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Abstract The classical theory for asymmetric lipid bilayer surfaces is revisited from the vantage point of
three-dimensional liquid crystal theory. Independent tangential motions of the leaflets comprising the bilayer
are accommodated in a framework that allows for distinct leaflet properties.
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1 Introduction

Our purpose in this brief exposition is to present a modern account of the classical theory of asymmetric
lipid bilayers in which asymmetry, i.e., the absence of reflection symmetry with respect to the bilayer surface
normal, is conferred by a property called the spontaneous curvature [1,2]. Following the seminal work of
Helfrich [1], we interpret bilayers as liquid crystal films, but here we derive the associated surface theory via
asymptotic expansion of three-dimensional liquid crystal theory, with film thickness—on the order of molecular
dimensions—playing the role of the small parameter. In accordance with the observed phenomenology, we
allow for the possibility that the two monolayer leaflets constituting the bilayer undergo relative motion in
the tangent plane to the surface to which they remain congruent. Though attention is confined here to the
purely mechanical theory, our formulation provides a framework in which a number of physical effects can be
modeled systematically.

Our motivation derives from renewed interest in asymmetric bilayers on the part of the biophysics com-
munity. For example, it has recently been demonstrated that inner (cytoplasmic) leaflets are significantly less
saturated than their outer (exoplasmic) counterparts [3]. Atomistic studies indicate that this asymmetry is cor-
related with higher packing of lipids and inhibited diffusivity in the exoplasmic leaflet [4]. Negatively charged
lipids are also present in higher concentrations in the inner leaflet. Asymmetry is thought to affect the inter-
actions between lipids and embedded transmembrane proteins, and is known to play a key role in regulating
cellular signaling, cell death and cell-to-cell interactions [5].

In Sect. 2, we present an asymptotic derivation of the two-dimensional energy of a thin film from three-
dimensional energies modeling the two leaflets of the bilayer as nematic liquid crystals having distinct proper-
ties. This is made explicit, in Sect. 3, for polar nematics described by energies of the Frank type [6,7]. Following
a brief survey of the relevant differential geometry of surfaces in Sect. 4, in Sect. 5 we derive the differential
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Fig. 1 Bilayer patch in reference configuration

equations of mechanical equilibrium as consequences of a virtual power postulate. The same postulate delivers
formulae, derived in Sect. 6, for the edge interactions of a bilayer patch with its surroundings.

2 Leading-order asymptotic energy for small thickness

Consider a local patch of the bilayer in the shape of a prismatic cylinder generated by the parallel translation
of a plane region IT forming the interface between the two leaflets of the bilayer. We adopt this patch as a local
reference configuration in preparation for a variational treatment based on the notion of patchwise virtual-
power introduced by Eugster and dell’Isola [8—10] and Eugster and Glocker [11]. The lipids of the bilayer are
presumed to be straight, parallel and of uniform length in this configuration. The upper and lower leaflets have
thicknesses a® /1, where 4 is the thickness of the cylinder and

at+a =1. (D
The energy of the cylinder is
&= / UdA, )
n
where
ath 0
u:f L{+dg+/ U~ dg, 3)
0 —a~h

in which ™ are the volumetric energy densities of the upper and lower leaflets and ¢ is a through-thickness
coordinate (Fig. 1).

We suppose the thickness / to be much smaller than the next smallest length scale, / say, in the system.
If the latter is used as the unit of length (/ = 1), then the dimensionless thickness # < 1. Regarding U/ as a
function of /1, we use Leibniz’ Rule together with a Taylor expansion to derive

U=hU+oh), with U=a U +a U™, 4)

in which U, respectively, are the values of U/ + at ¢ =0, i.e., at the interface I1. Accordingly,

E/h=FE+o(h)/h, where E=/ UdA (®)]
mn
is the leading-order energy for small /.
Following [1], we model the leaflets of the bilayer as nematic liquid crystals with energy densities

