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Discovering governing physical laws from noisy
data is a grand challenge in many science and
engineering research areas. We present a new
approach to data-driven discovery of ordinary
differential equations (ODEs) and partial differential
equations (PDEs), in explicit or implicit form. We
demonstrate our approach on a wide range of
problems, including shallow water equations and
Navier—Stokes equations. The key idea is to select
candidate terms for the underlying equations using
dimensional analysis, and to approximate the weights
of the terms with error bars using our threshold sparse
Bayesian regression. This new algorithm employs
Bayesian inference to tune the hyperparameters
automatically. Our approach is effective, robust
and able to quantify uncertainties by providing an
error bar for each discovered candidate equation.
The effectiveness of our algorithm is demonstrated
through a collection of classical ODEs and PDEs.
Numerical experiments demonstrate the robustness
of our algorithm with respect to noisy data and its
ability to discover various candidate equations with
error bars that represent the quantified uncertainties.
Detailed comparisons with the sequential threshold
least-squares algorithm and the lasso algorithm are
studied from noisy time-series measurements and
indicate that the proposed method provides more
robust and accurate results. In addition, the data-
driven prediction of dynamics with error bars using
discovered governing physical laws is more accurate
and robust than classical polynomial regressions.
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1. Introduction

Almost all physical laws in nature are mathematical symmetries and invariants, suggesting that
the search for many natural laws is a search for conservative properties and invariant equations
[1-3]. In areas of science and engineering, the case is often encountered when the amount of
experimental data is generous while the physical model is unclear. Discovering the governing
physical laws behind noisy data is critical to the understanding of physical phenomena and
prediction of future dynamics. Johannes Kepler published his three laws about planetary motion
in the seventeenth century, having found them by analysing the astronomical observations
of Tycho Brahe [4]. It took many years for Kepler to find the laws about planetary motion
in the seventeenth century, but in recent years, the continuous growth of computing power
with multiple-core processors makes the fast and automated physical-law discovery processes
possible. Our goal is to design an automated physical-law discovery process, such that it can
be applied to all kinds of datasets, to discover the physical laws that govern the dataset, where
physical laws exist.

Suppose f:R% — R% is the governing function of some physical laws. Given dataset
{x;, f(xi)}f\i o interpolation or regression methods are available for the purpose of finding or
approximating f. However, in some cases especially when f is in complicated or implicit form,
interpolation or regression may have very poor results. From another perspective, we suggest
a robust data-driven approach to discovering f in two steps. First, discover the differential
equations satisfied by f; second, obtain the solution f, by solving the equations analytically or
numerically. Besides having more flexibility to a larger class of functions than interpolation or
regression, our approach derives the governing differential equations, which provide insights to
the governing physical laws behind the observations.

Consider a dynamical system of the form

dy _
I =f(x,y). (1.1)

Given data {x;,y;, y;}f\i 1» Where y; = y(x;) and y; = (dy/dx)(x;), we try to find the expression of

f(x, ). A similar case was proposed in [5] and the related theories were further discussed in [6-16].
The method of data-driven discovery of dynamical systems has a wide range of applications,
including biological networks [17], phenomenological dynamical models [18], parsimonious
phenomenological models of cellular dynamics [19], predator-prey systems [20], stochastic
dynamical systems [21] and optical fibre communications systems [22].

The following is a simple example of how this procedure works. First, we pick a set of
basis-functions containing all the terms of f(x, y); for instance, {1, x,y, xz,yz, xy}. The set of basis-
functions can have more terms than f(x, ), and we tend to pick a moderately large set to guarantee
that all the terms of f(x, y) are contained. Then, algorithms are applied to search the subset of basis-
functions that are exactly all the terms of f(x,y) and to determine the corresponding weights.
Using the given noisy data and the basis-functions, we construct the following system

w1

" 1 x1 oy 2y an 0y 61
v 1 v w» 9 vy xp||lw €2
S= >z Ea e (12)
: ) ) - :
w
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6

to find the weight-vector [w1, wo, w3, wy, ws, we]T, where [e1,€,...,en]T is the model error.

If the data were generated from dy/dx =x?, an ideal algorithm should output the weight-

vector [0,0,0,1,0,0]T. Note that many physical systems have few terms in the equations, which
1. xin

suggests the use of a sparse method. Denote n=[y],.. .,y}\]]T, D =[¢1,...,96] =

7

i xN.]/N
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w=[wi,..., we]T and e =[ey, ..., en]T. Finding the weight-vector w is equivalent to solving the
sparse regression problem

n=®w+e, (1.3)

where 1, @ are known, € is the model error and w is to be determined sparsely. To solve this
problem, one may use sequential threshold least squares [5], which does least-square regression
and eliminates the terms with small weights iteratively, or may use lasso [6,23]. In this paper, we
use threshold sparse Bayesian regression algorithm, which is a modification of RVM (relevance
vector machine [24,25]). Similar sparse methods are also popular in compressive sensing [26—
30] and dictionary learning [31,32]. Compared to the other sparse methods, our algorithm takes
advantage of Bayesian inference to provide error bars and to quantify uncertainties in the data-
driven discovery process.

