in Figure 4 for com-
parison purposes. In practice, actual speedup falls off due
to increased atomic contention and other overhead as work-
groups are added. Notice the left side of all graphs (smaller
number of WGs) shows little difference in either speedup
or execution time. In this region there are relatively few
persistent threads, and most of those threads are saturated

ICPP 2019, August 5-8, 2019, Kyoto, Japan

by available work. Because there are relatively few threads,
atomic contention and retries have little effect. As the number
of threads increase, the adverse effects of overhead become
more pronounced.

70
= Synthetic === Soc-LiveJournall NY

60

Retry Ratio
w
8

YOR PR R R PSP NLLPPEPLOELPES O
nWG (64 threads/WG)

(a) Fiji.

= Synthetic === Soc-LiveJournall NY

Retry Ratio

2
1 /
0=

1234567 891011121314151617181920212223242526272829303132
nWG (64 Threads/WG)

(b) Spectre.

Figure 5: Retry ratios (BASE over PROPOSED) for selected datasets.

6.3 Retry overhead

Minimizing retry overhead is the single-most important factor
for our design. Its effects are evident in Figure 4 by comparing
the green (a design with no retry overhead) and red (a design
with retry overhead) lines for any dataset or GPU. There are
two major sources of retry overhead — retries due to atomic
operation failure and retries due to queue operation excep-
tions. We dealt with atomic operation failure by choosing
AFA, and queue operation exceptions by operating on slot
indicies rather than queue entries. This allowed the use of
proxy threads, which further reduced atomic overhead.

Retry overhead is not always easily seen. In datasets with
good parallelism such as Figure 4a, however, the gap between
the green and red lines is pronounced. Good parallelism
helps saturate the cores, which increases atomic competition
and overhead. In datasets with sparse parallelism, such as
Figure 4e, the gap between the green and red lines is virtually
nonexistent. Lack of parallelism causes many idle threads,
which reduces atomic competition and overhead.

Figure 5 emphasizes this effect for three selected datasets
(synthetic, soc_ LiveJournall, and NY) on the Fiji (Figure 5a)
and Spectre (Figure 5b) GPUs. The retry ratio is the ratio
of total atomic operations used by a kernel over the number
of operations required by our design.

ICPP 2019, August 5-8, 2019, Kyoto, Japan

The synthetic dataset was designed to saturate the per-
sistent threads. As the number of threads increases, so do
retries for the BASE kernel. Figure 5a shows the BASE queue
requires over 60x more atomic operations than the proposed
queue when the largest number of threads is used on the
discrete Fiji GPU. The soc_ LiveJournall and NY datasets
have progressively less parallelism. The result is correspond-
ing less retry overhead due to reduced thread saturation and
atomic competition.

The soc_ LiveJournall dataset has a high fanout with
a large standard deviation. This is characteristic of social
media graphs. The result is relatively good, consistent data
parallelism, and thus a higher retry ratio when the number
of threads is high. The NY dataset has a small but consistent
fanout (as do many roadmap graphs). This results in poor
thread saturation.

Initially, the NY dataset has good parallelism, but falls off
as threads are added. This is clearly visible in the green line
on the left side of Figure 5a. The Spectre GPU follows this
trend. The retry overhead falloff just becomes apparent on
the right side of Figure 5b.

6.4 BFS performance comparison

To evaluate the overall performance of BFS implemented
using the proposed concurrent queue, we compare it with
two other BFS implementations found in the literature.

(1) CHAI [6]: CHAI is a benchmark suite for tightly inte-
grated heterogeneous platforms. There are implementa-
tions for programming languages such as OpenCL 2.0,
CUDA 8.0, and C++ AMP, and true heterogeneous
implementations that exploit productive collaboration
between CPU and GPU threads. The BFS included in
the benchmark suite uses a top-down algorithm and
persistent threads. Unlike our implementation, how-
ever, it uses a heterogenecous CPU/GPU model, while
ours uses only the GPU.

Rodinia [3]: Rodinia is a benchmark suite for hetero-
geneous computing to help architects study emerging
platforms. Rodinia includes applications and kernels
that target multi-core CPU and GPU platforms. The
BFS implementation in this benchmark suite uses a
top-down algorithm with course grain buffers. It exits
after each level and allocates 1 thread per node. Only
nodes with no dependencies process at each level. If
the number of levels is significant, this approach can
have significant overhead.

For both BFS benchmarks, we use the test datasets and
configuration parameters chosen by the original authors. This
helps eliminate any bias in dataset choice, and ensures the
benchmarks were run as the authors intended. All tests were
run with the GUI off to eliminate the GUI overhead on the
GPU.

6.4.1 Comparison to the CHAI BFS benchmark. The CHAI
BFS benchmark provides two datasets to test the perfor-
mance of their heterogeneous BF'S kernel. The discrete Fiji
GPU cannot run this heterogeneous kernel because it does

—~
N
~

David Troendle, Tuan Ta, and Byunghyun Jang

Dataset CHAI RF/AN | Speedup
NYR_ input.dat 20.8015 8.0811 2.574%
USA-road-d.BAY .gr.parboil | 20.8998 4.9691 4.206 X

Table 5: Performance comparison with CHAI BFS (ms).

not support cross cluster CPU/GPU atomic operations. Their
test datasets are relatively small road map graphs with only
modest dynamic parallelism. Table 5 details the kernel times
for CHAI and the proposed queue (RF/AN). All times are
in milliseconds. Our proposed algorithm outperforms CHAI
BFS by at least 2.57 times.