U* = WH@m*, D), ©)
where AT are fields of unit vectors specifying the local molecular orientation and Dt = grad nt are their
(spatial) gradients. It is customary [7] to specify a constitutive function for the energy per unit current volume
and to regard the liquid crystal as an incompressible medium. Then, 2/* are also the energies per unit reference
volume, as assumed in the foregoing, and

U* = wHm*, ph), @)

where n* and DF are the restrictions to the interface of A and DF, respectively.
Here, as in [1], we suppress lipid i/t and thus take n* to be the unit-normal fields to the images 7+ of
the interface IT in the current configurations of the leaves of the bilayer. Because these are assumed to remain
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congruent, they are subsets of a single surface @ and accordingly share a common unit-normal field n. Thus,
n* =nand [12]

DT = Vin+ 5t @n, ®)

where V, (-) is the surficial gradient on w and 5, respectively, are the restrictions to w of the derivatives of A
in the directions of . These represent the curvatures of the trajectories aligned locally with the directions
T of the lipid molecules. Because the latter are fields of unit vectors, we require n - = = 0 and conclude
that n* are tangential vector fields on w.

The Gauss and Weingarten equations of differential geometry furnish

Vsn = —b, €))

where b is the symmetric curvature 2-tensor on the local tangent planes of w. The energy density of the bilayer
is thus given by the function

U, n,p5) =a"U (b,n,n") +a U (b,n, ), (10)
where

U%(b,n, 7%) = WEm, b+ 9 @n). (11)

3 Liquid crystal energies
3.1 The Frank energy for nematics

We model both leaflets of the bilayer as nematic liquid crystals. Unlike the molecules of conventional nematics,
lipid molecules are polar. Accordingly, the orientation of the director field n is physically significant, i.e., the
energy is not invariant under n — —n. The most general quadratic energy that takes this into account is [7,
Eq. (3.36)]

W@, D) = ki (trD)? + ko (W(@) - D)2 + ks[Di|” + (k2 + ko) [r(D?) — (0rD)?]
+ao + (a1 + aaW@) - D)trD + azsW(i) - D. (12)
where k1_4 are constants satisfying Ericksen’s inequalities
2ky > ko + kg, ky > lk4] and k3 >0, (13)

in accordance with the assumed convexity of YW(an, -), and W(n) is the skew tensor with axial vector n, i.e.,
W(m)v=n x v forall v.
Frank’s energy [7, Eq. (3.63)], obtained by suppressing ag, 12,3, pertains to conventional nonpolar nematics.

3.2 Restriction to the interface

A central aspect of the present model is that IT convects as a material surface with the two leaflets of the bilayer

in such a way as to maintain congruency; that is, the (possibly distinct) images 7+ of IT under the individual

leaflet deformations are subsets of a single surface w. This assumption is justified by the hydrophobicity of

the tail groups of the lipids, which acts to shield them from the surrounding aqueous solution and thereby

promotes congruency. Here, we assume that w can be covered completely by the images of such patches, each

of which is assumed, for the sake of notational convenience, to be parametrized by a single coordinate chart.
The interfacial energy is the restriction to w of (12). To derive it, we use (8) and (9) to obtain

Wmn)-D=n-Wmn)n—Whm)- -b=0, (14)
which follows from the symmetry of b, together with

uD = —2H, where H = 1trb (15)
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is the mean curvature of w. Combining
D>=b>—by®n (16)
with the Cayley—Hamilton formula
b’ =2Hb — K1, where K =detb (17)

is the Gaussian curvature of w and 1 = I — n ® n is the (two-dimensional) identity on its local tangent plane,
we arrive at

tr(D?) = tr(b?) = 4H? — 2K. (18)
Using Dn = 7, the restriction of the energy to the interface is found to be
Um,b,n) =y + BH +kH> + kK + ks Inl*, (19)
where
y =ag, B=—2a1, k=4k and k= —2(ky +ks). (20)