The remainder of this paper is structured as follows. In §2, we introduce a general discovery
pattern for discovering governing physical laws. In §3, we propose an algorithm for sparse
regression based on RVM. Some numerical examples are presented in §4, followed in §5 by a
conclusion.

2. General discovery pattern

Discovering governing differential equations in a pattern like (1.1) is limited: this algorithm needs
some prior knowledge of the equation to discover it. In other words, the term on the left-hand side
of the equation must be known before the algorithm tries to discover the equation. For example,
if written in the form

dy
- = 2.1
Sy 21
then the differential equation must contain the term dy/dx, and other terms are of order less than
1. If written in the form 5
d<y dy
- =L, 2.2
dx? f<x,y dx) @2

then the differential equation must contain the term dzy/dxz, and other terms are of order less
than 2. More complicated physical systems in implicit form, such as Laguerre differential equation
2
x% +(1 - x)% =0, (2.3)
cannot be written in (2.1), (2.2), or similar forms of higher order. When we are given just the data,
but not given what term the equation must contain, we can use the following method to discover
the differential equation.
Firstly, when higher-order derivatives are present in the governing physical laws, a set of basis-
functions is chosen to contain these higher-order derivatives, such as

d
dy d?%y dky
®{11x1y/dx/dx2/-~-/dxk 7 (2.4)

where d, k are positive integers and ®? S denotes ‘tensor product’ of d copies of set S. For example,
when d =1 and k =1, the basis is

dy
{Lx, Y 3y } ; (2.5)
when d =1 and k =2, the basis is
dy d%y
1/ 7 7 7 ; 2'6
{ Yy a2 2.6)

when d =2 and k =1, the basis is

ﬂ 2 dy - ﬂ ﬂ ? .
{Lx,y,dx,x,xy,xdx,y,ydx, ) [ (2.7)

S0S08L0Z ‘b ¥ 205§ 20g BioBuysiigndiaaposieoredss



when d =2 and k =2, the basis is

2
y &y , dy d% , dy d% (dy>2 dy d%y (d2y>

V¥t Yax Y “dx da?’ \ dx?

1/ rYr Ty {07 7
T a @t dx

o 2.8)

The set of basis-functions constructed by ‘tensor product’ has (g'-é_IfIZZ))'l elements, and grows very

fast when d, k are large. Therefore, if additional knowledge about the physical system is available,

some basis-functions that are certainly not part of the physical system should be eliminated

beforehand. In addition, integers d, k may be increased adaptively to search different sets of

basis-functions in sequence starting from lower-order ones. When the error bar is smaller than

a preassigned value, the procedure is stopped and the governing physical laws are discovered.
Write the basis-functions into a vector

=10y, v, ey, )] (2.9)

Now the problem is to find a sparse weight-vector w = [wy, ..., wm]” satisfying
0= fw. (2.10)

A non-convex algorithm using alternating directions to find the sparse non-trivial solution w is
analysed in [33], and a similar approach is used for discovering dynamical systems in [17]. They
solve the sparse regression problem but without analysis of the uncertainty. Our approach solves
the sparse regression problem using Bayesian inference and provides error bars that quantify the
uncertainty of the discovered weights. After collecting the data

k
Fy =i Yir V- 00, .11)
we have the following sparse regression problem
0=Fw+e, (2.12)

where € is the model error. If sparse regression is performed in (2.12), the resulting weights may
collapse to all zeros. As a result, we fix one of the weights to be 1 at a time and perform sparse
regressions repeatedly for different fixed weights. Specifically, for each je {1,..., M}, fix w; =1
and solve the other weights in the following regression problem:

o
Fun Fi2 - Fim :
Fpi Fn - Fou || %1
0=| . . . 1 | +e (2.13)
: ’ ’ Wjt1
Fni Fvo oo Fam :
L WM |
which is equivalent to
-
Fy; Fin - Fjq1 Fijpn - Fim :
Fo: Fy - Fpiq Fpq - Fay ‘
) ! ! Wil | e, (2.14)
: : Wi+1
Fnj Fnvioooo Enjoa Fnjri -+ Fam
L WM

Using the sparse regression method detailed in §3, we get the weights

[ﬁ)l, ey Zi)j,l, i(\]jJrl, ey I?JM]T, (2.15)
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which indicate that the physical system might be

fj = —[fl,, --/f}'—l/fj-s—l/-~-/fM][Zbl/-~-/@j—1/ﬁ]j+1/---/@M]T (2.16)
or

0=fw, (2.17)

where W=[w1,...,0j_1,1,@j1,..., wmlT. If the real w; #0, the whole real equation can be
multiplied by a constant such that wj=1, and the preceding procedure can discover the real
equation. Now w; may be 0, but at least one component of w is non-zero (otherwise the equation
is 0 =0). Thus, we perform the sparse regressions multiple times by fixing different components
of w as 1, and compare the error bars obtained from different sparse regressions to select the best
candidate equation. Here, at most M regressions are performed forj=1,2,..., M.