Dataset Device | Rodinia | RF/AN | Speedup
sine_[Segche [S7208 1037 1 b
spentas g IR0 [o2 i
graphIMW_6 Splgi(ﬁm 141.411975508 332.57(5(17()9 i’éflsi

Table 6: Performance comparison with Rodinia BFS (ms).

6.4.2 Comparison to the Rodinia BFS benchmark. The Ro-
dinia BFS benchmark provides three synthetic test datasets.
The datasets have 4K, 64K and 1M vertices. None of the three
datasets has more than 11 levels, and have good dynamic par-
allelism, especially for the largest dataset. The effect of these
dataset choices is that the smaller datasets have relatively
more overhead than the large dataset. This can be seen in
Table 6. The Rodinia tests were run on both the Spectre and
Fiji GPUs. Table 6 compares the kernel times for Rodinia
and the proposed queue (RF/AN) run on the same datasets.

6.5 Analysis Summary

In practice, performance overhead arises from two issues —
lack of dynamic parallelism and retrying failed operations.

There are two sources of retries: retries due to queue empty
exceptions and retries due to atomic operation failure. The
synthetic dataset artificially removes queue empty exceptions
so that the effects of atomic overhead can be easily seen.
Figures 4a and 4b exposes the limiting effects of atomic
retries on scalability. Overhead increases as the thread count
increases, thus limiting a GPU’s ability to accelerate an
application.

Retries due to queue empty exceptions occur when there
are more threads than tasks available for those threads. This
occurs when there is poor dynamic parallelism. The proposed
queue mitigates the effects of queue empty exceptions by
ensuring a hungry thread performs only one atomic operation
to obtain a task, and by assigning a unique slot to monitor
for task arrival. The check for task arrival is a non-atomic
global memory read on the assigned slot.

Retries due to atomic operation failure are due to the choice
of atomic operation used. The proposed queue uses only non-
failing atomic operations. Non-failing atomic operations are
often associated with long latency. However, GPUs can hide

A Specialized Concurrent Queue for Scheduling Irregular Workloads on GPUs

long latency operations by using zero-cost thread switching
to a ready thread. GPU cannot hide the cost of retrying a
failed atomic operation.

Figures 4c thru 4l expose the effects of limited dynamic
parallelism. The smallest dataset is the NY roadmap dataset
(Figures 4e and 4f), and has the poorest dynamic parallelism.
Even when dynamic parallelism is limited, the elimination of
atomic retry overhead and the efficient task arrival strategy
employed by the proposed queue results in a 2.57x speedup
over CAS-based queue implementations such as those found
in CHAI BFS.

7 CONCLUSION

The persistent thread model is an intuitive solution for irreg-
ular workloads on GPUs. However, a difficult performance
dilemma arises: If there are sufficient tasks to saturate the
persistent threads, atomic contention and retries limit ac-
celeration. If there are not sufficient tasks to saturate the
persistent threads, the resulting idle threads limit accelera-
tion.

This paper presents a novel retry-free, arbitrary-n concur-
rent queue for suitable for use as a GPU persistent task sched-
uler. It eliminates retries and significantly reduces atomic
contention. It significantly boosts acceleration when all persis-
tent threads are saturated. Using BFS as a driver application,
we demonstrate the performance and scalability character-
istics of the proposed queue across various real-world input
graph datasets and hardware configurations by comparing
with state-of-the-art implementations found in the literature.

REFERENCES

[1] M. Burtscher, R. Nasre, and K. Pingali. 2012. A Quantitative
Study of Irregular Programs on GPUs. In Workload Characteriza-
tion (IISWC), 2012 IEEE International Symposium on. 141-151.
https://doi.org/10.1109/IISWC.2012.6402918

[2] Cederman, Daniel and Tsigas, Philippas. 2008. On Dynamic Load
Balancing on Graphics Processors. In Proceedings of the 23rd
ACM SIGGRAPH/EUROGRAPHICS Symposium on Graph-
ics Hardware (GH ’08). Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 57-64. http://dl.acm.org.umiss.idm.
oclc.org/citation.cfm?id=1413957.1413967

[3] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H.
Lee, and K. Skadron. 2009. Rodinia: A benchmark suite for
heterogeneous computing. In 2009 IEEE International Sympo-
stum on Workload Characterization (IISWC). 44-54. https:
//doi.org/10.1109/IISWC.2009.5306797

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. 2009. Introduction to Algorithms, Third Edition
(3rd ed.). The MIT Press.

[5] DIMACS. [n. d.]. DIMACS Challenge. http://dimacs.rutgers.
edu/Challenges/ http://dimacs.rutgers.edu/Challenges/.