With reference to (5), (7) and (10), the net leading-order composite energy is

E =/ W dA, 1)
I
where
WH, K, 95)=atWHH, K, 97)+a W (H,K,q), (22)
with WE(H, K, %) = U, b, n%), ie.,
WEH, K, 0) = y* + B*H + K H? + 5K + &5 [n*[°. (23)
Accordingly,
W(H, K, 75) =y + BH +kH> + kK + o kf [t > + o k5 ||, (24)
where

y=aTyT+a"y", B=a BT +a B, k=aTkT+a k" and k=aTkt+a k. (25)

We adopt the conventional assumption that deformations of the bilayer conserve interfacial area. This is
assumed for each leaflet of the bilayer. It is justified by bulk incompressibility in the parent theory of liquid
crystals and by the suppression of lipid tilt [ 12]; inextensibility of the lipids then implies areal incompressibility.
The referential areal energy density W is then also the areal density in the current configuration of the system
in the sense that

E=a"ET +a " E~, where ET = f W*da (26)
Tt
and 7% C w are the images of IT under the deformations of the upper and lower leaflets of the bilayer,

respectively.
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4 Differential geometry

4.1 Elementary surface geometry

A typical configuration of the leaflet interface occupies a surface w with position field r(6%) in which 6%; o =
1, 2, are surface coordinates. This surface parametrization induces the tangent basis {a,}, where a, = r 4;
the (invertible) surface metric a,g = a, - ag; the dual metric a®f, where (a®f) = (aa,g)_l; and the dual
tangent basis {a®}, with a% = ¢ ag. The orientation of w is identified with the unit-normal field n defined
by eqpn = a4 X ag, wWhere eo = /aeqp, with a = det(aqp), is the Levi-Civita alternating tensor and eqg is

the permutation symbol (ejp = —e; = 1, e1] = exn = 0).
A primary role is played by the Gauss and Weingarten equations [13,14]

rog =bggn and n, = —baﬁaﬁ, 27
respectively, where

Iop =T g8 — Féﬁr,,\ (28)
is the second covariant derivative of the surface position field. Here, Féﬂ are the Levi—Civita connection
coefficients and byg are the coefficients of the second fundamental form on w; these are symmetric with

respect to interchange of the subscripts, and the latter induce the curvature tensor
b = byga® @ a’. (29)
The surficial gradient of the field nis Vin = n , ® a%, in accordance with (9) and (27),. Here, the connection
coefficients are simply the Christoffel symbols and the connection is therefore metric compatible, i.e., the

covariant derivatives of the metric components vanish.
The mean and Gaussian curvatures of w are [see (15), and (17);]

1 1
H = Ea"‘ﬂba,,g, K = Ee“ﬁek“bakblgu, (30)

respectively, where e = ¢*f /. /a, with e*f = eqp, 1s the contravariant alternator, and we note the relation
bhb* = KaP, (1)
where bﬁ = aﬂ“bw and
b*P = g ePpy, (32)
is the cofactor of the curvature, expressible as
b =2Ha"F — p*P (33)
via the identity
g P = qoB g _ gty Pr (34)
The Mainardi—-Codazzi equations of surface theory are by .. g = b;.g., [14], or, more concisely, ePrp, wp =

0. The metric compatibility of the connection implies that the e** are covariant constants; the Mainardi—Codazzi
equations are thus equivalent to

~0‘:B _
5% = 0. (35)
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4.2 Virtual velocity

The virtual velocity of a leaflet of the bilayer is of the form [12]
r=u= u%a, + wn, (36)

where u® and w, respectively, are the tangential and normal virtual velocities. Here, we take the coordinates
6% to be convected with the lipids. The superposed dot stands for %r(@"‘; €), evaluated at € = 0, say, which
we identify with an equilibrium state. The induced variation of the surface metric is

dM:u,wau +a)-u,, 37
in which
u = (ug;n — whe)a® + (U by + w )n, (38)

by the Gauss and Weingarten equations, where a% = q*# ag and ug, is the covariant derivative defined by