(a) Construct basis-functions of the same dimension

Using the basis-functions generating the technique introduced above, we constructed basis-
functions by tensor-products. Owing to the rapid growth of the size of the tensor-products,
the set of basis-functions can become very large, which may result in linear correlation within
the basis-functions and therefore is bad for the accuracy of the result. What simplifies the case
is that real-world data usually have dimensions, so do the basis-functions calculated by the
data. Any physically meaningful equation has the same dimensions on every term, which is a
property known as dimensional homogeneity [34]. Therefore, when summing up terms in the
equations, the addends should be of the same dimension. For example, if we want to discover the
relationship between force F and the second-order tensor generated by mass 1 and acceleration 4,
namely {1,m,a, m?,a?, ma}, then the only basis-function in the tensor having the same dimension
as F is ma. Thus, we can use the following regression to discover the physical law

F=wma, (2.18)

where w is the weight to be estimated.

Following this rule, basis-functions of the same dimension are chosen as a set of basis-functions
in the equation discovery process, which reduces the number of basis-functions efficiently and
improves the performance of the algorithm significantly. More examples are listed in §4 in the
discovery of shallow water equations and Navier—Stokes equations.

3. Threshold sparse Bayesian regression

To solve the sparse regression problem (2.14), we design an algorithm in this section. Note that
all the F;; in (2.14) can be calculated using the data by (2.11). Now, to describe our algorithm in a
general setting, given noisy data, let n be a known vector calculated by the data, @ be a known
matrix calculated by the data, w =[wy, w», ..., wp]T be the weight-vector to be estimated sparsely,
and ¢ be the model error:

n==>ow+e. 3.1

Sparse Bayesian inference assumes that the model errors are modelled as independent and
identically distributed zero-mean Gaussian with variance o2, which may be specified beforehand,
but in this paper it is fitted by the data. The model gives a multivariate Gaussian likelihood on
the vector 7:

(3.2)

— dw 2
p(n1w,0?) = (2no?) N2 exp {_”)72(;2”} )
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Figure 1. Graphical structure of the sparse Bayesian model.

The likelihood is coded with a Gaussian prior over the weights

M
pwle) = [N (@ 10,071, (3.3)
j=1

where « =[a1, ..., am]T. Each «; controls each w; individually, which encourages the sparsity
property of this model [24]. To complete the hierarchical model, we define hyperprior
distributions over « as well as o2, the variance of the error. As these quantities are instances
of the scale parameters [35], Gamma distributions are suitable:

M
pe)=[]r(jlab) (3.4)
j=1
and
p(B)=T(B|c,d), (3.5)

with 2 02, where a, b, ¢, d are constants. The sparse Bayesian model is specified by (3.2)~(3.5).
See figure 1 for the graphical structure of this model.
The posterior over all unknown parameters given the data can be decomposed as follows:

p(w,a,0%n) =pw|n,a,c)p,o? | n). (3.6)

If assuming uniform scale priors on @ and  with a = b = ¢ =d = 0, we may approximate p(«, o2|n)
using Dirac delta function at (&, GA‘%L):

p(w,a,02n) ~ pw|n,a,o)8GmL, 65), (3.7)

where
(G, 63y,) = arg max{p(y | o, o))
o,0
= arg max {Jp(n |w, 02)p(w | ) dw}
«,02
= arg max {(271)7N/2|021 + oA T2 exp {—%)’]T(UZI + @A’lq)T)’ln} } , (3.8)
o,0

with A =diag(a, ..., ap). This maximization is known as the type-2 maximum-likelihood [35]
and can be calculated using a fast method [36]. Now, we can integrate out « and o2 to get the
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posterior over the weights given data:
povin = [ w02 ) dro?

~ ﬂp(w |0, 028, 62) dor do

N A2
= p(w I 1, &ML, UML)

_ p(n | w, S5 )p(W | &)
p(n | éme, 63)

— )y MRS R exp |- w - )T - )

in which the posterior covariance and mean are as follows:

2 =[6; @0 + diag(émr)] ! (3.10)
and
=620 . (3.11)

The optimal values of many of the hyperparameters ¢; in (3.8) are infinite [24], which from (3.10)
and (3.11) leads to a posterior with many weights w; infinitely peaked at zero and results in the
sparsity of the model.