[6] J. Gémez-Luna and I. E. Hajj and L. W. Chang and V. Garcia-
Floreszx and S. G. de Gonzalo and T. B. Jablin and A. J. Pefia
and W. m. Hwu. 2017. Chai: Collaborative heterogeneous appli-
cations for integrated-architectures. In 2017 IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS). 43-54. https://doi.org/10.1109/ISPASS.2017.7975269

[7] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford
Large Network Dataset Collection. http://snap.stanford.edu/
data.

[8] K. Gupta and J. A. Stuart and J. D. Owens. 2012. A Study of
Persistent Threads Style GPU Programming for GPGPU Work-
loads. In 2012 Innovative Parallel Computing (InPar). 1-14.
https://doi.org/10.1109/InPar.2012.6339596

[9] H. Liu and H. H. Huang. 2015. Enterprise: breadth-first graph
traversal on GPUs. In SC15: International Conference for High

(10]

(11]

[12]

(13]

(14]

(15]

16]

(17]

(18]

(19]

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Performance Computing, Networking, Storage and Analysis.
1-12. https://doi.org/10.1145/2807591.2807594

Maged M Michael. 2003. CAS-based lock-free algorithm for shared
deques. In European Conference on Parallel Processing. Springer,
651-660.

Michael, Maged M. and Scott, Michael L. 1996. Simple, Fast,
and Practical Non-blocking and Blocking Concurrent Queue Algo-
rithms. In Proceedings of the Fifteenth Annual ACM Symposium
on Principles of Distributed Computing (PODC ’96). ACM, New
York, NY, USA, 267-275. https://doi.org/10.1145/248052.248106
Moir, Mark and Shavit, Nir. 2004. Concurrent Data Structures.
Morrison, Adam and Afek, Yehuda. 2013. Fast Concurrent Queues
for x86 Processors. SIGPLAN Not. 48, 8 (Feb. 2013), 103-112.
https://doi.org/10.1145/2517327.2442527

S. Che and B. M. Beckmann and S. K. Reinhardt and K. Skadron.
2013. Pannotia: Understanding irregular GPGPU graph appli-
cations. In 2013 IEEE International Symposium on Workload
Characterization (IISWC). 185-195. https://doi.org/10.1109/
IISWC.2013.6704684

Robert Sedgewick. 1984. Algorithms. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

R Kent Treiber. 1986. Systems programming: Coping with par-
allelism. International Business Machines Incorporated, Thomas
J. Watson Research Center.

Tzeng, Stanley and Patney, Anjul and Owens, John D. 2010. Task
Management for Irregular-Parallel Workloads on the GPU. In Pro-
ceedings of the Conference on High Performance Graphics (HPG
’10). Eurographics Association, Aire-la-Ville, Switzerland, Switzer-
land, 29-37. http://dl.acm.org.umiss.idm.oclc.org/citation.cfm?
id=1921479.1921485

John D Valois. 1994. Implementing Lock-Free Queues. In Pro-
ceedings of the seventh international conference on Parallel and
Distributed Computing Systems. 64-69.

John D. Valois. 1995. Lock-free Linked Lists Using Compare-and-
swap. In Proceedings of the Fourteenth Annual ACM Symposium
on Principles of Distributed Computing (PODC ’95). ACM, New
York, NY, USA, 214-222. https://doi.org/10.1145/224964.224988

https://doi.org/10.1109/IISWC.2012.6402918
http://dl.acm.org.umiss.idm.oclc.org/citation.cfm? id=1413957.1413967
http://dl.acm.org.umiss.idm.oclc.org/citation.cfm? id=1413957.1413967
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
http://dimacs.rutgers.edu/Challenges/
http://dimacs.rutgers.edu/Challenges/
https://doi.org/10.1109/ISPASS.2017.7975269
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.1109/InPar.2012.6339596
https://doi.org/10.1145/2807591.2807594
https://doi.org/10.1145/248052.248106
https://doi.org/10.1145/2517327.2442527
https://doi.org/10.1109/IISWC.2013.6704684
https://doi.org/10.1109/IISWC.2013.6704684
http://dl.acm.org.umiss.idm.oclc.org/ citation.cfm?id=1921479.1921485
http://dl.acm.org.umiss.idm.oclc.org/ citation.cfm?id=1921479.1921485
https://doi.org/10.1145/224964.224988

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Irregular workloads on GPUs
	2.2 Persistent thread model
	2.3 Concurrent Data Structures (CDS)

	3 Challenges in Concurrent Queue Design and Our Approach
	3.1 Limited memory management
	3.2 Managing accesses to shared data
	3.3 Lock-step execution

	4 Design and Implementation of Concurrent Queue
	4.1 Atomic operations by proxy thread
	4.2 Dequeue operation
	4.3 Data arrival
	4.4 Enqueue operation

	5 Experimental Setup
	5.1 BFS as a driver application
	5.2 Input graph datasets
	5.3 Dissecting the effects of queue properties
	5.4 Programming language and test hardware

	6 Experimental Results and Analysis
	6.1 Kernel execution time
	6.2 Scalability
	6.3 Retry overhead
	6.4 BFS performance comparison
	6.5 Analysis Summary

	7 Conclusion
	References