Ug:) = Ug,p — uf;l"gk. 39)
Thus,
C'IAM = Uy + Upp — 2wbw. (40)

If Ayp is the (fixed) metric on a reference surface €2, then the areal stretch induced by the deformation is
J = /a/A, where A = det(Agyg). The fact that the cofactor of aug is (a)a®P then yields

. 1
J)J = Ea“ﬂaaﬂ, (41)

and with (37) this may be reduced to
JJJ =a% ug,. (42)

The virtual velocities of the two leaflets of the bilayer at the point with coordinates /% on w are given
simply by

it =ut = u%a, + wn, (43)

where u9 are the distinct tangential velocities of the leaflets and w, the normal velocity, is common to both
leaflets. This ensures that congruency of the leaflets is maintained as the bilayer deforms.

5 Energy, virtual power and equilibrium

To obtain the equilibrium equations, we invoke the virtual-power principle for the simply connected patch IT.
Areal incompressibility, i.e., J* = 1, is accommodated by extending the energy to unconstrained states and
introducing appropriate Lagrange-multiplier fields [15]. The extension of the energy (26) of the patch is

E=aEt+a E~, where E* = / JEWE + 25 UT - 1)]dA +/ AT =1)dS, @)
I oIl

and A* and i* are Lagrange multiplier fields. Multipliers on the boundary are included because the tangential
and normal derivatives of the virtual bilayer velocities u™, which figure in the expression for the variation of
the energy to be derived, are constrained by areal incompressibility.

Equilibria are defined to be those states that satisfy the virtual-power statement

E=P, (45)
where

P=a"Pt+a P~ (46)
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is the virtual power imparted to the patch, in which P* pertain to the individual leaflets, and

E=avET +a E~, with Ei=/i[Wi+(Wi+)\i)J'i/Ji]da+/a i;ﬁtji/ﬂ:ds, (47
g

g

where pu*ds = gtJ*ds.
We note that variation of (44) with respect to the multipliers simply returns the constraints and is therefore
not made explicit.

5.1 Variation with respect to p*

Setting u4 = 0 and w = 0, we obtain the energy variation
E/2 = oﬁ/ Kt -qTda +or/ k3n~ -9 da, (48)
xt T~

and conclude, as §* are arbitrary tangential vector fields, that #© and y~ vanish if the virtual powers P+
attending # also vanish. Here we assume that k3i > 0 in accordance with the strict form of (13)3. We thus
base our further considerations on the leaflet energies

WEH, K) = y* 4+ B*H + ktH? + kEK, (49)
and bilayer energy
W(H,K)=y+ BH + kH*+ kK. (50)

The identifications y = kC 2 and B = —2kC, where C is a constant, reduce the latter to the classical Helfrich
form [1,2]

W(H,K) =k(H —C)?+ kK 51)

in which C is the so-called spontaneous curvature.
Minimum-energy considerations in the setting of conservative problems require that k, and hence y, be
nonnegative [16].

5.2 Variational derivatives of the leaflet energies

In this subsection, we derive formulae valid for arbitrary virtual velocities of a leaflet. We focus attention on
a single leaflet and temporarily suppress the superscript *.