The posterior for each weight can be deduced by (3.9) the following;:

p(wj | n) =N(wi | &, £j), (3.12)

with mean /i; and standard deviation 12 To encourage accuracy and robustness, we place a
threshold § > 0 on the model to clean up possible disturbances present in the weight-vector and
then reestimate the weight-vector using the remaining terms, iteratively until convergence. The
entire procedure is summarized in algorithm 1. A discussion about how to choose the threshold
is detailed in example f in §4.

Algorithm 1: Threshold sparse Bayesian regression: n = dw

Input: 5, @, threshold

Output: /i, >

Calculate the posterior distribution p(w|n) in n = ®w, let the mean be f1;

For components of 1 with absolute value less than the threshold, set them as 0;

while /1 # 0 do
Delete the columns of @ whose corresponding weight is 0, getting @’;
Calculate the posterior distribution p(w’|5) in n = ®’W’, let the mean be /;
Update the corresponding components of [t using [i';
For components of i with absolute value less than the threshold, set them as 0;
if [ is the same as the one on the last loop then

break;

end

end

Set the submatrix of X corresponding to non-zero components of /i as the last estimated
posterior variance in the preceding procedure, and set other elements of ¥ as 0.
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The error bar for the sparse regression (algorithm 1) is constructed as follows:

Mg

Error bar = Z AJZJ. (3.13)
=1
270

We divide ZA]-]- by [LJZ to normalize the uncertainty on each weight. In this construction, smaller
error bars mean higher posterior confidence. Algorithm 1 is designed such that i has more 0
components after each loop. Therefore, its convergence is guaranteed given the convergence of
calculation of the maximum likelihood in (3.8).

The method of sequential threshold least squares is summarized in algorithm 2, which is
almost the same as ‘SINDy’ in [5]. The difference is that algorithm 2 does least squares iteratively
until convergence while ‘SINDy’ in [5] caps the maximum number of loops as 10. The sufficient
conditions of ‘SINDy’ for general convergence, rate of convergence and conditions for one-step
recovery appear in [16]. In addition, the method of lasso [23] is summarized in algorithm 3.

Algorithm 2: Sequential threshold least squares: n = dw
Input: 5, @, threshold
Output: /1
Solve i in (@Td)p = Ty;
For components of 1 with absolute value less than the threshold, set them as 0;
while /1 # 0 do
Delete the columns of @ whose corresponding weight is 0, getting ®’;
Solve &/ in (@' To") ' = &'Ty;
Update the corresponding components of /i using /;
For components of i with absolute value less than the threshold, set them as 0;
if [ is the same as the one on the last loop then
break;
end

end

Algorithm 3: Lasso: n = ®w

Input: n, @

Output: /i

[ = miny { % In — d>w||% + Allwllq }, where 1 is fitted by five-fold cross-validation with
minimum mean squared error (MSE) on validation sets.

4. Numerical results

(a) Comparison with sequential threshold least squares and lasso

Consider the two-dimensional dynamical system

d

% — 050, + 21

d 4.1)
and Y2 _ —2x1 — 0.5x,

dr
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Figure 2. Thirty simulations of each regression method with different levels of white noise added on dx; /dt and dx, /dt. Each
regression uses 200 data points. At each level of noise, all regression methods use the same noisy data. (Online version in colour.)

with the model
dX1
o
4.2)
d dx fw,
n it
a dt 2

where f is a fixed vector of basis-functions of the form (2.9) whose components are monomials
of x; and xo of up to the fifth degree, and wy and w, are the weights being solved for. As a
comparison, three methods are used individually to discover the dynamical system: sequential
threshold least squares (algorithm 2), lasso (algorithm 3) and threshold sparse Bayesian regression
(algorithm 1). All the thresholds are set at 0.05. Numerical results are listed in figure 2.

The initial value of the dynamical system is set as (x1,x2) = (2,0). Thirty simulations of each
regression method with different levels of white noise added on dx; /dt and dx;/df are illustrated.
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Randomized simulations provide theoretical justification for the discovery of dynamical systems
from random data, which was proved for lasso problems in [8,9,11]. In this example, each
regression uses 200 data points. At each level of noise, all regression methods use the same noisy
data. As the noise added to the regression methods was random, different solutions are obtained
in different runs and yield different curves. Note that discovering a system of equations is
equivalent to discovering each equation in the system individually, as long as the data required to
calculate the basis-functions are given. As shown in figure 2, threshold sparse Bayesian regression
generates better approximated curves to the real solution than sequential threshold least squares
and lasso. Furthermore, our method is very robust even for very large noise (~ A(0, 1.0%)).

(b) General automatic discovery and prediction
Consider the Laguerre differential equation:

d?y dy

which is (2.3) in §2. We use threshold sparse Bayesian regression with error bar (3.13) to discover
this differential equation, and the sets of basis-functions are attempted in sequence starting from
ones of lower order. Then we compare the error bars for each result to select a solution. As
long as our algorithm gives an error bar that is less than the user-preset value § = 1074, we stop
attempting more sets of basis-functions. In this example, basis-functions (2.5)—(2.8) are attempted
before the procedure stops. See table 1 for the numerical results with basis-functions (2.8), table 2
with basis-functions (2.5). In total, 20 evenly spaced data are used. This example demonstrates
that our method has satisfactory performance even with few data.
As shown in table 1, Result 3:

/ —0.999x1/ + 0.999xy” =0, (4.4)
y Y Y

has the smallest error bar among all of the results, and gives a differential equation similar to an
equivalent form of the true differential equation (4.3). Note that Result 3, Result 7 and Result 8 are
almost the same. Although some other results with relatively small error bar are not equivalent
to the true equation, they might correctly predict its tendency, such as Result 2:

—0.637 +y — 0.473y — 0.427y2 + 0.538yy/ =0. (4.5)

Result 3 has the smallest error bar among all of the results and its numerical solution fits and
predicts the true solution well. Result 2 fits the true solution and predicts the tendency correctly,
though it has a larger error bar and it is a first-order differential equation, while the true system is
of second order. See figure 3 for more details. This example indicates that even if the true system
were not discovered, such as in the case where some terms of the true system are not contained
in the set of basis-functions, our algorithm could generate an approximated system and provide
an accurate regression and prediction of the system’s tendency.

(c) Data-driven discovery of shallow water equations using dimensional analysis and
threshold sparse Bayesian regression

Consider the conservative form of shallow water equations:

oh _ 3(u) ()

a7 Tax Ty 0 o
2 2
o) 0w’ + (1/2)gh%) | d(wv) _ 4.7)
at dx dy

d(hv)  d(huv)  d(hv? + (1/2)gh?)
ot + x + ay

and

-0, (4.8)
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Table 1. Numerical results of discovering the differential equation (4.3) with basis-functions (2.8) using the threshold sparse
Bayesian regression with threshold 0.05. Value y in the data is numerically generated by (4.3) in the interval x € [0.1, 5] with
initial value y =y’ = 1. Values y” and y” are calculated using numerical differentiation. In this example, 20 evenly spaced data
points (x, y,y', ") inx € [0.1, 5] are used. The error bar for each result is provided. A smaller error bar means higher posterior
confidence and a higher likelihood that the result is correct.

result 1 2 3 4 5 6 7

error bar x 10° 10.367 0.108 0.001 6.145 170.614 167.385 0.004
result 8 9 10 n 12 13 14
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(a) regression
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—— true system
4r| A approximated system 3 1
O  approximated system 2
3 =
y
2 J

(b) prediction
200 T T T T T T T T

150
y 100

50

Figure 3. Graphs of approximated systems corresponding to Result 2 and Result 3 in table 1. (a) Numerical solutions and
(b) extended solutions as predictions of tendency. (Online version in colour.)

Table 2. Numerical results of discovering the differential equation (4.3) with basis-functions (2.5). All other settings are the
same as table 1.

result 1 2 3

where § is the total fluid column height, (1, v) is the fluid’s horizontal flow velocity averaged
across the vertical column and g is the gravitational acceleration. The first equation can be derived
from mass conservation, the last two from momentum conservation. Here, we have made the
assumption that the fluid density is a constant.

In this system of partial differential equations, variables k, u, v, dh/dt, du/dt, dv/dt, dh/ox,
du/dx, dv/dx, dh/dy, du/dy, dv/dy and constant g (= 9.8ms~2) are involved. See table 3 for the
corresponding dimensions of these variables. The data /1, u and v are collected from a numerically
generated example, where a water drop falls into a pool with grid size 30 x 30 (figure 4), and then
partial derivatives are calculated by central difference formula. As the step size of the numerical
differentiation is 1, some errors are introduced to the data. Data means and standard deviations
are also provided in table 3 to show the magnitudes of the data. In this example, 1010 data points
are used.

Now, we use threshold sparse Bayesian regression with threshold 0.1 and the numerically
generated data to discover shallow water equations. As the goal is to find the dynamics,
regressions for dh/dt, du/dt and dv/dt are implemented. As 98/1/dt has the dimension of speed
(ms~1), we assume that it is a linear combination of variables of the same dimension. These
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Figure 4. (a) A water drop falls from height 3 into the spot (14, 15) of a pool with grid size 30 x 30. (b) Water surface of the
pool after a period of time. (Online version in colour.)