Because J and W depend on the surface position field through its first and second derivatives with respect
to the coordinates, there exist vector fields N® and M®® such that

W4+ W +0J/J =N uy +MP o u, (52)

where u = I is the virtual velocity and u,og = 0 o — Féﬂu, » 1s the second covariant derivative of u. This is

symmetric in the subscripts, and thus, no generality is lost by imposing M®? = M#%,
For example [17],

H=1a"n uu —b%ag-u, and K =5"n-uep —2Ka"  ug, (53)
whereas [see (42)]
JJJ =a% ug,. (54)
For either leaflet energy, it follows from (49) that

W = (B +2kH)H + kK, (55)
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with the moduli, of course, pertaining to the considered leaflet, and hence that
Nt = N*Pag, MM = M#in, (56)
with
N" =\ + BH + kH? — kK)a"f — (B +2kH)b"? and M"P = L(B +2kH)a"P + kb*P,  (57)

in which the constant y in W has been absorbed into the multiplier A [cf. (49)].
We write the right-hand side of (52) as

N uy + M7 ugp =% —u T, (58)
where
T = N* — M2, (59)
with
MY = M — MPebla,, (60)
and
¢ =T ut+ M . ug, 61)
in which [cf. (27); and (56)]
T = (N + M*Pbl)ay, — M.‘jfn. (62)
Combining (52) and (58) with Stokes’ theorem, we derive
/[v‘v + (W +21)J/J1da =f 9% vy ds — / u - T¢, da, (63)
b4 am b4 ’
where v = v,a“® is the exterior unit normal to d7r and
u- TS, = uyat - T, +wn - TY, (64)
with
al .T?la — (Notu + Maﬂbg);a + M;‘?bg (65)
and
n- T = (N + M*Pbl)b,, — Ml (66)

To reduce the first term on the right-hand side of (63), we use the normal-tangential decomposition [13]
up = tau’ + vgu,, (67)

where 7 = r’ = 7,a% = n x v is the unit tangent to 97, ' = t*u, = du/ds, with t® = d6%/ds, is the
tangential derivative of u, and u, = v*u 4 is the normal derivative. The term involving the tangential derivative
is integrated by parts. If 07 is piecewise smooth in the sense that its tangent t is piecewise continuous, having
discontinuities at a finite number of corners, then

/ P vads = | (T — MPry1p)'} - u+ MPryvp - uy)ds — > M [vg14]i - wi, (68)
am o
in which the square bracket refers to the forward jump as a corner of the boundary is traversed, and the sum

ranges over all corners, i.e., [-] = (-)4+ — (-)—, where, in the present context, the subscripts + identify limits as
a corner located at arclength station s is approached through larger and smaller values of arclength.
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5.3 Tangential leaflet equilibrium

Consider variations with u and u,, vanishing on 97 (and at corners) with u = u,a* in the interior of 7 (= xt
or 7t ). For these, we have the variation

E:/[W+(W+A)J'/J]da=—/uua“'T?‘ada ©9)

of the energy of a leaflet, in which variation of A has been suppressed. Canceling the common factor o™ or
o, as appropriate, it follows, from (45)—(47), that the corresponding leaflet power is of the form

P = / g"uyda, (70)
g

where g# is a tangential force per unit area acting on the leaflet. With u,, unrestricted, we thus arrive at

(N + M*Pb).q + ijgﬂbg +¢"=0 in . (71)
To reduce this for the leaflet energy (49), we use (33) and (57), obtaining
N + MPbly = (L — kH?)a™" + (3B + kH) b, (72)
with divergence [cf. (35)]

(N 4 M"‘ﬂbg);a =a""\ 4 —2kHa"" H o + kb**H ,, (73)

and combination with [see (57)>]

M = ka® H 4 (74)
furnishes
(N + MPD).o + Mj*ﬂﬂbg = a""). 4. (75)

Then, reinstating the leaflet labels, we find that (71) reduces simply to
a®M i+ gt =0 in 7*. (76)
The multipliers ¥ are therefore uniform if the tangential forces vanish, as assumed in conventional

expositions of theory [2]. However, a number of biologically relevant physical effects, such as intra-leaflet
diffusion [12, 18] and viscous flow [12,19], can give rise to non-uniform multiplier fields.

5.4 Normal equilibrium of the bilayer
We consider normal variations involving both leaflets of the bilayer together. Taking variations as in the previous

subsection, now with u* = wn in the interior of an overlap region 7* = 7+ N 7=, we obtain the energy
variation

E=— / wn - T% da, (77)
T[*
where [cf. (62)]
T = (N + M*Pb)a, — M ) n, (78)
with

N = ot N + o~ N and M =atM{" + o M2 (79)
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in which N$* and M$"* are given by (57) with moduli and Lagrange multipliers pertaining to 7=, respectively.
Thus, the associated power is

P =/ pwda, (80)
n*

where p is the net lateral pressure acting on the surface in the direction of n. With (45) and with w unrestricted,
we arrive at

(N + M b)bye — Mﬁ;; +p=0 in 7% (81)

We note in passing that (71) and (81) are the general equilibrium equations for a pressurized Kirchhoff-Love
Shel}ﬁglrz’dlut]é (81) for the energy (50), we use (57) with a"**b,, = 2H and l;ﬂab,w = 2K, which follow from
(30); and (31), respectively, finding that

(N 4 M“ﬁbg)b,m =2).H +2kH(K — H*) + BK. (82)
Then, with (74), Eq. (81) reduces to the well-known shape equation
k[AH +2H(H?> — K)] — BK —2)H = p, (83)

where

1
AH = a"PH.op = %(ﬁa“ﬁﬂ,ﬂ),a (84)

is the surficial Laplacian of H . Here, in contrast to the classical theory [2], A (= oAt +a~ A7) is non-uniform
if either leaflet is subjected to a tangential distributed force.

6 Edge conditions

Edge conditions are of secondary interest in this subject because applications are primarily concerned with
closed surfaces. However, in the present framework they are readily obtained from the patchwise virtual power
postulate and so we derive them here for the sake of completeness. A number of works that encompass edge
interactions are available in the literature [17,20,21].

With the equilibrium equations (76) and (83) satisfied, the variation of the energy—of a leaflet or the
bilayer—reduces to

E :f (9% + puJ /J) ds. (85)
om

We use this to extract the relevant expressions for the actions exerted at the boundaries of a patch.

6.1 Tangential actions on the boundaries of leaflet patches
From our development thus far, we see that (85) holds for the individual leaflets, with superscripts * appended
as appropriate. We continue the convention of suppressing these when discussing a single leaflet. Applying

this with tangential leaflet virtual velocities u = uﬂaf;, we conclude, from (45) and (68), after division by «,
that the relevant contribution to the leaflet power is

P = /a {tpuf + pp (v ul N)ds =Y (fpn?, (86)
where

tp = MbpaV® +ag - (T, — (T + 1)), pp=pvp and (f)p = [utpl; (87)
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are the tangential force density, double force density [22] and corner force, respectively, with

M =M*Pvgvg and T = M*Pvytg. (88)
Using n’ = —by,, t%a’ and
T/ = —kgv + ko0, (39)
where
ke = bopt®t? and kg = —v,(dr’/ds + % 7PT),) (90)

are the normal and geodesic curvatures of d, respectively, the leaflet traction, double forces and corner forces
are given finally by

ty = M bpav® + T bapt® + W icgup — (W) 15 +ag - Thva, py =pTvp and (f5)p = [T 1pl:.
©On

6.2 Normal actions on the boundary of a bilayer patch

Assuming the equilibrium equations to be satisfied in the interior of 7* = 7+ N7, the residual variation of
the total energy of the bilayer patch * is [cf. (85)]

E = (9% vy 4+ pd /J) ds, (92)

om*
which we apply with u™ = wn. Thus, the boundary integral of ¢®v, is given by (68), with
u, = v*(wn) , = wyn — whfv*ag. (93)

From (45), we derive the associated virtual power

P=[ (Sw+Cw)ds—>" fiw;. 94)

am*

where
S=n-T%y —T' —uk;, C=M and f; =I[T]; 95)

are the transverse shear force density, bending moment density and transverse corner force, respectively.
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