Table 3. Dimensions of the variables, with means and standard deviations of the corresponding data. Here, 1010 data points
are used.

variable dimension mean s.d.

variables can be constructed as products of &, u, v, their first-order derivatives, and the constant
g; namely, h(du/dx), h(dv/dx), h(du/dy), h(dv/dy), u, u(dh/dx), u(dh/dy), v, v(dh/dx), v(dh/dy),
(dh/at)(9h/dx), (0h/dt)(dh/dy). Using the data with threshold sparse Bayesian regression, we have
the following result:

oh = —1.010(j:0.002)h8—u — 1.004(i0.002)h3—v — 0.901(:|:0.012)u% —0.932(£+0.012)v %, (4.9)
ot x ay ox oy
where the numbers in front of each term read as ‘mean (£s.d.)’ of the corresponding weights. The
magnitudes of the data 1(dh/0x) and v(d/1/dy) are small compared to dh/dt, h(du/dx) and h(dv/dy)
(table 3), which means u(d//9x) and v(dh/dy) are tiny terms in the differential equations and easily
covered by noise. Hence, the resulting weights of u(d/1/9x) and v(d/1/dy) are not as accurate as that
of h(du/dx) and h(dv/dy).

As u(du/dx), u(dv/ox), u(du/dy), u(dv/dy), v(du/dx), v(dv/dx), v(du/dy), v(dv/dy), (dh/dt)
(9u/dx), (dh/at)(dv/dx), (dh/at)(du/dy), (9h/dt)(dv/dy), du/dt, dv/dt, g(dh/dx), g(dh/dy) have the
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dimension of acceleration (ms~?2), using the same procedure as above, our algorithm generates
the following result:

ou

a d oh
= —0.899(ﬂ:0.010)u—u - O.940(i0.012)v—u — 1.008(+0.001)g — (4.10)
ot ax oy ox
and
el a d oh
& —0.953(:|:0.013)u—v - 0.886(j:0.010)v—v —1.011(£0.001)g —. (4.11)
ot ox oy oy

Again, the resulting weights of 1u(du/dx), v(du/dy), u(dv/dx) and v(dv/dy) have relatively large
errors due to small magnitudes of the corresponding data, and fundamentally, due to the intrinsic
properties of the investigated differential equations.

System of equations (4.9)—(4.11) is a good approximation to the following system of equations

oh  ou v oh ok
T P P ) 412
ot o Ty T Ty (412)
ou ou ou oh
I —0 413
ot T4 TV T (413)
v v v ok
and AR S’} (4.14)

which is equivalent to the system of equations (4.6)—(4.8). This example indicates that our
algorithm may discover an equivalent form of the true system.

(d) Data-driven discovery of Navier—Stokes equations using dimensional analysis and
threshold sparse Bayesian regression

Consider the following two-dimensional incompressible Navier—Stokes equations:

ELu4—[u-V]u—vAu=—V(E>,

4.1
T , (4.15)

where u is the flow velocity, v is the kinematic viscosity, p is the pressure and p is the density.
Letting u = (11, u2), where u; is the flow velocity in x direction and u; is the flow velocity in y
direction, we have:

Ay Ay Ay 9214 3%u;  d(p/p)

= — —v— - 416

ot - ax  Vay TV TV T Tax (4.16)
and

9 P) 9 92 92 9

ol _ _ 22 vﬂ v 12 +v M2 _ (p/,o). (4.17)

at ax ay 9x2 92 dy

In this system of equations, variables u1, uy, duy/dt, dup/dt, duy1/dx, dup/dx, duy/dy, duz/dy,
32u1 /0%, 8%up/9x2, 9%uq /dy?, 3%ua/dy?, p/p, 3(p/p)/3x, d(p/p)/dy and v are involved. See table 4
for the corresponding (u1,u7) dimensions of these variables. We set p, v as constants and
collect data u1, up, p from a numerically generated example (figure 5) and then compute partial
derivatives using the central-difference formula.

Now we use threshold sparse Bayesian regression with threshold 0.1 and the numerically
generated data to discover Navier-Stokes equations. As du/dt and dup/dt have the dimension
of acceleration (ms~2), we assume that they are linear combinations of variables of the same
dimension. Similar to the example for shallow water equations discussed above, the basis-
functions can be constructed as u(du1/9x), u1(du1/dy), u1(duz/dx), u1(duz/dy), ux(duy/0x),
up(du1/dy), up(dua/9x), uz(duz/dy), v(8%u1/9x%), v(3*u1/9y?), v(92u2/0x%), v(d%uz/3y*), d(p/p)/0x,
d(p/p)/dy. In this example, 202 data points are used. Using the data with threshold sparse
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Figure 5. Incompressible Navier—Stokes equations. (Online version in colour.)

Table 4. Variables and their dimensions.

variable Uy 3 auy /ot auy /ot dth/ox ay/ox
dimension ms™ ms™ ms? ms? 57 57!
variable auy/dy

dimension 57 57 (m-s)™ (m-s)™ (m-s)™ (m-s)™
variable p/p d(p/p)/dx dlp/p)/dy

dimension m?s~2 ms~? ms?

Bayesian regression, our algorithm generates the following result:

auq

) F] 92
— —0.982(+0.002)u; ZEL _ 0.984(£0.001)iu3 X + 0.972(40.002)v -1
9x y 9x2

2
+0.999(£0.001)v ; — 0.998(+0.001) 2F/2) a(p/ P) 4.18)

and

9 ) ] 92
M2 0.990(£0.001)u; 2 — 1.008(££0.001 )iy 2 4 1.005(£0.001)p 2
ot ax ay 9x2

2
+ 0.987(x0. 001)v

— 1.002(0.001)

ap/ p) 419)
ay

with error bars 1.093 x 10~° and 6.415 x 107, respectively, where the numbers in front of each

term read as ‘mean (% s.d.)’ of the corresponding weights. Next, we try to discover more identities

in this system with the procedure similar to what we did for (4.3). Here, all the terms of dimension

(ms~2) except for duq /0t and dup/dt are chosen as basis-functions. See table 5 for the numerical

results. The identity du/dx + dup/dy = 0 is successfully discovered.
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Table 5. Discovery of identities in Navier—Stokes equations using threshold sparse Bayesian regression with threshold 0.1. Here,
202 data are used. Result 1, Result 4, Result 5, Result 8 have the smallest error bars, and they are equivalent to the identity
dth/ox + duy/dy = 0.

result 1 2 3 4 5 6 7
thou,/ox 1 1.000 —0.39

error bar x10° 0.000 1110.362 183.139 0.000 0.000 3139.186 127.743
result 8 9 10 n 12 3 14
undu /ox —1.179

(e) Threshold sparse Bayesian regression for prediction

Consider the function from R to R:

f)=1+x+10e7%, (4.20)
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prediction using data with 0% noise prediction using data with 1% noise prediction using data with 2% noise
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true system i true system true system
+ noisy data : +  noisy data +  noisy data

- === prediction by polynomial of degree 4 ; -~~~ prediction by polynomial of degree 4 -~~~ prediction by polynomial of degree 4

~---=.=- prediction by polynomial of degree 5 s prediction by polynomial of degree 5 \ === prediction by polynomial of degree 5

| & prediction by discovering differential equations & prediction by discovering differential equations £ prediction by discovering differential equations

prediction using data with 4% noise prediction using data with 10% noise
15 u x —r— 1 15 — r

true system true system
+ noisy data + noisy data

-~ = prediction by polynomial of degree 4 - - - - prediction by polynomial of degree 4
........ prediction by polynomial of degree 5

——er—. prediction by polynomial of degree 5

& prediction by discovering differential equations

Figure 6. Comparison of polynomial regressions with the method of discovering differential equations in the prediction of
(4.20). Different levels of noise are studied. In this example, 31 equally spaced data points with step size 0.1 are collected
on [0, 3]. Polynomial regressions use all of the 31 data points, but for discovering differential equations, we calculate the
derivatives of the middle 27 data points using central difference formula. Then the other four data points are discarded and
only 27 data points are used in our algorithm. The prediction by discovering differential equations at each x reads as ‘mean
(£s.d.)" Although the method of discovering differential equations uses less data points and introduces more error when
calculating numerical derivatives, it has much better performance in prediction than polynomial regressions. (Online version
in colour.)

which satisfies

fl=2+x—f. 4.21)

Given its values on the interval [0,3], we try to predict its values on [3,6]. We will compare
polynomial regressions with the method of discovering differential equations. Different levels of
noise are analysed. Although the method of discovering differential equations uses less data and
introduces more error when calculating numerical derivatives, it has much better performance in
prediction than polynomial regressions (figure 6).

Root mean square prediction error by polynomial regression and the method of discovering
differential equations, as well as the discovered differential equation are listed in table 6, with no
noise, 1% noise, 2% noise, 4% noise, and 10% noise, respectively. At all levels of noise, the method
of discovering differential equations performs better than polynomial regressions.

In the discovered differential equations of our algorithm, the weight of each term is of normal
distribution, and the numbers in front of each term read as ‘mean (+ s.d.)” of the corresponding
weights (table 6). In total, 10000 Monte Carlo samples of the weights are performed to produce
10000 curves of numerical solutions, or 10000 predictive values at each x. Then the means and
standard deviations are calculated for each x to quantify the uncertainty (figure 6).

Now consider a second example, the function from R to RR:

f(x) =1+ x+ 2sin(x), (4.22)

which satisfies

f =1+ 2cos(x). (4.23)
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Figure 7. Comparison of polynomial regressions with the method of discovering differential equations in the prediction of
(4.22). All settings are the same as those in figure 6. The method of discovering differential equations has much better
performance in prediction than polynomial regressions. (Online version in colour.)

Table 6. Root mean square prediction error by polynomial regression and the method of discovering differential equations, as
well as the discovered differential equation, at each noise level. The predictions by our algorithm have much less error than the
predictions by polynomial regressions.

root mean square prediction error by root mean square prediction error by
noise (%) polynomial regression of degree 4 discovering differential equations

10 73.0118 1.0310

noise (%) discovered differential equation

0 dy/dx = 2.000(%£0.005) + 1.000(=£0.001)x — 1.000(=0.001)y
s dy/dx . =1997(j:0221) +10 15&0 051)x—1000(:|:0 027)y .................................................
s dy/d : =1772(:i:0430)+1076(:|:0099)x “oon (:t0053) y ...............................................
4« dy/dr =2625(0.649) + 0.897(:0152 — 10970081y
L dy/dx = _0921& . 774)+1426(:l:0220)x— o 2(j:0 096)y ...........................................

With all settings the same as the first example, we have our results in figure 7 and table 7. Again,
the method of discovering differential equations has much better performance in prediction than
polynomial regressions. These two examples show how our algorithm exploits the characteristics
of the models in terms of differential equations and that our algorithm is applicable to models
where polynomial regressions fail.
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Figure 8. Weight L; error by threshold at each level of white noise. One hundred simulations at each level of threshold per level
of white noise added on dx; /dt are performed. Each simulation uses 200 data points. (Online version in colour.)

Table 7. Root mean square prediction error by polynomial regression and the method of discovering differential equations, as
well as the discovered differential equation, at each noise level. The predictions by our algorithm have much less error than the
predictions by polynomial regressions.

root mean square prediction error by
polynomial regression of degree 4

root mean square prediction error by

noise (%) discovering differential equations

10 99.8210
discovered differential equation
0 dy/dx = 1.000(£0.000) -+ 2.000(4-0.000) cos(x)

10 dy /dx = 0.908(=£0.100

=

-+ 2.208(=£0.155) cos(x)
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(f) Choice of the threshold in threshold sparse Bayesian regression

In this section, we will investigate how the threshold impacts the accuracy of the result and how
to choose the threshold. Consider the same dynamical system in example 4a:

dx1

0501 + 21
ddt (4.24)
and % — 2% — 051

We try to discover the first differential equation in the system (4.24) using our algorithm, at
different levels of threshold.

The initial value of the dynamical system is set as (x1,x2) = (2,0). One hundred simulations at
each level of threshold per level of white noise added on dx; /dt are performed. Each simulation
uses 200 data points. As the noise is random, different solutions are obtained in different
simulations and yield different results. For each result, we calculate the L; error between the
discovered weight-vector and the true weight-vector. Then, the L errors are averaged among the
same level of threshold. See figure 8 for the weight L; error by threshold.

As shown in figure 8, weight L1 error is large when the threshold approaches 0 or 0.5. Weight
Ly error is large at 0 because the algorithm is unable to clean up possible disturbances present in
the weight-vector. Note that one of the true weights in the first differential equation in the system
(4.24) is —0.5. When the threshold is around 0.5, this term may be falsely eliminated, which causes
a huge error jump. When the threshold is between 0.15 and 0.4, our algorithm generates the best
results. This example indicates that the best choices of threshold should be moderately greater
than 0 but not too large.

5. Conclusion

We have introduced a new data-driven approach, the threshold sparse Bayesian regression
algorithm, to find physical laws by discovering differential equations from noisy data. The
proposed method is a different approach than the regression-like method called symbolic
regression in [1]. Symbolic regression distills physical laws from data directly, without involving
differential equations. Similar approaches as the proposed method were studied in [5-22,37]. In
this work, a hierarchical Bayesian framework has been constructed to provide error bars that
quantify the uncertainties of the discovered physical laws. The key idea is to select candidate
terms for the underlying equations using dimensional analysis, and to approximate the weights
of the terms with error bars using our new algorithm, the threshold sparse Bayesian regression
algorithm, which employs Bayesian inference to tune the hyperparameters automatically.

Our approach is effective, robust and able to quantify uncertainties by providing an error
bar for each discovered candidate equation. The effectiveness of our algorithm is demonstrated
through a collection of classical ordinary differential equations and partial differential equations.
Within this framework, we have provided six numerical examples in §4 to examine the
performance of the proposed method. Example 4a has compared the proposed method with
other sparse regression methods, the sequential threshold least-squares algorithm and the lasso
algorithm. It demonstrates that the proposed method has better performance and robustness than
the other methods. Example 4b has applied the general discovery pattern introduced earlier
in this paper and tested the constructed error bars. The numerical results demonstrate that
the proposed pattern is practical. Examples 4c,d have combined dimensional analysis with the
proposed method to discover shallow water equations and Navier-Stokes equations, and have
demonstrated the practical usage of the proposed algorithm. Example 4e has illustrated more
accurate and robust predictions of the dynamics using the proposed algorithm, as compared to
the predictions of polynomial regressions. Example 4f has discussed how to choose the threshold
in the proposed algorithm.
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